Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Fence mechanism for dma-buf and to allow for asynchronous dma access
4 : *
5 : * Copyright (C) 2012 Canonical Ltd
6 : * Copyright (C) 2012 Texas Instruments
7 : *
8 : * Authors:
9 : * Rob Clark <robdclark@gmail.com>
10 : * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11 : */
12 :
13 : #include <linux/slab.h>
14 : #include <linux/export.h>
15 : #include <linux/atomic.h>
16 : #include <linux/dma-fence.h>
17 : #include <linux/sched/signal.h>
18 : #include <linux/seq_file.h>
19 :
20 : #define CREATE_TRACE_POINTS
21 : #include <trace/events/dma_fence.h>
22 :
23 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 : EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 :
27 : static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 : static struct dma_fence dma_fence_stub;
29 :
30 : /*
31 : * fence context counter: each execution context should have its own
32 : * fence context, this allows checking if fences belong to the same
33 : * context or not. One device can have multiple separate contexts,
34 : * and they're used if some engine can run independently of another.
35 : */
36 : static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 :
38 : /**
39 : * DOC: DMA fences overview
40 : *
41 : * DMA fences, represented by &struct dma_fence, are the kernel internal
42 : * synchronization primitive for DMA operations like GPU rendering, video
43 : * encoding/decoding, or displaying buffers on a screen.
44 : *
45 : * A fence is initialized using dma_fence_init() and completed using
46 : * dma_fence_signal(). Fences are associated with a context, allocated through
47 : * dma_fence_context_alloc(), and all fences on the same context are
48 : * fully ordered.
49 : *
50 : * Since the purposes of fences is to facilitate cross-device and
51 : * cross-application synchronization, there's multiple ways to use one:
52 : *
53 : * - Individual fences can be exposed as a &sync_file, accessed as a file
54 : * descriptor from userspace, created by calling sync_file_create(). This is
55 : * called explicit fencing, since userspace passes around explicit
56 : * synchronization points.
57 : *
58 : * - Some subsystems also have their own explicit fencing primitives, like
59 : * &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60 : * fence to be updated.
61 : *
62 : * - Then there's also implicit fencing, where the synchronization points are
63 : * implicitly passed around as part of shared &dma_buf instances. Such
64 : * implicit fences are stored in &struct dma_resv through the
65 : * &dma_buf.resv pointer.
66 : */
67 :
68 : /**
69 : * DOC: fence cross-driver contract
70 : *
71 : * Since &dma_fence provide a cross driver contract, all drivers must follow the
72 : * same rules:
73 : *
74 : * * Fences must complete in a reasonable time. Fences which represent kernels
75 : * and shaders submitted by userspace, which could run forever, must be backed
76 : * up by timeout and gpu hang recovery code. Minimally that code must prevent
77 : * further command submission and force complete all in-flight fences, e.g.
78 : * when the driver or hardware do not support gpu reset, or if the gpu reset
79 : * failed for some reason. Ideally the driver supports gpu recovery which only
80 : * affects the offending userspace context, and no other userspace
81 : * submissions.
82 : *
83 : * * Drivers may have different ideas of what completion within a reasonable
84 : * time means. Some hang recovery code uses a fixed timeout, others a mix
85 : * between observing forward progress and increasingly strict timeouts.
86 : * Drivers should not try to second guess timeout handling of fences from
87 : * other drivers.
88 : *
89 : * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90 : * drivers should annotate all code required to reach dma_fence_signal(),
91 : * which completes the fences, with dma_fence_begin_signalling() and
92 : * dma_fence_end_signalling().
93 : *
94 : * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95 : * This means any code required for fence completion cannot acquire a
96 : * &dma_resv lock. Note that this also pulls in the entire established
97 : * locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98 : *
99 : * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100 : * callbacks. This means any code required for fence completion cannot
101 : * allocate memory with GFP_KERNEL.
102 : *
103 : * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104 : * respectively &mmu_interval_notifier callbacks. This means any code required
105 : * for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106 : * Only GFP_ATOMIC is permissible, which might fail.
107 : *
108 : * Note that only GPU drivers have a reasonable excuse for both requiring
109 : * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110 : * track asynchronous compute work using &dma_fence. No driver outside of
111 : * drivers/gpu should ever call dma_fence_wait() in such contexts.
112 : */
113 :
114 0 : static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 : {
116 0 : return "stub";
117 : }
118 :
119 : static const struct dma_fence_ops dma_fence_stub_ops = {
120 : .get_driver_name = dma_fence_stub_get_name,
121 : .get_timeline_name = dma_fence_stub_get_name,
122 : };
123 :
124 : /**
125 : * dma_fence_get_stub - return a signaled fence
126 : *
127 : * Return a stub fence which is already signaled. The fence's
128 : * timestamp corresponds to the first time after boot this
129 : * function is called.
