Line data Source code
1 : /*
2 : * Copyright © 2009 Keith Packard
3 : *
4 : * Permission to use, copy, modify, distribute, and sell this software and its
5 : * documentation for any purpose is hereby granted without fee, provided that
6 : * the above copyright notice appear in all copies and that both that copyright
7 : * notice and this permission notice appear in supporting documentation, and
8 : * that the name of the copyright holders not be used in advertising or
9 : * publicity pertaining to distribution of the software without specific,
10 : * written prior permission. The copyright holders make no representations
11 : * about the suitability of this software for any purpose. It is provided "as
12 : * is" without express or implied warranty.
13 : *
14 : * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 : * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 : * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 : * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 : * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 : * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 : * OF THIS SOFTWARE.
21 : */
22 :
23 : #include <linux/backlight.h>
24 : #include <linux/delay.h>
25 : #include <linux/errno.h>
26 : #include <linux/i2c.h>
27 : #include <linux/init.h>
28 : #include <linux/kernel.h>
29 : #include <linux/module.h>
30 : #include <linux/sched.h>
31 : #include <linux/seq_file.h>
32 : #include <linux/string_helpers.h>
33 : #include <linux/dynamic_debug.h>
34 :
35 : #include <drm/display/drm_dp_helper.h>
36 : #include <drm/display/drm_dp_mst_helper.h>
37 : #include <drm/drm_edid.h>
38 : #include <drm/drm_print.h>
39 : #include <drm/drm_vblank.h>
40 : #include <drm/drm_panel.h>
41 :
42 : #include "drm_dp_helper_internal.h"
43 :
44 : DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 : "DRM_UT_CORE",
46 : "DRM_UT_DRIVER",
47 : "DRM_UT_KMS",
48 : "DRM_UT_PRIME",
49 : "DRM_UT_ATOMIC",
50 : "DRM_UT_VBL",
51 : "DRM_UT_STATE",
52 : "DRM_UT_LEASE",
53 : "DRM_UT_DP",
54 : "DRM_UT_DRMRES");
55 :
56 : struct dp_aux_backlight {
57 : struct backlight_device *base;
58 : struct drm_dp_aux *aux;
59 : struct drm_edp_backlight_info info;
60 : bool enabled;
61 : };
62 :
63 : /**
64 : * DOC: dp helpers
65 : *
66 : * These functions contain some common logic and helpers at various abstraction
67 : * levels to deal with Display Port sink devices and related things like DP aux
68 : * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69 : * blocks, ...
70 : */
71 :
72 : /* Helpers for DP link training */
73 : static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 : {
75 0 : return link_status[r - DP_LANE0_1_STATUS];
76 : }
77 :
78 : static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 : int lane)
80 : {
81 0 : int i = DP_LANE0_1_STATUS + (lane >> 1);
82 0 : int s = (lane & 1) * 4;
83 0 : u8 l = dp_link_status(link_status, i);
84 :
85 0 : return (l >> s) & 0xf;
86 : }
87 :
88 0 : bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 : int lane_count)
90 : {
91 : u8 lane_align;
92 : u8 lane_status;
93 : int lane;
94 :
95 0 : lane_align = dp_link_status(link_status,
96 : DP_LANE_ALIGN_STATUS_UPDATED);
97 0 : if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 : return false;
99 0 : for (lane = 0; lane < lane_count; lane++) {
100 0 : lane_status = dp_get_lane_status(link_status, lane);
101 0 : if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 : return false;
103 : }
104 : return true;
105 : }
106 : EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107 :
108 0 : bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 : int lane_count)
110 : {
111 : int lane;
112 : u8 lane_status;
113 :
114 0 : for (lane = 0; lane < lane_count; lane++) {
115 0 : lane_status = dp_get_lane_status(link_status, lane);
116 0 : if ((lane_status & DP_LANE_CR_DONE) == 0)
117 : return false;
118 : }
119 : return true;
120 : }
121 : EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122 :
123 0 : u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 : int lane)
125 : {
126 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 0 : int s = ((lane & 1) ?
128 0 : DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 0 : u8 l = dp_link_status(link_status, i);
131 :
132 0 : return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 : }
134 : EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135 :
136 0 : u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 : int lane)
138 : {
139 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 0 : int s = ((lane & 1) ?
141 0 : DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 0 : u8 l = dp_link_status(link_status, i);
144 :
145 0 : return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 : }
147 : EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148 :
149 : /* DP 2.0 128b/132b */
150 0 : u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 : int lane)
152 : {
153 0 : int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 0 : int s = ((lane & 1) ?
155 0 : DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 : DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 0 : u8 l = dp_link_status(link_status, i);
158 :
159 0 : return (l >> s) & 0xf;
160 : }
161 : EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162 :
163 : /* DP 2.0 errata for 128b/132b */
164 0 : bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 : int lane_count)
166 : {
167 : u8 lane_align, lane_status;
168 : int lane;
169 :
170 0 : lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 0 : if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 : return false;
173 :
174 0 : for (lane = 0; lane < lane_count; lane++) {
175 0 : lane_status = dp_get_lane_status(link_status, lane);
176 0 : if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 : return false;
178 : }
179 : return true;
180 : }
181 : EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182 :
183 : /* DP 2.0 errata for 128b/132b */
184 0 : bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 : int lane_count)
186 : {
187 : u8 lane_status;
188 : int lane;
189 :
190 0 : for (lane = 0; lane < lane_count; lane++) {
191 0 : lane_status = dp_get_lane_status(link_status, lane);
192 0 : if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 : return false;
194 : }
195 : return true;
196 : }
197 : EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198 :
199 : /* DP 2.0 errata for 128b/132b */
200 0 : bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 : {
202 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203 :
204 0 : return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 : }
206 : EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207 :
208 : /* DP 2.0 errata for 128b/132b */
209 0 : bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 : {
211 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212 :
213 0 : return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 : }
215 : EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216 :
217 : /* DP 2.0 errata for 128b/132b */
218 0 : bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 : {
220 0 : u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221 :
222 0 : return status & DP_128B132B_LT_FAILED;
223 : }
224 : EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225 :
226 0 : static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 : {
228 0 : if (rd_interval > 4)
229 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 : aux->name, rd_interval);
231 :
232 0 : if (rd_interval == 0)
233 : return 100;
234 :
235 0 : return rd_interval * 4 * USEC_PER_MSEC;
236 : }
237 :
238 0 : static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 : {
240 0 : if (rd_interval > 4)
241 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 : aux->name, rd_interval);
243 :
244 0 : if (rd_interval == 0)
245 : return 400;
246 :
247 0 : return rd_interval * 4 * USEC_PER_MSEC;
248 : }
249 :
250 0 : static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 : {
252 0 : switch (rd_interval) {
253 : default:
254 0 : drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 : aux->name, rd_interval);
256 : fallthrough;
257 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 : return 400;
259 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 : return 4000;
261 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 0 : return 8000;
263 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 0 : return 12000;
265 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 0 : return 16000;
267 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 0 : return 32000;
269 : case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 0 : return 64000;
271 : }
272 : }
273 :
274 : /*
275 : * The link training delays are different for:
276 : *
277 : * - Clock recovery vs. channel equalization
278 : * - DPRX vs. LTTPR
279 : * - 128b/132b vs. 8b/10b
280 : * - DPCD rev 1.3 vs. later
281 : *
282 : * Get the correct delay in us, reading DPCD if necessary.
283 : */
284 0 : static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 : enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 : {
287 : int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 : unsigned int offset;
289 : u8 rd_interval, mask;
290 :
291 0 : if (dp_phy == DP_PHY_DPRX) {
292 0 : if (uhbr) {
293 0 : if (cr)
294 : return 100;
295 :
296 : offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 : mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 : parse = __128b132b_channel_eq_delay_us;
299 : } else {
300 0 : if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 : return 100;
302 :
303 0 : offset = DP_TRAINING_AUX_RD_INTERVAL;
304 0 : mask = DP_TRAINING_AUX_RD_MASK;
305 0 : if (cr)
306 : parse = __8b10b_clock_recovery_delay_us;
307 : else
308 0 : parse = __8b10b_channel_eq_delay_us;
309 : }
310 : } else {
311 0 : if (uhbr) {
312 0 : offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 0 : mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 0 : parse = __128b132b_channel_eq_delay_us;
315 : } else {
316 0 : if (cr)
317 : return 100;
318 :
319 0 : offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 0 : mask = DP_TRAINING_AUX_RD_MASK;
321 0 : parse = __8b10b_channel_eq_delay_us;
322 : }
323 : }
324 :
325 0 : if (offset < DP_RECEIVER_CAP_SIZE) {
326 0 : rd_interval = dpcd[offset];
327 : } else {
328 0 : if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 0 : drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 : aux->name);
331 : /* arbitrary default delay */
332 0 : return 400;
333 : }
334 : }
335 :
336 0 : return parse(aux, rd_interval & mask);
337 : }
338 :
339 0 : int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 : enum drm_dp_phy dp_phy, bool uhbr)
341 : {
342 0 : return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 : }
344 : EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345 :
346 0 : int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 : enum drm_dp_phy dp_phy, bool uhbr)
348 : {
349 0 : return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 : }
351 : EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352 :
353 : /* Per DP 2.0 Errata */
354 0 : int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 : {
356 : int unit;
357 : u8 val;
358 :
359 0 : if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 0 : drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 : aux->name);
362 : /* default to max */
363 0 : val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 : }
365 :
366 0 : unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 0 : val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368 :
369 0 : return (val + 1) * unit * 1000;
370 : }
371 : EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372 :
373 0 : void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 : const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 : {
376 0 : u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 : DP_TRAINING_AUX_RD_MASK;
378 : int delay_us;
379 :
380 0 : if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 : delay_us = 100;
382 : else
383 0 : delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384 :
385 0 : usleep_range(delay_us, delay_us * 2);
386 0 : }
387 : EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388 :
389 0 : static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 : u8 rd_interval)
391 : {
392 0 : int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393 :
394 0 : usleep_range(delay_us, delay_us * 2);
395 0 : }
396 :
397 0 : void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 : const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 : {
400 0 : __drm_dp_link_train_channel_eq_delay(aux,
401 0 : dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 : DP_TRAINING_AUX_RD_MASK);
403 0 : }
404 : EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405 :
406 : /**
407 : * drm_dp_phy_name() - Get the name of the given DP PHY
408 : * @dp_phy: The DP PHY identifier
409 : *
410 : * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411 : * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412 : * non-NULL and valid.
413 : *
414 : * Returns: Name of the DP PHY.
415 : */
416 0 : const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 : {
418 : static const char * const phy_names[] = {
419 : [DP_PHY_DPRX] = "DPRX",
420 : [DP_PHY_LTTPR1] = "LTTPR 1",
421 : [DP_PHY_LTTPR2] = "LTTPR 2",
422 : [DP_PHY_LTTPR3] = "LTTPR 3",
423 : [DP_PHY_LTTPR4] = "LTTPR 4",
424 : [DP_PHY_LTTPR5] = "LTTPR 5",
425 : [DP_PHY_LTTPR6] = "LTTPR 6",
426 : [DP_PHY_LTTPR7] = "LTTPR 7",
427 : [DP_PHY_LTTPR8] = "LTTPR 8",
428 : };
429 :
430 0 : if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 0 : WARN_ON(!phy_names[dp_phy]))
432 : return "<INVALID DP PHY>";
433 :
434 : return phy_names[dp_phy];
435 : }
436 : EXPORT_SYMBOL(drm_dp_phy_name);
437 :
438 0 : void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 : {
440 0 : usleep_range(100, 200);
441 0 : }
442 : EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443 :
444 : static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 : {
446 0 : return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 : }
448 :
449 0 : void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 : const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 : {
452 0 : u8 interval = dp_lttpr_phy_cap(phy_cap,
453 : DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 : DP_TRAINING_AUX_RD_MASK;
455 :
456 0 : __drm_dp_link_train_channel_eq_delay(aux, interval);
457 0 : }
458 : EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459 :
460 0 : u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 : {
462 0 : switch (link_rate) {
463 : case 1000000:
464 : return DP_LINK_BW_10;
465 : case 1350000:
466 0 : return DP_LINK_BW_13_5;
467 : case 2000000:
468 0 : return DP_LINK_BW_20;
469 : default:
470 : /* Spec says link_bw = link_rate / 0.27Gbps */
471 0 : return link_rate / 27000;
472 : }
473 : }
474 : EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475 :
476 0 : int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 : {
478 0 : switch (link_bw) {
479 : case DP_LINK_BW_10:
480 : return 1000000;
481 : case DP_LINK_BW_13_5:
482 0 : return 1350000;
483 : case DP_LINK_BW_20:
484 0 : return 2000000;
485 : default:
486 : /* Spec says link_rate = link_bw * 0.27Gbps */
487 0 : return link_bw * 27000;
488 : }
489 : }
490 : EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491 :
492 : #define AUX_RETRY_INTERVAL 500 /* us */
493 :
494 : static inline void
495 0 : drm_dp_dump_access(const struct drm_dp_aux *aux,
496 : u8 request, uint offset, void *buffer, int ret)
497 : {
498 0 : const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499 :
500 0 : if (ret > 0)
501 0 : drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 : aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 : else
504 0 : drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 : aux->name, offset, arrow, ret);
506 0 : }
507 :
508 : /**
509 : * DOC: dp helpers
510 : *
511 : * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512 : * independent access to AUX functionality. Drivers can take advantage of
513 : * this by filling in the fields of the drm_dp_aux structure.
514 : *
515 : * Transactions are described using a hardware-independent drm_dp_aux_msg
516 : * structure, which is passed into a driver's .transfer() implementation.
517 : * Both native and I2C-over-AUX transactions are supported.
518 : */
519 :
520 0 : static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 : unsigned int offset, void *buffer, size_t size)
522 : {
523 : struct drm_dp_aux_msg msg;
524 : unsigned int retry, native_reply;
525 0 : int err = 0, ret = 0;
526 :
527 0 : memset(&msg, 0, sizeof(msg));
528 0 : msg.address = offset;
529 0 : msg.request = request;
530 0 : msg.buffer = buffer;
531 0 : msg.size = size;
532 :
533 0 : mutex_lock(&aux->hw_mutex);
534 :
535 : /*
536 : * The specification doesn't give any recommendation on how often to
537 : * retry native transactions. We used to retry 7 times like for
538 : * aux i2c transactions but real world devices this wasn't
539 : * sufficient, bump to 32 which makes Dell 4k monitors happier.
