LCOV - code coverage report
Current view: top level - security - commoncap.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 4 399 1.0 %
Date: 2023-08-24 13:40:31 Functions: 1 30 3.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /* Common capabilities, needed by capability.o.
       3             :  */
       4             : 
       5             : #include <linux/capability.h>
       6             : #include <linux/audit.h>
       7             : #include <linux/init.h>
       8             : #include <linux/kernel.h>
       9             : #include <linux/lsm_hooks.h>
      10             : #include <linux/file.h>
      11             : #include <linux/mm.h>
      12             : #include <linux/mman.h>
      13             : #include <linux/pagemap.h>
      14             : #include <linux/swap.h>
      15             : #include <linux/skbuff.h>
      16             : #include <linux/netlink.h>
      17             : #include <linux/ptrace.h>
      18             : #include <linux/xattr.h>
      19             : #include <linux/hugetlb.h>
      20             : #include <linux/mount.h>
      21             : #include <linux/sched.h>
      22             : #include <linux/prctl.h>
      23             : #include <linux/securebits.h>
      24             : #include <linux/user_namespace.h>
      25             : #include <linux/binfmts.h>
      26             : #include <linux/personality.h>
      27             : #include <linux/mnt_idmapping.h>
      28             : 
      29             : /*
      30             :  * If a non-root user executes a setuid-root binary in
      31             :  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
      32             :  * However if fE is also set, then the intent is for only
      33             :  * the file capabilities to be applied, and the setuid-root
      34             :  * bit is left on either to change the uid (plausible) or
      35             :  * to get full privilege on a kernel without file capabilities
      36             :  * support.  So in that case we do not raise capabilities.
      37             :  *
      38             :  * Warn if that happens, once per boot.
      39             :  */
      40             : static void warn_setuid_and_fcaps_mixed(const char *fname)
      41             : {
      42             :         static int warned;
      43           0 :         if (!warned) {
      44           0 :                 printk(KERN_INFO "warning: `%s' has both setuid-root and"
      45             :                         " effective capabilities. Therefore not raising all"
      46             :                         " capabilities.\n", fname);
      47           0 :                 warned = 1;
      48             :         }
      49             : }
      50             : 
      51             : /**
      52             :  * cap_capable - Determine whether a task has a particular effective capability
      53             :  * @cred: The credentials to use
      54             :  * @targ_ns:  The user namespace in which we need the capability
      55             :  * @cap: The capability to check for
      56             :  * @opts: Bitmask of options defined in include/linux/security.h
      57             :  *
      58             :  * Determine whether the nominated task has the specified capability amongst
      59             :  * its effective set, returning 0 if it does, -ve if it does not.
      60             :  *
      61             :  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
      62             :  * and has_capability() functions.  That is, it has the reverse semantics:
      63             :  * cap_has_capability() returns 0 when a task has a capability, but the
      64             :  * kernel's capable() and has_capability() returns 1 for this case.
      65             :  */
      66           1 : int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
      67             :                 int cap, unsigned int opts)
      68             : {
      69           1 :         struct user_namespace *ns = targ_ns;
      70             : 
      71             :         /* See if cred has the capability in the target user namespace
      72             :          * by examining the target user namespace and all of the target
      73             :          * user namespace's parents.
      74             :          */
      75             :         for (;;) {
      76             :                 /* Do we have the necessary capabilities? */
      77           1 :                 if (ns == cred->user_ns)
      78           1 :                         return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
      79             : 
      80             :                 /*
      81             :                  * If we're already at a lower level than we're looking for,
      82             :                  * we're done searching.
      83             :                  */
      84           0 :                 if (ns->level <= cred->user_ns->level)
      85             :                         return -EPERM;
      86             : 
      87             :                 /* 
      88             :                  * The owner of the user namespace in the parent of the
      89             :                  * user namespace has all caps.
      90             :                  */
      91           0 :                 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
      92             :                         return 0;
      93             : 
      94             :                 /*
      95             :                  * If you have a capability in a parent user ns, then you have
      96             :                  * it over all children user namespaces as well.
      97             :                  */
      98             :                 ns = ns->parent;
      99             :         }
     100             : 
     101             :         /* We never get here */
     102             : }
     103             : 
     104             : /**
     105             :  * cap_settime - Determine whether the current process may set the system clock
     106             :  * @ts: The time to set
     107             :  * @tz: The timezone to set
     108             :  *
     109             :  * Determine whether the current process may set the system clock and timezone
     110             :  * information, returning 0 if permission granted, -ve if denied.
     111             :  */
     112           0 : int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
     113             : {
     114           0 :         if (!capable(CAP_SYS_TIME))
     115             :                 return -EPERM;
     116           0 :         return 0;
     117             : }
     118             : 
     119             : /**
     120             :  * cap_ptrace_access_check - Determine whether the current process may access
     121             :  *                         another
     122             :  * @child: The process to be accessed
     123             :  * @mode: The mode of attachment.
     124             :  *
     125             :  * If we are in the same or an ancestor user_ns and have all the target
     126             :  * task's capabilities, then ptrace access is allowed.
     127             :  * If we have the ptrace capability to the target user_ns, then ptrace
     128             :  * access is allowed.
     129             :  * Else denied.
     130             :  *
     131             :  * Determine whether a process may access another, returning 0 if permission
     132             :  * granted, -ve if denied.
     133             :  */
     134           0 : int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
     135             : {
     136           0 :         int ret = 0;
     137             :         const struct cred *cred, *child_cred;
     138             :         const kernel_cap_t *caller_caps;
     139             : 
     140             :         rcu_read_lock();
     141           0 :         cred = current_cred();
     142           0 :         child_cred = __task_cred(child);
     143           0 :         if (mode & PTRACE_MODE_FSCREDS)
     144           0 :                 caller_caps = &cred->cap_effective;
     145             :         else
     146           0 :                 caller_caps = &cred->cap_permitted;
     147           0 :         if (cred->user_ns == child_cred->user_ns &&
     148             :             cap_issubset(child_cred->cap_permitted, *caller_caps))
     149             :                 goto out;
     150           0 :         if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
     151             :                 goto out;
     152           0 :         ret = -EPERM;
     153             : out:
     154             :         rcu_read_unlock();
     155           0 :         return ret;
     156             : }
     157             : 
     158             : /**
     159             :  * cap_ptrace_traceme - Determine whether another process may trace the current
     160             :  * @parent: The task proposed to be the tracer
     161             :  *
     162             :  * If parent is in the same or an ancestor user_ns and has all current's
     163             :  * capabilities, then ptrace access is allowed.
     164             :  * If parent has the ptrace capability to current's user_ns, then ptrace
     165             :  * access is allowed.
     166             :  * Else denied.
     167             :  *
     168             :  * Determine whether the nominated task is permitted to trace the current
     169             :  * process, returning 0 if permission is granted, -ve if denied.
     170             :  */
     171           0 : int cap_ptrace_traceme(struct task_struct *parent)
     172             : {
     173           0 :         int ret = 0;
     174             :         const struct cred *cred, *child_cred;
     175             : 
     176             :         rcu_read_lock();
     177           0 :         cred = __task_cred(parent);
     178           0 :         child_cred = current_cred();
     179           0 :         if (cred->user_ns == child_cred->user_ns &&
     180             :             cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
     181             :                 goto out;
     182           0 :         if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
     183             :                 goto out;
     184           0 :         ret = -EPERM;
     185             : out:
     186             :         rcu_read_unlock();
     187           0 :         return ret;
     188             : }
     189             : 
     190             : /**
     191             :  * cap_capget - Retrieve a task's capability sets
     192             :  * @target: The task from which to retrieve the capability sets
     193             :  * @effective: The place to record the effective set
     194             :  * @inheritable: The place to record the inheritable set
     195             :  * @permitted: The place to record the permitted set
     196             :  *
     197             :  * This function retrieves the capabilities of the nominated task and returns
     198             :  * them to the caller.
