Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef BLK_INTERNAL_H
3 : #define BLK_INTERNAL_H
4 :
5 : #include <linux/blk-crypto.h>
6 : #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
7 : #include <xen/xen.h>
8 : #include "blk-crypto-internal.h"
9 :
10 : struct elevator_type;
11 :
12 : /* Max future timer expiry for timeouts */
13 : #define BLK_MAX_TIMEOUT (5 * HZ)
14 :
15 : extern struct dentry *blk_debugfs_root;
16 :
17 : struct blk_flush_queue {
18 : unsigned int flush_pending_idx:1;
19 : unsigned int flush_running_idx:1;
20 : blk_status_t rq_status;
21 : unsigned long flush_pending_since;
22 : struct list_head flush_queue[2];
23 : struct list_head flush_data_in_flight;
24 : struct request *flush_rq;
25 :
26 : spinlock_t mq_flush_lock;
27 : };
28 :
29 : bool is_flush_rq(struct request *req);
30 :
31 : struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
32 : gfp_t flags);
33 : void blk_free_flush_queue(struct blk_flush_queue *q);
34 :
35 : void blk_freeze_queue(struct request_queue *q);
36 : void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
37 : void blk_queue_start_drain(struct request_queue *q);
38 : int __bio_queue_enter(struct request_queue *q, struct bio *bio);
39 : void submit_bio_noacct_nocheck(struct bio *bio);
40 :
41 0 : static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
42 : {
43 : rcu_read_lock();
44 0 : if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
45 : goto fail;
46 :
47 : /*
48 : * The code that increments the pm_only counter must ensure that the
49 : * counter is globally visible before the queue is unfrozen.
50 : */
51 0 : if (blk_queue_pm_only(q) &&
52 0 : (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
53 : goto fail_put;
54 :
55 : rcu_read_unlock();
56 0 : return true;
57 :
58 : fail_put:
59 0 : blk_queue_exit(q);
60 : fail:
61 : rcu_read_unlock();
62 0 : return false;
63 : }
64 :
65 0 : static inline int bio_queue_enter(struct bio *bio)
66 : {
67 0 : struct request_queue *q = bdev_get_queue(bio->bi_bdev);
68 :
69 0 : if (blk_try_enter_queue(q, false))
70 : return 0;
71 0 : return __bio_queue_enter(q, bio);
72 : }
73 :
74 : #define BIO_INLINE_VECS 4
75 : struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
76 : gfp_t gfp_mask);
77 : void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
78 :
79 0 : static inline bool biovec_phys_mergeable(struct request_queue *q,
80 : struct bio_vec *vec1, struct bio_vec *vec2)
81 : {
82 0 : unsigned long mask = queue_segment_boundary(q);
83 0 : phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
84 0 : phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
85 :
86 : /*
87 : * Merging adjacent physical pages may not work correctly under KMSAN
88 : * if their metadata pages aren't adjacent. Just disable merging.
89 : */
90 : if (IS_ENABLED(CONFIG_KMSAN))
91 : return false;
92 :
93 0 : if (addr1 + vec1->bv_len != addr2)
94 : return false;
95 : if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
96 : return false;
97 0 : if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
98 : return false;
99 0 : return true;
100 : }
101 :
102 : static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
103 : struct bio_vec *bprv, unsigned int offset)
104 : {
105 0 : return (offset & lim->virt_boundary_mask) ||
106 0 : ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
107 : }
108 :
109 : /*
110 : * Check if adding a bio_vec after bprv with offset would create a gap in
111 : * the SG list. Most drivers don't care about this, but some do.
112 : */
113 : static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
114 : struct bio_vec *bprv, unsigned int offset)
115 : {
116 0 : if (!lim->virt_boundary_mask)
117 : return false;
118 0 : return __bvec_gap_to_prev(lim, bprv, offset);
119 : }
120 :
121 : static inline bool rq_mergeable(struct request *rq)
122 : {
123 0 : if (blk_rq_is_passthrough(rq))
124 : return false;
125 :
126 0 : if (req_op(rq) == REQ_OP_FLUSH)
127 : return false;
128 :
129 0 : if (req_op(rq) == REQ_OP_WRITE_ZEROES)
130 : return false;
131 :
132 0 : if (req_op(rq) == REQ_OP_ZONE_APPEND)
133 : return false;
134 :
135 0 : if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
136 : return false;
137 0 : if (rq->rq_flags & RQF_NOMERGE_FLAGS)
138 : return false;
139 :
140 : return true;
141 : }
142 :
143 : /*
144 : * There are two different ways to handle DISCARD merges:
145 : * 1) If max_discard_segments > 1, the driver treats every bio as a range and
146 : * send the bios to controller together. The ranges don't need to be
147 : * contiguous.