540 : */
541 0 : for (retry = 0; retry < 32; retry++) {
542 0 : if (ret != 0 && ret != -ETIMEDOUT) {
543 : usleep_range(AUX_RETRY_INTERVAL,
544 : AUX_RETRY_INTERVAL + 100);
545 : }
546 :
547 0 : ret = aux->transfer(aux, &msg);
548 0 : if (ret >= 0) {
549 0 : native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
550 0 : if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
551 0 : if (ret == size)
552 : goto unlock;
553 :
554 : ret = -EPROTO;
555 : } else
556 : ret = -EIO;
557 : }
558 :
559 : /*
560 : * We want the error we return to be the error we received on
561 : * the first transaction, since we may get a different error the
562 : * next time we retry
563 : */
564 0 : if (!err)
565 0 : err = ret;
566 : }
567 :
568 0 : drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
569 : aux->name, err);
570 0 : ret = err;
571 :
572 : unlock:
573 0 : mutex_unlock(&aux->hw_mutex);
574 0 : return ret;
575 : }
576 :
577 : /**
578 : * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
579 : * @aux: DisplayPort AUX channel (SST)
580 : * @offset: address of the register to probe
581 : *
582 : * Probe the provided DPCD address by reading 1 byte from it. The function can
583 : * be used to trigger some side-effect the read access has, like waking up the
584 : * sink, without the need for the read-out value.
585 : *
586 : * Returns 0 if the read access suceeded, or a negative error code on failure.
587 : */
588 0 : int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
589 : {
590 : u8 buffer;
591 : int ret;
592 :
593 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
594 0 : WARN_ON(ret == 0);
595 :
596 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
597 :
598 0 : return ret < 0 ? ret : 0;
599 : }
600 : EXPORT_SYMBOL(drm_dp_dpcd_probe);
601 :
602 : /**
603 : * drm_dp_dpcd_read() - read a series of bytes from the DPCD
604 : * @aux: DisplayPort AUX channel (SST or MST)
605 : * @offset: address of the (first) register to read
606 : * @buffer: buffer to store the register values
607 : * @size: number of bytes in @buffer
608 : *
609 : * Returns the number of bytes transferred on success, or a negative error
610 : * code on failure. -EIO is returned if the request was NAKed by the sink or
611 : * if the retry count was exceeded. If not all bytes were transferred, this
612 : * function returns -EPROTO. Errors from the underlying AUX channel transfer
613 : * function, with the exception of -EBUSY (which causes the transaction to
614 : * be retried), are propagated to the caller.
615 : */
616 0 : ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
617 : void *buffer, size_t size)
618 : {
619 : int ret;
620 :
621 : /*
622 : * HP ZR24w corrupts the first DPCD access after entering power save
623 : * mode. Eg. on a read, the entire buffer will be filled with the same
624 : * byte. Do a throw away read to avoid corrupting anything we care
625 : * about. Afterwards things will work correctly until the monitor
626 : * gets woken up and subsequently re-enters power save mode.
627 : *
628 : * The user pressing any button on the monitor is enough to wake it
629 : * up, so there is no particularly good place to do the workaround.
630 : * We just have to do it before any DPCD access and hope that the
631 : * monitor doesn't power down exactly after the throw away read.
632 : */
633 0 : if (!aux->is_remote) {
634 0 : ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
635 0 : if (ret < 0)
636 0 : return ret;
637 : }
638 :
639 0 : if (aux->is_remote)
640 0 : ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
641 : else
642 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
643 : buffer, size);
644 :
645 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
646 0 : return ret;
647 : }
648 : EXPORT_SYMBOL(drm_dp_dpcd_read);
649 :
650 : /**
651 : * drm_dp_dpcd_write() - write a series of bytes to the DPCD
652 : * @aux: DisplayPort AUX channel (SST or MST)
653 : * @offset: address of the (first) register to write
654 : * @buffer: buffer containing the values to write
655 : * @size: number of bytes in @buffer
656 : *
657 : * Returns the number of bytes transferred on success, or a negative error
658 : * code on failure. -EIO is returned if the request was NAKed by the sink or
659 : * if the retry count was exceeded. If not all bytes were transferred, this
660 : * function returns -EPROTO. Errors from the underlying AUX channel transfer
661 : * function, with the exception of -EBUSY (which causes the transaction to
662 : * be retried), are propagated to the caller.
663 : */
664 0 : ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
665 : void *buffer, size_t size)
666 : {
667 : int ret;
668 :
669 0 : if (aux->is_remote)
670 0 : ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
671 : else
672 0 : ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
673 : buffer, size);
674 :
675 0 : drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
676 0 : return ret;
677 : }
678 : EXPORT_SYMBOL(drm_dp_dpcd_write);
679 :
680 : /**
681 : * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
682 : * @aux: DisplayPort AUX channel
683 : * @status: buffer to store the link status in (must be at least 6 bytes)
684 : *
685 : * Returns the number of bytes transferred on success or a negative error
686 : * code on failure.
687 : */
688 0 : int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
689 : u8 status[DP_LINK_STATUS_SIZE])
690 : {
691 0 : return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
692 : DP_LINK_STATUS_SIZE);
693 : }
694 : EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
695 :
696 : /**
697 : * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
698 : * @aux: DisplayPort AUX channel
699 : * @dp_phy: the DP PHY to get the link status for
700 : * @link_status: buffer to return the status in
701 : *
702 : * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
703 : * layout of the returned @link_status matches the DPCD register layout of the
704 : * DPRX PHY link status.
705 : *
706 : * Returns 0 if the information was read successfully or a negative error code
707 : * on failure.
708 : */
709 0 : int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
710 : enum drm_dp_phy dp_phy,
711 : u8 link_status[DP_LINK_STATUS_SIZE])
712 : {
713 : int ret;
714 :
715 0 : if (dp_phy == DP_PHY_DPRX) {
716 0 : ret = drm_dp_dpcd_read(aux,
717 : DP_LANE0_1_STATUS,
718 : link_status,
719 : DP_LINK_STATUS_SIZE);
720 :
721 0 : if (ret < 0)
722 : return ret;
723 :
724 0 : WARN_ON(ret != DP_LINK_STATUS_SIZE);
725 :
726 : return 0;
727 : }
728 :
729 0 : ret = drm_dp_dpcd_read(aux,
730 : DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
731 : link_status,
732 : DP_LINK_STATUS_SIZE - 1);
733 :
734 0 : if (ret < 0)
735 : return ret;
736 :
737 0 : WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
738 :
739 : /* Convert the LTTPR to the sink PHY link status layout */
740 0 : memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
741 0 : &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
742 : DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
743 0 : link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
744 :
745 0 : return 0;
746 : }
747 : EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
748 :
749 : static bool is_edid_digital_input_dp(const struct edid *edid)
750 : {
751 0 : return edid && edid->revision >= 4 &&
752 0 : edid->input & DRM_EDID_INPUT_DIGITAL &&
753 : (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
754 : }
755 :
756 : /**
757 : * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
758 : * @dpcd: DisplayPort configuration data
759 : * @port_cap: port capabilities
760 : * @type: port type to be checked. Can be:
761 : * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
762 : * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
763 : * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
764 : *
765 : * Caveat: Only works with DPCD 1.1+ port caps.
766 : *
767 : * Returns: whether the downstream facing port matches the type.
768 : */
769 0 : bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
770 : const u8 port_cap[4], u8 type)
771 : {
772 0 : return drm_dp_is_branch(dpcd) &&
773 0 : dpcd[DP_DPCD_REV] >= 0x11 &&
774 0 : (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
775 : }
776 : EXPORT_SYMBOL(drm_dp_downstream_is_type);
777 :
778 : /**
779 : * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
780 : * @dpcd: DisplayPort configuration data
781 : * @port_cap: port capabilities
782 : * @edid: EDID
783 : *
784 : * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
785 : */
786 0 : bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
787 : const u8 port_cap[4],
788 : const struct edid *edid)
789 : {
790 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
791 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
792 : case DP_DWN_STRM_PORT_TYPE_TMDS:
793 : return true;
794 : default:
795 0 : return false;
796 : }
797 : }
798 :
799 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
800 : case DP_DS_PORT_TYPE_DP_DUALMODE:
801 0 : if (is_edid_digital_input_dp(edid))
802 : return false;
803 : fallthrough;
804 : case DP_DS_PORT_TYPE_DVI:
805 : case DP_DS_PORT_TYPE_HDMI:
806 : return true;
807 : default:
808 : return false;
809 : }
810 : }
811 : EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
812 :
813 : /**
814 : * drm_dp_send_real_edid_checksum() - send back real edid checksum value
815 : * @aux: DisplayPort AUX channel
816 : * @real_edid_checksum: real edid checksum for the last block
817 : *
818 : * Returns:
819 : * True on success
820 : */
821 0 : bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
822 : u8 real_edid_checksum)
823 : {
824 0 : u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
825 :
826 0 : if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
827 : &auto_test_req, 1) < 1) {
828 0 : drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
829 : aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
830 0 : return false;
831 : }
832 0 : auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
833 :
834 0 : if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
835 0 : drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
836 : aux->name, DP_TEST_REQUEST);
837 0 : return false;
838 : }
839 0 : link_edid_read &= DP_TEST_LINK_EDID_READ;
840 :
841 0 : if (!auto_test_req || !link_edid_read) {
842 0 : drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
843 : aux->name);
844 0 : return false;
845 : }
846 :
847 0 : if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
848 : &auto_test_req, 1) < 1) {
849 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
850 : aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
851 0 : return false;
852 : }
853 :
854 : /* send back checksum for the last edid extension block data */
855 0 : if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
856 : &real_edid_checksum, 1) < 1) {
857 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
858 : aux->name, DP_TEST_EDID_CHECKSUM);
859 0 : return false;
860 : }
861 :
862 0 : test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
863 0 : if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
864 0 : drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
865 : aux->name, DP_TEST_RESPONSE);
866 0 : return false;
867 : }
868 :
869 : return true;
870 : }
871 : EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
872 :
873 : static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
874 : {
875 0 : u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
876 :
877 0 : if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
878 0 : port_count = 4;
879 :
880 : return port_count;
881 : }
882 :
883 0 : static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
884 : u8 dpcd[DP_RECEIVER_CAP_SIZE])
885 : {
886 : u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
887 : int ret;
888 :
889 : /*
890 : * Prior to DP1.3 the bit represented by
891 : * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
892 : * If it is set DP_DPCD_REV at 0000h could be at a value less than
893 : * the true capability of the panel. The only way to check is to
894 : * then compare 0000h and 2200h.
895 : */
896 0 : if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
897 : DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
898 : return 0;
899 :
900 0 : ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
901 : sizeof(dpcd_ext));
902 0 : if (ret < 0)
903 : return ret;
904 0 : if (ret != sizeof(dpcd_ext))
905 : return -EIO;
906 :
907 0 : if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
908 0 : drm_dbg_kms(aux->drm_dev,
909 : "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
910 : aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
911 0 : return 0;
912 : }
913 :
914 0 : if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
915 : return 0;
916 :
917 0 : drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
918 :
919 0 : memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
920 :
921 0 : return 0;
922 : }
923 :
924 : /**
925 : * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
926 : * available
927 : * @aux: DisplayPort AUX channel
928 : * @dpcd: Buffer to store the resulting DPCD in
929 : *
930 : * Attempts to read the base DPCD caps for @aux. Additionally, this function
931 : * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
932 : * present.
933 : *
934 : * Returns: %0 if the DPCD was read successfully, negative error code
935 : * otherwise.
936 : */
937 0 : int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
938 : u8 dpcd[DP_RECEIVER_CAP_SIZE])
939 : {
940 : int ret;
941 :
942 0 : ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
943 0 : if (ret < 0)
944 : return ret;
945 0 : if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
946 : return -EIO;
947 :
948 0 : ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
949 0 : if (ret < 0)
950 : return ret;
951 :
952 0 : drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
953 :
954 0 : return ret;
955 : }
956 : EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
957 :
958 : /**
959 : * drm_dp_read_downstream_info() - read DPCD downstream port info if available
960 : * @aux: DisplayPort AUX channel
961 : * @dpcd: A cached copy of the port's DPCD
962 : * @downstream_ports: buffer to store the downstream port info in
963 : *
964 : * See also:
965 : * drm_dp_downstream_max_clock()
966 : * drm_dp_downstream_max_bpc()
967 : *
968 : * Returns: 0 if either the downstream port info was read successfully or
969 : * there was no downstream info to read, or a negative error code otherwise.
970 : */
971 0 : int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
972 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
973 : u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
974 : {
975 : int ret;
976 : u8 len;
977 :
978 0 : memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
979 :
980 : /* No downstream info to read */
981 0 : if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
982 : return 0;
983 :
984 : /* Some branches advertise having 0 downstream ports, despite also advertising they have a
985 : * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
986 : * some branches do it we need to handle it regardless.
987 : */
988 0 : len = drm_dp_downstream_port_count(dpcd);
989 0 : if (!len)
990 : return 0;
991 :
992 0 : if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
993 0 : len *= 4;
994 :
995 0 : ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
996 0 : if (ret < 0)
997 : return ret;
998 0 : if (ret != len)
999 : return -EIO;
1000 :
1001 0 : drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1002 :
1003 0 : return 0;
1004 : }
1005 : EXPORT_SYMBOL(drm_dp_read_downstream_info);
1006 :
1007 : /**
1008 : * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1009 : * @dpcd: DisplayPort configuration data
1010 : * @port_cap: port capabilities
1011 : *
1012 : * Returns: Downstream facing port max dot clock in kHz on success,
1013 : * or 0 if max clock not defined
1014 : */
1015 0 : int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1016 : const u8 port_cap[4])
1017 : {
1018 0 : if (!drm_dp_is_branch(dpcd))
1019 : return 0;
1020 :
1021 0 : if (dpcd[DP_DPCD_REV] < 0x11)
1022 : return 0;
1023 :
1024 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1025 : case DP_DS_PORT_TYPE_VGA:
1026 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1027 : return 0;
1028 0 : return port_cap[1] * 8000;
1029 : default:
1030 : return 0;
1031 : }
1032 : }
1033 : EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1034 :
1035 : /**
1036 : * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1037 : * @dpcd: DisplayPort configuration data
1038 : * @port_cap: port capabilities
1039 : * @edid: EDID
1040 : *
1041 : * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1042 : * or 0 if max TMDS clock not defined
1043 : */
1044 0 : int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1045 : const u8 port_cap[4],
1046 : const struct edid *edid)
1047 : {
1048 0 : if (!drm_dp_is_branch(dpcd))
1049 : return 0;
1050 :
1051 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1052 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1053 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1054 : return 165000;
1055 : default:
1056 0 : return 0;
1057 : }
1058 : }
1059 :
1060 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1061 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1062 0 : if (is_edid_digital_input_dp(edid))
1063 : return 0;
1064 : /*
1065 : * It's left up to the driver to check the
1066 : * DP dual mode adapter's max TMDS clock.