130 : */
131 0 : struct dma_fence *dma_fence_get_stub(void)
132 : {
133 0 : spin_lock(&dma_fence_stub_lock);
134 0 : if (!dma_fence_stub.ops) {
135 0 : dma_fence_init(&dma_fence_stub,
136 : &dma_fence_stub_ops,
137 : &dma_fence_stub_lock,
138 : 0, 0);
139 :
140 0 : set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
141 : &dma_fence_stub.flags);
142 :
143 : dma_fence_signal_locked(&dma_fence_stub);
144 : }
145 0 : spin_unlock(&dma_fence_stub_lock);
146 :
147 0 : return dma_fence_get(&dma_fence_stub);
148 : }
149 : EXPORT_SYMBOL(dma_fence_get_stub);
150 :
151 : /**
152 : * dma_fence_allocate_private_stub - return a private, signaled fence
153 : *
154 : * Return a newly allocated and signaled stub fence.
155 : */
156 0 : struct dma_fence *dma_fence_allocate_private_stub(void)
157 : {
158 : struct dma_fence *fence;
159 :
160 0 : fence = kzalloc(sizeof(*fence), GFP_KERNEL);
161 0 : if (fence == NULL)
162 : return ERR_PTR(-ENOMEM);
163 :
164 0 : dma_fence_init(fence,
165 : &dma_fence_stub_ops,
166 : &dma_fence_stub_lock,
167 : 0, 0);
168 :
169 0 : set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
170 0 : &fence->flags);
171 :
172 0 : dma_fence_signal(fence);
173 :
174 0 : return fence;
175 : }
176 : EXPORT_SYMBOL(dma_fence_allocate_private_stub);
177 :
178 : /**
179 : * dma_fence_context_alloc - allocate an array of fence contexts
180 : * @num: amount of contexts to allocate
181 : *
182 : * This function will return the first index of the number of fence contexts
183 : * allocated. The fence context is used for setting &dma_fence.context to a
184 : * unique number by passing the context to dma_fence_init().
185 : */
186 0 : u64 dma_fence_context_alloc(unsigned num)
187 : {
188 0 : WARN_ON(!num);
189 0 : return atomic64_fetch_add(num, &dma_fence_context_counter);
190 : }
191 : EXPORT_SYMBOL(dma_fence_context_alloc);
192 :
193 : /**
194 : * DOC: fence signalling annotation
195 : *
196 : * Proving correctness of all the kernel code around &dma_fence through code
197 : * review and testing is tricky for a few reasons:
198 : *
199 : * * It is a cross-driver contract, and therefore all drivers must follow the
200 : * same rules for lock nesting order, calling contexts for various functions
201 : * and anything else significant for in-kernel interfaces. But it is also
202 : * impossible to test all drivers in a single machine, hence brute-force N vs.
203 : * N testing of all combinations is impossible. Even just limiting to the
204 : * possible combinations is infeasible.
205 : *
206 : * * There is an enormous amount of driver code involved. For render drivers
207 : * there's the tail of command submission, after fences are published,
208 : * scheduler code, interrupt and workers to process job completion,
209 : * and timeout, gpu reset and gpu hang recovery code. Plus for integration
210 : * with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
211 : * and &shrinker. For modesetting drivers there's the commit tail functions
212 : * between when fences for an atomic modeset are published, and when the
213 : * corresponding vblank completes, including any interrupt processing and
214 : * related workers. Auditing all that code, across all drivers, is not
215 : * feasible.
216 : *
217 : * * Due to how many other subsystems are involved and the locking hierarchies
218 : * this pulls in there is extremely thin wiggle-room for driver-specific
219 : * differences. &dma_fence interacts with almost all of the core memory
220 : * handling through page fault handlers via &dma_resv, dma_resv_lock() and
221 : * dma_resv_unlock(). On the other side it also interacts through all
222 : * allocation sites through &mmu_notifier and &shrinker.
223 : *
224 : * Furthermore lockdep does not handle cross-release dependencies, which means
225 : * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
226 : * at runtime with some quick testing. The simplest example is one thread
227 : * waiting on a &dma_fence while holding a lock::
228 : *
229 : * lock(A);
230 : * dma_fence_wait(B);
231 : * unlock(A);
232 : *
233 : * while the other thread is stuck trying to acquire the same lock, which
234 : * prevents it from signalling the fence the previous thread is stuck waiting
235 : * on::
236 : *
237 : * lock(A);
238 : * unlock(A);
239 : * dma_fence_signal(B);
240 : *
241 : * By manually annotating all code relevant to signalling a &dma_fence we can
242 : * teach lockdep about these dependencies, which also helps with the validation
243 : * headache since now lockdep can check all the rules for us::
244 : *
245 : * cookie = dma_fence_begin_signalling();
246 : * lock(A);
247 : * unlock(A);
248 : * dma_fence_signal(B);
249 : * dma_fence_end_signalling(cookie);
250 : *
251 : * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
252 : * annotate critical sections the following rules need to be observed:
253 : *
254 : * * All code necessary to complete a &dma_fence must be annotated, from the
255 : * point where a fence is accessible to other threads, to the point where
256 : * dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
257 : * and due to the very strict rules and many corner cases it is infeasible to
258 : * catch these just with review or normal stress testing.