     199             :  */
     200           0 : int cap_capget(struct task_struct *target, kernel_cap_t *effective,
     201             :                kernel_cap_t *inheritable, kernel_cap_t *permitted)
     202             : {
     203             :         const struct cred *cred;
     204             : 
     205             :         /* Derived from kernel/capability.c:sys_capget. */
     206             :         rcu_read_lock();
     207           0 :         cred = __task_cred(target);
     208           0 :         *effective   = cred->cap_effective;
     209           0 :         *inheritable = cred->cap_inheritable;
     210           0 :         *permitted   = cred->cap_permitted;
     211             :         rcu_read_unlock();
     212           0 :         return 0;
     213             : }
     214             : 
     215             : /*
     216             :  * Determine whether the inheritable capabilities are limited to the old
     217             :  * permitted set.  Returns 1 if they are limited, 0 if they are not.
     218             :  */
     219           0 : static inline int cap_inh_is_capped(void)
     220             : {
     221             :         /* they are so limited unless the current task has the CAP_SETPCAP
     222             :          * capability
     223             :          */
     224           0 :         if (cap_capable(current_cred(), current_cred()->user_ns,
     225             :                         CAP_SETPCAP, CAP_OPT_NONE) == 0)
     226             :                 return 0;
     227           0 :         return 1;
     228             : }
     229             : 
     230             : /**
     231             :  * cap_capset - Validate and apply proposed changes to current's capabilities
     232             :  * @new: The proposed new credentials; alterations should be made here
     233             :  * @old: The current task's current credentials
     234             :  * @effective: A pointer to the proposed new effective capabilities set
     235             :  * @inheritable: A pointer to the proposed new inheritable capabilities set
     236             :  * @permitted: A pointer to the proposed new permitted capabilities set
     237             :  *
     238             :  * This function validates and applies a proposed mass change to the current
     239             :  * process's capability sets.  The changes are made to the proposed new
     240             :  * credentials, and assuming no error, will be committed by the caller of LSM.
     241             :  */
     242           0 : int cap_capset(struct cred *new,
     243             :                const struct cred *old,
     244             :                const kernel_cap_t *effective,
     245             :                const kernel_cap_t *inheritable,
     246             :                const kernel_cap_t *permitted)
     247             : {
     248           0 :         if (cap_inh_is_capped() &&
     249             :             !cap_issubset(*inheritable,
     250             :                           cap_combine(old->cap_inheritable,
     251             :                                       old->cap_permitted)))
     252             :                 /* incapable of using this inheritable set */
     253             :                 return -EPERM;
     254             : 
     255           0 :         if (!cap_issubset(*inheritable,
     256             :                           cap_combine(old->cap_inheritable,
     257             :                                       old->cap_bset)))
     258             :                 /* no new pI capabilities outside bounding set */
     259             :                 return -EPERM;
     260             : 
     261             :         /* verify restrictions on target's new Permitted set */
     262           0 :         if (!cap_issubset(*permitted, old->cap_permitted))
     263             :                 return -EPERM;
     264             : 
     265             :         /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
     266           0 :         if (!cap_issubset(*effective, *permitted))
     267             :                 return -EPERM;
     268             : 
     269           0 :         new->cap_effective   = *effective;
     270           0 :         new->cap_inheritable = *inheritable;
     271           0 :         new->cap_permitted   = *permitted;
     272             : 
     273             :         /*
     274             :          * Mask off ambient bits that are no longer both permitted and
     275             :          * inheritable.
     276             :          */
     277           0 :         new->cap_ambient = cap_intersect(new->cap_ambient,
     278             :                                          cap_intersect(*permitted,
     279             :                                                        *inheritable));
     280           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     281             :                 return -EINVAL;
     282           0 :         return 0;
     283             : }
     284             : 
     285             : /**
     286             :  * cap_inode_need_killpriv - Determine if inode change affects privileges
     287             :  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
     288             :  *
     289             :  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
     290             :  * affects the security markings on that inode, and if it is, should
     291             :  * inode_killpriv() be invoked or the change rejected.
     292             :  *
     293             :  * Return: 1 if security.capability has a value, meaning inode_killpriv()
     294             :  * is required, 0 otherwise, meaning inode_killpriv() is not required.
     295             :  */
     296           0 : int cap_inode_need_killpriv(struct dentry *dentry)
     297             : {
     298           0 :         struct inode *inode = d_backing_inode(dentry);
     299             :         int error;
     300             : 
     301           0 :         error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
     302           0 :         return error > 0;
     303             : }
     304             : 
     305             : /**
     306             :  * cap_inode_killpriv - Erase the security markings on an inode
     307             :  *
     308             :  * @idmap:      idmap of the mount the inode was found from
     309             :  * @dentry:     The inode/dentry to alter
     310             :  *
     311             :  * Erase the privilege-enhancing security markings on an inode.
     312             :  *
     313             :  * If the inode has been found through an idmapped mount the idmap of
     314             :  * the vfsmount must be passed through @idmap. This function will then
     315             :  * take care to map the inode according to @idmap before checking
     316             :  * permissions. On non-idmapped mounts or if permission checking is to be
     317             :  * performed on the raw inode simply pass @nop_mnt_idmap.
     318             :  *
     319             :  * Return: 0 if successful, -ve on error.
     320             :  */
     321           0 : int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
     322             : {
     323             :         int error;
     324             : 
     325           0 :         error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
     326           0 :         if (error == -EOPNOTSUPP)
     327           0 :                 error = 0;
     328           0 :         return error;
     329             : }
     330             : 
     331             : static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
     332             : {
     333             :         struct user_namespace *ns;
     334             :         kuid_t kroot;
     335             : 
     336           0 :         if (!vfsuid_valid(rootvfsuid))
     337             :                 return false;
     338             : 
     339           0 :         kroot = vfsuid_into_kuid(rootvfsuid);
     340           0 :         for (ns = current_user_ns();; ns = ns->parent) {
     341           0 :                 if (from_kuid(ns, kroot) == 0)
     342             :                         return true;
     343             :                 if (ns == &init_user_ns)
     344             :                         break;
     345             :         }
     346             : 
     347             :         return false;
     348             : }
     349             : 
     350             : static __u32 sansflags(__u32 m)
     351             : {
     352           0 :         return m & ~VFS_CAP_FLAGS_EFFECTIVE;
     353             : }
     354             : 
     355             : static bool is_v2header(int size, const struct vfs_cap_data *cap)
     356             : {
     357           0 :         if (size != XATTR_CAPS_SZ_2)
     358             :                 return false;
     359           0 :         return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
     360             : }
     361             : 
     362             : static bool is_v3header(int size, const struct vfs_cap_data *cap)
     363             : {
     364           0 :         if (size != XATTR_CAPS_SZ_3)
     365             :                 return false;
     366           0 :         return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
     367             : }
     368             : 
     369             : /*
     370             :  * getsecurity: We are called for security.* before any attempt to read the
     371             :  * xattr from the inode itself.
     372             :  *
     373             :  * This gives us a chance to read the on-disk value and convert it.  If we
     374             :  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
     375             :  *
     376             :  * Note we are not called by vfs_getxattr_alloc(), but that is only called
     377             :  * by the integrity subsystem, which really wants the unconverted values -
     378             :  * so that's good.
