Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 : */
5 :
6 : #include <linux/mm.h>
7 : #include <linux/sched/signal.h>
8 : #include <linux/hardirq.h>
9 : #include <linux/module.h>
10 : #include <linux/uaccess.h>
11 : #include <linux/sched/debug.h>
12 : #include <asm/current.h>
13 : #include <asm/tlbflush.h>
14 : #include <arch.h>
15 : #include <as-layout.h>
16 : #include <kern_util.h>
17 : #include <os.h>
18 : #include <skas.h>
19 :
20 : /*
21 : * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
22 : * segv().
23 : */
24 0 : int handle_page_fault(unsigned long address, unsigned long ip,
25 : int is_write, int is_user, int *code_out)
26 : {
27 0 : struct mm_struct *mm = current->mm;
28 : struct vm_area_struct *vma;
29 : pmd_t *pmd;
30 : pte_t *pte;
31 0 : int err = -EFAULT;
32 0 : unsigned int flags = FAULT_FLAG_DEFAULT;
33 :
34 0 : *code_out = SEGV_MAPERR;
35 :
36 : /*
37 : * If the fault was with pagefaults disabled, don't take the fault, just
38 : * fail.
39 : */
40 0 : if (faulthandler_disabled())
41 : goto out_nosemaphore;
42 :
43 0 : if (is_user)
44 0 : flags |= FAULT_FLAG_USER;
45 : retry:
46 0 : mmap_read_lock(mm);
47 0 : vma = find_vma(mm, address);
48 0 : if (!vma)
49 : goto out;
50 0 : else if (vma->vm_start <= address)
51 : goto good_area;
52 0 : else if (!(vma->vm_flags & VM_GROWSDOWN))
53 : goto out;
54 0 : else if (is_user && !ARCH_IS_STACKGROW(address))
55 : goto out;
56 0 : else if (expand_stack(vma, address))
57 : goto out;
58 :
59 : good_area:
60 0 : *code_out = SEGV_ACCERR;
61 0 : if (is_write) {
62 0 : if (!(vma->vm_flags & VM_WRITE))
63 : goto out;
64 0 : flags |= FAULT_FLAG_WRITE;
65 : } else {
66 : /* Don't require VM_READ|VM_EXEC for write faults! */
67 0 : if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
68 : goto out;
69 : }
70 :
71 : do {
72 : vm_fault_t fault;
73 :
74 0 : fault = handle_mm_fault(vma, address, flags, NULL);
75 :
76 0 : if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
77 : goto out_nosemaphore;
78 :
79 : /* The fault is fully completed (including releasing mmap lock) */
80 0 : if (fault & VM_FAULT_COMPLETED)
81 : return 0;
82 :
83 0 : if (unlikely(fault & VM_FAULT_ERROR)) {
84 0 : if (fault & VM_FAULT_OOM) {
85 : goto out_of_memory;
86 0 : } else if (fault & VM_FAULT_SIGSEGV) {
87 : goto out;
88 0 : } else if (fault & VM_FAULT_SIGBUS) {
89 : err = -EACCES;
90 : goto out;
91 : }
92 0 : BUG();
93 : }
94 0 : if (fault & VM_FAULT_RETRY) {
95 0 : flags |= FAULT_FLAG_TRIED;
96 :
97 0 : goto retry;
98 : }
99 :
100 0 : pmd = pmd_off(mm, address);
101 0 : pte = pte_offset_kernel(pmd, address);
102 0 : } while (!pte_present(*pte));
103 0 : err = 0;
104 : /*
105 : * The below warning was added in place of
106 : * pte_mkyoung(); if (is_write) pte_mkdirty();
107 : * If it's triggered, we'd see normally a hang here (a clean pte is
108 : * marked read-only to emulate the dirty bit).
109 : * However, the generic code can mark a PTE writable but clean on a
110 : * concurrent read fault, triggering this harmlessly. So comment it out.
111 : */
112 : #if 0
113 : WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
114 : #endif
115 0 : flush_tlb_page(vma, address);
116 : out:
117 : mmap_read_unlock(mm);
118 : out_nosemaphore:
119 : return err;
120 :
121 : out_of_memory:
122 : /*
123 : * We ran out of memory, call the OOM killer, and return the userspace
124 : * (which will retry the fault, or kill us if we got oom-killed).
125 : */
126 0 : mmap_read_unlock(mm);
127 0 : if (!is_user)
128 : goto out_nosemaphore;
129 0 : pagefault_out_of_memory();
130 0 : return 0;
131 : }
132 :
133 0 : static void show_segv_info(struct uml_pt_regs *regs)
134 : {
135 0 : struct task_struct *tsk = current;
136 0 : struct faultinfo *fi = UPT_FAULTINFO(regs);
137 :
138 0 : if (!unhandled_signal(tsk, SIGSEGV))
139 : return;
140 :
141 0 : if (!printk_ratelimit())
142 : return;
143 :
144 0 : printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
145 : task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
146 : tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
147 : (void *)UPT_IP(regs), (void *)UPT_SP(regs),
148 : fi->error_code);
149 :
150 0 : print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
151 0 : printk(KERN_CONT "\n");
152 : }
153 :
154 0 : static void bad_segv(struct faultinfo fi, unsigned long ip)
155 : {
156 0 : current->thread.arch.faultinfo = fi;
157 0 : force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
158 0 : }
159 :
160 0 : void fatal_sigsegv(void)
161 : {
162 0 : force_fatal_sig(SIGSEGV);
163 0 : do_signal(¤t->thread.regs);
164 : /*
165 : * This is to tell gcc that we're not returning - do_signal
166 : * can, in general, return, but in this case, it's not, since
167 : * we just got a fatal SIGSEGV queued.