1067 : *
1068 : * Unfortunately it looks like branch devices
1069 : * may not fordward that the DP dual mode i2c
1070 : * access so we just usually get i2c nak :(
1071 : */
1072 : fallthrough;
1073 : case DP_DS_PORT_TYPE_HDMI:
1074 : /*
1075 : * We should perhaps assume 165 MHz when detailed cap
1076 : * info is not available. But looks like many typical
1077 : * branch devices fall into that category and so we'd
1078 : * probably end up with users complaining that they can't
1079 : * get high resolution modes with their favorite dongle.
1080 : *
1081 : * So let's limit to 300 MHz instead since DPCD 1.4
1082 : * HDMI 2.0 DFPs are required to have the detailed cap
1083 : * info. So it's more likely we're dealing with a HDMI 1.4
1084 : * compatible* device here.
1085 : */
1086 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1087 : return 300000;
1088 0 : return port_cap[1] * 2500;
1089 : case DP_DS_PORT_TYPE_DVI:
1090 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1091 : return 165000;
1092 : /* FIXME what to do about DVI dual link? */
1093 0 : return port_cap[1] * 2500;
1094 : default:
1095 : return 0;
1096 : }
1097 : }
1098 : EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1099 :
1100 : /**
1101 : * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1102 : * @dpcd: DisplayPort configuration data
1103 : * @port_cap: port capabilities
1104 : * @edid: EDID
1105 : *
1106 : * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1107 : * or 0 if max TMDS clock not defined
1108 : */
1109 0 : int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1110 : const u8 port_cap[4],
1111 : const struct edid *edid)
1112 : {
1113 0 : if (!drm_dp_is_branch(dpcd))
1114 : return 0;
1115 :
1116 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1117 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1118 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1119 : return 25000;
1120 : default:
1121 0 : return 0;
1122 : }
1123 : }
1124 :
1125 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1126 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1127 0 : if (is_edid_digital_input_dp(edid))
1128 : return 0;
1129 : fallthrough;
1130 : case DP_DS_PORT_TYPE_DVI:
1131 : case DP_DS_PORT_TYPE_HDMI:
1132 : /*
1133 : * Unclear whether the protocol converter could
1134 : * utilize pixel replication. Assume it won't.
1135 : */
1136 : return 25000;
1137 : default:
1138 : return 0;
1139 : }
1140 : }
1141 : EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1142 :
1143 : /**
1144 : * drm_dp_downstream_max_bpc() - extract downstream facing port max
1145 : * bits per component
1146 : * @dpcd: DisplayPort configuration data
1147 : * @port_cap: downstream facing port capabilities
1148 : * @edid: EDID
1149 : *
1150 : * Returns: Max bpc on success or 0 if max bpc not defined
1151 : */
1152 0 : int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1153 : const u8 port_cap[4],
1154 : const struct edid *edid)
1155 : {
1156 0 : if (!drm_dp_is_branch(dpcd))
1157 : return 0;
1158 :
1159 0 : if (dpcd[DP_DPCD_REV] < 0x11) {
1160 0 : switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1161 : case DP_DWN_STRM_PORT_TYPE_DP:
1162 : return 0;
1163 : default:
1164 0 : return 8;
1165 : }
1166 : }
1167 :
1168 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1169 : case DP_DS_PORT_TYPE_DP:
1170 : return 0;
1171 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1172 0 : if (is_edid_digital_input_dp(edid))
1173 : return 0;
1174 : fallthrough;
1175 : case DP_DS_PORT_TYPE_HDMI:
1176 : case DP_DS_PORT_TYPE_DVI:
1177 : case DP_DS_PORT_TYPE_VGA:
1178 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1179 : return 8;
1180 :
1181 0 : switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1182 : case DP_DS_8BPC:
1183 : return 8;
1184 : case DP_DS_10BPC:
1185 : return 10;
1186 : case DP_DS_12BPC:
1187 : return 12;
1188 : case DP_DS_16BPC:
1189 : return 16;
1190 : default:
1191 : return 8;
1192 : }
1193 : break;
1194 : default:
1195 0 : return 8;
1196 : }
1197 : }
1198 : EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1199 :
1200 : /**
1201 : * drm_dp_downstream_420_passthrough() - determine downstream facing port
1202 : * YCbCr 4:2:0 pass-through capability
1203 : * @dpcd: DisplayPort configuration data
1204 : * @port_cap: downstream facing port capabilities
1205 : *
1206 : * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1207 : */
1208 0 : bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1209 : const u8 port_cap[4])
1210 : {
1211 0 : if (!drm_dp_is_branch(dpcd))
1212 : return false;
1213 :
1214 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1215 : return false;
1216 :
1217 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1218 : case DP_DS_PORT_TYPE_DP:
1219 : return true;
1220 : case DP_DS_PORT_TYPE_HDMI:
1221 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1222 : return false;
1223 :
1224 0 : return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1225 : default:
1226 0 : return false;
1227 : }
1228 : }
1229 : EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1230 :
1231 : /**
1232 : * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1233 : * YCbCr 4:4:4->4:2:0 conversion capability
1234 : * @dpcd: DisplayPort configuration data
1235 : * @port_cap: downstream facing port capabilities
1236 : *
1237 : * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1238 : */
1239 0 : bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1240 : const u8 port_cap[4])
1241 : {
1242 0 : if (!drm_dp_is_branch(dpcd))
1243 : return false;
1244 :
1245 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1246 : return false;
1247 :
1248 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1249 : case DP_DS_PORT_TYPE_HDMI:
1250 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1251 : return false;
1252 :
1253 0 : return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1254 : default:
1255 : return false;
1256 : }
1257 : }
1258 : EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1259 :
1260 : /**
1261 : * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1262 : * RGB->YCbCr conversion capability
1263 : * @dpcd: DisplayPort configuration data
1264 : * @port_cap: downstream facing port capabilities
1265 : * @color_spc: Colorspace for which conversion cap is sought
1266 : *
1267 : * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1268 : * colorspace.
1269 : */
1270 0 : bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1271 : const u8 port_cap[4],
1272 : u8 color_spc)
1273 : {
1274 0 : if (!drm_dp_is_branch(dpcd))
1275 : return false;
1276 :
1277 0 : if (dpcd[DP_DPCD_REV] < 0x13)
1278 : return false;
1279 :
1280 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1281 : case DP_DS_PORT_TYPE_HDMI:
1282 0 : if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1283 : return false;
1284 :
1285 0 : return port_cap[3] & color_spc;
1286 : default:
1287 : return false;
1288 : }
1289 : }
1290 : EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1291 :
1292 : /**
1293 : * drm_dp_downstream_mode() - return a mode for downstream facing port
1294 : * @dev: DRM device
1295 : * @dpcd: DisplayPort configuration data
1296 : * @port_cap: port capabilities
1297 : *
1298 : * Provides a suitable mode for downstream facing ports without EDID.
1299 : *
1300 : * Returns: A new drm_display_mode on success or NULL on failure
1301 : */
1302 : struct drm_display_mode *
1303 0 : drm_dp_downstream_mode(struct drm_device *dev,
1304 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1305 : const u8 port_cap[4])
1306 :
1307 : {
1308 : u8 vic;
1309 :
1310 0 : if (!drm_dp_is_branch(dpcd))
1311 : return NULL;
1312 :
1313 0 : if (dpcd[DP_DPCD_REV] < 0x11)
1314 : return NULL;
1315 :
1316 0 : switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317 : case DP_DS_PORT_TYPE_NON_EDID:
1318 0 : switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1319 : case DP_DS_NON_EDID_720x480i_60:
1320 : vic = 6;
1321 : break;
1322 : case DP_DS_NON_EDID_720x480i_50:
1323 0 : vic = 21;
1324 0 : break;
1325 : case DP_DS_NON_EDID_1920x1080i_60:
1326 0 : vic = 5;
1327 0 : break;
1328 : case DP_DS_NON_EDID_1920x1080i_50:
1329 0 : vic = 20;
1330 0 : break;
1331 : case DP_DS_NON_EDID_1280x720_60:
1332 0 : vic = 4;
1333 0 : break;
1334 : case DP_DS_NON_EDID_1280x720_50:
1335 0 : vic = 19;
1336 0 : break;
1337 : default:
1338 : return NULL;
1339 : }
1340 0 : return drm_display_mode_from_cea_vic(dev, vic);
1341 : default:
1342 : return NULL;
1343 : }
1344 : }
1345 : EXPORT_SYMBOL(drm_dp_downstream_mode);
1346 :
1347 : /**
1348 : * drm_dp_downstream_id() - identify branch device
1349 : * @aux: DisplayPort AUX channel
1350 : * @id: DisplayPort branch device id
1351 : *
1352 : * Returns branch device id on success or NULL on failure
1353 : */
1354 0 : int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1355 : {
1356 0 : return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1357 : }
1358 : EXPORT_SYMBOL(drm_dp_downstream_id);
1359 :
1360 : /**
1361 : * drm_dp_downstream_debug() - debug DP branch devices
1362 : * @m: pointer for debugfs file
1363 : * @dpcd: DisplayPort configuration data
1364 : * @port_cap: port capabilities
1365 : * @edid: EDID
1366 : * @aux: DisplayPort AUX channel
1367 : *
1368 : */
1369 0 : void drm_dp_downstream_debug(struct seq_file *m,
1370 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1371 : const u8 port_cap[4],
1372 : const struct edid *edid,
1373 : struct drm_dp_aux *aux)
1374 : {
1375 0 : bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1376 : DP_DETAILED_CAP_INFO_AVAILABLE;
1377 : int clk;
1378 : int bpc;
1379 : char id[7];
1380 : int len;
1381 : uint8_t rev[2];
1382 0 : int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1383 0 : bool branch_device = drm_dp_is_branch(dpcd);
1384 :
1385 0 : seq_printf(m, "\tDP branch device present: %s\n",
1386 : str_yes_no(branch_device));
1387 :
1388 0 : if (!branch_device)
1389 0 : return;
1390 :
1391 0 : switch (type) {
1392 : case DP_DS_PORT_TYPE_DP:
1393 0 : seq_puts(m, "\t\tType: DisplayPort\n");
1394 0 : break;
1395 : case DP_DS_PORT_TYPE_VGA:
1396 0 : seq_puts(m, "\t\tType: VGA\n");
1397 0 : break;
1398 : case DP_DS_PORT_TYPE_DVI:
1399 0 : seq_puts(m, "\t\tType: DVI\n");
1400 0 : break;
1401 : case DP_DS_PORT_TYPE_HDMI:
1402 0 : seq_puts(m, "\t\tType: HDMI\n");
1403 0 : break;
1404 : case DP_DS_PORT_TYPE_NON_EDID:
1405 0 : seq_puts(m, "\t\tType: others without EDID support\n");
1406 0 : break;
1407 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1408 0 : seq_puts(m, "\t\tType: DP++\n");
1409 0 : break;
1410 : case DP_DS_PORT_TYPE_WIRELESS:
1411 0 : seq_puts(m, "\t\tType: Wireless\n");
1412 0 : break;
1413 : default:
1414 0 : seq_puts(m, "\t\tType: N/A\n");
1415 : }
1416 :
1417 0 : memset(id, 0, sizeof(id));
1418 0 : drm_dp_downstream_id(aux, id);
1419 0 : seq_printf(m, "\t\tID: %s\n", id);
1420 :
1421 0 : len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1422 0 : if (len > 0)
1423 0 : seq_printf(m, "\t\tHW: %d.%d\n",
1424 0 : (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1425 :
1426 0 : len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1427 0 : if (len > 0)
1428 0 : seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1429 :
1430 0 : if (detailed_cap_info) {
1431 0 : clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1432 0 : if (clk > 0)
1433 0 : seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1434 :
1435 0 : clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1436 0 : if (clk > 0)
1437 0 : seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1438 :
1439 0 : clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1440 0 : if (clk > 0)
1441 0 : seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1442 :
1443 0 : bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1444 :
1445 0 : if (bpc > 0)
1446 0 : seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1447 : }
1448 : }
1449 : EXPORT_SYMBOL(drm_dp_downstream_debug);
1450 :
1451 : /**
1452 : * drm_dp_subconnector_type() - get DP branch device type
1453 : * @dpcd: DisplayPort configuration data
1454 : * @port_cap: port capabilities
1455 : */
1456 : enum drm_mode_subconnector
1457 0 : drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1458 : const u8 port_cap[4])
1459 : {
1460 : int type;
1461 0 : if (!drm_dp_is_branch(dpcd))
1462 : return DRM_MODE_SUBCONNECTOR_Native;
1463 : /* DP 1.0 approach */
1464 0 : if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1465 0 : type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1466 : DP_DWN_STRM_PORT_TYPE_MASK;
1467 :
1468 : switch (type) {
1469 : case DP_DWN_STRM_PORT_TYPE_TMDS:
1470 : /* Can be HDMI or DVI-D, DVI-D is a safer option */
1471 : return DRM_MODE_SUBCONNECTOR_DVID;
1472 : case DP_DWN_STRM_PORT_TYPE_ANALOG:
1473 : /* Can be VGA or DVI-A, VGA is more popular */
1474 : return DRM_MODE_SUBCONNECTOR_VGA;
1475 : case DP_DWN_STRM_PORT_TYPE_DP:
1476 : return DRM_MODE_SUBCONNECTOR_DisplayPort;
1477 : case DP_DWN_STRM_PORT_TYPE_OTHER:
1478 : default:
1479 : return DRM_MODE_SUBCONNECTOR_Unknown;
1480 : }
1481 : }
1482 0 : type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1483 :
1484 : switch (type) {
1485 : case DP_DS_PORT_TYPE_DP:
1486 : case DP_DS_PORT_TYPE_DP_DUALMODE:
1487 : return DRM_MODE_SUBCONNECTOR_DisplayPort;
1488 : case DP_DS_PORT_TYPE_VGA:
1489 : return DRM_MODE_SUBCONNECTOR_VGA;
1490 : case DP_DS_PORT_TYPE_DVI:
1491 : return DRM_MODE_SUBCONNECTOR_DVID;
1492 : case DP_DS_PORT_TYPE_HDMI:
1493 : return DRM_MODE_SUBCONNECTOR_HDMIA;
1494 : case DP_DS_PORT_TYPE_WIRELESS:
1495 : return DRM_MODE_SUBCONNECTOR_Wireless;
1496 : case DP_DS_PORT_TYPE_NON_EDID:
1497 : default:
1498 : return DRM_MODE_SUBCONNECTOR_Unknown;
1499 : }
1500 : }
1501 : EXPORT_SYMBOL(drm_dp_subconnector_type);
1502 :
1503 : /**
1504 : * drm_dp_set_subconnector_property - set subconnector for DP connector
1505 : * @connector: connector to set property on
1506 : * @status: connector status
1507 : * @dpcd: DisplayPort configuration data
1508 : * @port_cap: port capabilities
1509 : *
1510 : * Called by a driver on every detect event.