259 : *
260 : * * &struct dma_resv deserves a special note, since the readers are only
261 : * protected by rcu. This means the signalling critical section starts as soon
262 : * as the new fences are installed, even before dma_resv_unlock() is called.
263 : *
264 : * * The only exception are fast paths and opportunistic signalling code, which
265 : * calls dma_fence_signal() purely as an optimization, but is not required to
266 : * guarantee completion of a &dma_fence. The usual example is a wait IOCTL
267 : * which calls dma_fence_signal(), while the mandatory completion path goes
268 : * through a hardware interrupt and possible job completion worker.
269 : *
270 : * * To aid composability of code, the annotations can be freely nested, as long
271 : * as the overall locking hierarchy is consistent. The annotations also work
272 : * both in interrupt and process context. Due to implementation details this
273 : * requires that callers pass an opaque cookie from
274 : * dma_fence_begin_signalling() to dma_fence_end_signalling().
275 : *
276 : * * Validation against the cross driver contract is implemented by priming
277 : * lockdep with the relevant hierarchy at boot-up. This means even just
278 : * testing with a single device is enough to validate a driver, at least as
279 : * far as deadlocks with dma_fence_wait() against dma_fence_signal() are
280 : * concerned.
281 : */
282 : #ifdef CONFIG_LOCKDEP
283 : static struct lockdep_map dma_fence_lockdep_map = {
284 : .name = "dma_fence_map"
285 : };
286 :
287 : /**
288 : * dma_fence_begin_signalling - begin a critical DMA fence signalling section
289 : *
290 : * Drivers should use this to annotate the beginning of any code section
291 : * required to eventually complete &dma_fence by calling dma_fence_signal().
292 : *
293 : * The end of these critical sections are annotated with
294 : * dma_fence_end_signalling().
295 : *
296 : * Returns:
297 : *
298 : * Opaque cookie needed by the implementation, which needs to be passed to
299 : * dma_fence_end_signalling().
300 : */
301 : bool dma_fence_begin_signalling(void)
302 : {
303 : /* explicitly nesting ... */
304 : if (lock_is_held_type(&dma_fence_lockdep_map, 1))
305 : return true;
306 :
307 : /* rely on might_sleep check for soft/hardirq locks */
308 : if (in_atomic())
309 : return true;
310 :
311 : /* ... and non-recursive readlock */
312 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
313 :
314 : return false;
315 : }
316 : EXPORT_SYMBOL(dma_fence_begin_signalling);
317 :
318 : /**
319 : * dma_fence_end_signalling - end a critical DMA fence signalling section
320 : * @cookie: opaque cookie from dma_fence_begin_signalling()
321 : *
322 : * Closes a critical section annotation opened by dma_fence_begin_signalling().
323 : */
324 : void dma_fence_end_signalling(bool cookie)
325 : {
326 : if (cookie)
327 : return;
328 :
329 : lock_release(&dma_fence_lockdep_map, _RET_IP_);
330 : }
331 : EXPORT_SYMBOL(dma_fence_end_signalling);
332 :
333 : void __dma_fence_might_wait(void)
334 : {
335 : bool tmp;
336 :
337 : tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
338 : if (tmp)
339 : lock_release(&dma_fence_lockdep_map, _THIS_IP_);
340 : lock_map_acquire(&dma_fence_lockdep_map);
341 : lock_map_release(&dma_fence_lockdep_map);
342 : if (tmp)
343 : lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
344 : }
345 : #endif
346 :
347 :
348 : /**
349 : * dma_fence_signal_timestamp_locked - signal completion of a fence
350 : * @fence: the fence to signal
351 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
352 : *
353 : * Signal completion for software callbacks on a fence, this will unblock
354 : * dma_fence_wait() calls and run all the callbacks added with
355 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
356 : * can only go from the unsignaled to the signaled state and not back, it will
357 : * only be effective the first time. Set the timestamp provided as the fence
358 : * signal timestamp.
359 : *
360 : * Unlike dma_fence_signal_timestamp(), this function must be called with
361 : * &dma_fence.lock held.
362 : *
363 : * Returns 0 on success and a negative error value when @fence has been
364 : * signalled already.
