Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * PCI VPD support
4 : *
5 : * Copyright (C) 2010 Broadcom Corporation.
6 : */
7 :
8 : #include <linux/pci.h>
9 : #include <linux/delay.h>
10 : #include <linux/export.h>
11 : #include <linux/sched/signal.h>
12 : #include <asm/unaligned.h>
13 : #include "pci.h"
14 :
15 : #define PCI_VPD_LRDT_TAG_SIZE 3
16 : #define PCI_VPD_SRDT_LEN_MASK 0x07
17 : #define PCI_VPD_SRDT_TAG_SIZE 1
18 : #define PCI_VPD_STIN_END 0x0f
19 : #define PCI_VPD_INFO_FLD_HDR_SIZE 3
20 :
21 : static u16 pci_vpd_lrdt_size(const u8 *lrdt)
22 : {
23 0 : return get_unaligned_le16(lrdt + 1);
24 : }
25 :
26 : static u8 pci_vpd_srdt_tag(const u8 *srdt)
27 : {
28 0 : return *srdt >> 3;
29 : }
30 :
31 : static u8 pci_vpd_srdt_size(const u8 *srdt)
32 : {
33 0 : return *srdt & PCI_VPD_SRDT_LEN_MASK;
34 : }
35 :
36 : static u8 pci_vpd_info_field_size(const u8 *info_field)
37 : {
38 0 : return info_field[2];
39 : }
40 :
41 : /* VPD access through PCI 2.2+ VPD capability */
42 :
43 : static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev)
44 : {
45 0 : return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
46 : }
47 :
48 : #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
49 : #define PCI_VPD_SZ_INVALID UINT_MAX
50 :
51 : /**
52 : * pci_vpd_size - determine actual size of Vital Product Data
53 : * @dev: pci device struct
54 : */
55 0 : static size_t pci_vpd_size(struct pci_dev *dev)
56 : {
57 0 : size_t off = 0, size;
58 : unsigned char tag, header[1+2]; /* 1 byte tag, 2 bytes length */
59 :
60 0 : while (pci_read_vpd_any(dev, off, 1, header) == 1) {
61 0 : size = 0;
62 :
63 0 : if (off == 0 && (header[0] == 0x00 || header[0] == 0xff))
64 : goto error;
65 :
66 0 : if (header[0] & PCI_VPD_LRDT) {
67 : /* Large Resource Data Type Tag */
68 0 : if (pci_read_vpd_any(dev, off + 1, 2, &header[1]) != 2) {
69 0 : pci_warn(dev, "failed VPD read at offset %zu\n",
70 : off + 1);
71 0 : return off ?: PCI_VPD_SZ_INVALID;
72 : }
73 0 : size = pci_vpd_lrdt_size(header);
74 0 : if (off + size > PCI_VPD_MAX_SIZE)
75 : goto error;
76 :
77 0 : off += PCI_VPD_LRDT_TAG_SIZE + size;
78 : } else {
79 : /* Short Resource Data Type Tag */
80 0 : tag = pci_vpd_srdt_tag(header);
81 0 : size = pci_vpd_srdt_size(header);
82 0 : if (off + size > PCI_VPD_MAX_SIZE)
83 : goto error;
84 :
85 0 : off += PCI_VPD_SRDT_TAG_SIZE + size;
86 0 : if (tag == PCI_VPD_STIN_END) /* End tag descriptor */
87 : return off;
88 : }
89 : }
90 : return off;
91 :
92 : error:
93 0 : pci_info(dev, "invalid VPD tag %#04x (size %zu) at offset %zu%s\n",
94 : header[0], size, off, off == 0 ?
95 : "; assume missing optional EEPROM" : "");
96 0 : return off ?: PCI_VPD_SZ_INVALID;
97 : }
98 :
99 0 : static bool pci_vpd_available(struct pci_dev *dev, bool check_size)
100 : {
101 0 : struct pci_vpd *vpd = &dev->vpd;
102 :
103 0 : if (!vpd->cap)
104 : return false;
105 :
106 0 : if (vpd->len == 0 && check_size) {
107 0 : vpd->len = pci_vpd_size(dev);
108 0 : if (vpd->len == PCI_VPD_SZ_INVALID) {
109 0 : vpd->cap = 0;
110 0 : return false;
111 : }
112 : }
113 :
114 : return true;
115 : }
116 :
117 : /*
118 : * Wait for last operation to complete.