148 : * 2) Otherwise, the request will be normal read/write requests. The ranges
149 : * need to be contiguous.
150 : */
151 : static inline bool blk_discard_mergable(struct request *req)
152 : {
153 0 : if (req_op(req) == REQ_OP_DISCARD &&
154 0 : queue_max_discard_segments(req->q) > 1)
155 : return true;
156 : return false;
157 : }
158 :
159 : static inline unsigned int blk_rq_get_max_segments(struct request *rq)
160 : {
161 0 : if (req_op(rq) == REQ_OP_DISCARD)
162 0 : return queue_max_discard_segments(rq->q);
163 0 : return queue_max_segments(rq->q);
164 : }
165 :
166 : static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
167 : enum req_op op)
168 : {
169 0 : if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
170 0 : return min(q->limits.max_discard_sectors,
171 : UINT_MAX >> SECTOR_SHIFT);
172 :
173 0 : if (unlikely(op == REQ_OP_WRITE_ZEROES))
174 0 : return q->limits.max_write_zeroes_sectors;
175 :
176 0 : return q->limits.max_sectors;
177 : }
178 :
179 : #ifdef CONFIG_BLK_DEV_INTEGRITY
180 : void blk_flush_integrity(void);
181 : bool __bio_integrity_endio(struct bio *);
182 : void bio_integrity_free(struct bio *bio);
183 : static inline bool bio_integrity_endio(struct bio *bio)
184 : {
185 : if (bio_integrity(bio))
186 : return __bio_integrity_endio(bio);
187 : return true;
188 : }
189 :
190 : bool blk_integrity_merge_rq(struct request_queue *, struct request *,
191 : struct request *);
192 : bool blk_integrity_merge_bio(struct request_queue *, struct request *,
193 : struct bio *);
194 :
195 : static inline bool integrity_req_gap_back_merge(struct request *req,
196 : struct bio *next)
197 : {
198 : struct bio_integrity_payload *bip = bio_integrity(req->bio);
199 : struct bio_integrity_payload *bip_next = bio_integrity(next);
200 :
201 : return bvec_gap_to_prev(&req->q->limits,
202 : &bip->bip_vec[bip->bip_vcnt - 1],
203 : bip_next->bip_vec[0].bv_offset);
204 : }
205 :
206 : static inline bool integrity_req_gap_front_merge(struct request *req,
207 : struct bio *bio)
208 : {
209 : struct bio_integrity_payload *bip = bio_integrity(bio);
210 : struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
211 :
212 : return bvec_gap_to_prev(&req->q->limits,
213 : &bip->bip_vec[bip->bip_vcnt - 1],
214 : bip_next->bip_vec[0].bv_offset);
215 : }
216 :
217 : extern const struct attribute_group blk_integrity_attr_group;
218 : #else /* CONFIG_BLK_DEV_INTEGRITY */
219 : static inline bool blk_integrity_merge_rq(struct request_queue *rq,
220 : struct request *r1, struct request *r2)
221 : {
222 : return true;
223 : }
224 : static inline bool blk_integrity_merge_bio(struct request_queue *rq,
225 : struct request *r, struct bio *b)
226 : {
227 : return true;
228 : }
229 : static inline bool integrity_req_gap_back_merge(struct request *req,
230 : struct bio *next)
231 : {
232 : return false;
233 : }
234 : static inline bool integrity_req_gap_front_merge(struct request *req,
235 : struct bio *bio)
236 : {
237 : return false;
238 : }
239 :
240 : static inline void blk_flush_integrity(void)
241 : {
242 : }
243 : static inline bool bio_integrity_endio(struct bio *bio)
244 : {
245 : return true;
246 : }
247 : static inline void bio_integrity_free(struct bio *bio)
248 : {
249 : }
250 : #endif /* CONFIG_BLK_DEV_INTEGRITY */
251 :
252 : unsigned long blk_rq_timeout(unsigned long timeout);
253 : void blk_add_timer(struct request *req);
254 : const char *blk_status_to_str(blk_status_t status);
255 :
256 : bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
257 : unsigned int nr_segs);
258 : bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
259 : struct bio *bio, unsigned int nr_segs);
260 :
261 : /*
262 : * Plug flush limits
263 : */
264 : #define BLK_MAX_REQUEST_COUNT 32
265 : #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
266 :
267 : /*
268 : * Internal elevator interface
269 : */
270 : #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
271 :
272 : void blk_insert_flush(struct request *rq);
273 :
274 : int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
