Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * PCI Virtual Channel support
4 : *
5 : * Copyright (C) 2013 Red Hat, Inc. All rights reserved.
6 : * Author: Alex Williamson <alex.williamson@redhat.com>
7 : */
8 :
9 : #include <linux/device.h>
10 : #include <linux/kernel.h>
11 : #include <linux/module.h>
12 : #include <linux/pci.h>
13 : #include <linux/pci_regs.h>
14 : #include <linux/types.h>
15 :
16 : #include "pci.h"
17 :
18 : /**
19 : * pci_vc_save_restore_dwords - Save or restore a series of dwords
20 : * @dev: device
21 : * @pos: starting config space position
22 : * @buf: buffer to save to or restore from
23 : * @dwords: number of dwords to save/restore
24 : * @save: whether to save or restore
25 : */
26 0 : static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
27 : u32 *buf, int dwords, bool save)
28 : {
29 : int i;
30 :
31 0 : for (i = 0; i < dwords; i++, buf++) {
32 0 : if (save)
33 0 : pci_read_config_dword(dev, pos + (i * 4), buf);
34 : else
35 0 : pci_write_config_dword(dev, pos + (i * 4), *buf);
36 : }
37 0 : }
38 :
39 : /**
40 : * pci_vc_load_arb_table - load and wait for VC arbitration table
41 : * @dev: device
42 : * @pos: starting position of VC capability (VC/VC9/MFVC)
43 : *
44 : * Set Load VC Arbitration Table bit requesting hardware to apply the VC
45 : * Arbitration Table (previously loaded). When the VC Arbitration Table
46 : * Status clears, hardware has latched the table into VC arbitration logic.
47 : */
48 0 : static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
49 : {
50 : u16 ctrl;
51 :
52 0 : pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
53 0 : pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
54 : ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
55 0 : if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
56 : PCI_VC_PORT_STATUS_TABLE))
57 0 : return;
58 :
59 0 : pci_err(dev, "VC arbitration table failed to load\n");
60 : }
61 :
62 : /**
63 : * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
64 : * @dev: device
65 : * @pos: starting position of VC capability (VC/VC9/MFVC)
66 : * @res: VC resource number, ie. VCn (0-7)
67 : *
68 : * Set Load Port Arbitration Table bit requesting hardware to apply the Port
69 : * Arbitration Table (previously loaded). When the Port Arbitration Table
70 : * Status clears, hardware has latched the table into port arbitration logic.
71 : */
72 0 : static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
73 : {
74 : int ctrl_pos, status_pos;
75 : u32 ctrl;
76 :
77 0 : ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
78 0 : status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79 :
80 0 : pci_read_config_dword(dev, ctrl_pos, &ctrl);
81 0 : pci_write_config_dword(dev, ctrl_pos,
82 : ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
83 :
84 0 : if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
85 0 : return;
86 :
87 0 : pci_err(dev, "VC%d port arbitration table failed to load\n", res);
88 : }
89 :
90 : /**
91 : * pci_vc_enable - Enable virtual channel
92 : * @dev: device
93 : * @pos: starting position of VC capability (VC/VC9/MFVC)
94 : * @res: VC res number, ie. VCn (0-7)
95 : *
96 : * A VC is enabled by setting the enable bit in matching resource control
97 : * registers on both sides of a link. We therefore need to find the opposite
98 : * end of the link. To keep this simple we enable from the downstream device.
99 : * RC devices do not have an upstream device, nor does it seem that VC9 do
100 : * (spec is unclear). Once we find the upstream device, match the VC ID to
101 : * get the correct resource, disable and enable on both ends.