365 : */
366 0 : int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
367 : ktime_t timestamp)
368 : {
369 : struct dma_fence_cb *cur, *tmp;
370 : struct list_head cb_list;
371 :
372 : lockdep_assert_held(fence->lock);
373 :
374 0 : if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
375 : &fence->flags)))
376 : return -EINVAL;
377 :
378 : /* Stash the cb_list before replacing it with the timestamp */
379 0 : list_replace(&fence->cb_list, &cb_list);
380 :
381 0 : fence->timestamp = timestamp;
382 0 : set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
383 0 : trace_dma_fence_signaled(fence);
384 :
385 0 : list_for_each_entry_safe(cur, tmp, &cb_list, node) {
386 0 : INIT_LIST_HEAD(&cur->node);
387 0 : cur->func(fence, cur);
388 : }
389 :
390 : return 0;
391 : }
392 : EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
393 :
394 : /**
395 : * dma_fence_signal_timestamp - signal completion of a fence
396 : * @fence: the fence to signal
397 : * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
398 : *
399 : * Signal completion for software callbacks on a fence, this will unblock
400 : * dma_fence_wait() calls and run all the callbacks added with
401 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
402 : * can only go from the unsignaled to the signaled state and not back, it will
403 : * only be effective the first time. Set the timestamp provided as the fence
404 : * signal timestamp.
405 : *
406 : * Returns 0 on success and a negative error value when @fence has been
407 : * signalled already.
408 : */
409 0 : int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
410 : {
411 : unsigned long flags;
412 : int ret;
413 :
414 0 : if (!fence)
415 : return -EINVAL;
416 :
417 0 : spin_lock_irqsave(fence->lock, flags);
418 0 : ret = dma_fence_signal_timestamp_locked(fence, timestamp);
419 0 : spin_unlock_irqrestore(fence->lock, flags);
420 :
421 0 : return ret;
422 : }
423 : EXPORT_SYMBOL(dma_fence_signal_timestamp);
424 :
425 : /**
426 : * dma_fence_signal_locked - signal completion of a fence
427 : * @fence: the fence to signal
428 : *
429 : * Signal completion for software callbacks on a fence, this will unblock
430 : * dma_fence_wait() calls and run all the callbacks added with
431 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
432 : * can only go from the unsignaled to the signaled state and not back, it will
433 : * only be effective the first time.
434 : *
435 : * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
436 : * held.
437 : *
438 : * Returns 0 on success and a negative error value when @fence has been
439 : * signalled already.
440 : */
441 0 : int dma_fence_signal_locked(struct dma_fence *fence)
442 : {
443 0 : return dma_fence_signal_timestamp_locked(fence, ktime_get());
444 : }
445 : EXPORT_SYMBOL(dma_fence_signal_locked);
446 :
447 : /**
448 : * dma_fence_signal - signal completion of a fence
449 : * @fence: the fence to signal
450 : *
451 : * Signal completion for software callbacks on a fence, this will unblock
452 : * dma_fence_wait() calls and run all the callbacks added with
453 : * dma_fence_add_callback(). Can be called multiple times, but since a fence
454 : * can only go from the unsignaled to the signaled state and not back, it will
455 : * only be effective the first time.
456 : *
457 : * Returns 0 on success and a negative error value when @fence has been
458 : * signalled already.
459 : */
460 0 : int dma_fence_signal(struct dma_fence *fence)
461 : {
462 : unsigned long flags;
463 : int ret;
464 : bool tmp;
465 :
466 0 : if (!fence)
467 : return -EINVAL;
468 :
469 0 : tmp = dma_fence_begin_signalling();
470 :
471 0 : spin_lock_irqsave(fence->lock, flags);
472 0 : ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
473 0 : spin_unlock_irqrestore(fence->lock, flags);
474 :
475 0 : dma_fence_end_signalling(tmp);
476 :
477 0 : return ret;
478 : }
479 : EXPORT_SYMBOL(dma_fence_signal);
480 :
481 : /**
482 : * dma_fence_wait_timeout - sleep until the fence gets signaled
483 : * or until timeout elapses
484 : * @fence: the fence to wait on
485 : * @intr: if true, do an interruptible wait
486 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
487 : *
488 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
489 : * remaining timeout in jiffies on success. Other error values may be
490 : * returned on custom implementations.
491 : *
492 : * Performs a synchronous wait on this fence. It is assumed the caller
493 : * directly or indirectly (buf-mgr between reservation and committing)
494 : * holds a reference to the fence, otherwise the fence might be
495 : * freed before return, resulting in undefined behavior.
496 : *
497 : * See also dma_fence_wait() and dma_fence_wait_any_timeout().