275 : void elevator_disable(struct request_queue *q);
276 : void elevator_exit(struct request_queue *q);
277 : int elv_register_queue(struct request_queue *q, bool uevent);
278 : void elv_unregister_queue(struct request_queue *q);
279 :
280 : ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
281 : char *buf);
282 : ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
283 : char *buf);
284 : ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
285 : char *buf);
286 : ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
287 : char *buf);
288 : ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
289 : const char *buf, size_t count);
290 : ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
291 : ssize_t part_timeout_store(struct device *, struct device_attribute *,
292 : const char *, size_t);
293 :
294 0 : static inline bool bio_may_exceed_limits(struct bio *bio,
295 : const struct queue_limits *lim)
296 : {
297 0 : switch (bio_op(bio)) {
298 : case REQ_OP_DISCARD:
299 : case REQ_OP_SECURE_ERASE:
300 : case REQ_OP_WRITE_ZEROES:
301 : return true; /* non-trivial splitting decisions */
302 : default:
303 : break;
304 : }
305 :
306 : /*
307 : * All drivers must accept single-segments bios that are <= PAGE_SIZE.
308 : * This is a quick and dirty check that relies on the fact that
309 : * bi_io_vec[0] is always valid if a bio has data. The check might
310 : * lead to occasional false negatives when bios are cloned, but compared
311 : * to the performance impact of cloned bios themselves the loop below
312 : * doesn't matter anyway.
313 : */
314 0 : return lim->chunk_sectors || bio->bi_vcnt != 1 ||
315 0 : bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
316 : }
317 :
318 : struct bio *__bio_split_to_limits(struct bio *bio,
319 : const struct queue_limits *lim,
320 : unsigned int *nr_segs);
321 : int ll_back_merge_fn(struct request *req, struct bio *bio,
322 : unsigned int nr_segs);
323 : bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
324 : struct request *next);
325 : unsigned int blk_recalc_rq_segments(struct request *rq);
326 : void blk_rq_set_mixed_merge(struct request *rq);
327 : bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
328 : enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
329 :
330 : void blk_set_default_limits(struct queue_limits *lim);
331 : int blk_dev_init(void);
332 :
333 : /*
334 : * Contribute to IO statistics IFF:
335 : *
336 : * a) it's attached to a gendisk, and
337 : * b) the queue had IO stats enabled when this request was started
338 : */
339 : static inline bool blk_do_io_stat(struct request *rq)
340 : {
341 0 : return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
342 : }
343 :
344 : void update_io_ticks(struct block_device *part, unsigned long now, bool end);
345 :
346 : static inline void req_set_nomerge(struct request_queue *q, struct request *req)
347 : {
348 0 : req->cmd_flags |= REQ_NOMERGE;
349 0 : if (req == q->last_merge)
350 0 : q->last_merge = NULL;
351 : }
352 :
353 : /*
354 : * Internal io_context interface
355 : */
356 : struct io_cq *ioc_find_get_icq(struct request_queue *q);
357 : struct io_cq *ioc_lookup_icq(struct request_queue *q);
358 : #ifdef CONFIG_BLK_ICQ
359 : void ioc_clear_queue(struct request_queue *q);
360 : #else
361 : static inline void ioc_clear_queue(struct request_queue *q)
362 : {
363 : }
364 : #endif /* CONFIG_BLK_ICQ */
365 :
366 : #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
367 : extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
368 : extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
369 : const char *page, size_t count);
370 : extern void blk_throtl_bio_endio(struct bio *bio);
371 : extern void blk_throtl_stat_add(struct request *rq, u64 time);
372 : #else
373 : static inline void blk_throtl_bio_endio(struct bio *bio) { }
374 : static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
375 : #endif
376 :
377 : struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
378 :
379 : static inline bool blk_queue_may_bounce(struct request_queue *q)
380 : {
381 : return IS_ENABLED(CONFIG_BOUNCE) &&