1511 : */
1512 0 : void drm_dp_set_subconnector_property(struct drm_connector *connector,
1513 : enum drm_connector_status status,
1514 : const u8 *dpcd,
1515 : const u8 port_cap[4])
1516 : {
1517 0 : enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1518 :
1519 0 : if (status == connector_status_connected)
1520 : subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1521 0 : drm_object_property_set_value(&connector->base,
1522 0 : connector->dev->mode_config.dp_subconnector_property,
1523 : subconnector);
1524 0 : }
1525 : EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1526 :
1527 : /**
1528 : * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1529 : * count
1530 : * @connector: The DRM connector to check
1531 : * @dpcd: A cached copy of the connector's DPCD RX capabilities
1532 : * @desc: A cached copy of the connector's DP descriptor
1533 : *
1534 : * See also: drm_dp_read_sink_count()
1535 : *
1536 : * Returns: %True if the (e)DP connector has a valid sink count that should
1537 : * be probed, %false otherwise.
1538 : */
1539 0 : bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1540 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1541 : const struct drm_dp_desc *desc)
1542 : {
1543 : /* Some eDP panels don't set a valid value for the sink count */
1544 0 : return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1545 0 : dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1546 0 : dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1547 0 : !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1548 : }
1549 : EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1550 :
1551 : /**
1552 : * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1553 : * @aux: The DP AUX channel to use
1554 : *
1555 : * See also: drm_dp_read_sink_count_cap()
1556 : *
1557 : * Returns: The current sink count reported by @aux, or a negative error code
1558 : * otherwise.
1559 : */
1560 0 : int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1561 : {
1562 : u8 count;
1563 : int ret;
1564 :
1565 0 : ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1566 0 : if (ret < 0)
1567 : return ret;
1568 0 : if (ret != 1)
1569 : return -EIO;
1570 :
1571 0 : return DP_GET_SINK_COUNT(count);
1572 : }
1573 : EXPORT_SYMBOL(drm_dp_read_sink_count);
1574 :
1575 : /*
1576 : * I2C-over-AUX implementation
1577 : */
1578 :
1579 0 : static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1580 : {
1581 0 : return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1582 : I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1583 : I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1584 : I2C_FUNC_10BIT_ADDR;
1585 : }
1586 :
1587 : static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1588 : {
1589 : /*
1590 : * In case of i2c defer or short i2c ack reply to a write,
1591 : * we need to switch to WRITE_STATUS_UPDATE to drain the
1592 : * rest of the message
1593 : */
1594 0 : if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1595 0 : msg->request &= DP_AUX_I2C_MOT;
1596 0 : msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1597 : }
1598 : }
1599 :
1600 : #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1601 : #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1602 : #define AUX_STOP_LEN 4
1603 : #define AUX_CMD_LEN 4
1604 : #define AUX_ADDRESS_LEN 20
1605 : #define AUX_REPLY_PAD_LEN 4
1606 : #define AUX_LENGTH_LEN 8
1607 :
1608 : /*
1609 : * Calculate the duration of the AUX request/reply in usec. Gives the
1610 : * "best" case estimate, ie. successful while as short as possible.
1611 : */
1612 : static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1613 : {
1614 0 : int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1615 : AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1616 :
1617 0 : if ((msg->request & DP_AUX_I2C_READ) == 0)
1618 0 : len += msg->size * 8;
1619 :
1620 : return len;
1621 : }
1622 :
1623 : static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1624 : {
1625 0 : int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1626 : AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1627 :
1628 : /*
1629 : * For read we expect what was asked. For writes there will
1630 : * be 0 or 1 data bytes. Assume 0 for the "best" case.
1631 : */
1632 0 : if (msg->request & DP_AUX_I2C_READ)
1633 0 : len += msg->size * 8;
1634 :
1635 : return len;
1636 : }
1637 :
1638 : #define I2C_START_LEN 1
1639 : #define I2C_STOP_LEN 1
1640 : #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1641 : #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1642 :
1643 : /*
1644 : * Calculate the length of the i2c transfer in usec, assuming
1645 : * the i2c bus speed is as specified. Gives the "worst"
1646 : * case estimate, ie. successful while as long as possible.
1647 : * Doesn't account the "MOT" bit, and instead assumes each
1648 : * message includes a START, ADDRESS and STOP. Neither does it
1649 : * account for additional random variables such as clock stretching.
1650 : */
1651 : static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1652 : int i2c_speed_khz)
1653 : {
1654 : /* AUX bitrate is 1MHz, i2c bitrate as specified */
1655 0 : return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1656 : msg->size * I2C_DATA_LEN +
1657 : I2C_STOP_LEN) * 1000, i2c_speed_khz);
1658 : }
1659 :
1660 : /*
1661 : * Determine how many retries should be attempted to successfully transfer
1662 : * the specified message, based on the estimated durations of the
1663 : * i2c and AUX transfers.
1664 : */
1665 0 : static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1666 : int i2c_speed_khz)
1667 : {
1668 0 : int aux_time_us = drm_dp_aux_req_duration(msg) +
1669 0 : drm_dp_aux_reply_duration(msg);
1670 0 : int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1671 :
1672 0 : return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1673 : }
1674 :
1675 : /*
1676 : * FIXME currently assumes 10 kHz as some real world devices seem
1677 : * to require it. We should query/set the speed via DPCD if supported.
1678 : */
1679 : static int dp_aux_i2c_speed_khz __read_mostly = 10;
1680 : module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1681 : MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1682 : "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1683 :
1684 : /*
1685 : * Transfer a single I2C-over-AUX message and handle various error conditions,
1686 : * retrying the transaction as appropriate. It is assumed that the
1687 : * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1688 : * reply field.
1689 : *
1690 : * Returns bytes transferred on success, or a negative error code on failure.
1691 : */
1692 0 : static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1693 : {
1694 : unsigned int retry, defer_i2c;
1695 : int ret;
1696 : /*
1697 : * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1698 : * is required to retry at least seven times upon receiving AUX_DEFER
1699 : * before giving up the AUX transaction.
1700 : *
1701 : * We also try to account for the i2c bus speed.
1702 : */
1703 0 : int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1704 :
1705 0 : for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1706 0 : ret = aux->transfer(aux, msg);
1707 0 : if (ret < 0) {
1708 0 : if (ret == -EBUSY)
1709 0 : continue;
1710 :
1711 : /*
1712 : * While timeouts can be errors, they're usually normal
1713 : * behavior (for instance, when a driver tries to
1714 : * communicate with a non-existent DisplayPort device).
1715 : * Avoid spamming the kernel log with timeout errors.
1716 : */
1717 0 : if (ret == -ETIMEDOUT)
1718 0 : drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1719 : aux->name);
1720 : else
1721 0 : drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1722 : aux->name, ret);
1723 : return ret;
1724 : }
1725 :
1726 :
1727 0 : switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1728 : case DP_AUX_NATIVE_REPLY_ACK:
1729 : /*
1730 : * For I2C-over-AUX transactions this isn't enough, we
1731 : * need to check for the I2C ACK reply.
1732 : */
1733 : break;
1734 :
1735 : case DP_AUX_NATIVE_REPLY_NACK:
1736 0 : drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1737 : aux->name, ret, msg->size);
1738 0 : return -EREMOTEIO;
1739 :
1740 : case DP_AUX_NATIVE_REPLY_DEFER:
1741 0 : drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1742 : /*
1743 : * We could check for I2C bit rate capabilities and if
1744 : * available adjust this interval. We could also be
1745 : * more careful with DP-to-legacy adapters where a
1746 : * long legacy cable may force very low I2C bit rates.
1747 : *
1748 : * For now just defer for long enough to hopefully be
1749 : * safe for all use-cases.
1750 : */
1751 0 : usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1752 0 : continue;
1753 :
1754 : default:
1755 0 : drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1756 : aux->name, msg->reply);
1757 0 : return -EREMOTEIO;
1758 : }
1759 :
1760 0 : switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1761 : case DP_AUX_I2C_REPLY_ACK:
1762 : /*
1763 : * Both native ACK and I2C ACK replies received. We
1764 : * can assume the transfer was successful.
1765 : */
1766 0 : if (ret != msg->size)
1767 0 : drm_dp_i2c_msg_write_status_update(msg);
1768 : return ret;
1769 :
1770 : case DP_AUX_I2C_REPLY_NACK:
1771 0 : drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1772 : aux->name, ret, msg->size);
1773 0 : aux->i2c_nack_count++;
1774 0 : return -EREMOTEIO;
1775 :
1776 : case DP_AUX_I2C_REPLY_DEFER:
1777 0 : drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1778 : /* DP Compliance Test 4.2.2.5 Requirement:
1779 : * Must have at least 7 retries for I2C defers on the
1780 : * transaction to pass this test
1781 : */
1782 0 : aux->i2c_defer_count++;
1783 0 : if (defer_i2c < 7)
1784 0 : defer_i2c++;
1785 0 : usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1786 0 : drm_dp_i2c_msg_write_status_update(msg);
1787 :
1788 0 : continue;
1789 :
1790 : default:
1791 0 : drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1792 : aux->name, msg->reply);
1793 0 : return -EREMOTEIO;
1794 : }
1795 : }
1796 :
1797 0 : drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1798 0 : return -EREMOTEIO;
1799 : }
1800 :
1801 : static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1802 : const struct i2c_msg *i2c_msg)
1803 : {
1804 0 : msg->request = (i2c_msg->flags & I2C_M_RD) ?
1805 0 : DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1806 0 : if (!(i2c_msg->flags & I2C_M_STOP))
1807 0 : msg->request |= DP_AUX_I2C_MOT;
1808 : }
1809 :
1810 : /*
1811 : * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1812 : *
1813 : * Returns an error code on failure, or a recommended transfer size on success.
1814 : */
1815 0 : static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1816 : {
1817 0 : int err, ret = orig_msg->size;
1818 0 : struct drm_dp_aux_msg msg = *orig_msg;
1819 :
1820 0 : while (msg.size > 0) {
1821 0 : err = drm_dp_i2c_do_msg(aux, &msg);
1822 0 : if (err <= 0)
1823 0 : return err == 0 ? -EPROTO : err;
1824 :
1825 0 : if (err < msg.size && err < ret) {
1826 0 : drm_dbg_kms(aux->drm_dev,
1827 : "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1828 : aux->name, msg.size, err);
1829 0 : ret = err;
1830 : }
1831 :
1832 0 : msg.size -= err;
1833 0 : msg.buffer += err;
1834 : }
1835 :
1836 : return ret;
1837 : }
1838 :
1839 : /*
1840 : * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1841 : * packets to be as large as possible. If not, the I2C transactions never
1842 : * succeed. Hence the default is maximum.
1843 : */
1844 : static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1845 : module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1846 : MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1847 : "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1848 :
1849 0 : static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1850 : int num)
1851 : {
1852 0 : struct drm_dp_aux *aux = adapter->algo_data;
1853 : unsigned int i, j;
1854 : unsigned transfer_size;
1855 : struct drm_dp_aux_msg msg;
1856 0 : int err = 0;
1857 :
1858 0 : dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1859 :
1860 0 : memset(&msg, 0, sizeof(msg));
1861 :
1862 0 : for (i = 0; i < num; i++) {
1863 0 : msg.address = msgs[i].addr;
1864 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1865 : /* Send a bare address packet to start the transaction.
1866 : * Zero sized messages specify an address only (bare
1867 : * address) transaction.
1868 : */
1869 0 : msg.buffer = NULL;
1870 0 : msg.size = 0;
1871 0 : err = drm_dp_i2c_do_msg(aux, &msg);
1872 :
1873 : /*
1874 : * Reset msg.request in case in case it got
1875 : * changed into a WRITE_STATUS_UPDATE.
1876 : */
1877 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1878 :
1879 0 : if (err < 0)
1880 : break;
1881 : /* We want each transaction to be as large as possible, but
1882 : * we'll go to smaller sizes if the hardware gives us a
1883 : * short reply.
1884 : */
1885 0 : transfer_size = dp_aux_i2c_transfer_size;
1886 0 : for (j = 0; j < msgs[i].len; j += msg.size) {
1887 0 : msg.buffer = msgs[i].buf + j;
1888 0 : msg.size = min(transfer_size, msgs[i].len - j);
1889 :
1890 0 : err = drm_dp_i2c_drain_msg(aux, &msg);
1891 :
1892 : /*
1893 : * Reset msg.request in case in case it got
1894 : * changed into a WRITE_STATUS_UPDATE.
1895 : */
1896 0 : drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1897 :
1898 0 : if (err < 0)
1899 : break;
1900 0 : transfer_size = err;
1901 : }
1902 0 : if (err < 0)
1903 : break;
1904 : }
1905 0 : if (err >= 0)
1906 0 : err = num;
1907 : /* Send a bare address packet to close out the transaction.
1908 : * Zero sized messages specify an address only (bare
1909 : * address) transaction.