119 : * This code has to spin since there is no other notification from the PCI
120 : * hardware. Since the VPD is often implemented by serial attachment to an
121 : * EEPROM, it may take many milliseconds to complete.
122 : * @set: if true wait for flag to be set, else wait for it to be cleared
123 : *
124 : * Returns 0 on success, negative values indicate error.
125 : */
126 0 : static int pci_vpd_wait(struct pci_dev *dev, bool set)
127 : {
128 0 : struct pci_vpd *vpd = &dev->vpd;
129 0 : unsigned long timeout = jiffies + msecs_to_jiffies(125);
130 0 : unsigned long max_sleep = 16;
131 : u16 status;
132 : int ret;
133 :
134 : do {
135 0 : ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
136 : &status);
137 0 : if (ret < 0)
138 : return ret;
139 :
140 0 : if (!!(status & PCI_VPD_ADDR_F) == set)
141 : return 0;
142 :
143 0 : if (time_after(jiffies, timeout))
144 : break;
145 :
146 0 : usleep_range(10, max_sleep);
147 0 : if (max_sleep < 1024)
148 0 : max_sleep *= 2;
149 : } while (true);
150 :
151 0 : pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n");
152 0 : return -ETIMEDOUT;
153 : }
154 :
155 0 : static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
156 : void *arg, bool check_size)
157 : {
158 0 : struct pci_vpd *vpd = &dev->vpd;
159 : unsigned int max_len;
160 0 : int ret = 0;
161 0 : loff_t end = pos + count;
162 0 : u8 *buf = arg;
163 :
164 0 : if (!pci_vpd_available(dev, check_size))
165 : return -ENODEV;
166 :
167 0 : if (pos < 0)
168 : return -EINVAL;
169 :
170 0 : max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE;
171 :
172 0 : if (pos >= max_len)
173 : return 0;
174 :
175 0 : if (end > max_len) {
176 0 : end = max_len;
177 0 : count = end - pos;
178 : }
179 :
180 0 : if (mutex_lock_killable(&vpd->lock))
181 : return -EINTR;
182 :
183 0 : while (pos < end) {
184 : u32 val;
185 : unsigned int i, skip;
186 :
187 0 : if (fatal_signal_pending(current)) {
188 : ret = -EINTR;
189 0 : break;
190 : }
191 :
192 0 : ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
193 0 : pos & ~3);
194 0 : if (ret < 0)
195 : break;
196 0 : ret = pci_vpd_wait(dev, true);
197 0 : if (ret < 0)
198 : break;
199 :
200 0 : ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
201 0 : if (ret < 0)
202 : break;
203 :
204 0 : skip = pos & 3;
205 0 : for (i = 0; i < sizeof(u32); i++) {
206 0 : if (i >= skip) {
207 0 : *buf++ = val;
208 0 : if (++pos == end)
209 : break;
210 : }
211 0 : val >>= 8;
212 : }
213 : }
214 :
215 0 : mutex_unlock(&vpd->lock);
216 0 : return ret ? ret : count;
217 : }
218 :
219 0 : static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
220 : const void *arg, bool check_size)
221 : {
222 0 : struct pci_vpd *vpd = &dev->vpd;
223 : unsigned int max_len;
224 0 : const u8 *buf = arg;
225 0 : loff_t end = pos + count;
226 0 : int ret = 0;
227 :
228 0 : if (!pci_vpd_available(dev, check_size))
229 : return -ENODEV;
230 :
231 0 : if (pos < 0 || (pos & 3) || (count & 3))
232 : return -EINVAL;
233 :
234 0 : max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE;
235 :
236 0 : if (end > max_len)
237 : return -EINVAL;
238 :
239 0 : if (mutex_lock_killable(&vpd->lock))
240 : return -EINTR;
241 :
242 0 : while (pos < end) {
243 0 : ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA,
244 : get_unaligned_le32(buf));
245 0 : if (ret < 0)
246 : break;
247 0 : ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
248 0 : pos | PCI_VPD_ADDR_F);
249 0 : if (ret < 0)
250 : break;
251 :
252 0 : ret = pci_vpd_wait(dev, false);