     379             :  */
     380           0 : int cap_inode_getsecurity(struct mnt_idmap *idmap,
     381             :                           struct inode *inode, const char *name, void **buffer,
     382             :                           bool alloc)
     383             : {
     384             :         int size;
     385             :         kuid_t kroot;
     386             :         vfsuid_t vfsroot;
     387             :         u32 nsmagic, magic;
     388             :         uid_t root, mappedroot;
     389           0 :         char *tmpbuf = NULL;
     390             :         struct vfs_cap_data *cap;
     391           0 :         struct vfs_ns_cap_data *nscap = NULL;
     392             :         struct dentry *dentry;
     393             :         struct user_namespace *fs_ns;
     394             : 
     395           0 :         if (strcmp(name, "capability") != 0)
     396             :                 return -EOPNOTSUPP;
     397             : 
     398           0 :         dentry = d_find_any_alias(inode);
     399           0 :         if (!dentry)
     400             :                 return -EINVAL;
     401           0 :         size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
     402             :                                   sizeof(struct vfs_ns_cap_data), GFP_NOFS);
     403           0 :         dput(dentry);
     404             :         /* gcc11 complains if we don't check for !tmpbuf */
     405           0 :         if (size < 0 || !tmpbuf)
     406             :                 goto out_free;
     407             : 
     408           0 :         fs_ns = inode->i_sb->s_user_ns;
     409           0 :         cap = (struct vfs_cap_data *) tmpbuf;
     410           0 :         if (is_v2header(size, cap)) {
     411             :                 root = 0;
     412           0 :         } else if (is_v3header(size, cap)) {
     413           0 :                 nscap = (struct vfs_ns_cap_data *) tmpbuf;
     414           0 :                 root = le32_to_cpu(nscap->rootid);
     415             :         } else {
     416             :                 size = -EINVAL;
     417             :                 goto out_free;
     418             :         }
     419             : 
     420           0 :         kroot = make_kuid(fs_ns, root);
     421             : 
     422             :         /* If this is an idmapped mount shift the kuid. */
     423           0 :         vfsroot = make_vfsuid(idmap, fs_ns, kroot);
     424             : 
     425             :         /* If the root kuid maps to a valid uid in current ns, then return
     426             :          * this as a nscap. */
     427           0 :         mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
     428           0 :         if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
     429           0 :                 size = sizeof(struct vfs_ns_cap_data);
     430           0 :                 if (alloc) {
     431           0 :                         if (!nscap) {
     432             :                                 /* v2 -> v3 conversion */
     433           0 :                                 nscap = kzalloc(size, GFP_ATOMIC);
     434           0 :                                 if (!nscap) {
     435             :                                         size = -ENOMEM;
     436             :                                         goto out_free;
     437             :                                 }
     438           0 :                                 nsmagic = VFS_CAP_REVISION_3;
     439           0 :                                 magic = le32_to_cpu(cap->magic_etc);
     440           0 :                                 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
     441           0 :                                         nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
     442           0 :                                 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     443           0 :                                 nscap->magic_etc = cpu_to_le32(nsmagic);
     444             :                         } else {
     445             :                                 /* use allocated v3 buffer */
     446           0 :                                 tmpbuf = NULL;
     447             :                         }
     448           0 :                         nscap->rootid = cpu_to_le32(mappedroot);
     449           0 :                         *buffer = nscap;
     450             :                 }
     451             :                 goto out_free;
     452             :         }
     453             : 
     454           0 :         if (!rootid_owns_currentns(vfsroot)) {
     455             :                 size = -EOVERFLOW;
     456             :                 goto out_free;
     457             :         }
     458             : 
     459             :         /* This comes from a parent namespace.  Return as a v2 capability */
     460           0 :         size = sizeof(struct vfs_cap_data);
     461           0 :         if (alloc) {
     462           0 :                 if (nscap) {
     463             :                         /* v3 -> v2 conversion */
     464           0 :                         cap = kzalloc(size, GFP_ATOMIC);
     465           0 :                         if (!cap) {
     466             :                                 size = -ENOMEM;
     467             :                                 goto out_free;
     468             :                         }
     469           0 :                         magic = VFS_CAP_REVISION_2;
     470           0 :                         nsmagic = le32_to_cpu(nscap->magic_etc);
     471           0 :                         if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
     472           0 :                                 magic |= VFS_CAP_FLAGS_EFFECTIVE;
     473           0 :                         memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     474           0 :                         cap->magic_etc = cpu_to_le32(magic);
     475             :                 } else {
     476             :                         /* use unconverted v2 */
     477           0 :                         tmpbuf = NULL;
     478             :                 }
     479           0 :                 *buffer = cap;
     480             :         }
     481             : out_free:
     482           0 :         kfree(tmpbuf);
     483           0 :         return size;
     484             : }
     485             : 
     486             : /**
     487             :  * rootid_from_xattr - translate root uid of vfs caps
     488             :  *
     489             :  * @value:      vfs caps value which may be modified by this function
     490             :  * @size:       size of @ivalue
     491             :  * @task_ns:    user namespace of the caller
     492             :  */
     493             : static vfsuid_t rootid_from_xattr(const void *value, size_t size,
     494             :                                   struct user_namespace *task_ns)
     495             : {
     496           0 :         const struct vfs_ns_cap_data *nscap = value;
     497           0 :         uid_t rootid = 0;
     498             : 
     499           0 :         if (size == XATTR_CAPS_SZ_3)
     500           0 :                 rootid = le32_to_cpu(nscap->rootid);
     501             : 
     502           0 :         return VFSUIDT_INIT(make_kuid(task_ns, rootid));
     503             : }
     504             : 
     505             : static bool validheader(size_t size, const struct vfs_cap_data *cap)
     506             : {
     507           0 :         return is_v2header(size, cap) || is_v3header(size, cap);
     508             : }
     509             : 
     510             : /**
     511             :  * cap_convert_nscap - check vfs caps
     512             :  *
     513             :  * @idmap:      idmap of the mount the inode was found from
     514             :  * @dentry:     used to retrieve inode to check permissions on
     515             :  * @ivalue:     vfs caps value which may be modified by this function
     516             :  * @size:       size of @ivalue
     517             :  *
     518             :  * User requested a write of security.capability.  If needed, update the
     519             :  * xattr to change from v2 to v3, or to fixup the v3 rootid.
     520             :  *
     521             :  * If the inode has been found through an idmapped mount the idmap of
     522             :  * the vfsmount must be passed through @idmap. This function will then
     523             :  * take care to map the inode according to @idmap before checking
     524             :  * permissions. On non-idmapped mounts or if permission checking is to be
     525             :  * performed on the raw inode simply pass @nop_mnt_idmap.
     526             :  *
     527             :  * Return: On success, return the new size; on error, return < 0.