1910 : */
1911 0 : msg.request &= ~DP_AUX_I2C_MOT;
1912 0 : msg.buffer = NULL;
1913 0 : msg.size = 0;
1914 0 : (void)drm_dp_i2c_do_msg(aux, &msg);
1915 :
1916 0 : return err;
1917 : }
1918 :
1919 : static const struct i2c_algorithm drm_dp_i2c_algo = {
1920 : .functionality = drm_dp_i2c_functionality,
1921 : .master_xfer = drm_dp_i2c_xfer,
1922 : };
1923 :
1924 : static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1925 : {
1926 0 : return container_of(i2c, struct drm_dp_aux, ddc);
1927 : }
1928 :
1929 0 : static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1930 : {
1931 0 : mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1932 0 : }
1933 :
1934 0 : static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1935 : {
1936 0 : return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1937 : }
1938 :
1939 0 : static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1940 : {
1941 0 : mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1942 0 : }
1943 :
1944 : static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1945 : .lock_bus = lock_bus,
1946 : .trylock_bus = trylock_bus,
1947 : .unlock_bus = unlock_bus,
1948 : };
1949 :
1950 0 : static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1951 : {
1952 : u8 buf, count;
1953 : int ret;
1954 :
1955 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1956 0 : if (ret < 0)
1957 : return ret;
1958 :
1959 0 : WARN_ON(!(buf & DP_TEST_SINK_START));
1960 :
1961 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1962 0 : if (ret < 0)
1963 : return ret;
1964 :
1965 0 : count = buf & DP_TEST_COUNT_MASK;
1966 0 : if (count == aux->crc_count)
1967 : return -EAGAIN; /* No CRC yet */
1968 :
1969 0 : aux->crc_count = count;
1970 :
1971 : /*
1972 : * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1973 : * per component (RGB or CrYCb).
1974 : */
1975 0 : ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1976 0 : if (ret < 0)
1977 : return ret;
1978 :
1979 0 : return 0;
1980 : }
1981 :
1982 0 : static void drm_dp_aux_crc_work(struct work_struct *work)
1983 : {
1984 0 : struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1985 : crc_work);
1986 : struct drm_crtc *crtc;
1987 : u8 crc_bytes[6];
1988 : uint32_t crcs[3];
1989 : int ret;
1990 :
1991 0 : if (WARN_ON(!aux->crtc))
1992 0 : return;
1993 :
1994 0 : crtc = aux->crtc;
1995 0 : while (crtc->crc.opened) {
1996 0 : drm_crtc_wait_one_vblank(crtc);
1997 0 : if (!crtc->crc.opened)
1998 : break;
1999 :
2000 0 : ret = drm_dp_aux_get_crc(aux, crc_bytes);
2001 0 : if (ret == -EAGAIN) {
2002 0 : usleep_range(1000, 2000);
2003 0 : ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004 : }
2005 :
2006 0 : if (ret == -EAGAIN) {
2007 0 : drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2008 : aux->name, ret);
2009 0 : continue;
2010 0 : } else if (ret) {
2011 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2012 0 : continue;
2013 : }
2014 :
2015 : crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2016 : crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2017 : crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2018 : drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2019 : }
2020 : }
2021 :
2022 : /**
2023 : * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2024 : * @aux: DisplayPort AUX channel
2025 : *
2026 : * Used for remote aux channel in general. Merely initialize the crc work
2027 : * struct.
2028 : */
2029 0 : void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2030 : {
2031 0 : INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2032 0 : }
2033 : EXPORT_SYMBOL(drm_dp_remote_aux_init);
2034 :
2035 : /**
2036 : * drm_dp_aux_init() - minimally initialise an aux channel
2037 : * @aux: DisplayPort AUX channel
2038 : *
2039 : * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2040 : * the outside world, call drm_dp_aux_init() first. For drivers which are
2041 : * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2042 : * &drm_connector), you must still call drm_dp_aux_register() once the connector
2043 : * has been registered to allow userspace access to the auxiliary DP channel.
2044 : * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2045 : * early as possible so that the &drm_device that corresponds to the AUX adapter
2046 : * may be mentioned in debugging output from the DRM DP helpers.
2047 : *
2048 : * For devices which use a separate platform device for their AUX adapters, this
2049 : * may be called as early as required by the driver.
2050 : *
2051 : */
2052 0 : void drm_dp_aux_init(struct drm_dp_aux *aux)
2053 : {
2054 0 : mutex_init(&aux->hw_mutex);
2055 0 : mutex_init(&aux->cec.lock);
2056 0 : INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2057 :
2058 0 : aux->ddc.algo = &drm_dp_i2c_algo;
2059 0 : aux->ddc.algo_data = aux;
2060 0 : aux->ddc.retries = 3;
2061 :
2062 0 : aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2063 0 : }
2064 : EXPORT_SYMBOL(drm_dp_aux_init);
2065 :
2066 : /**
2067 : * drm_dp_aux_register() - initialise and register aux channel
2068 : * @aux: DisplayPort AUX channel
2069 : *
2070 : * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2071 : * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2072 : * initialized. For devices which are grandparents of their AUX channels,
2073 : * &drm_dp_aux.dev will typically be the &drm_connector &device which
2074 : * corresponds to @aux. For these devices, it's advised to call
2075 : * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2076 : * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2077 : * Functions which don't follow this will likely Oops when
2078 : * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2079 : *
2080 : * For devices where the AUX channel is a device that exists independently of
2081 : * the &drm_device that uses it, such as SoCs and bridge devices, it is
2082 : * recommended to call drm_dp_aux_register() after a &drm_device has been
2083 : * assigned to &drm_dp_aux.drm_dev, and likewise to call
2084 : * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2085 : * with the AUX channel (e.g. on bridge detach).
2086 : *
2087 : * Drivers which need to use the aux channel before either of the two points
2088 : * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2089 : * channel before registration.
2090 : *
2091 : * Returns 0 on success or a negative error code on failure.
2092 : */
2093 0 : int drm_dp_aux_register(struct drm_dp_aux *aux)
2094 : {
2095 : int ret;
2096 :
2097 0 : WARN_ON_ONCE(!aux->drm_dev);
2098 :
2099 0 : if (!aux->ddc.algo)
2100 0 : drm_dp_aux_init(aux);
2101 :
2102 0 : aux->ddc.class = I2C_CLASS_DDC;
2103 0 : aux->ddc.owner = THIS_MODULE;
2104 0 : aux->ddc.dev.parent = aux->dev;
2105 :
2106 0 : strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2107 : sizeof(aux->ddc.name));
2108 :
2109 0 : ret = drm_dp_aux_register_devnode(aux);
2110 : if (ret)
2111 : return ret;
2112 :
2113 0 : ret = i2c_add_adapter(&aux->ddc);
2114 0 : if (ret) {
2115 : drm_dp_aux_unregister_devnode(aux);
2116 : return ret;
2117 : }
2118 :
2119 0 : return 0;
2120 : }
2121 : EXPORT_SYMBOL(drm_dp_aux_register);
2122 :
2123 : /**
2124 : * drm_dp_aux_unregister() - unregister an AUX adapter
2125 : * @aux: DisplayPort AUX channel
2126 : */
2127 0 : void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2128 : {
2129 0 : drm_dp_aux_unregister_devnode(aux);
2130 0 : i2c_del_adapter(&aux->ddc);
2131 0 : }
2132 : EXPORT_SYMBOL(drm_dp_aux_unregister);
2133 :
2134 : #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2135 :
2136 : /**
2137 : * drm_dp_psr_setup_time() - PSR setup in time usec
2138 : * @psr_cap: PSR capabilities from DPCD
2139 : *
2140 : * Returns:
2141 : * PSR setup time for the panel in microseconds, negative
2142 : * error code on failure.
2143 : */
2144 0 : int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2145 : {
2146 : static const u16 psr_setup_time_us[] = {
2147 : PSR_SETUP_TIME(330),
2148 : PSR_SETUP_TIME(275),
2149 : PSR_SETUP_TIME(220),
2150 : PSR_SETUP_TIME(165),
2151 : PSR_SETUP_TIME(110),
2152 : PSR_SETUP_TIME(55),
2153 : PSR_SETUP_TIME(0),
2154 : };
2155 : int i;
2156 :
2157 0 : i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2158 0 : if (i >= ARRAY_SIZE(psr_setup_time_us))
2159 : return -EINVAL;
2160 :
2161 0 : return psr_setup_time_us[i];
2162 : }
2163 : EXPORT_SYMBOL(drm_dp_psr_setup_time);
2164 :
2165 : #undef PSR_SETUP_TIME
2166 :
2167 : /**
2168 : * drm_dp_start_crc() - start capture of frame CRCs
2169 : * @aux: DisplayPort AUX channel
2170 : * @crtc: CRTC displaying the frames whose CRCs are to be captured
2171 : *
2172 : * Returns 0 on success or a negative error code on failure.
2173 : */
2174 0 : int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2175 : {
2176 : u8 buf;
2177 : int ret;
2178 :
2179 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2180 0 : if (ret < 0)
2181 : return ret;
2182 :
2183 0 : ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2184 0 : if (ret < 0)
2185 : return ret;
2186 :
2187 0 : aux->crc_count = 0;
2188 0 : aux->crtc = crtc;
2189 0 : schedule_work(&aux->crc_work);
2190 :
2191 0 : return 0;
2192 : }
2193 : EXPORT_SYMBOL(drm_dp_start_crc);
2194 :
2195 : /**
2196 : * drm_dp_stop_crc() - stop capture of frame CRCs
2197 : * @aux: DisplayPort AUX channel
2198 : *
2199 : * Returns 0 on success or a negative error code on failure.
2200 : */
2201 0 : int drm_dp_stop_crc(struct drm_dp_aux *aux)
2202 : {
2203 : u8 buf;
2204 : int ret;
2205 :
2206 0 : ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2207 0 : if (ret < 0)
2208 : return ret;
2209 :
2210 0 : ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2211 0 : if (ret < 0)
2212 : return ret;
2213 :
2214 0 : flush_work(&aux->crc_work);
2215 0 : aux->crtc = NULL;
2216 :
2217 0 : return 0;
2218 : }
2219 : EXPORT_SYMBOL(drm_dp_stop_crc);
2220 :
2221 : struct dpcd_quirk {
2222 : u8 oui[3];
2223 : u8 device_id[6];
2224 : bool is_branch;
2225 : u32 quirks;
2226 : };
2227 :
2228 : #define OUI(first, second, third) { (first), (second), (third) }
2229 : #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2230 : { (first), (second), (third), (fourth), (fifth), (sixth) }
2231 :
2232 : #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2233 :
2234 : static const struct dpcd_quirk dpcd_quirk_list[] = {
2235 : /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2236 : { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2237 : /* LG LP140WF6-SPM1 eDP panel */
2238 : { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2239 : /* Apple panels need some additional handling to support PSR */
2240 : { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2241 : /* CH7511 seems to leave SINK_COUNT zeroed */
2242 : { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2243 : /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2244 : { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2245 : /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2246 : { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2247 : };
2248 :
2249 : #undef OUI
2250 :
2251 : /*
2252 : * Get a bit mask of DPCD quirks for the sink/branch device identified by
2253 : * ident. The quirk data is shared but it's up to the drivers to act on the
2254 : * data.
2255 : *
2256 : * For now, only the OUI (first three bytes) is used, but this may be extended
2257 : * to device identification string and hardware/firmware revisions later.
2258 : */
2259 : static u32
2260 0 : drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2261 : {
2262 : const struct dpcd_quirk *quirk;
2263 0 : u32 quirks = 0;
2264 : int i;
2265 0 : u8 any_device[] = DEVICE_ID_ANY;
2266 :
2267 0 : for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2268 0 : quirk = &dpcd_quirk_list[i];
2269 :
2270 0 : if (quirk->is_branch != is_branch)
2271 0 : continue;
2272 :
2273 0 : if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2274 0 : continue;
2275 :
2276 0 : if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2277 0 : memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2278 0 : continue;
2279 :
2280 0 : quirks |= quirk->quirks;
2281 : }
2282 :
2283 0 : return quirks;
2284 : }
2285 :
2286 : #undef DEVICE_ID_ANY
2287 : #undef DEVICE_ID
2288 :
2289 : /**
2290 : * drm_dp_read_desc - read sink/branch descriptor from DPCD
2291 : * @aux: DisplayPort AUX channel
2292 : * @desc: Device descriptor to fill from DPCD
2293 : * @is_branch: true for branch devices, false for sink devices
2294 : *
2295 : * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2296 : * identification.
2297 : *
2298 : * Returns 0 on success or a negative error code on failure.
2299 : */
2300 0 : int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2301 : bool is_branch)
2302 : {
2303 0 : struct drm_dp_dpcd_ident *ident = &desc->ident;
2304 0 : unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2305 : int ret, dev_id_len;
2306 :
2307 0 : ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2308 0 : if (ret < 0)
2309 : return ret;
2310 :
2311 0 : desc->quirks = drm_dp_get_quirks(ident, is_branch);
2312 :
2313 0 : dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2314 :
2315 0 : drm_dbg_kms(aux->drm_dev,
2316 : "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2317 : aux->name, is_branch ? "branch" : "sink",
2318 : (int)sizeof(ident->oui), ident->oui, dev_id_len,
2319 : ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2320 : ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2321 :
2322 0 : return 0;
2323 : }
2324 : EXPORT_SYMBOL(drm_dp_read_desc);
2325 :
2326 : /**
2327 : * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2328 : * supported by the DSC sink.
2329 : * @dsc_dpcd: DSC capabilities from DPCD
2330 : * @is_edp: true if its eDP, false for DP
2331 : *
2332 : * Read the slice capabilities DPCD register from DSC sink to get
2333 : * the maximum slice count supported. This is used to populate
2334 : * the DSC parameters in the &struct drm_dsc_config by the driver.
2335 : * Driver creates an infoframe using these parameters to populate
2336 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2337 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2338 : *
2339 : * Returns:
2340 : * Maximum slice count supported by DSC sink or 0 its invalid
2341 : */
2342 0 : u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2343 : bool is_edp)
2344 : {
2345 0 : u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2346 :
2347 0 : if (is_edp) {
2348 : /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2349 0 : if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2350 : return 4;
2351 0 : if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2352 : return 2;
2353 0 : if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2354 : return 1;
2355 : } else {
2356 : /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2357 0 : u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2358 :
2359 0 : if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2360 : return 24;
2361 0 : if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2362 : return 20;
2363 0 : if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2364 : return 16;
2365 0 : if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2366 : return 12;
2367 0 : if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2368 : return 10;
2369 0 : if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2370 : return 8;
2371 0 : if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2372 : return 6;
2373 0 : if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2374 : return 4;
2375 0 : if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2376 : return 2;
2377 0 : if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2378 : return 1;
2379 : }
2380 :
2381 0 : return 0;
2382 : }
2383 : EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2384 :
2385 : /**
2386 : * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2387 : * @dsc_dpcd: DSC capabilities from DPCD
2388 : *
2389 : * Read the DSC DPCD register to parse the line buffer depth in bits which is
2390 : * number of bits of precision within the decoder line buffer supported by
2391 : * the DSC sink. This is used to populate the DSC parameters in the
2392 : * &struct drm_dsc_config by the driver.