253 0 : if (ret < 0)
254 : break;
255 :
256 0 : buf += sizeof(u32);
257 0 : pos += sizeof(u32);
258 : }
259 :
260 0 : mutex_unlock(&vpd->lock);
261 0 : return ret ? ret : count;
262 : }
263 :
264 0 : void pci_vpd_init(struct pci_dev *dev)
265 : {
266 0 : if (dev->vpd.len == PCI_VPD_SZ_INVALID)
267 : return;
268 :
269 0 : dev->vpd.cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
270 0 : mutex_init(&dev->vpd.lock);
271 : }
272 :
273 0 : static ssize_t vpd_read(struct file *filp, struct kobject *kobj,
274 : struct bin_attribute *bin_attr, char *buf, loff_t off,
275 : size_t count)
276 : {
277 0 : struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
278 :
279 0 : return pci_read_vpd(dev, off, count, buf);
280 : }
281 :
282 0 : static ssize_t vpd_write(struct file *filp, struct kobject *kobj,
283 : struct bin_attribute *bin_attr, char *buf, loff_t off,
284 : size_t count)
285 : {
286 0 : struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj));
287 :
288 0 : return pci_write_vpd(dev, off, count, buf);
289 : }
290 : static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0);
291 :
292 : static struct bin_attribute *vpd_attrs[] = {
293 : &bin_attr_vpd,
294 : NULL,
295 : };
296 :
297 0 : static umode_t vpd_attr_is_visible(struct kobject *kobj,
298 : struct bin_attribute *a, int n)
299 : {
300 0 : struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
301 :
302 0 : if (!pdev->vpd.cap)
303 : return 0;
304 :
305 0 : return a->attr.mode;
306 : }
307 :
308 : const struct attribute_group pci_dev_vpd_attr_group = {
309 : .bin_attrs = vpd_attrs,
310 : .is_bin_visible = vpd_attr_is_visible,
311 : };
312 :
313 0 : void *pci_vpd_alloc(struct pci_dev *dev, unsigned int *size)
314 : {
315 : unsigned int len;
316 : void *buf;
317 : int cnt;
318 :
319 0 : if (!pci_vpd_available(dev, true))
320 : return ERR_PTR(-ENODEV);
321 :
322 0 : len = dev->vpd.len;
323 0 : buf = kmalloc(len, GFP_KERNEL);
324 0 : if (!buf)
325 : return ERR_PTR(-ENOMEM);
326 :
327 0 : cnt = pci_read_vpd(dev, 0, len, buf);
328 0 : if (cnt != len) {
329 0 : kfree(buf);
330 0 : return ERR_PTR(-EIO);
331 : }
332 :
333 0 : if (size)
334 0 : *size = len;
335 :
336 : return buf;
337 : }
338 : EXPORT_SYMBOL_GPL(pci_vpd_alloc);
339 :
340 : static int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt, unsigned int *size)
341 : {
342 0 : int i = 0;
343 :
344 : /* look for LRDT tags only, end tag is the only SRDT tag */
345 0 : while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) {
346 0 : unsigned int lrdt_len = pci_vpd_lrdt_size(buf + i);
347 0 : u8 tag = buf[i];
348 :
349 0 : i += PCI_VPD_LRDT_TAG_SIZE;
350 0 : if (tag == rdt) {
351 0 : if (i + lrdt_len > len)
352 0 : lrdt_len = len - i;
353 0 : if (size)
354 0 : *size = lrdt_len;
355 : return i;
356 : }
357 :
358 0 : i += lrdt_len;
359 : }
360 :
361 : return -ENOENT;
362 : }
363 :
364 0 : int pci_vpd_find_id_string(const u8 *buf, unsigned int len, unsigned int *size)
365 : {
366 0 : return pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_ID_STRING, size);
367 : }
368 : EXPORT_SYMBOL_GPL(pci_vpd_find_id_string);
369 :
370 : static int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off,
371 : unsigned int len, const char *kw)
372 : {
373 : int i;
374 :
375 0 : for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) {
376 0 : if (buf[i + 0] == kw[0] &&
377 0 : buf[i + 1] == kw[1])
378 : return i;
379 :
380 0 : i += PCI_VPD_INFO_FLD_HDR_SIZE +
381 0 : pci_vpd_info_field_size(&buf[i]);
382 : }