168 : */
169 0 : os_dump_core();
170 : }
171 :
172 : /**
173 : * segv_handler() - the SIGSEGV handler
174 : * @sig: the signal number
175 : * @unused_si: the signal info struct; unused in this handler
176 : * @regs: the ptrace register information
177 : *
178 : * The handler first extracts the faultinfo from the UML ptrace regs struct.
179 : * If the userfault did not happen in an UML userspace process, bad_segv is called.
180 : * Otherwise the signal did happen in a cloned userspace process, handle it.
181 : */
182 0 : void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
183 : {
184 0 : struct faultinfo * fi = UPT_FAULTINFO(regs);
185 :
186 0 : if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
187 0 : show_segv_info(regs);
188 0 : bad_segv(*fi, UPT_IP(regs));
189 0 : return;
190 : }
191 0 : segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
192 : }
193 :
194 : /*
195 : * We give a *copy* of the faultinfo in the regs to segv.
196 : * This must be done, since nesting SEGVs could overwrite
197 : * the info in the regs. A pointer to the info then would
198 : * give us bad data!
199 : */
200 0 : unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
201 : struct uml_pt_regs *regs)
202 : {
203 : jmp_buf *catcher;
204 : int si_code;
205 : int err;
206 0 : int is_write = FAULT_WRITE(fi);
207 0 : unsigned long address = FAULT_ADDRESS(fi);
208 :
209 0 : if (!is_user && regs)
210 0 : current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
211 :
212 0 : if (!is_user && (address >= start_vm) && (address < end_vm)) {
213 0 : flush_tlb_kernel_vm();
214 0 : goto out;
215 : }
216 0 : else if (current->mm == NULL) {
217 0 : show_regs(container_of(regs, struct pt_regs, regs));
218 0 : panic("Segfault with no mm");
219 : }
220 0 : else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
221 0 : show_regs(container_of(regs, struct pt_regs, regs));
222 0 : panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
223 : address, ip);
224 : }
225 :
226 0 : if (SEGV_IS_FIXABLE(&fi))
227 0 : err = handle_page_fault(address, ip, is_write, is_user,
228 : &si_code);
229 : else {
230 : err = -EFAULT;
231 : /*
232 : * A thread accessed NULL, we get a fault, but CR2 is invalid.
233 : * This code is used in __do_copy_from_user() of TT mode.
234 : * XXX tt mode is gone, so maybe this isn't needed any more
235 : */
236 : address = 0;
237 : }
238 :
239 0 : catcher = current->thread.fault_catcher;
240 0 : if (!err)
241 : goto out;
242 0 : else if (catcher != NULL) {
243 0 : current->thread.fault_addr = (void *) address;
244 0 : UML_LONGJMP(catcher, 1);
245 : }
246 0 : else if (current->thread.fault_addr != NULL)
247 0 : panic("fault_addr set but no fault catcher");
248 0 : else if (!is_user && arch_fixup(ip, regs))
249 : goto out;
250 :
251 0 : if (!is_user) {
252 0 : show_regs(container_of(regs, struct pt_regs, regs));
253 0 : panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
254 : address, ip);
255 : }
256 :
257 0 : show_segv_info(regs);
258 :
259 0 : if (err == -EACCES) {
260 0 : current->thread.arch.faultinfo = fi;
261 0 : force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
262 : } else {
263 0 : BUG_ON(err != -EFAULT);
264 0 : current->thread.arch.faultinfo = fi;
265 0 : force_sig_fault(SIGSEGV, si_code, (void __user *) address);
266 : }
267 :
268 : out:
269 0 : if (regs)
270 0 : current->thread.segv_regs = NULL;
271 :
272 0 : return 0;
273 : }
274 :
275 0 : void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
276 : {
277 : int code, err;
278 0 : if (!UPT_IS_USER(regs)) {
279 0 : if (sig == SIGBUS)
280 0 : printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
281 : "mount likely just ran out of space\n");
282 0 : panic("Kernel mode signal %d", sig);
283 : }
284 :
285 0 : arch_examine_signal(sig, regs);
286 :
287 : /* Is the signal layout for the signal known?
288 : * Signal data must be scrubbed to prevent information leaks.
289 : */
290 0 : code = si->si_code;
291 0 : err = si->si_errno;
292 0 : if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
293 0 : struct faultinfo *fi = UPT_FAULTINFO(regs);
294 0 : current->thread.arch.faultinfo = *fi;
295 0 : force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
296 : } else {
297 0 : printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
298 : sig, code, err);
299 0 : force_sig(sig);
300 : }
301 0 : }
302 :
303 0 : void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
304 : {
305 0 : if (current->thread.fault_catcher != NULL)
306 0 : UML_LONGJMP(current->thread.fault_catcher, 1);
307 : else
308 0 : relay_signal(sig, si, regs);
309 0 : }
310 :
311 0 : void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
312 : {
313 0 : do_IRQ(WINCH_IRQ, regs);
314 0 : }
|