     528             :  */
     529           0 : int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
     530             :                       const void **ivalue, size_t size)
     531             : {
     532             :         struct vfs_ns_cap_data *nscap;
     533             :         uid_t nsrootid;
     534           0 :         const struct vfs_cap_data *cap = *ivalue;
     535             :         __u32 magic, nsmagic;
     536           0 :         struct inode *inode = d_backing_inode(dentry);
     537           0 :         struct user_namespace *task_ns = current_user_ns(),
     538           0 :                 *fs_ns = inode->i_sb->s_user_ns;
     539             :         kuid_t rootid;
     540             :         vfsuid_t vfsrootid;
     541             :         size_t newsize;
     542             : 
     543           0 :         if (!*ivalue)
     544             :                 return -EINVAL;
     545           0 :         if (!validheader(size, cap))
     546             :                 return -EINVAL;
     547           0 :         if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
     548             :                 return -EPERM;
     549           0 :         if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
     550           0 :                 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
     551             :                         /* user is privileged, just write the v2 */
     552             :                         return size;
     553             : 
     554           0 :         vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
     555           0 :         if (!vfsuid_valid(vfsrootid))
     556             :                 return -EINVAL;
     557             : 
     558           0 :         rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
     559           0 :         if (!uid_valid(rootid))
     560             :                 return -EINVAL;
     561             : 
     562           0 :         nsrootid = from_kuid(fs_ns, rootid);
     563             :         if (nsrootid == -1)
     564             :                 return -EINVAL;
     565             : 
     566           0 :         newsize = sizeof(struct vfs_ns_cap_data);
     567           0 :         nscap = kmalloc(newsize, GFP_ATOMIC);
     568           0 :         if (!nscap)
     569             :                 return -ENOMEM;
     570           0 :         nscap->rootid = cpu_to_le32(nsrootid);
     571           0 :         nsmagic = VFS_CAP_REVISION_3;
     572           0 :         magic = le32_to_cpu(cap->magic_etc);
     573           0 :         if (magic & VFS_CAP_FLAGS_EFFECTIVE)
     574           0 :                 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
     575           0 :         nscap->magic_etc = cpu_to_le32(nsmagic);
     576           0 :         memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
     577             : 
     578           0 :         *ivalue = nscap;
     579           0 :         return newsize;
     580             : }
     581             : 
     582             : /*
     583             :  * Calculate the new process capability sets from the capability sets attached
     584             :  * to a file.
     585             :  */
     586           0 : static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
     587             :                                           struct linux_binprm *bprm,
     588             :                                           bool *effective,
     589             :                                           bool *has_fcap)
     590             : {
     591           0 :         struct cred *new = bprm->cred;
     592           0 :         int ret = 0;
     593             : 
     594           0 :         if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
     595           0 :                 *effective = true;
     596             : 
     597           0 :         if (caps->magic_etc & VFS_CAP_REVISION_MASK)
     598           0 :                 *has_fcap = true;
     599             : 
     600             :         /*
     601             :          * pP' = (X & fP) | (pI & fI)
     602             :          * The addition of pA' is handled later.
     603             :          */
     604           0 :         new->cap_permitted.val =
     605           0 :                 (new->cap_bset.val & caps->permitted.val) |
     606           0 :                 (new->cap_inheritable.val & caps->inheritable.val);
     607             : 
     608           0 :         if (caps->permitted.val & ~new->cap_permitted.val)
     609             :                 /* insufficient to execute correctly */
     610           0 :                 ret = -EPERM;
     611             : 
     612             :         /*
     613             :          * For legacy apps, with no internal support for recognizing they
     614             :          * do not have enough capabilities, we return an error if they are
     615             :          * missing some "forced" (aka file-permitted) capabilities.
     616             :          */
     617           0 :         return *effective ? ret : 0;
     618             : }
     619             : 
     620             : /**
     621             :  * get_vfs_caps_from_disk - retrieve vfs caps from disk
     622             :  *
     623             :  * @idmap:      idmap of the mount the inode was found from
     624             :  * @dentry:     dentry from which @inode is retrieved
     625             :  * @cpu_caps:   vfs capabilities
     626             :  *
     627             :  * Extract the on-exec-apply capability sets for an executable file.
     628             :  *
     629             :  * If the inode has been found through an idmapped mount the idmap of
     630             :  * the vfsmount must be passed through @idmap. This function will then
     631             :  * take care to map the inode according to @idmap before checking
     632             :  * permissions. On non-idmapped mounts or if permission checking is to be
     633             :  * performed on the raw inode simply pass @nop_mnt_idmap.
     634             :  */
     635           0 : int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
     636             :                            const struct dentry *dentry,
     637             :                            struct cpu_vfs_cap_data *cpu_caps)
     638             : {
     639           0 :         struct inode *inode = d_backing_inode(dentry);
     640             :         __u32 magic_etc;
     641             :         int size;
     642           0 :         struct vfs_ns_cap_data data, *nscaps = &data;
     643           0 :         struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
     644             :         kuid_t rootkuid;
     645             :         vfsuid_t rootvfsuid;
     646             :         struct user_namespace *fs_ns;
     647             : 
     648           0 :         memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
     649             : 
     650           0 :         if (!inode)
     651             :                 return -ENODATA;
     652             : 
     653           0 :         fs_ns = inode->i_sb->s_user_ns;
     654           0 :         size = __vfs_getxattr((struct dentry *)dentry, inode,
     655             :                               XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
     656           0 :         if (size == -ENODATA || size == -EOPNOTSUPP)
     657             :                 /* no data, that's ok */
     658             :                 return -ENODATA;
     659             : 
     660           0 :         if (size < 0)
     661             :                 return size;
     662             : 
     663           0 :         if (size < sizeof(magic_etc))
     664             :                 return -EINVAL;
     665             : 
     666           0 :         cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
     667             : 
     668           0 :         rootkuid = make_kuid(fs_ns, 0);
     669           0 :         switch (magic_etc & VFS_CAP_REVISION_MASK) {
     670             :         case VFS_CAP_REVISION_1:
     671           0 :                 if (size != XATTR_CAPS_SZ_1)
     672             :                         return -EINVAL;
     673             :                 break;
     674             :         case VFS_CAP_REVISION_2:
     675           0 :                 if (size != XATTR_CAPS_SZ_2)
     676             :                         return -EINVAL;
     677             :                 break;
     678             :         case VFS_CAP_REVISION_3:
     679           0 :                 if (size != XATTR_CAPS_SZ_3)
     680             :                         return -EINVAL;
     681           0 :                 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
     682             :                 break;
     683             : 
     684             :         default:
     685             :                 return -EINVAL;
     686             :         }
     687             : 
     688           0 :         rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
     689           0 :         if (!vfsuid_valid(rootvfsuid))
     690             :                 return -ENODATA;
     691             : 
     692             :         /* Limit the caps to the mounter of the filesystem
     693             :          * or the more limited uid specified in the xattr.
     694             :          */
     695           0 :         if (!rootid_owns_currentns(rootvfsuid))
     696             :                 return -ENODATA;
     697             : 
     698           0 :         cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
     699           0 :         cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
     700             : 
     701             :         /*
     702             :          * Rev1 had just a single 32-bit word, later expanded
     703             :          * to a second one for the high bits
     704             :          */
     705           0 :         if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
     706           0 :                 cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
     707           0 :                 cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
     708             :         }
     709             : 
     710           0 :         cpu_caps->permitted.val &= CAP_VALID_MASK;
     711           0 :         cpu_caps->inheritable.val &= CAP_VALID_MASK;
     712             : 
     713           0 :         cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
     714             : 
     715           0 :         return 0;
     716             : }
     717             : 
     718             : /*
     719             :  * Attempt to get the on-exec apply capability sets for an executable file from
     720             :  * its xattrs and, if present, apply them to the proposed credentials being
     721             :  * constructed by execve().
     722             :  */
     723           0 : static int get_file_caps(struct linux_binprm *bprm, struct file *file,
     724             :                          bool *effective, bool *has_fcap)
     725             : {
     726           0 :         int rc = 0;
     727             :         struct cpu_vfs_cap_data vcaps;
     728             : 
     729           0 :         cap_clear(bprm->cred->cap_permitted);
     730             : 
     731           0 :         if (!file_caps_enabled)
     732             :                 return 0;
     733             : 
     734           0 :         if (!mnt_may_suid(file->f_path.mnt))
     735             :                 return 0;
     736             : 
     737             :         /*
     738             :          * This check is redundant with mnt_may_suid() but is kept to make
     739             :          * explicit that capability bits are limited to s_user_ns and its
     740             :          * descendants.