383 :
384 : return -ENOENT;
385 : }
386 :
387 0 : static ssize_t __pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf,
388 : bool check_size)
389 : {
390 : ssize_t ret;
391 :
392 0 : if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
393 0 : dev = pci_get_func0_dev(dev);
394 0 : if (!dev)
395 : return -ENODEV;
396 :
397 0 : ret = pci_vpd_read(dev, pos, count, buf, check_size);
398 0 : pci_dev_put(dev);
399 0 : return ret;
400 : }
401 :
402 0 : return pci_vpd_read(dev, pos, count, buf, check_size);
403 : }
404 :
405 : /**
406 : * pci_read_vpd - Read one entry from Vital Product Data
407 : * @dev: PCI device struct
408 : * @pos: offset in VPD space
409 : * @count: number of bytes to read
410 : * @buf: pointer to where to store result
411 : */
412 0 : ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
413 : {
414 0 : return __pci_read_vpd(dev, pos, count, buf, true);
415 : }
416 : EXPORT_SYMBOL(pci_read_vpd);
417 :
418 : /* Same, but allow to access any address */
419 0 : ssize_t pci_read_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
420 : {
421 0 : return __pci_read_vpd(dev, pos, count, buf, false);
422 : }
423 : EXPORT_SYMBOL(pci_read_vpd_any);
424 :
425 0 : static ssize_t __pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count,
426 : const void *buf, bool check_size)
427 : {
428 : ssize_t ret;
429 :
430 0 : if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) {
431 0 : dev = pci_get_func0_dev(dev);
432 0 : if (!dev)
433 : return -ENODEV;
434 :
435 0 : ret = pci_vpd_write(dev, pos, count, buf, check_size);
436 0 : pci_dev_put(dev);
437 0 : return ret;
438 : }
439 :
440 0 : return pci_vpd_write(dev, pos, count, buf, check_size);
441 : }
442 :
443 : /**
444 : * pci_write_vpd - Write entry to Vital Product Data
445 : * @dev: PCI device struct
446 : * @pos: offset in VPD space
447 : * @count: number of bytes to write
448 : * @buf: buffer containing write data
449 : */
450 0 : ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
451 : {
452 0 : return __pci_write_vpd(dev, pos, count, buf, true);
453 : }
454 : EXPORT_SYMBOL(pci_write_vpd);
455 :
456 : /* Same, but allow to access any address */
457 0 : ssize_t pci_write_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
458 : {
459 0 : return __pci_write_vpd(dev, pos, count, buf, false);
460 : }
461 : EXPORT_SYMBOL(pci_write_vpd_any);
462 :
463 0 : int pci_vpd_find_ro_info_keyword(const void *buf, unsigned int len,
464 : const char *kw, unsigned int *size)
465 : {
466 : int ro_start, infokw_start;
467 : unsigned int ro_len, infokw_size;
468 :
469 0 : ro_start = pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_RO_DATA, &ro_len);
470 0 : if (ro_start < 0)
471 : return ro_start;
472 :
473 0 : infokw_start = pci_vpd_find_info_keyword(buf, ro_start, ro_len, kw);
474 0 : if (infokw_start < 0)
475 : return infokw_start;
476 :
477 0 : infokw_size = pci_vpd_info_field_size(buf + infokw_start);
478 0 : infokw_start += PCI_VPD_INFO_FLD_HDR_SIZE;
479 :
480 0 : if (infokw_start + infokw_size > len)
481 : return -EINVAL;
482 :
483 0 : if (size)
484 0 : *size = infokw_size;
485 :
486 : return infokw_start;
487 : }
488 : EXPORT_SYMBOL_GPL(pci_vpd_find_ro_info_keyword);
489 :
490 0 : int pci_vpd_check_csum(const void *buf, unsigned int len)
491 : {
492 0 : const u8 *vpd = buf;
493 : unsigned int size;
494 0 : u8 csum = 0;
495 : int rv_start;
496 :
497 0 : rv_start = pci_vpd_find_ro_info_keyword(buf, len, PCI_VPD_RO_KEYWORD_CHKSUM, &size);
498 0 : if (rv_start == -ENOENT) /* no checksum in VPD */