102 : */
103 0 : static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
104 : {
105 : int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
106 : u32 ctrl, header, cap1, ctrl2;
107 0 : struct pci_dev *link = NULL;
108 :
109 : /* Enable VCs from the downstream device */
110 0 : if (!pci_is_pcie(dev) || !pcie_downstream_port(dev))
111 0 : return;
112 :
113 0 : ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
114 0 : status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
115 :
116 0 : pci_read_config_dword(dev, ctrl_pos, &ctrl);
117 0 : id = ctrl & PCI_VC_RES_CTRL_ID;
118 :
119 0 : pci_read_config_dword(dev, pos, &header);
120 :
121 : /* If there is no opposite end of the link, skip to enable */
122 0 : if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
123 0 : pci_is_root_bus(dev->bus))
124 : goto enable;
125 :
126 0 : pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
127 0 : if (!pos2)
128 : goto enable;
129 :
130 0 : pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
131 0 : evcc = cap1 & PCI_VC_CAP1_EVCC;
132 :
133 : /* VC0 is hardwired enabled, so we can start with 1 */
134 0 : for (i = 1; i < evcc + 1; i++) {
135 0 : ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
136 0 : (i * PCI_CAP_VC_PER_VC_SIZEOF);
137 0 : status_pos2 = pos2 + PCI_VC_RES_STATUS +
138 : (i * PCI_CAP_VC_PER_VC_SIZEOF);
139 0 : pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
140 0 : if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
141 0 : link = dev->bus->self;
142 0 : break;
143 : }
144 : }
145 :
146 0 : if (!link)
147 : goto enable;
148 :
149 : /* Disable if enabled */
150 0 : if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
151 0 : ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
152 0 : pci_write_config_dword(link, ctrl_pos2, ctrl2);
153 : }
154 :
155 : /* Enable on both ends */
156 0 : ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
157 0 : pci_write_config_dword(link, ctrl_pos2, ctrl2);
158 : enable:
159 0 : ctrl |= PCI_VC_RES_CTRL_ENABLE;
160 0 : pci_write_config_dword(dev, ctrl_pos, ctrl);
161 :
162 0 : if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
163 0 : pci_err(dev, "VC%d negotiation stuck pending\n", id);
164 :
165 0 : if (link && !pci_wait_for_pending(link, status_pos2,
166 : PCI_VC_RES_STATUS_NEGO))
167 0 : pci_err(link, "VC%d negotiation stuck pending\n", id);
168 : }
169 :
170 : /**
171 : * pci_vc_do_save_buffer - Size, save, or restore VC state
172 : * @dev: device
173 : * @pos: starting position of VC capability (VC/VC9/MFVC)
174 : * @save_state: buffer for save/restore
175 : * @save: if provided a buffer, this indicates what to do with it
176 : *
177 : * Walking Virtual Channel config space to size, save, or restore it
178 : * is complicated, so we do it all from one function to reduce code and
179 : * guarantee ordering matches in the buffer. When called with NULL
180 : * @save_state, return the size of the necessary save buffer. When called
181 : * with a non-NULL @save_state, @save determines whether we save to the
182 : * buffer or restore from it.
183 : */
184 0 : static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
185 : struct pci_cap_saved_state *save_state,
186 : bool save)
187 : {
188 : u32 cap1;
189 : char evcc, lpevcc, parb_size;
190 0 : int i, len = 0;
191 0 : u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
192 :
193 : /* Sanity check buffer size for save/restore */
194 0 : if (buf && save_state->cap.size !=
195 0 : pci_vc_do_save_buffer(dev, pos, NULL, save)) {
196 0 : pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
197 0 : return -ENOMEM;
198 : }
199 :
200 0 : pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
201 : /* Extended VC Count (not counting VC0) */
202 0 : evcc = cap1 & PCI_VC_CAP1_EVCC;
203 : /* Low Priority Extended VC Count (not counting VC0) */
204 0 : lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
205 : /* Port Arbitration Table Entry Size (bits) */
206 0 : parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
207 :
208 : /*
209 : * Port VC Control Register contains VC Arbitration Select, which
210 : * cannot be modified when more than one LPVC is in operation. We
211 : * therefore save/restore it first, as only VC0 should be enabled
212 : * after device reset.
213 : */
214 0 : if (buf) {
215 0 : if (save)
216 0 : pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
217 : (u16 *)buf);
218 : else
219 0 : pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
220 0 : *(u16 *)buf);
221 0 : buf += 4;
222 : }
223 0 : len += 4;
224 :
225 : /*
226 : * If we have any Low Priority VCs and a VC Arbitration Table Offset
227 : * in Port VC Capability Register 2 then save/restore it next.
228 : */
229 0 : if (lpevcc) {
230 : u32 cap2;
231 : int vcarb_offset;
232 :
233 0 : pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
234 0 : vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
235 :
236 0 : if (vcarb_offset) {
237 0 : int size, vcarb_phases = 0;
238 :
239 0 : if (cap2 & PCI_VC_CAP2_128_PHASE)
240 : vcarb_phases = 128;
241 0 : else if (cap2 & PCI_VC_CAP2_64_PHASE)
242 : vcarb_phases = 64;
243 0 : else if (cap2 & PCI_VC_CAP2_32_PHASE)
244 0 : vcarb_phases = 32;
245 :
246 : /* Fixed 4 bits per phase per lpevcc (plus VC0) */
247 0 : size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
248 :
249 0 : if (size && buf) {
250 0 : pci_vc_save_restore_dwords(dev,
251 : pos + vcarb_offset,
252 : (u32 *)buf,
253 : size / 4, save);
254 : /*
255 : * On restore, we need to signal hardware to
256 : * re-load the VC Arbitration Table.
257 : */
258 0 : if (!save)
259 0 : pci_vc_load_arb_table(dev, pos);
260 :
261 0 : buf += size;
262 : }
263 0 : len += size;
264 : }
265 : }
266 :
267 : /*
268 : * In addition to each VC Resource Control Register, we may have a
269 : * Port Arbitration Table attached to each VC. The Port Arbitration
270 : * Table Offset in each VC Resource Capability Register tells us if
271 : * it exists. The entry size is global from the Port VC Capability
272 : * Register1 above. The number of phases is determined per VC.