     741             :          */
     742           0 :         if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
     743             :                 return 0;
     744             : 
     745           0 :         rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
     746           0 :                                     file->f_path.dentry, &vcaps);
     747           0 :         if (rc < 0) {
     748           0 :                 if (rc == -EINVAL)
     749           0 :                         printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
     750             :                                         bprm->filename);
     751           0 :                 else if (rc == -ENODATA)
     752           0 :                         rc = 0;
     753             :                 goto out;
     754             :         }
     755             : 
     756           0 :         rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
     757             : 
     758             : out:
     759           0 :         if (rc)
     760           0 :                 cap_clear(bprm->cred->cap_permitted);
     761             : 
     762             :         return rc;
     763             : }
     764             : 
     765           0 : static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
     766             : 
     767             : static inline bool __is_real(kuid_t uid, struct cred *cred)
     768           0 : { return uid_eq(cred->uid, uid); }
     769             : 
     770             : static inline bool __is_eff(kuid_t uid, struct cred *cred)
     771           0 : { return uid_eq(cred->euid, uid); }
     772             : 
     773             : static inline bool __is_suid(kuid_t uid, struct cred *cred)
     774           0 : { return !__is_real(uid, cred) && __is_eff(uid, cred); }
     775             : 
     776             : /*
     777             :  * handle_privileged_root - Handle case of privileged root
     778             :  * @bprm: The execution parameters, including the proposed creds
     779             :  * @has_fcap: Are any file capabilities set?
     780             :  * @effective: Do we have effective root privilege?
     781             :  * @root_uid: This namespace' root UID WRT initial USER namespace
     782             :  *
     783             :  * Handle the case where root is privileged and hasn't been neutered by
     784             :  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
     785             :  * set UID root and nothing is changed.  If we are root, cap_permitted is
     786             :  * updated.  If we have become set UID root, the effective bit is set.
     787             :  */
     788           0 : static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
     789             :                                    bool *effective, kuid_t root_uid)
     790             : {
     791           0 :         const struct cred *old = current_cred();
     792           0 :         struct cred *new = bprm->cred;
     793             : 
     794           0 :         if (!root_privileged())
     795             :                 return;
     796             :         /*
     797             :          * If the legacy file capability is set, then don't set privs
     798             :          * for a setuid root binary run by a non-root user.  Do set it
     799             :          * for a root user just to cause least surprise to an admin.
     800             :          */
     801           0 :         if (has_fcap && __is_suid(root_uid, new)) {
     802           0 :                 warn_setuid_and_fcaps_mixed(bprm->filename);
     803             :                 return;
     804             :         }
     805             :         /*
     806             :          * To support inheritance of root-permissions and suid-root
     807             :          * executables under compatibility mode, we override the
     808             :          * capability sets for the file.
     809             :          */
     810           0 :         if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
     811             :                 /* pP' = (cap_bset & ~0) | (pI & ~0) */
     812           0 :                 new->cap_permitted = cap_combine(old->cap_bset,
     813             :                                                  old->cap_inheritable);
     814             :         }
     815             :         /*
     816             :          * If only the real uid is 0, we do not set the effective bit.
     817             :          */
     818           0 :         if (__is_eff(root_uid, new))
     819           0 :                 *effective = true;
     820             : }
     821             : 
     822             : #define __cap_gained(field, target, source) \
     823             :         !cap_issubset(target->cap_##field, source->cap_##field)
     824             : #define __cap_grew(target, source, cred) \
     825             :         !cap_issubset(cred->cap_##target, cred->cap_##source)
     826             : #define __cap_full(field, cred) \
     827             :         cap_issubset(CAP_FULL_SET, cred->cap_##field)
     828             : 
     829             : static inline bool __is_setuid(struct cred *new, const struct cred *old)
     830           0 : { return !uid_eq(new->euid, old->uid); }
     831             : 
     832             : static inline bool __is_setgid(struct cred *new, const struct cred *old)
     833           0 : { return !gid_eq(new->egid, old->gid); }
     834             : 
     835             : /*
     836             :  * 1) Audit candidate if current->cap_effective is set
     837             :  *
     838             :  * We do not bother to audit if 3 things are true:
     839             :  *   1) cap_effective has all caps
     840             :  *   2) we became root *OR* are were already root
     841             :  *   3) root is supposed to have all caps (SECURE_NOROOT)
     842             :  * Since this is just a normal root execing a process.
     843             :  *
     844             :  * Number 1 above might fail if you don't have a full bset, but I think
     845             :  * that is interesting information to audit.
     846             :  *
     847             :  * A number of other conditions require logging:
     848             :  * 2) something prevented setuid root getting all caps
     849             :  * 3) non-setuid root gets fcaps
     850             :  * 4) non-setuid root gets ambient
     851             :  */
     852           0 : static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
     853             :                                      kuid_t root, bool has_fcap)
     854             : {
     855           0 :         bool ret = false;
     856             : 
     857           0 :         if ((__cap_grew(effective, ambient, new) &&
     858           0 :              !(__cap_full(effective, new) &&
     859           0 :                (__is_eff(root, new) || __is_real(root, new)) &&
     860           0 :                root_privileged())) ||
     861           0 :             (root_privileged() &&
     862           0 :              __is_suid(root, new) &&
     863           0 :              !__cap_full(effective, new)) ||
     864           0 :             (!__is_setuid(new, old) &&
     865           0 :              ((has_fcap &&
     866           0 :                __cap_gained(permitted, new, old)) ||
     867             :               __cap_gained(ambient, new, old))))
     868             : 
     869             :                 ret = true;
     870             : 
     871           0 :         return ret;
     872             : }
     873             : 
     874             : /**
     875             :  * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
     876             :  * @bprm: The execution parameters, including the proposed creds
     877             :  * @file: The file to pull the credentials from
     878             :  *
     879             :  * Set up the proposed credentials for a new execution context being
     880             :  * constructed by execve().  The proposed creds in @bprm->cred is altered,
     881             :  * which won't take effect immediately.
     882             :  *
     883             :  * Return: 0 if successful, -ve on error.
     884             :  */
     885           0 : int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
     886             : {
     887             :         /* Process setpcap binaries and capabilities for uid 0 */
     888           0 :         const struct cred *old = current_cred();
     889           0 :         struct cred *new = bprm->cred;
     890           0 :         bool effective = false, has_fcap = false, is_setid;
     891             :         int ret;
     892             :         kuid_t root_uid;
     893             : 
     894           0 :         if (WARN_ON(!cap_ambient_invariant_ok(old)))
     895             :                 return -EPERM;
     896             : 
     897           0 :         ret = get_file_caps(bprm, file, &effective, &has_fcap);
     898           0 :         if (ret < 0)
     899             :                 return ret;
     900             : 
     901           0 :         root_uid = make_kuid(new->user_ns, 0);
     902             : 
     903           0 :         handle_privileged_root(bprm, has_fcap, &effective, root_uid);
     904             : 
     905             :         /* if we have fs caps, clear dangerous personality flags */
     906           0 :         if (__cap_gained(permitted, new, old))
     907           0 :                 bprm->per_clear |= PER_CLEAR_ON_SETID;
     908             : 
     909             :         /* Don't let someone trace a set[ug]id/setpcap binary with the revised
     910             :          * credentials unless they have the appropriate permit.