498 : */
499 : signed long
500 0 : dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
501 : {
502 : signed long ret;
503 :
504 0 : if (WARN_ON(timeout < 0))
505 : return -EINVAL;
506 :
507 : might_sleep();
508 :
509 : __dma_fence_might_wait();
510 :
511 0 : dma_fence_enable_sw_signaling(fence);
512 :
513 0 : trace_dma_fence_wait_start(fence);
514 0 : if (fence->ops->wait)
515 0 : ret = fence->ops->wait(fence, intr, timeout);
516 : else
517 0 : ret = dma_fence_default_wait(fence, intr, timeout);
518 : trace_dma_fence_wait_end(fence);
519 : return ret;
520 : }
521 : EXPORT_SYMBOL(dma_fence_wait_timeout);
522 :
523 : /**
524 : * dma_fence_release - default relese function for fences
525 : * @kref: &dma_fence.recfount
526 : *
527 : * This is the default release functions for &dma_fence. Drivers shouldn't call
528 : * this directly, but instead call dma_fence_put().
529 : */
530 0 : void dma_fence_release(struct kref *kref)
531 : {
532 0 : struct dma_fence *fence =
533 0 : container_of(kref, struct dma_fence, refcount);
534 :
535 0 : trace_dma_fence_destroy(fence);
536 :
537 0 : if (WARN(!list_empty(&fence->cb_list) &&
538 : !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
539 : "Fence %s:%s:%llx:%llx released with pending signals!\n",
540 : fence->ops->get_driver_name(fence),
541 : fence->ops->get_timeline_name(fence),
542 : fence->context, fence->seqno)) {
543 : unsigned long flags;
544 :
545 : /*
546 : * Failed to signal before release, likely a refcounting issue.
547 : *
548 : * This should never happen, but if it does make sure that we
549 : * don't leave chains dangling. We set the error flag first
550 : * so that the callbacks know this signal is due to an error.
551 : */
552 0 : spin_lock_irqsave(fence->lock, flags);
553 0 : fence->error = -EDEADLK;
554 0 : dma_fence_signal_locked(fence);
555 0 : spin_unlock_irqrestore(fence->lock, flags);
556 : }
557 :
558 0 : if (fence->ops->release)
559 0 : fence->ops->release(fence);
560 : else
561 : dma_fence_free(fence);
562 0 : }
563 : EXPORT_SYMBOL(dma_fence_release);
564 :
565 : /**
566 : * dma_fence_free - default release function for &dma_fence.
567 : * @fence: fence to release
568 : *
569 : * This is the default implementation for &dma_fence_ops.release. It calls
570 : * kfree_rcu() on @fence.
571 : */
572 0 : void dma_fence_free(struct dma_fence *fence)
573 : {
574 0 : kfree_rcu(fence, rcu);
575 0 : }
576 : EXPORT_SYMBOL(dma_fence_free);
577 :
578 0 : static bool __dma_fence_enable_signaling(struct dma_fence *fence)
579 : {
580 : bool was_set;
581 :
582 : lockdep_assert_held(fence->lock);
583 :
584 0 : was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
585 0 : &fence->flags);
586 :
587 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
588 : return false;
589 :
590 0 : if (!was_set && fence->ops->enable_signaling) {
591 0 : trace_dma_fence_enable_signal(fence);
592 :
593 0 : if (!fence->ops->enable_signaling(fence)) {
594 0 : dma_fence_signal_locked(fence);
595 0 : return false;
596 : }
597 : }
598 :
599 : return true;
600 : }
601 :
602 : /**
603 : * dma_fence_enable_sw_signaling - enable signaling on fence
604 : * @fence: the fence to enable
605 : *
606 : * This will request for sw signaling to be enabled, to make the fence
607 : * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
608 : * internally.
609 : */
610 0 : void dma_fence_enable_sw_signaling(struct dma_fence *fence)
611 : {
612 : unsigned long flags;
613 :
614 0 : spin_lock_irqsave(fence->lock, flags);
615 0 : __dma_fence_enable_signaling(fence);
616 0 : spin_unlock_irqrestore(fence->lock, flags);
617 0 : }
618 : EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
619 :
620 : /**
621 : * dma_fence_add_callback - add a callback to be called when the fence
622 : * is signaled
623 : * @fence: the fence to wait on
624 : * @cb: the callback to register
625 : * @func: the function to call
626 : *
627 : * Add a software callback to the fence. The caller should keep a reference to
628 : * the fence.
629 : *
630 : * @cb will be initialized by dma_fence_add_callback(), no initialization
631 : * by the caller is required. Any number of callbacks can be registered
632 : * to a fence, but a callback can only be registered to one fence at a time.
633 : *
634 : * If fence is already signaled, this function will return -ENOENT (and
635 : * *not* call the callback).
636 : *
637 : * Note that the callback can be called from an atomic context or irq context.