382 : q->limits.bounce == BLK_BOUNCE_HIGH &&
383 : max_low_pfn >= max_pfn;
384 : }
385 :
386 : static inline struct bio *blk_queue_bounce(struct bio *bio,
387 : struct request_queue *q)
388 : {
389 0 : if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
390 : return __blk_queue_bounce(bio, q);
391 : return bio;
392 : }
393 :
394 : #ifdef CONFIG_BLK_DEV_ZONED
395 : void disk_free_zone_bitmaps(struct gendisk *disk);
396 : void disk_clear_zone_settings(struct gendisk *disk);
397 : #else
398 : static inline void disk_free_zone_bitmaps(struct gendisk *disk) {}
399 : static inline void disk_clear_zone_settings(struct gendisk *disk) {}
400 : #endif
401 :
402 : int blk_alloc_ext_minor(void);
403 : void blk_free_ext_minor(unsigned int minor);
404 : #define ADDPART_FLAG_NONE 0
405 : #define ADDPART_FLAG_RAID 1
406 : #define ADDPART_FLAG_WHOLEDISK 2
407 : int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
408 : sector_t length);
409 : int bdev_del_partition(struct gendisk *disk, int partno);
410 : int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
411 : sector_t length);
412 : void blk_drop_partitions(struct gendisk *disk);
413 :
414 : void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
415 :
416 : struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
417 : struct lock_class_key *lkclass);
418 :
419 : int bio_add_hw_page(struct request_queue *q, struct bio *bio,
420 : struct page *page, unsigned int len, unsigned int offset,
421 : unsigned int max_sectors, bool *same_page);
422 :
423 : struct request_queue *blk_alloc_queue(int node_id);
424 :
425 : int disk_scan_partitions(struct gendisk *disk, fmode_t mode);
426 :
427 : int disk_alloc_events(struct gendisk *disk);
428 : void disk_add_events(struct gendisk *disk);
429 : void disk_del_events(struct gendisk *disk);
430 : void disk_release_events(struct gendisk *disk);
431 : void disk_block_events(struct gendisk *disk);
432 : void disk_unblock_events(struct gendisk *disk);
433 : void disk_flush_events(struct gendisk *disk, unsigned int mask);
434 : extern struct device_attribute dev_attr_events;
435 : extern struct device_attribute dev_attr_events_async;
436 : extern struct device_attribute dev_attr_events_poll_msecs;
437 :
438 : extern struct attribute_group blk_trace_attr_group;
439 :
440 : long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
441 : long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
442 :
443 : extern const struct address_space_operations def_blk_aops;
444 :
445 : int disk_register_independent_access_ranges(struct gendisk *disk);
446 : void disk_unregister_independent_access_ranges(struct gendisk *disk);
447 :
448 : #ifdef CONFIG_FAIL_MAKE_REQUEST
449 : bool should_fail_request(struct block_device *part, unsigned int bytes);
450 : #else /* CONFIG_FAIL_MAKE_REQUEST */
451 : static inline bool should_fail_request(struct block_device *part,
452 : unsigned int bytes)
453 : {
454 : return false;
455 : }
456 : #endif /* CONFIG_FAIL_MAKE_REQUEST */
457 :
458 : /*
459 : * Optimized request reference counting. Ideally we'd make timeouts be more
460 : * clever, as that's the only reason we need references at all... But until
461 : * this happens, this is faster than using refcount_t. Also see:
462 : *
463 : * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
464 : */
465 : #define req_ref_zero_or_close_to_overflow(req) \
466 : ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
467 :
468 : static inline bool req_ref_inc_not_zero(struct request *req)
469 : {
470 0 : return atomic_inc_not_zero(&req->ref);
471 : }
472 :
473 0 : static inline bool req_ref_put_and_test(struct request *req)
474 : {
475 0 : WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
476 0 : return atomic_dec_and_test(&req->ref);
477 : }
478 :
479 : static inline void req_ref_set(struct request *req, int value)
480 : {
481 0 : atomic_set(&req->ref, value);
482 : }
483 :
484 : static inline int req_ref_read(struct request *req)
485 : {
486 0 : return atomic_read(&req->ref);
487 : }
488 :
489 : #endif /* BLK_INTERNAL_H */
|