     911             :          *
     912             :          * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
     913             :          */
     914           0 :         is_setid = __is_setuid(new, old) || __is_setgid(new, old);
     915             : 
     916           0 :         if ((is_setid || __cap_gained(permitted, new, old)) &&
     917           0 :             ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
     918           0 :              !ptracer_capable(current, new->user_ns))) {
     919             :                 /* downgrade; they get no more than they had, and maybe less */
     920           0 :                 if (!ns_capable(new->user_ns, CAP_SETUID) ||
     921           0 :                     (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
     922           0 :                         new->euid = new->uid;
     923           0 :                         new->egid = new->gid;
     924             :                 }
     925           0 :                 new->cap_permitted = cap_intersect(new->cap_permitted,
     926             :                                                    old->cap_permitted);
     927             :         }
     928             : 
     929           0 :         new->suid = new->fsuid = new->euid;
     930           0 :         new->sgid = new->fsgid = new->egid;
     931             : 
     932             :         /* File caps or setid cancels ambient. */
     933           0 :         if (has_fcap || is_setid)
     934           0 :                 cap_clear(new->cap_ambient);
     935             : 
     936             :         /*
     937             :          * Now that we've computed pA', update pP' to give:
     938             :          *   pP' = (X & fP) | (pI & fI) | pA'
     939             :          */
     940           0 :         new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
     941             : 
     942             :         /*
     943             :          * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
     944             :          * this is the same as pE' = (fE ? pP' : 0) | pA'.
     945             :          */
     946           0 :         if (effective)
     947           0 :                 new->cap_effective = new->cap_permitted;
     948             :         else
     949           0 :                 new->cap_effective = new->cap_ambient;
     950             : 
     951           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     952             :                 return -EPERM;
     953             : 
     954           0 :         if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
     955             :                 ret = audit_log_bprm_fcaps(bprm, new, old);
     956             :                 if (ret < 0)
     957             :                         return ret;
     958             :         }
     959             : 
     960           0 :         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
     961             : 
     962           0 :         if (WARN_ON(!cap_ambient_invariant_ok(new)))
     963             :                 return -EPERM;
     964             : 
     965             :         /* Check for privilege-elevated exec. */
     966           0 :         if (is_setid ||
     967           0 :             (!__is_real(root_uid, new) &&
     968           0 :              (effective ||
     969             :               __cap_grew(permitted, ambient, new))))
     970           0 :                 bprm->secureexec = 1;
     971             : 
     972             :         return 0;
     973             : }
     974             : 
     975             : /**
     976             :  * cap_inode_setxattr - Determine whether an xattr may be altered
     977             :  * @dentry: The inode/dentry being altered
     978             :  * @name: The name of the xattr to be changed
     979             :  * @value: The value that the xattr will be changed to
     980             :  * @size: The size of value
     981             :  * @flags: The replacement flag
     982             :  *
     983             :  * Determine whether an xattr may be altered or set on an inode, returning 0 if
     984             :  * permission is granted, -ve if denied.
     985             :  *
     986             :  * This is used to make sure security xattrs don't get updated or set by those
     987             :  * who aren't privileged to do so.
     988             :  */
     989           0 : int cap_inode_setxattr(struct dentry *dentry, const char *name,
     990             :                        const void *value, size_t size, int flags)
     991             : {
     992           0 :         struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
     993             : 
     994             :         /* Ignore non-security xattrs */
     995           0 :         if (strncmp(name, XATTR_SECURITY_PREFIX,
     996             :                         XATTR_SECURITY_PREFIX_LEN) != 0)
     997             :                 return 0;
     998             : 
     999             :         /*
    1000             :          * For XATTR_NAME_CAPS the check will be done in
    1001             :          * cap_convert_nscap(), called by setxattr()
    1002             :          */
    1003           0 :         if (strcmp(name, XATTR_NAME_CAPS) == 0)
    1004             :                 return 0;
    1005             : 
    1006           0 :         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    1007             :                 return -EPERM;
    1008           0 :         return 0;
    1009             : }
    1010             : 
    1011             : /**
    1012             :  * cap_inode_removexattr - Determine whether an xattr may be removed
    1013             :  *
    1014             :  * @idmap:      idmap of the mount the inode was found from
    1015             :  * @dentry:     The inode/dentry being altered
    1016             :  * @name:       The name of the xattr to be changed
    1017             :  *
    1018             :  * Determine whether an xattr may be removed from an inode, returning 0 if
    1019             :  * permission is granted, -ve if denied.
    1020             :  *
    1021             :  * If the inode has been found through an idmapped mount the idmap of
    1022             :  * the vfsmount must be passed through @idmap. This function will then
    1023             :  * take care to map the inode according to @idmap before checking
    1024             :  * permissions. On non-idmapped mounts or if permission checking is to be
    1025             :  * performed on the raw inode simply pass @nop_mnt_idmap.
    1026             :  *
    1027             :  * This is used to make sure security xattrs don't get removed by those who
    1028             :  * aren't privileged to remove them.
    1029             :  */
    1030           0 : int cap_inode_removexattr(struct mnt_idmap *idmap,
    1031             :                           struct dentry *dentry, const char *name)
    1032             : {
    1033           0 :         struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
    1034             : 
    1035             :         /* Ignore non-security xattrs */
    1036           0 :         if (strncmp(name, XATTR_SECURITY_PREFIX,
    1037             :                         XATTR_SECURITY_PREFIX_LEN) != 0)
    1038             :                 return 0;
    1039             : 
    1040           0 :         if (strcmp(name, XATTR_NAME_CAPS) == 0) {
    1041             :                 /* security.capability gets namespaced */
    1042           0 :                 struct inode *inode = d_backing_inode(dentry);
    1043           0 :                 if (!inode)
    1044             :                         return -EINVAL;
    1045           0 :                 if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
    1046             :                         return -EPERM;
    1047           0 :                 return 0;
    1048             :         }
    1049             : 
    1050           0 :         if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    1051             :                 return -EPERM;
    1052           0 :         return 0;
    1053             : }
    1054             : 
    1055             : /*
    1056             :  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
    1057             :  * a process after a call to setuid, setreuid, or setresuid.
    1058             :  *
    1059             :  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
    1060             :  *  {r,e,s}uid != 0, the permitted and effective capabilities are
    1061             :  *  cleared.
    1062             :  *
    1063             :  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
    1064             :  *  capabilities of the process are cleared.
    1065             :  *
    1066             :  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
    1067             :  *  capabilities are set to the permitted capabilities.
    1068             :  *
    1069             :  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
    1070             :  *  never happen.
    1071             :  *
    1072             :  *  -astor
    1073             :  *
    1074             :  * cevans - New behaviour, Oct '99
    1075             :  * A process may, via prctl(), elect to keep its capabilities when it
    1076             :  * calls setuid() and switches away from uid==0. Both permitted and
    1077             :  * effective sets will be retained.
    1078             :  * Without this change, it was impossible for a daemon to drop only some
    1079             :  * of its privilege. The call to setuid(!=0) would drop all privileges!
    1080             :  * Keeping uid 0 is not an option because uid 0 owns too many vital
    1081             :  * files..
    1082             :  * Thanks to Olaf Kirch and Peter Benie for spotting this.
    1083             :  */
    1084           0 : static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
    1085             : {
    1086           0 :         kuid_t root_uid = make_kuid(old->user_ns, 0);
    1087             : 
    1088           0 :         if ((uid_eq(old->uid, root_uid) ||
    1089           0 :              uid_eq(old->euid, root_uid) ||
    1090           0 :              uid_eq(old->suid, root_uid)) &&
    1091           0 :             (!uid_eq(new->uid, root_uid) &&
    1092           0 :              !uid_eq(new->euid, root_uid) &&
    1093           0 :              !uid_eq(new->suid, root_uid))) {
    1094           0 :                 if (!issecure(SECURE_KEEP_CAPS)) {
    1095           0 :                         cap_clear(new->cap_permitted);
    1096           0 :                         cap_clear(new->cap_effective);
    1097             :                 }
    1098             : 
    1099             :                 /*
    1100             :                  * Pre-ambient programs expect setresuid to nonroot followed
    1101             :                  * by exec to drop capabilities.  We should make sure that
    1102             :                  * this remains the case.