638 : *
639 : * Returns 0 in case of success, -ENOENT if the fence is already signaled
640 : * and -EINVAL in case of error.
641 : */
642 0 : int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
643 : dma_fence_func_t func)
644 : {
645 : unsigned long flags;
646 0 : int ret = 0;
647 :
648 0 : if (WARN_ON(!fence || !func))
649 : return -EINVAL;
650 :
651 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
652 0 : INIT_LIST_HEAD(&cb->node);
653 0 : return -ENOENT;
654 : }
655 :
656 0 : spin_lock_irqsave(fence->lock, flags);
657 :
658 0 : if (__dma_fence_enable_signaling(fence)) {
659 0 : cb->func = func;
660 0 : list_add_tail(&cb->node, &fence->cb_list);
661 : } else {
662 0 : INIT_LIST_HEAD(&cb->node);
663 0 : ret = -ENOENT;
664 : }
665 :
666 0 : spin_unlock_irqrestore(fence->lock, flags);
667 :
668 0 : return ret;
669 : }
670 : EXPORT_SYMBOL(dma_fence_add_callback);
671 :
672 : /**
673 : * dma_fence_get_status - returns the status upon completion
674 : * @fence: the dma_fence to query
675 : *
676 : * This wraps dma_fence_get_status_locked() to return the error status
677 : * condition on a signaled fence. See dma_fence_get_status_locked() for more
678 : * details.
679 : *
680 : * Returns 0 if the fence has not yet been signaled, 1 if the fence has
681 : * been signaled without an error condition, or a negative error code
682 : * if the fence has been completed in err.
683 : */
684 0 : int dma_fence_get_status(struct dma_fence *fence)
685 : {
686 : unsigned long flags;
687 : int status;
688 :
689 0 : spin_lock_irqsave(fence->lock, flags);
690 0 : status = dma_fence_get_status_locked(fence);
691 0 : spin_unlock_irqrestore(fence->lock, flags);
692 :
693 0 : return status;
694 : }
695 : EXPORT_SYMBOL(dma_fence_get_status);
696 :
697 : /**
698 : * dma_fence_remove_callback - remove a callback from the signaling list
699 : * @fence: the fence to wait on
700 : * @cb: the callback to remove
701 : *
702 : * Remove a previously queued callback from the fence. This function returns
703 : * true if the callback is successfully removed, or false if the fence has
704 : * already been signaled.
705 : *
706 : * *WARNING*:
707 : * Cancelling a callback should only be done if you really know what you're
708 : * doing, since deadlocks and race conditions could occur all too easily. For
709 : * this reason, it should only ever be done on hardware lockup recovery,
710 : * with a reference held to the fence.
711 : *
712 : * Behaviour is undefined if @cb has not been added to @fence using
713 : * dma_fence_add_callback() beforehand.
714 : */
715 : bool
716 0 : dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
717 : {
718 : unsigned long flags;
719 : bool ret;
720 :
721 0 : spin_lock_irqsave(fence->lock, flags);
722 :
723 0 : ret = !list_empty(&cb->node);
724 0 : if (ret)
725 0 : list_del_init(&cb->node);
726 :
727 0 : spin_unlock_irqrestore(fence->lock, flags);
728 :
729 0 : return ret;
730 : }
731 : EXPORT_SYMBOL(dma_fence_remove_callback);
732 :
733 : struct default_wait_cb {
734 : struct dma_fence_cb base;
735 : struct task_struct *task;
736 : };
737 :
738 : static void
739 0 : dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
740 : {
741 0 : struct default_wait_cb *wait =
742 0 : container_of(cb, struct default_wait_cb, base);
743 :
744 0 : wake_up_state(wait->task, TASK_NORMAL);
745 0 : }
746 :
747 : /**
748 : * dma_fence_default_wait - default sleep until the fence gets signaled
749 : * or until timeout elapses
750 : * @fence: the fence to wait on
751 : * @intr: if true, do an interruptible wait
752 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
753 : *
754 : * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
755 : * remaining timeout in jiffies on success. If timeout is zero the value one is
756 : * returned if the fence is already signaled for consistency with other
757 : * functions taking a jiffies timeout.