2393 : * Driver creates an infoframe using these parameters to populate
2394 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2395 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2396 : *
2397 : * Returns:
2398 : * Line buffer depth supported by DSC panel or 0 its invalid
2399 : */
2400 0 : u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2401 : {
2402 0 : u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2403 :
2404 : switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2405 : case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2406 : return 9;
2407 : case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2408 : return 10;
2409 : case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2410 : return 11;
2411 : case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2412 : return 12;
2413 : case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2414 : return 13;
2415 : case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2416 : return 14;
2417 : case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2418 : return 15;
2419 : case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2420 : return 16;
2421 : case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2422 : return 8;
2423 : }
2424 :
2425 : return 0;
2426 : }
2427 : EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2428 :
2429 : /**
2430 : * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2431 : * values supported by the DSC sink.
2432 : * @dsc_dpcd: DSC capabilities from DPCD
2433 : * @dsc_bpc: An array to be filled by this helper with supported
2434 : * input bpcs.
2435 : *
2436 : * Read the DSC DPCD from the sink device to parse the supported bits per
2437 : * component values. This is used to populate the DSC parameters
2438 : * in the &struct drm_dsc_config by the driver.
2439 : * Driver creates an infoframe using these parameters to populate
2440 : * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2441 : * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2442 : *
2443 : * Returns:
2444 : * Number of input BPC values parsed from the DPCD
2445 : */
2446 0 : int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2447 : u8 dsc_bpc[3])
2448 : {
2449 0 : int num_bpc = 0;
2450 0 : u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2451 :
2452 0 : if (color_depth & DP_DSC_12_BPC)
2453 0 : dsc_bpc[num_bpc++] = 12;
2454 0 : if (color_depth & DP_DSC_10_BPC)
2455 0 : dsc_bpc[num_bpc++] = 10;
2456 0 : if (color_depth & DP_DSC_8_BPC)
2457 0 : dsc_bpc[num_bpc++] = 8;
2458 :
2459 0 : return num_bpc;
2460 : }
2461 : EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2462 :
2463 0 : static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2464 : const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2465 : u8 *buf, int buf_size)
2466 : {
2467 : /*
2468 : * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2469 : * corrupted values when reading from the 0xF0000- range with a block
2470 : * size bigger than 1.
2471 : */
2472 0 : int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2473 : int offset;
2474 : int ret;
2475 :
2476 0 : for (offset = 0; offset < buf_size; offset += block_size) {
2477 0 : ret = drm_dp_dpcd_read(aux,
2478 0 : address + offset,
2479 0 : &buf[offset], block_size);
2480 0 : if (ret < 0)
2481 : return ret;
2482 :
2483 0 : WARN_ON(ret != block_size);
2484 : }
2485 :
2486 : return 0;
2487 : }
2488 :
2489 : /**
2490 : * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2491 : * @aux: DisplayPort AUX channel
2492 : * @dpcd: DisplayPort configuration data
2493 : * @caps: buffer to return the capability info in
2494 : *
2495 : * Read capabilities common to all LTTPRs.
2496 : *
2497 : * Returns 0 on success or a negative error code on failure.
2498 : */
2499 0 : int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2500 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2501 : u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2502 : {
2503 0 : return drm_dp_read_lttpr_regs(aux, dpcd,
2504 : DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2505 : caps, DP_LTTPR_COMMON_CAP_SIZE);
2506 : }
2507 : EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2508 :
2509 : /**
2510 : * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2511 : * @aux: DisplayPort AUX channel
2512 : * @dpcd: DisplayPort configuration data
2513 : * @dp_phy: LTTPR PHY to read the capabilities for
2514 : * @caps: buffer to return the capability info in
2515 : *
2516 : * Read the capabilities for the given LTTPR PHY.
2517 : *
2518 : * Returns 0 on success or a negative error code on failure.
2519 : */
2520 0 : int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2521 : const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2522 : enum drm_dp_phy dp_phy,
2523 : u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2524 : {
2525 0 : return drm_dp_read_lttpr_regs(aux, dpcd,
2526 0 : DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2527 : caps, DP_LTTPR_PHY_CAP_SIZE);
2528 : }
2529 : EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2530 :
2531 : static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2532 : {
2533 0 : return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2534 : }
2535 :
2536 : /**
2537 : * drm_dp_lttpr_count - get the number of detected LTTPRs
2538 : * @caps: LTTPR common capabilities
2539 : *
2540 : * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2541 : *
2542 : * Returns:
2543 : * -ERANGE if more than supported number (8) of LTTPRs are detected
2544 : * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2545 : * otherwise the number of detected LTTPRs
2546 : */
2547 0 : int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2548 : {
2549 0 : u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2550 :
2551 0 : switch (hweight8(count)) {
2552 : case 0:
2553 : return 0;
2554 : case 1:
2555 0 : return 8 - ilog2(count);
2556 : case 8:
2557 0 : return -ERANGE;
2558 : default:
2559 0 : return -EINVAL;
2560 : }
2561 : }
2562 : EXPORT_SYMBOL(drm_dp_lttpr_count);
2563 :
2564 : /**
2565 : * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2566 : * @caps: LTTPR common capabilities
2567 : *
2568 : * Returns the maximum link rate supported by all detected LTTPRs.
2569 : */
2570 0 : int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2571 : {
2572 0 : u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2573 :
2574 0 : return drm_dp_bw_code_to_link_rate(rate);
2575 : }
2576 : EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2577 :
2578 : /**
2579 : * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2580 : * @caps: LTTPR common capabilities
2581 : *
2582 : * Returns the maximum lane count supported by all detected LTTPRs.
2583 : */
2584 0 : int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2585 : {
2586 0 : u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2587 :
2588 0 : return max_lanes & DP_MAX_LANE_COUNT_MASK;
2589 : }
2590 : EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2591 :
2592 : /**
2593 : * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2594 : * @caps: LTTPR PHY capabilities
2595 : *
2596 : * Returns true if the @caps for an LTTPR TX PHY indicate support for
2597 : * voltage swing level 3.
2598 : */
2599 : bool
2600 0 : drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2601 : {
2602 0 : u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2603 :
2604 0 : return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2605 : }
2606 : EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2607 :
2608 : /**
2609 : * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2610 : * @caps: LTTPR PHY capabilities
2611 : *
2612 : * Returns true if the @caps for an LTTPR TX PHY indicate support for
2613 : * pre-emphasis level 3.
2614 : */
2615 : bool
2616 0 : drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2617 : {
2618 0 : u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2619 :
2620 0 : return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2621 : }
2622 : EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2623 :
2624 : /**
2625 : * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2626 : * @aux: DisplayPort AUX channel
2627 : * @data: DP phy compliance test parameters.
2628 : *
2629 : * Returns 0 on success or a negative error code on failure.
2630 : */
2631 0 : int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2632 : struct drm_dp_phy_test_params *data)
2633 : {
2634 : int err;
2635 : u8 rate, lanes;
2636 :
2637 0 : err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2638 0 : if (err < 0)
2639 : return err;
2640 0 : data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2641 :
2642 0 : err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2643 0 : if (err < 0)
2644 : return err;
2645 0 : data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2646 :
2647 0 : if (lanes & DP_ENHANCED_FRAME_CAP)
2648 0 : data->enhanced_frame_cap = true;
2649 :
2650 0 : err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2651 0 : if (err < 0)
2652 : return err;
2653 :
2654 0 : switch (data->phy_pattern) {
2655 : case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2656 0 : err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2657 0 : &data->custom80, sizeof(data->custom80));
2658 0 : if (err < 0)
2659 : return err;
2660 :
2661 : break;
2662 : case DP_PHY_TEST_PATTERN_CP2520:
2663 0 : err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2664 0 : &data->hbr2_reset,
2665 : sizeof(data->hbr2_reset));
2666 0 : if (err < 0)
2667 : return err;
2668 : }
2669 :
2670 : return 0;
2671 : }
2672 : EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2673 :
2674 : /**
2675 : * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2676 : * @aux: DisplayPort AUX channel
2677 : * @data: DP phy compliance test parameters.
2678 : * @dp_rev: DP revision to use for compliance testing
2679 : *
2680 : * Returns 0 on success or a negative error code on failure.
2681 : */
2682 0 : int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2683 : struct drm_dp_phy_test_params *data, u8 dp_rev)
2684 : {
2685 : int err, i;
2686 : u8 test_pattern;
2687 :
2688 0 : test_pattern = data->phy_pattern;
2689 0 : if (dp_rev < 0x12) {
2690 0 : test_pattern = (test_pattern << 2) &
2691 : DP_LINK_QUAL_PATTERN_11_MASK;
2692 0 : err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2693 : test_pattern);
2694 0 : if (err < 0)
2695 : return err;
2696 : } else {
2697 0 : for (i = 0; i < data->num_lanes; i++) {
2698 0 : err = drm_dp_dpcd_writeb(aux,
2699 0 : DP_LINK_QUAL_LANE0_SET + i,
2700 : test_pattern);
2701 0 : if (err < 0)
2702 : return err;
2703 : }
2704 : }
2705 :
2706 : return 0;
2707 : }
2708 : EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2709 :
2710 : static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2711 : {
2712 0 : if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2713 : return "Invalid";
2714 :
2715 : switch (pixelformat) {
2716 : case DP_PIXELFORMAT_RGB:
2717 : return "RGB";
2718 : case DP_PIXELFORMAT_YUV444:
2719 : return "YUV444";
2720 : case DP_PIXELFORMAT_YUV422:
2721 : return "YUV422";
2722 : case DP_PIXELFORMAT_YUV420:
2723 : return "YUV420";
2724 : case DP_PIXELFORMAT_Y_ONLY:
2725 : return "Y_ONLY";
2726 : case DP_PIXELFORMAT_RAW:
2727 : return "RAW";
2728 : default:
2729 : return "Reserved";
2730 : }
2731 : }
2732 :
2733 0 : static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2734 : enum dp_colorimetry colorimetry)
2735 : {
2736 0 : if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2737 : return "Invalid";
2738 :
2739 0 : switch (colorimetry) {
2740 : case DP_COLORIMETRY_DEFAULT:
2741 : switch (pixelformat) {
2742 : case DP_PIXELFORMAT_RGB:
2743 : return "sRGB";
2744 : case DP_PIXELFORMAT_YUV444:
2745 : case DP_PIXELFORMAT_YUV422:
2746 : case DP_PIXELFORMAT_YUV420:
2747 : return "BT.601";
2748 : case DP_PIXELFORMAT_Y_ONLY:
2749 : return "DICOM PS3.14";
2750 : case DP_PIXELFORMAT_RAW:
2751 : return "Custom Color Profile";
2752 : default:
2753 : return "Reserved";
2754 : }
2755 : case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2756 0 : switch (pixelformat) {
2757 : case DP_PIXELFORMAT_RGB:
2758 : return "Wide Fixed";
2759 : case DP_PIXELFORMAT_YUV444:
2760 : case DP_PIXELFORMAT_YUV422:
2761 : case DP_PIXELFORMAT_YUV420:
2762 0 : return "BT.709";
2763 : default:
2764 0 : return "Reserved";
2765 : }
2766 : case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2767 0 : switch (pixelformat) {
2768 : case DP_PIXELFORMAT_RGB:
2769 : return "Wide Float";
2770 : case DP_PIXELFORMAT_YUV444:
2771 : case DP_PIXELFORMAT_YUV422:
2772 : case DP_PIXELFORMAT_YUV420:
2773 0 : return "xvYCC 601";
2774 : default:
2775 0 : return "Reserved";
2776 : }
2777 : case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2778 0 : switch (pixelformat) {
2779 : case DP_PIXELFORMAT_RGB:
2780 : return "OpRGB";
2781 : case DP_PIXELFORMAT_YUV444:
2782 : case DP_PIXELFORMAT_YUV422:
2783 : case DP_PIXELFORMAT_YUV420:
2784 0 : return "xvYCC 709";
2785 : default:
2786 0 : return "Reserved";
2787 : }
2788 : case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2789 0 : switch (pixelformat) {
2790 : case DP_PIXELFORMAT_RGB:
2791 : return "DCI-P3";
2792 : case DP_PIXELFORMAT_YUV444:
2793 : case DP_PIXELFORMAT_YUV422:
2794 : case DP_PIXELFORMAT_YUV420:
2795 0 : return "sYCC 601";
2796 : default:
2797 0 : return "Reserved";
2798 : }
2799 : case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2800 0 : switch (pixelformat) {
2801 : case DP_PIXELFORMAT_RGB:
2802 : return "Custom Profile";
2803 : case DP_PIXELFORMAT_YUV444:
2804 : case DP_PIXELFORMAT_YUV422:
2805 : case DP_PIXELFORMAT_YUV420:
2806 0 : return "OpYCC 601";
2807 : default:
2808 0 : return "Reserved";
2809 : }
2810 : case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2811 0 : switch (pixelformat) {
2812 : case DP_PIXELFORMAT_RGB:
2813 : return "BT.2020 RGB";
2814 : case DP_PIXELFORMAT_YUV444:
2815 : case DP_PIXELFORMAT_YUV422:
2816 : case DP_PIXELFORMAT_YUV420:
2817 0 : return "BT.2020 CYCC";
2818 : default:
2819 0 : return "Reserved";
2820 : }
2821 : case DP_COLORIMETRY_BT2020_YCC:
2822 0 : switch (pixelformat) {
2823 : case DP_PIXELFORMAT_YUV444:
2824 : case DP_PIXELFORMAT_YUV422:
2825 : case DP_PIXELFORMAT_YUV420:
2826 : return "BT.2020 YCC";
2827 : default:
2828 0 : return "Reserved";
2829 : }
2830 : default:
2831 : return "Invalid";
2832 : }
2833 : }
2834 :
2835 : static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2836 : {
2837 0 : switch (dynamic_range) {
2838 : case DP_DYNAMIC_RANGE_VESA:
2839 : return "VESA range";
2840 : case DP_DYNAMIC_RANGE_CTA:
2841 : return "CTA range";
2842 : default:
2843 : return "Invalid";
2844 : }
2845 : }
2846 :
2847 : static const char *dp_content_type_get_name(enum dp_content_type content_type)
2848 : {
2849 : switch (content_type) {
2850 : case DP_CONTENT_TYPE_NOT_DEFINED:
2851 : return "Not defined";
2852 : case DP_CONTENT_TYPE_GRAPHICS:
2853 : return "Graphics";
2854 : case DP_CONTENT_TYPE_PHOTO:
2855 : return "Photo";
2856 : case DP_CONTENT_TYPE_VIDEO:
2857 : return "Video";
2858 : case DP_CONTENT_TYPE_GAME:
2859 : return "Game";
2860 : default:
2861 : return "Reserved";
2862 : }
2863 : }
2864 :
2865 0 : void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2866 : const struct drm_dp_vsc_sdp *vsc)
2867 : {
2868 : #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2869 0 : DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2870 : vsc->revision, vsc->length);
2871 0 : DP_SDP_LOG(" pixelformat: %s\n",
2872 : dp_pixelformat_get_name(vsc->pixelformat));
2873 0 : DP_SDP_LOG(" colorimetry: %s\n",
2874 : dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2875 0 : DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2876 0 : DP_SDP_LOG(" dynamic range: %s\n",
2877 : dp_dynamic_range_get_name(vsc->dynamic_range));
2878 0 : DP_SDP_LOG(" content type: %s\n",
2879 : dp_content_type_get_name(vsc->content_type));
2880 : #undef DP_SDP_LOG
2881 0 : }
2882 : EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2883 :
2884 : /**
2885 : * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2886 : * @dpcd: DisplayPort configuration data
2887 : * @port_cap: port capabilities
2888 : *
2889 : * Returns maximum frl bandwidth supported by PCON in GBPS,
2890 : * returns 0 if not supported.