    1103             :                  */
    1104           0 :                 cap_clear(new->cap_ambient);
    1105             :         }
    1106           0 :         if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
    1107           0 :                 cap_clear(new->cap_effective);
    1108           0 :         if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
    1109           0 :                 new->cap_effective = new->cap_permitted;
    1110           0 : }
    1111             : 
    1112             : /**
    1113             :  * cap_task_fix_setuid - Fix up the results of setuid() call
    1114             :  * @new: The proposed credentials
    1115             :  * @old: The current task's current credentials
    1116             :  * @flags: Indications of what has changed
    1117             :  *
    1118             :  * Fix up the results of setuid() call before the credential changes are
    1119             :  * actually applied.
    1120             :  *
    1121             :  * Return: 0 to grant the changes, -ve to deny them.
    1122             :  */
    1123           0 : int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
    1124             : {
    1125           0 :         switch (flags) {
    1126             :         case LSM_SETID_RE:
    1127             :         case LSM_SETID_ID:
    1128             :         case LSM_SETID_RES:
    1129             :                 /* juggle the capabilities to follow [RES]UID changes unless
    1130             :                  * otherwise suppressed */
    1131           0 :                 if (!issecure(SECURE_NO_SETUID_FIXUP))
    1132           0 :                         cap_emulate_setxuid(new, old);
    1133             :                 break;
    1134             : 
    1135             :         case LSM_SETID_FS:
    1136             :                 /* juggle the capabilities to follow FSUID changes, unless
    1137             :                  * otherwise suppressed
    1138             :                  *
    1139             :                  * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
    1140             :                  *          if not, we might be a bit too harsh here.
    1141             :                  */
    1142           0 :                 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
    1143           0 :                         kuid_t root_uid = make_kuid(old->user_ns, 0);
    1144           0 :                         if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
    1145           0 :                                 new->cap_effective =
    1146             :                                         cap_drop_fs_set(new->cap_effective);
    1147             : 
    1148           0 :                         if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
    1149           0 :                                 new->cap_effective =
    1150             :                                         cap_raise_fs_set(new->cap_effective,
    1151             :                                                          new->cap_permitted);
    1152             :                 }
    1153             :                 break;
    1154             : 
    1155             :         default:
    1156             :                 return -EINVAL;
    1157             :         }
    1158             : 
    1159             :         return 0;
    1160             : }
    1161             : 
    1162             : /*
    1163             :  * Rationale: code calling task_setscheduler, task_setioprio, and
    1164             :  * task_setnice, assumes that
    1165             :  *   . if capable(cap_sys_nice), then those actions should be allowed
    1166             :  *   . if not capable(cap_sys_nice), but acting on your own processes,
    1167             :  *      then those actions should be allowed
    1168             :  * This is insufficient now since you can call code without suid, but
    1169             :  * yet with increased caps.
    1170             :  * So we check for increased caps on the target process.
    1171             :  */
    1172           0 : static int cap_safe_nice(struct task_struct *p)
    1173             : {
    1174           0 :         int is_subset, ret = 0;
    1175             : 
    1176             :         rcu_read_lock();
    1177           0 :         is_subset = cap_issubset(__task_cred(p)->cap_permitted,
    1178           0 :                                  current_cred()->cap_permitted);
    1179           0 :         if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
    1180           0 :                 ret = -EPERM;
    1181             :         rcu_read_unlock();
    1182             : 
    1183           0 :         return ret;
    1184             : }
    1185             : 
    1186             : /**
    1187             :  * cap_task_setscheduler - Determine if scheduler policy change is permitted
    1188             :  * @p: The task to affect
    1189             :  *
    1190             :  * Determine if the requested scheduler policy change is permitted for the
    1191             :  * specified task.
    1192             :  *
    1193             :  * Return: 0 if permission is granted, -ve if denied.
    1194             :  */
    1195           0 : int cap_task_setscheduler(struct task_struct *p)
    1196             : {
    1197           0 :         return cap_safe_nice(p);
    1198             : }
    1199             : 
    1200             : /**
    1201             :  * cap_task_setioprio - Determine if I/O priority change is permitted
    1202             :  * @p: The task to affect
    1203             :  * @ioprio: The I/O priority to set
    1204             :  *
    1205             :  * Determine if the requested I/O priority change is permitted for the specified
    1206             :  * task.
    1207             :  *
    1208             :  * Return: 0 if permission is granted, -ve if denied.
    1209             :  */
    1210           0 : int cap_task_setioprio(struct task_struct *p, int ioprio)
    1211             : {
    1212           0 :         return cap_safe_nice(p);
    1213             : }
    1214             : 
    1215             : /**
    1216             :  * cap_task_setnice - Determine if task priority change is permitted
    1217             :  * @p: The task to affect
    1218             :  * @nice: The nice value to set
    1219             :  *
    1220             :  * Determine if the requested task priority change is permitted for the
    1221             :  * specified task.
    1222             :  *
    1223             :  * Return: 0 if permission is granted, -ve if denied.
    1224             :  */
    1225           0 : int cap_task_setnice(struct task_struct *p, int nice)
    1226             : {
    1227           0 :         return cap_safe_nice(p);
    1228             : }
    1229             : 
    1230             : /*
    1231             :  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
    1232             :  * the current task's bounding set.  Returns 0 on success, -ve on error.
    1233             :  */
    1234           0 : static int cap_prctl_drop(unsigned long cap)
    1235             : {
    1236             :         struct cred *new;
    1237             : 
    1238           0 :         if (!ns_capable(current_user_ns(), CAP_SETPCAP))
    1239             :                 return -EPERM;
    1240           0 :         if (!cap_valid(cap))
    1241             :                 return -EINVAL;
    1242             : 
    1243           0 :         new = prepare_creds();
    1244           0 :         if (!new)
    1245             :                 return -ENOMEM;
    1246           0 :         cap_lower(new->cap_bset, cap);
    1247           0 :         return commit_creds(new);
    1248             : }
    1249             : 
    1250             : /**
    1251             :  * cap_task_prctl - Implement process control functions for this security module
    1252             :  * @option: The process control function requested
    1253             :  * @arg2: The argument data for this function
    1254             :  * @arg3: The argument data for this function
    1255             :  * @arg4: The argument data for this function
    1256             :  * @arg5: The argument data for this function
    1257             :  *
    1258             :  * Allow process control functions (sys_prctl()) to alter capabilities; may
    1259             :  * also deny access to other functions not otherwise implemented here.
    1260             :  *
    1261             :  * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
    1262             :  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
    1263             :  * modules will consider performing the function.
    1264             :  */
    1265           0 : int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
    1266             :                    unsigned long arg4, unsigned long arg5)
    1267             : {
    1268           0 :         const struct cred *old = current_cred();
    1269             :         struct cred *new;
    1270             : 
    1271           0 :         switch (option) {
    1272             :         case PR_CAPBSET_READ:
    1273           0 :                 if (!cap_valid(arg2))
    1274             :                         return -EINVAL;
    1275           0 :                 return !!cap_raised(old->cap_bset, arg2);
    1276             : 
    1277             :         case PR_CAPBSET_DROP:
    1278           0 :                 return cap_prctl_drop(arg2);
    1279             : 
    1280             :         /*
    1281             :          * The next four prctl's remain to assist with transitioning a
    1282             :          * system from legacy UID=0 based privilege (when filesystem
    1283             :          * capabilities are not in use) to a system using filesystem
    1284             :          * capabilities only - as the POSIX.1e draft intended.
    1285             :          *
    1286             :          * Note:
    1287             :          *
    1288             :          *  PR_SET_SECUREBITS =
    1289             :          *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
    1290             :          *    | issecure_mask(SECURE_NOROOT)
    1291             :          *    | issecure_mask(SECURE_NOROOT_LOCKED)
    1292             :          *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
    1293             :          *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
    1294             :          *
    1295             :          * will ensure that the current process and all of its
    1296             :          * children will be locked into a pure
    1297             :          * capability-based-privilege environment.