758 : */
759 : signed long
760 0 : dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
761 : {
762 : struct default_wait_cb cb;
763 : unsigned long flags;
764 0 : signed long ret = timeout ? timeout : 1;
765 :
766 0 : spin_lock_irqsave(fence->lock, flags);
767 :
768 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
769 : goto out;
770 :
771 0 : if (intr && signal_pending(current)) {
772 : ret = -ERESTARTSYS;
773 : goto out;
774 : }
775 :
776 0 : if (!timeout) {
777 : ret = 0;
778 : goto out;
779 : }
780 :
781 0 : cb.base.func = dma_fence_default_wait_cb;
782 0 : cb.task = current;
783 0 : list_add(&cb.base.node, &fence->cb_list);
784 :
785 0 : while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
786 0 : if (intr)
787 0 : __set_current_state(TASK_INTERRUPTIBLE);
788 : else
789 0 : __set_current_state(TASK_UNINTERRUPTIBLE);
790 0 : spin_unlock_irqrestore(fence->lock, flags);
791 :
792 0 : ret = schedule_timeout(ret);
793 :
794 0 : spin_lock_irqsave(fence->lock, flags);
795 0 : if (ret > 0 && intr && signal_pending(current))
796 0 : ret = -ERESTARTSYS;
797 : }
798 :
799 0 : if (!list_empty(&cb.base.node))
800 : list_del(&cb.base.node);
801 0 : __set_current_state(TASK_RUNNING);
802 :
803 : out:
804 0 : spin_unlock_irqrestore(fence->lock, flags);
805 0 : return ret;
806 : }
807 : EXPORT_SYMBOL(dma_fence_default_wait);
808 :
809 : static bool
810 0 : dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
811 : uint32_t *idx)
812 : {
813 : int i;
814 :
815 0 : for (i = 0; i < count; ++i) {
816 0 : struct dma_fence *fence = fences[i];
817 0 : if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
818 0 : if (idx)
819 0 : *idx = i;
820 : return true;
821 : }
822 : }
823 : return false;
824 : }
825 :
826 : /**
827 : * dma_fence_wait_any_timeout - sleep until any fence gets signaled
828 : * or until timeout elapses
829 : * @fences: array of fences to wait on
830 : * @count: number of fences to wait on
831 : * @intr: if true, do an interruptible wait
832 : * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
833 : * @idx: used to store the first signaled fence index, meaningful only on
834 : * positive return
835 : *
836 : * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
837 : * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
838 : * on success.
839 : *
840 : * Synchronous waits for the first fence in the array to be signaled. The
841 : * caller needs to hold a reference to all fences in the array, otherwise a
842 : * fence might be freed before return, resulting in undefined behavior.
843 : *
844 : * See also dma_fence_wait() and dma_fence_wait_timeout().
845 : */
846 : signed long
847 0 : dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
848 : bool intr, signed long timeout, uint32_t *idx)
849 : {
850 : struct default_wait_cb *cb;
851 0 : signed long ret = timeout;
852 : unsigned i;
853 :
854 0 : if (WARN_ON(!fences || !count || timeout < 0))
855 : return -EINVAL;
856 :
857 0 : if (timeout == 0) {
858 0 : for (i = 0; i < count; ++i)
859 0 : if (dma_fence_is_signaled(fences[i])) {
860 0 : if (idx)
861 0 : *idx = i;
862 : return 1;
863 : }
864 :
865 : return 0;
866 : }
867 :
868 0 : cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
869 0 : if (cb == NULL) {
870 : ret = -ENOMEM;
871 : goto err_free_cb;
872 : }
873 :
874 0 : for (i = 0; i < count; ++i) {
875 0 : struct dma_fence *fence = fences[i];
876 :
877 0 : cb[i].task = current;
878 0 : if (dma_fence_add_callback(fence, &cb[i].base,
879 : dma_fence_default_wait_cb)) {
880 : /* This fence is already signaled */
881 0 : if (idx)
882 0 : *idx = i;
883 : goto fence_rm_cb;
884 : }
885 : }
886 :
887 0 : while (ret > 0) {
888 0 : if (intr)
889 0 : set_current_state(TASK_INTERRUPTIBLE);
890 : else
891 0 : set_current_state(TASK_UNINTERRUPTIBLE);
892 :
893 0 : if (dma_fence_test_signaled_any(fences, count, idx))
894 : break;
895 :
896 0 : ret = schedule_timeout(ret);
897 :
898 0 : if (ret > 0 && intr && signal_pending(current))
899 0 : ret = -ERESTARTSYS;
900 : }
901 :
902 0 : __set_current_state(TASK_RUNNING);
903 :
904 : fence_rm_cb:
905 0 : while (i-- > 0)
906 0 : dma_fence_remove_callback(fences[i], &cb[i].base);
907 :
908 : err_free_cb:
909 0 : kfree(cb);
910 :
911 0 : return ret;
912 : }
913 : EXPORT_SYMBOL(dma_fence_wait_any_timeout);
914 :
915 : /**
916 : * DOC: deadline hints
917 : *
918 : * In an ideal world, it would be possible to pipeline a workload sufficiently
919 : * that a utilization based device frequency governor could arrive at a minimum
920 : * frequency that meets the requirements of the use-case, in order to minimize
921 : * power consumption. But in the real world there are many workloads which
922 : * defy this ideal. For example, but not limited to:
923 : *
924 : * * Workloads that ping-pong between device and CPU, with alternating periods
925 : * of CPU waiting for device, and device waiting on CPU. This can result in
926 : * devfreq and cpufreq seeing idle time in their respective domains and in
927 : * result reduce frequency.