2891 : */
2892 0 : int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2893 : const u8 port_cap[4])
2894 : {
2895 : int bw;
2896 : u8 buf;
2897 :
2898 0 : buf = port_cap[2];
2899 0 : bw = buf & DP_PCON_MAX_FRL_BW;
2900 :
2901 : switch (bw) {
2902 : case DP_PCON_MAX_9GBPS:
2903 : return 9;
2904 : case DP_PCON_MAX_18GBPS:
2905 : return 18;
2906 : case DP_PCON_MAX_24GBPS:
2907 : return 24;
2908 : case DP_PCON_MAX_32GBPS:
2909 : return 32;
2910 : case DP_PCON_MAX_40GBPS:
2911 : return 40;
2912 : case DP_PCON_MAX_48GBPS:
2913 : return 48;
2914 : case DP_PCON_MAX_0GBPS:
2915 : default:
2916 : return 0;
2917 : }
2918 :
2919 : return 0;
2920 : }
2921 : EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2922 :
2923 : /**
2924 : * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2925 : * @aux: DisplayPort AUX channel
2926 : * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2927 : *
2928 : * Returns 0 if success, else returns negative error code.
2929 : */
2930 0 : int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2931 : {
2932 : int ret;
2933 0 : u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2934 : DP_PCON_ENABLE_LINK_FRL_MODE;
2935 :
2936 0 : if (enable_frl_ready_hpd)
2937 0 : buf |= DP_PCON_ENABLE_HPD_READY;
2938 :
2939 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2940 :
2941 0 : return ret;
2942 : }
2943 : EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2944 :
2945 : /**
2946 : * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2947 : * @aux: DisplayPort AUX channel
2948 : *
2949 : * Returns true if success, else returns false.
2950 : */
2951 0 : bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2952 : {
2953 : int ret;
2954 : u8 buf;
2955 :
2956 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2957 0 : if (ret < 0)
2958 : return false;
2959 :
2960 0 : if (buf & DP_PCON_FRL_READY)
2961 : return true;
2962 :
2963 0 : return false;
2964 : }
2965 : EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2966 :
2967 : /**
2968 : * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2969 : * @aux: DisplayPort AUX channel
2970 : * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2971 : * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2972 : * In Concurrent Mode, the FRL link bring up can be done along with
2973 : * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2974 : * the DP Link training.
2975 : *
2976 : * Returns 0 if success, else returns negative error code.
2977 : */
2978 :
2979 0 : int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2980 : u8 frl_mode)
2981 : {
2982 : int ret;
2983 : u8 buf;
2984 :
2985 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2986 0 : if (ret < 0)
2987 : return ret;
2988 :
2989 0 : if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2990 0 : buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2991 : else
2992 0 : buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2993 :
2994 0 : switch (max_frl_gbps) {
2995 : case 9:
2996 0 : buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
2997 0 : break;
2998 : case 18:
2999 0 : buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3000 0 : break;
3001 : case 24:
3002 0 : buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3003 0 : break;
3004 : case 32:
3005 0 : buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3006 0 : break;
3007 : case 40:
3008 0 : buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3009 0 : break;
3010 : case 48:
3011 0 : buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3012 0 : break;
3013 : case 0:
3014 : buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3015 : break;
3016 : default:
3017 : return -EINVAL;
3018 : }
3019 :
3020 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3021 0 : if (ret < 0)
3022 : return ret;
3023 :
3024 0 : return 0;
3025 : }
3026 : EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3027 :
3028 : /**
3029 : * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3030 : * @aux: DisplayPort AUX channel
3031 : * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3032 : * @frl_type : FRL training type, can be Extended, or Normal.
3033 : * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3034 : * starting from min, and stops when link training is successful. In Extended
3035 : * FRL training, all frl bw selected in the mask are trained by the PCON.
3036 : *
3037 : * Returns 0 if success, else returns negative error code.
3038 : */
3039 0 : int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3040 : u8 frl_type)
3041 : {
3042 : int ret;
3043 0 : u8 buf = max_frl_mask;
3044 :
3045 0 : if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3046 0 : buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3047 : else
3048 0 : buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3049 :
3050 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3051 0 : if (ret < 0)
3052 : return ret;
3053 :
3054 0 : return 0;
3055 : }
3056 : EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3057 :
3058 : /**
3059 : * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3060 : * @aux: DisplayPort AUX channel
3061 : *
3062 : * Returns 0 if success, else returns negative error code.
3063 : */
3064 0 : int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3065 : {
3066 : int ret;
3067 :
3068 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3069 0 : if (ret < 0)
3070 : return ret;
3071 :
3072 0 : return 0;
3073 : }
3074 : EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3075 :
3076 : /**
3077 : * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3078 : * @aux: DisplayPort AUX channel
3079 : *
3080 : * Returns 0 if success, else returns negative error code.
3081 : */
3082 0 : int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3083 : {
3084 : int ret;
3085 0 : u8 buf = 0;
3086 :
3087 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3088 0 : if (ret < 0)
3089 : return ret;
3090 0 : if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3091 0 : drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3092 : aux->name);
3093 0 : return -EINVAL;
3094 : }
3095 0 : buf |= DP_PCON_ENABLE_HDMI_LINK;
3096 0 : ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3097 0 : if (ret < 0)
3098 : return ret;
3099 :
3100 0 : return 0;
3101 : }
3102 : EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3103 :
3104 : /**
3105 : * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3106 : * @aux: DisplayPort AUX channel
3107 : *
3108 : * Returns true if link is active else returns false.
3109 : */
3110 0 : bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3111 : {
3112 : u8 buf;
3113 : int ret;
3114 :
3115 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3116 0 : if (ret < 0)
3117 : return false;
3118 :
3119 0 : return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3120 : }
3121 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3122 :
3123 : /**
3124 : * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3125 : * @aux: DisplayPort AUX channel
3126 : * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3127 : * Valid only if the MODE returned is FRL. For Normal Link training mode
3128 : * only 1 of the bits will be set, but in case of Extended mode, more than
3129 : * one bits can be set.
3130 : *
3131 : * Returns the link mode : TMDS or FRL on success, else returns negative error
3132 : * code.
3133 : */
3134 0 : int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3135 : {
3136 : u8 buf;
3137 : int mode;
3138 : int ret;
3139 :
3140 0 : ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3141 0 : if (ret < 0)
3142 : return ret;
3143 :
3144 0 : mode = buf & DP_PCON_HDMI_LINK_MODE;
3145 :
3146 0 : if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3147 0 : *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3148 :
3149 : return mode;
3150 : }
3151 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3152 :
3153 : /**
3154 : * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3155 : * during link failure between PCON and HDMI sink
3156 : * @aux: DisplayPort AUX channel
3157 : * @connector: DRM connector
3158 : * code.
3159 : **/
3160 :
3161 0 : void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3162 : struct drm_connector *connector)
3163 : {
3164 : u8 buf, error_count;
3165 : int i, num_error;
3166 0 : struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3167 :
3168 0 : for (i = 0; i < hdmi->max_lanes; i++) {
3169 0 : if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3170 0 : return;
3171 :
3172 0 : error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3173 : switch (error_count) {
3174 : case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3175 : num_error = 100;
3176 : break;
3177 : case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3178 : num_error = 10;
3179 : break;
3180 : case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3181 : num_error = 3;
3182 : break;
3183 : default:
3184 : num_error = 0;
3185 : }
3186 :
3187 0 : drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3188 : aux->name, num_error, i);
3189 : }
3190 : }
3191 : EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3192 :
3193 : /*
3194 : * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3195 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3196 : *
3197 : * Returns true is PCON encoder is DSC 1.2 else returns false.
3198 : */
3199 0 : bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3200 : {
3201 : u8 buf;
3202 : u8 major_v, minor_v;
3203 :
3204 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3205 0 : major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3206 0 : minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3207 :
3208 0 : if (major_v == 1 && minor_v == 2)
3209 : return true;
3210 :
3211 0 : return false;
3212 : }
3213 : EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3214 :
3215 : /*
3216 : * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3217 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3218 : *
3219 : * Returns maximum no. of slices supported by the PCON DSC Encoder.
3220 : */
3221 0 : int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3222 : {
3223 : u8 slice_cap1, slice_cap2;
3224 :
3225 0 : slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3226 0 : slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3227 :
3228 0 : if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3229 : return 24;
3230 0 : if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3231 : return 20;
3232 0 : if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3233 : return 16;
3234 0 : if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3235 : return 12;
3236 0 : if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3237 : return 10;
3238 0 : if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3239 : return 8;
3240 0 : if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3241 : return 6;
3242 0 : if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3243 : return 4;
3244 0 : if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3245 : return 2;
3246 0 : if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3247 : return 1;
3248 :
3249 0 : return 0;
3250 : }
3251 : EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3252 :
3253 : /*
3254 : * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3255 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3256 : *
3257 : * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3258 : */
3259 0 : int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3260 : {
3261 : u8 buf;
3262 :
3263 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3264 :
3265 0 : return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3266 : }
3267 : EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3268 :
3269 : /*
3270 : * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3271 : * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3272 : *
3273 : * Returns the bpp precision supported by the PCON encoder.
3274 : */
3275 0 : int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3276 : {
3277 : u8 buf;
3278 :
3279 0 : buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3280 :
3281 : switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3282 : case DP_PCON_DSC_ONE_16TH_BPP:
3283 : return 16;
3284 : case DP_PCON_DSC_ONE_8TH_BPP:
3285 : return 8;
3286 : case DP_PCON_DSC_ONE_4TH_BPP:
3287 : return 4;
3288 : case DP_PCON_DSC_ONE_HALF_BPP:
3289 : return 2;
3290 : case DP_PCON_DSC_ONE_BPP:
3291 : return 1;
3292 : }
3293 :
3294 : return 0;
3295 : }
3296 : EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3297 :
3298 : static
3299 0 : int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3300 : {
3301 : u8 buf;
3302 : int ret;
3303 :
3304 0 : ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3305 0 : if (ret < 0)
3306 : return ret;
3307 :
3308 0 : buf |= DP_PCON_ENABLE_DSC_ENCODER;
3309 :
3310 0 : if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3311 0 : buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3312 0 : buf |= pps_buf_config << 2;
3313 : }
3314 :
3315 0 : ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3316 0 : if (ret < 0)
3317 : return ret;
3318 :
3319 0 : return 0;
3320 : }
3321 :
3322 : /**
3323 : * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3324 : * for DSC1.2 between PCON & HDMI2.1 sink
3325 : * @aux: DisplayPort AUX channel
3326 : *
3327 : * Returns 0 on success, else returns negative error code.
3328 : */
3329 0 : int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3330 : {
3331 : int ret;
3332 :
3333 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3334 0 : if (ret < 0)
3335 : return ret;
3336 :
3337 0 : return 0;
3338 : }
3339 : EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3340 :
3341 : /**
3342 : * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3343 : * HDMI sink
3344 : * @aux: DisplayPort AUX channel
3345 : * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3346 : *
3347 : * Returns 0 on success, else returns negative error code.
3348 : */
3349 0 : int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3350 : {
3351 : int ret;
3352 :
3353 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3354 0 : if (ret < 0)
3355 : return ret;
3356 :
3357 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3358 0 : if (ret < 0)
3359 : return ret;
3360 :
3361 0 : return 0;
3362 : }
3363 : EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3364 :
3365 : /*
3366 : * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3367 : * override registers
3368 : * @aux: DisplayPort AUX channel
3369 : * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3370 : * bits_per_pixel.
3371 : *
3372 : * Returns 0 on success, else returns negative error code.
3373 : */
3374 0 : int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3375 : {
3376 : int ret;
3377 :
3378 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3379 0 : if (ret < 0)
3380 : return ret;
3381 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3382 0 : if (ret < 0)
3383 : return ret;
3384 0 : ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3385 0 : if (ret < 0)
3386 : return ret;
3387 :
3388 0 : ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3389 0 : if (ret < 0)
3390 : return ret;
3391 :
3392 0 : return 0;
3393 : }
3394 : EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3395 :
3396 : /*
3397 : * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3398 : * @aux: displayPort AUX channel
3399 : * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3400 : *
3401 : * Returns 0 on success, else returns negative error code.