    1298             :          */
    1299             :         case PR_SET_SECUREBITS:
    1300           0 :                 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
    1301           0 :                      & (old->securebits ^ arg2))                 /*[1]*/
    1302           0 :                     || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))        /*[2]*/
    1303           0 :                     || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))       /*[3]*/
    1304           0 :                     || (cap_capable(current_cred(),
    1305           0 :                                     current_cred()->user_ns,
    1306             :                                     CAP_SETPCAP,
    1307             :                                     CAP_OPT_NONE) != 0)                 /*[4]*/
    1308             :                         /*
    1309             :                          * [1] no changing of bits that are locked
    1310             :                          * [2] no unlocking of locks
    1311             :                          * [3] no setting of unsupported bits
    1312             :                          * [4] doing anything requires privilege (go read about
    1313             :                          *     the "sendmail capabilities bug")
    1314             :                          */
    1315             :                     )
    1316             :                         /* cannot change a locked bit */
    1317             :                         return -EPERM;
    1318             : 
    1319           0 :                 new = prepare_creds();
    1320           0 :                 if (!new)
    1321             :                         return -ENOMEM;
    1322           0 :                 new->securebits = arg2;
    1323           0 :                 return commit_creds(new);
    1324             : 
    1325             :         case PR_GET_SECUREBITS:
    1326           0 :                 return old->securebits;
    1327             : 
    1328             :         case PR_GET_KEEPCAPS:
    1329           0 :                 return !!issecure(SECURE_KEEP_CAPS);
    1330             : 
    1331             :         case PR_SET_KEEPCAPS:
    1332           0 :                 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
    1333             :                         return -EINVAL;
    1334           0 :                 if (issecure(SECURE_KEEP_CAPS_LOCKED))
    1335             :                         return -EPERM;
    1336             : 
    1337           0 :                 new = prepare_creds();
    1338           0 :                 if (!new)
    1339             :                         return -ENOMEM;
    1340           0 :                 if (arg2)
    1341           0 :                         new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
    1342             :                 else
    1343           0 :                         new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
    1344           0 :                 return commit_creds(new);
    1345             : 
    1346             :         case PR_CAP_AMBIENT:
    1347           0 :                 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
    1348           0 :                         if (arg3 | arg4 | arg5)
    1349             :                                 return -EINVAL;
    1350             : 
    1351           0 :                         new = prepare_creds();
    1352           0 :                         if (!new)
    1353             :                                 return -ENOMEM;
    1354           0 :                         cap_clear(new->cap_ambient);
    1355           0 :                         return commit_creds(new);
    1356             :                 }
    1357             : 
    1358           0 :                 if (((!cap_valid(arg3)) | arg4 | arg5))
    1359             :                         return -EINVAL;
    1360             : 
    1361           0 :                 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
    1362           0 :                         return !!cap_raised(current_cred()->cap_ambient, arg3);
    1363           0 :                 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
    1364             :                            arg2 != PR_CAP_AMBIENT_LOWER) {
    1365             :                         return -EINVAL;
    1366             :                 } else {
    1367           0 :                         if (arg2 == PR_CAP_AMBIENT_RAISE &&
    1368           0 :                             (!cap_raised(current_cred()->cap_permitted, arg3) ||
    1369           0 :                              !cap_raised(current_cred()->cap_inheritable,
    1370           0 :                                          arg3) ||
    1371           0 :                              issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
    1372             :                                 return -EPERM;
    1373             : 
    1374           0 :                         new = prepare_creds();
    1375           0 :                         if (!new)
    1376             :                                 return -ENOMEM;
    1377           0 :                         if (arg2 == PR_CAP_AMBIENT_RAISE)
    1378           0 :                                 cap_raise(new->cap_ambient, arg3);
    1379             :                         else
    1380           0 :                                 cap_lower(new->cap_ambient, arg3);
    1381           0 :                         return commit_creds(new);
    1382             :                 }
    1383             : 
    1384             :         default:
    1385             :                 /* No functionality available - continue with default */
    1386             :                 return -ENOSYS;
    1387             :         }
    1388             : }
    1389             : 
    1390             : /**
    1391             :  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
    1392             :  * @mm: The VM space in which the new mapping is to be made
    1393             :  * @pages: The size of the mapping
    1394             :  *
    1395             :  * Determine whether the allocation of a new virtual mapping by the current
    1396             :  * task is permitted.
    1397             :  *
    1398             :  * Return: 1 if permission is granted, 0 if not.
    1399             :  */
    1400           0 : int cap_vm_enough_memory(struct mm_struct *mm, long pages)
    1401             : {
    1402           0 :         int cap_sys_admin = 0;
    1403             : 
    1404           0 :         if (cap_capable(current_cred(), &init_user_ns,
    1405             :                                 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
    1406           0 :                 cap_sys_admin = 1;
    1407             : 
    1408           0 :         return cap_sys_admin;
    1409             : }
    1410             : 
    1411             : /**
    1412             :  * cap_mmap_addr - check if able to map given addr
    1413             :  * @addr: address attempting to be mapped
    1414             :  *
    1415             :  * If the process is attempting to map memory below dac_mmap_min_addr they need
    1416             :  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
    1417             :  * capability security module.
    1418             :  *
    1419             :  * Return: 0 if this mapping should be allowed or -EPERM if not.
    1420             :  */
    1421           0 : int cap_mmap_addr(unsigned long addr)
    1422             : {
    1423           0 :         int ret = 0;
    1424             : 
    1425           0 :         if (addr < dac_mmap_min_addr) {
    1426           0 :                 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
    1427             :                                   CAP_OPT_NONE);
    1428             :                 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
    1429           0 :                 if (ret == 0)
    1430           0 :                         current->flags |= PF_SUPERPRIV;
    1431             :         }
    1432           0 :         return ret;
    1433             : }
    1434             : 
    1435           0 : int cap_mmap_file(struct file *file, unsigned long reqprot,
    1436             :                   unsigned long prot, unsigned long flags)
    1437             : {
    1438           0 :         return 0;
    1439             : }
    1440             : 
    1441             : #ifdef CONFIG_SECURITY
    1442             : 
    1443             : static struct security_hook_list capability_hooks[] __ro_after_init = {
    1444             :         LSM_HOOK_INIT(capable, cap_capable),
    1445             :         LSM_HOOK_INIT(settime, cap_settime),
    1446             :         LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
    1447             :         LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
    1448             :         LSM_HOOK_INIT(capget, cap_capget),
    1449             :         LSM_HOOK_INIT(capset, cap_capset),
    1450             :         LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
    1451             :         LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
    1452             :         LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
    1453             :         LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
    1454             :         LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
    1455             :         LSM_HOOK_INIT(mmap_file, cap_mmap_file),
    1456             :         LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
    1457             :         LSM_HOOK_INIT(task_prctl, cap_task_prctl),
    1458             :         LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
    1459             :         LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
    1460             :         LSM_HOOK_INIT(task_setnice, cap_task_setnice),
    1461             :         LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
    1462             : };
    1463             : 
    1464             : static int __init capability_init(void)
    1465             : {
    1466             :         security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
    1467             :                                 "capability");
    1468             :         return 0;
    1469             : }
    1470             : 
    1471             : DEFINE_LSM(capability) = {
    1472             :         .name = "capability",
    1473             :         .order = LSM_ORDER_FIRST,
    1474             :         .init = capability_init,
    1475             : };
    1476             : 
    1477             : #endif /* CONFIG_SECURITY */

Generated by: LCOV version 1.14