273 : */
274 0 : for (i = 0; i < evcc + 1; i++) {
275 : u32 cap;
276 : int parb_offset;
277 :
278 0 : pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
279 0 : (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
280 0 : parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
281 0 : if (parb_offset) {
282 0 : int size, parb_phases = 0;
283 :
284 0 : if (cap & PCI_VC_RES_CAP_256_PHASE)
285 : parb_phases = 256;
286 0 : else if (cap & (PCI_VC_RES_CAP_128_PHASE |
287 : PCI_VC_RES_CAP_128_PHASE_TB))
288 : parb_phases = 128;
289 0 : else if (cap & PCI_VC_RES_CAP_64_PHASE)
290 : parb_phases = 64;
291 0 : else if (cap & PCI_VC_RES_CAP_32_PHASE)
292 0 : parb_phases = 32;
293 :
294 0 : size = (parb_size * parb_phases) / 8;
295 :
296 0 : if (size && buf) {
297 0 : pci_vc_save_restore_dwords(dev,
298 : pos + parb_offset,
299 : (u32 *)buf,
300 : size / 4, save);
301 0 : buf += size;
302 : }
303 0 : len += size;
304 : }
305 :
306 : /* VC Resource Control Register */
307 0 : if (buf) {
308 0 : int ctrl_pos = pos + PCI_VC_RES_CTRL +
309 : (i * PCI_CAP_VC_PER_VC_SIZEOF);
310 0 : if (save)
311 0 : pci_read_config_dword(dev, ctrl_pos,
312 : (u32 *)buf);
313 : else {
314 0 : u32 tmp, ctrl = *(u32 *)buf;
315 : /*
316 : * For an FLR case, the VC config may remain.
317 : * Preserve enable bit, restore the rest.
318 : */
319 0 : pci_read_config_dword(dev, ctrl_pos, &tmp);
320 0 : tmp &= PCI_VC_RES_CTRL_ENABLE;
321 0 : tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
322 0 : pci_write_config_dword(dev, ctrl_pos, tmp);
323 : /* Load port arbitration table if used */
324 0 : if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
325 0 : pci_vc_load_port_arb_table(dev, pos, i);
326 : /* Re-enable if needed */
327 0 : if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
328 0 : pci_vc_enable(dev, pos, i);
329 : }
330 0 : buf += 4;
331 : }
332 0 : len += 4;
333 : }
334 :
335 0 : return buf ? 0 : len;
336 : }
337 :
338 : static struct {
339 : u16 id;
340 : const char *name;
341 : } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
342 : { PCI_EXT_CAP_ID_VC, "VC" },
343 : { PCI_EXT_CAP_ID_VC9, "VC9" } };
344 :
345 : /**
346 : * pci_save_vc_state - Save VC state to pre-allocate save buffer
347 : * @dev: device
348 : *
349 : * For each type of VC capability, VC/VC9/MFVC, find the capability and
350 : * save it to the pre-allocated save buffer.
351 : */
352 0 : int pci_save_vc_state(struct pci_dev *dev)
353 : {
354 : int i;
355 :
356 0 : for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
357 : int pos, ret;
358 : struct pci_cap_saved_state *save_state;
359 :
360 0 : pos = pci_find_ext_capability(dev, vc_caps[i].id);
361 0 : if (!pos)
362 0 : continue;
363 :
364 0 : save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
365 0 : if (!save_state) {
366 0 : pci_err(dev, "%s buffer not found in %s\n",
367 : vc_caps[i].name, __func__);
368 0 : return -ENOMEM;
369 : }
370 :
371 0 : ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
372 0 : if (ret) {
373 0 : pci_err(dev, "%s save unsuccessful %s\n",
374 : vc_caps[i].name, __func__);
375 0 : return ret;
376 : }
377 : }
378 :
379 : return 0;
380 : }
381 :
382 : /**
383 : * pci_restore_vc_state - Restore VC state from save buffer
384 : * @dev: device
385 : *
386 : * For each type of VC capability, VC/VC9/MFVC, find the capability and
387 : * restore it from the previously saved buffer.
388 : */
389 0 : void pci_restore_vc_state(struct pci_dev *dev)
390 : {
391 : int i;
392 :
393 0 : for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
394 : int pos;
395 : struct pci_cap_saved_state *save_state;
396 :
397 0 : pos = pci_find_ext_capability(dev, vc_caps[i].id);
398 0 : save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
399 0 : if (!save_state || !pos)
400 0 : continue;
401 :
402 0 : pci_vc_do_save_buffer(dev, pos, save_state, false);
403 : }
404 0 : }
405 :
406 : /**
407 : * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
408 : * @dev: device
409 : *
410 : * For each type of VC capability, VC/VC9/MFVC, find the capability, size
411 : * it, and allocate a buffer for save/restore.
412 : */
413 0 : void pci_allocate_vc_save_buffers(struct pci_dev *dev)
414 : {
415 : int i;
416 :
417 0 : for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
418 0 : int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
419 :
420 0 : if (!pos)
421 0 : continue;
422 :
423 0 : len = pci_vc_do_save_buffer(dev, pos, NULL, false);
424 0 : if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
425 0 : pci_err(dev, "unable to preallocate %s save buffer\n",
426 : vc_caps[i].name);
427 : }
428 0 : }
|