3402 : */
3403 0 : int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3404 : {
3405 : int ret;
3406 : u8 buf;
3407 :
3408 0 : ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3409 0 : if (ret < 0)
3410 : return ret;
3411 :
3412 0 : if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3413 0 : buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3414 : else
3415 0 : buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3416 :
3417 0 : ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3418 0 : if (ret < 0)
3419 : return ret;
3420 :
3421 0 : return 0;
3422 : }
3423 : EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3424 :
3425 : /**
3426 : * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3427 : * @aux: The DP AUX channel to use
3428 : * @bl: Backlight capability info from drm_edp_backlight_init()
3429 : * @level: The brightness level to set
3430 : *
3431 : * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3432 : * already have been enabled by the driver by calling drm_edp_backlight_enable().
3433 : *
3434 : * Returns: %0 on success, negative error code on failure
3435 : */
3436 0 : int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3437 : u16 level)
3438 : {
3439 : int ret;
3440 0 : u8 buf[2] = { 0 };
3441 :
3442 : /* The panel uses the PWM for controlling brightness levels */
3443 0 : if (!bl->aux_set)
3444 : return 0;
3445 :
3446 0 : if (bl->lsb_reg_used) {
3447 0 : buf[0] = (level & 0xff00) >> 8;
3448 0 : buf[1] = (level & 0x00ff);
3449 : } else {
3450 0 : buf[0] = level;
3451 : }
3452 :
3453 0 : ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3454 0 : if (ret != sizeof(buf)) {
3455 0 : drm_err(aux->drm_dev,
3456 : "%s: Failed to write aux backlight level: %d\n",
3457 : aux->name, ret);
3458 0 : return ret < 0 ? ret : -EIO;
3459 : }
3460 :
3461 : return 0;
3462 : }
3463 : EXPORT_SYMBOL(drm_edp_backlight_set_level);
3464 :
3465 : static int
3466 0 : drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3467 : bool enable)
3468 : {
3469 : int ret;
3470 : u8 buf;
3471 :
3472 : /* This panel uses the EDP_BL_PWR GPIO for enablement */
3473 0 : if (!bl->aux_enable)
3474 : return 0;
3475 :
3476 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3477 0 : if (ret != 1) {
3478 0 : drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3479 : aux->name, ret);
3480 0 : return ret < 0 ? ret : -EIO;
3481 : }
3482 0 : if (enable)
3483 0 : buf |= DP_EDP_BACKLIGHT_ENABLE;
3484 : else
3485 0 : buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3486 :
3487 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3488 0 : if (ret != 1) {
3489 0 : drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3490 : aux->name, ret);
3491 0 : return ret < 0 ? ret : -EIO;
3492 : }
3493 :
3494 : return 0;
3495 : }
3496 :
3497 : /**
3498 : * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3499 : * @aux: The DP AUX channel to use
3500 : * @bl: Backlight capability info from drm_edp_backlight_init()
3501 : * @level: The initial backlight level to set via AUX, if there is one
3502 : *
3503 : * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3504 : * restoring any important backlight state such as the given backlight level, the brightness byte
3505 : * count, backlight frequency, etc.
3506 : *
3507 : * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3508 : * that the driver handle enabling/disabling the panel through implementation-specific means using
3509 : * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3510 : * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3511 : * the EDP_BL_PWR GPIO.
3512 : *
3513 : * Returns: %0 on success, negative error code on failure.
3514 : */
3515 0 : int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3516 : const u16 level)
3517 : {
3518 : int ret;
3519 : u8 dpcd_buf;
3520 :
3521 0 : if (bl->aux_set)
3522 : dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3523 : else
3524 0 : dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3525 :
3526 0 : if (bl->pwmgen_bit_count) {
3527 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3528 0 : if (ret != 1)
3529 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3530 : aux->name, ret);
3531 : }
3532 :
3533 0 : if (bl->pwm_freq_pre_divider) {
3534 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3535 0 : if (ret != 1)
3536 0 : drm_dbg_kms(aux->drm_dev,
3537 : "%s: Failed to write aux backlight frequency: %d\n",
3538 : aux->name, ret);
3539 : else
3540 0 : dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3541 : }
3542 :
3543 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3544 0 : if (ret != 1) {
3545 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3546 : aux->name, ret);
3547 0 : return ret < 0 ? ret : -EIO;
3548 : }
3549 :
3550 0 : ret = drm_edp_backlight_set_level(aux, bl, level);
3551 0 : if (ret < 0)
3552 : return ret;
3553 0 : ret = drm_edp_backlight_set_enable(aux, bl, true);
3554 0 : if (ret < 0)
3555 : return ret;
3556 :
3557 0 : return 0;
3558 : }
3559 : EXPORT_SYMBOL(drm_edp_backlight_enable);
3560 :
3561 : /**
3562 : * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3563 : * @aux: The DP AUX channel to use
3564 : * @bl: Backlight capability info from drm_edp_backlight_init()
3565 : *
3566 : * This function handles disabling DPCD backlight controls on a panel over AUX.
3567 : *
3568 : * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3569 : * that the driver handle enabling/disabling the panel through implementation-specific means using
3570 : * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3571 : * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3572 : * the EDP_BL_PWR GPIO.
3573 : *
3574 : * Returns: %0 on success or no-op, negative error code on failure.
3575 : */
3576 0 : int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3577 : {
3578 : int ret;
3579 :
3580 0 : ret = drm_edp_backlight_set_enable(aux, bl, false);
3581 0 : if (ret < 0)
3582 : return ret;
3583 :
3584 0 : return 0;
3585 : }
3586 : EXPORT_SYMBOL(drm_edp_backlight_disable);
3587 :
3588 : static inline int
3589 0 : drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3590 : u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3591 : {
3592 0 : int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3593 : int ret;
3594 : u8 pn, pn_min, pn_max;
3595 :
3596 0 : if (!bl->aux_set)
3597 : return 0;
3598 :
3599 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3600 0 : if (ret != 1) {
3601 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3602 : aux->name, ret);
3603 0 : return -ENODEV;
3604 : }
3605 :
3606 0 : pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3607 0 : bl->max = (1 << pn) - 1;
3608 0 : if (!driver_pwm_freq_hz)
3609 : return 0;
3610 :
3611 : /*
3612 : * Set PWM Frequency divider to match desired frequency provided by the driver.
3613 : * The PWM Frequency is calculated as 27Mhz / (F x P).
3614 : * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3615 : * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3616 : * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3617 : * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3618 : */
3619 :
3620 : /* Find desired value of (F x P)
3621 : * Note that, if F x P is out of supported range, the maximum value or minimum value will
3622 : * applied automatically. So no need to check that.
3623 : */
3624 0 : fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3625 :
3626 : /* Use highest possible value of Pn for more granularity of brightness adjustment while
3627 : * satisfying the conditions below.
3628 : * - Pn is in the range of Pn_min and Pn_max
3629 : * - F is in the range of 1 and 255
3630 : * - FxP is within 25% of desired value.
3631 : * Note: 25% is arbitrary value and may need some tweak.
3632 : */
3633 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3634 0 : if (ret != 1) {
3635 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3636 : aux->name, ret);
3637 0 : return 0;
3638 : }
3639 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3640 0 : if (ret != 1) {
3641 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3642 : aux->name, ret);
3643 0 : return 0;
3644 : }
3645 0 : pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3646 0 : pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3647 :
3648 : /* Ensure frequency is within 25% of desired value */
3649 0 : fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3650 0 : fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3651 0 : if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3652 0 : drm_dbg_kms(aux->drm_dev,
3653 : "%s: Driver defined backlight frequency (%d) out of range\n",
3654 : aux->name, driver_pwm_freq_hz);
3655 0 : return 0;
3656 : }
3657 :
3658 0 : for (pn = pn_max; pn >= pn_min; pn--) {
3659 0 : f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3660 0 : fxp_actual = f << pn;
3661 0 : if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3662 : break;
3663 : }
3664 :
3665 0 : ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3666 0 : if (ret != 1) {
3667 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3668 : aux->name, ret);
3669 0 : return 0;
3670 : }
3671 0 : bl->pwmgen_bit_count = pn;
3672 0 : bl->max = (1 << pn) - 1;
3673 :
3674 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3675 0 : bl->pwm_freq_pre_divider = f;
3676 0 : drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3677 : aux->name, driver_pwm_freq_hz);
3678 : }
3679 :
3680 : return 0;
3681 : }
3682 :
3683 : static inline int
3684 0 : drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3685 : u8 *current_mode)
3686 : {
3687 : int ret;
3688 : u8 buf[2];
3689 : u8 mode_reg;
3690 :
3691 0 : ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3692 0 : if (ret != 1) {
3693 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3694 : aux->name, ret);
3695 0 : return ret < 0 ? ret : -EIO;
3696 : }
3697 :
3698 0 : *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3699 0 : if (!bl->aux_set)
3700 : return 0;
3701 :
3702 0 : if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3703 0 : int size = 1 + bl->lsb_reg_used;
3704 :
3705 0 : ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3706 0 : if (ret != size) {
3707 0 : drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3708 : aux->name, ret);
3709 0 : return ret < 0 ? ret : -EIO;
3710 : }
3711 :
3712 0 : if (bl->lsb_reg_used)
3713 0 : return (buf[0] << 8) | buf[1];
3714 : else
3715 0 : return buf[0];
3716 : }
3717 :
3718 : /*
3719 : * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3720 : * the driver should assume max brightness
3721 : */
3722 0 : return bl->max;
3723 : }
3724 :
3725 : /**
3726 : * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3727 : * interface.
3728 : * @aux: The DP aux device to use for probing
3729 : * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3730 : * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3731 : * @edp_dpcd: A cached copy of the eDP DPCD
3732 : * @current_level: Where to store the probed brightness level, if any
3733 : * @current_mode: Where to store the currently set backlight control mode
3734 : *
3735 : * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3736 : * along with also probing the current and maximum supported brightness levels.
3737 : *
3738 : * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3739 : * default frequency from the panel is used.
3740 : *
3741 : * Returns: %0 on success, negative error code on failure.
3742 : */
3743 : int
3744 0 : drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3745 : u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3746 : u16 *current_level, u8 *current_mode)
3747 : {
3748 : int ret;
3749 :
3750 0 : if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3751 0 : bl->aux_enable = true;
3752 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3753 0 : bl->aux_set = true;
3754 0 : if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3755 0 : bl->lsb_reg_used = true;
3756 :
3757 : /* Sanity check caps */
3758 0 : if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3759 0 : drm_dbg_kms(aux->drm_dev,
3760 : "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3761 : aux->name);
3762 0 : return -EINVAL;
3763 : }
3764 :
3765 0 : ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3766 0 : if (ret < 0)
3767 : return ret;
3768 :
3769 0 : ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3770 0 : if (ret < 0)
3771 : return ret;
3772 0 : *current_level = ret;
3773 :
3774 0 : drm_dbg_kms(aux->drm_dev,
3775 : "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3776 : aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3777 0 : if (bl->aux_set) {
3778 0 : drm_dbg_kms(aux->drm_dev,
3779 : "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3780 : aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3781 : bl->lsb_reg_used);
3782 : }
3783 :
3784 : return 0;
3785 : }
3786 : EXPORT_SYMBOL(drm_edp_backlight_init);
3787 :
3788 : #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3789 : (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3790 :
3791 : static int dp_aux_backlight_update_status(struct backlight_device *bd)
3792 : {
3793 : struct dp_aux_backlight *bl = bl_get_data(bd);
3794 : u16 brightness = backlight_get_brightness(bd);
3795 : int ret = 0;
3796 :
3797 : if (!backlight_is_blank(bd)) {
3798 : if (!bl->enabled) {
3799 : drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3800 : bl->enabled = true;
3801 : return 0;
3802 : }
3803 : ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3804 : } else {
3805 : if (bl->enabled) {
3806 : drm_edp_backlight_disable(bl->aux, &bl->info);
3807 : bl->enabled = false;
3808 : }
3809 : }
3810 :
3811 : return ret;
3812 : }
3813 :
3814 : static const struct backlight_ops dp_aux_bl_ops = {
3815 : .update_status = dp_aux_backlight_update_status,
3816 : };
3817 :
3818 : /**
3819 : * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3820 : * @panel: DRM panel
3821 : * @aux: The DP AUX channel to use
3822 : *
3823 : * Use this function to create and handle backlight if your panel
3824 : * supports backlight control over DP AUX channel using DPCD
3825 : * registers as per VESA's standard backlight control interface.
3826 : *
3827 : * When the panel is enabled backlight will be enabled after a
3828 : * successful call to &drm_panel_funcs.enable()
3829 : *
3830 : * When the panel is disabled backlight will be disabled before the
3831 : * call to &drm_panel_funcs.disable().
3832 : *
3833 : * A typical implementation for a panel driver supporting backlight
3834 : * control over DP AUX will call this function at probe time.
3835 : * Backlight will then be handled transparently without requiring
3836 : * any intervention from the driver.
3837 : *
3838 : * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3839 : *
3840 : * Return: 0 on success or a negative error code on failure.
3841 : */
3842 : int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3843 : {
3844 : struct dp_aux_backlight *bl;
3845 : struct backlight_properties props = { 0 };
3846 : u16 current_level;
3847 : u8 current_mode;
3848 : u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3849 : int ret;
3850 :
3851 : if (!panel || !panel->dev || !aux)
3852 : return -EINVAL;
3853 :
3854 : ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3855 : EDP_DISPLAY_CTL_CAP_SIZE);
3856 : if (ret < 0)
3857 : return ret;
3858 :
3859 : if (!drm_edp_backlight_supported(edp_dpcd)) {
3860 : DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3861 : return 0;
3862 : }
3863 :
3864 : bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3865 : if (!bl)
3866 : return -ENOMEM;
3867 :
3868 : bl->aux = aux;
3869 :
3870 : ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3871 : ¤t_level, ¤t_mode);
3872 : if (ret < 0)
3873 : return ret;
3874 :
3875 : props.type = BACKLIGHT_RAW;
3876 : props.brightness = current_level;
3877 : props.max_brightness = bl->info.max;
3878 :
3879 : bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3880 : panel->dev, bl,
3881 : &dp_aux_bl_ops, &props);
3882 : if (IS_ERR(bl->base))
3883 : return PTR_ERR(bl->base);
3884 :
3885 : backlight_disable(bl->base);
3886 :
3887 : panel->backlight = bl->base;
3888 :
3889 : return 0;
3890 : }
3891 : EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3892 :
3893 : #endif
|