928 : *
929 : * * Workloads that interact with a periodic time based deadline, such as double
930 : * buffered GPU rendering vs vblank sync'd page flipping. In this scenario,
931 : * missing a vblank deadline results in an *increase* in idle time on the GPU
932 : * (since it has to wait an additional vblank period), sending a signal to
933 : * the GPU's devfreq to reduce frequency, when in fact the opposite is what is
934 : * needed.
935 : *
936 : * To this end, deadline hint(s) can be set on a &dma_fence via &dma_fence_set_deadline.
937 : * The deadline hint provides a way for the waiting driver, or userspace, to
938 : * convey an appropriate sense of urgency to the signaling driver.
939 : *
940 : * A deadline hint is given in absolute ktime (CLOCK_MONOTONIC for userspace
941 : * facing APIs). The time could either be some point in the future (such as
942 : * the vblank based deadline for page-flipping, or the start of a compositor's
943 : * composition cycle), or the current time to indicate an immediate deadline
944 : * hint (Ie. forward progress cannot be made until this fence is signaled).
945 : *
946 : * Multiple deadlines may be set on a given fence, even in parallel. See the
947 : * documentation for &dma_fence_ops.set_deadline.
948 : *
949 : * The deadline hint is just that, a hint. The driver that created the fence
950 : * may react by increasing frequency, making different scheduling choices, etc.
951 : * Or doing nothing at all.
952 : */
953 :
954 : /**
955 : * dma_fence_set_deadline - set desired fence-wait deadline hint
956 : * @fence: the fence that is to be waited on
957 : * @deadline: the time by which the waiter hopes for the fence to be
958 : * signaled
959 : *
960 : * Give the fence signaler a hint about an upcoming deadline, such as
961 : * vblank, by which point the waiter would prefer the fence to be
962 : * signaled by. This is intended to give feedback to the fence signaler
963 : * to aid in power management decisions, such as boosting GPU frequency
964 : * if a periodic vblank deadline is approaching but the fence is not
965 : * yet signaled..
966 : */
967 0 : void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline)
968 : {
969 0 : if (fence->ops->set_deadline && !dma_fence_is_signaled(fence))
970 0 : fence->ops->set_deadline(fence, deadline);
971 0 : }
972 : EXPORT_SYMBOL(dma_fence_set_deadline);
973 :
974 : /**
975 : * dma_fence_describe - Dump fence describtion into seq_file
976 : * @fence: the 6fence to describe
977 : * @seq: the seq_file to put the textual description into
978 : *
979 : * Dump a textual description of the fence and it's state into the seq_file.
980 : */
981 0 : void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
982 : {
983 0 : seq_printf(seq, "%s %s seq %llu %ssignalled\n",
984 0 : fence->ops->get_driver_name(fence),
985 0 : fence->ops->get_timeline_name(fence), fence->seqno,
986 0 : dma_fence_is_signaled(fence) ? "" : "un");
987 0 : }
988 : EXPORT_SYMBOL(dma_fence_describe);
989 :
990 : /**
991 : * dma_fence_init - Initialize a custom fence.
992 : * @fence: the fence to initialize
993 : * @ops: the dma_fence_ops for operations on this fence
994 : * @lock: the irqsafe spinlock to use for locking this fence
995 : * @context: the execution context this fence is run on
996 : * @seqno: a linear increasing sequence number for this context
997 : *
998 : * Initializes an allocated fence, the caller doesn't have to keep its
999 : * refcount after committing with this fence, but it will need to hold a
1000 : * refcount again if &dma_fence_ops.enable_signaling gets called.
1001 : *
1002 : * context and seqno are used for easy comparison between fences, allowing
1003 : * to check which fence is later by simply using dma_fence_later().
1004 : */
1005 : void
1006 0 : dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
1007 : spinlock_t *lock, u64 context, u64 seqno)
1008 : {
1009 0 : BUG_ON(!lock);
1010 0 : BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
1011 :
1012 0 : kref_init(&fence->refcount);
1013 0 : fence->ops = ops;
1014 0 : INIT_LIST_HEAD(&fence->cb_list);
1015 0 : fence->lock = lock;
1016 0 : fence->context = context;
1017 0 : fence->seqno = seqno;
1018 0 : fence->flags = 0UL;
1019 0 : fence->error = 0;
1020 :
1021 0 : trace_dma_fence_init(fence);
1022 0 : }
1023 : EXPORT_SYMBOL(dma_fence_init);
|