499 : return 1;
500 0 : else if (rv_start < 0)
501 : return rv_start;
502 :
503 0 : if (!size)
504 : return -EINVAL;
505 :
506 0 : while (rv_start >= 0)
507 0 : csum += vpd[rv_start--];
508 :
509 0 : return csum ? -EILSEQ : 0;
510 : }
511 : EXPORT_SYMBOL_GPL(pci_vpd_check_csum);
512 :
513 : #ifdef CONFIG_PCI_QUIRKS
514 : /*
515 : * Quirk non-zero PCI functions to route VPD access through function 0 for
516 : * devices that share VPD resources between functions. The functions are
517 : * expected to be identical devices.
518 : */
519 0 : static void quirk_f0_vpd_link(struct pci_dev *dev)
520 : {
521 : struct pci_dev *f0;
522 :
523 0 : if (!PCI_FUNC(dev->devfn))
524 : return;
525 :
526 0 : f0 = pci_get_func0_dev(dev);
527 0 : if (!f0)
528 : return;
529 :
530 0 : if (f0->vpd.cap && dev->class == f0->class &&
531 0 : dev->vendor == f0->vendor && dev->device == f0->device)
532 0 : dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0;
533 :
534 0 : pci_dev_put(f0);
535 : }
536 : DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID,
537 : PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link);
538 :
539 : /*
540 : * If a device follows the VPD format spec, the PCI core will not read or
541 : * write past the VPD End Tag. But some vendors do not follow the VPD
542 : * format spec, so we can't tell how much data is safe to access. Devices
543 : * may behave unpredictably if we access too much. Blacklist these devices
544 : * so we don't touch VPD at all.
545 : */
546 0 : static void quirk_blacklist_vpd(struct pci_dev *dev)
547 : {
548 0 : dev->vpd.len = PCI_VPD_SZ_INVALID;
549 0 : pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n");
550 0 : }
551 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd);
552 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd);
553 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd);
554 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd);
555 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd);
556 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd);
557 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd);
558 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd);
559 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd);
560 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd);
561 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd);
562 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd);
563 : /*
564 : * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port
565 : * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class.
566 : */
567 : DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031,
568 : PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd);
569 :
570 0 : static void quirk_chelsio_extend_vpd(struct pci_dev *dev)
571 : {
572 0 : int chip = (dev->device & 0xf000) >> 12;
573 0 : int func = (dev->device & 0x0f00) >> 8;
574 0 : int prod = (dev->device & 0x00ff) >> 0;
575 :
576 : /*
577 : * If this is a T3-based adapter, there's a 1KB VPD area at offset
578 : * 0xc00 which contains the preferred VPD values. If this is a T4 or
579 : * later based adapter, the special VPD is at offset 0x400 for the
580 : * Physical Functions (the SR-IOV Virtual Functions have no VPD
581 : * Capabilities). The PCI VPD Access core routines will normally
582 : * compute the size of the VPD by parsing the VPD Data Structure at
583 : * offset 0x000. This will result in silent failures when attempting
584 : * to accesses these other VPD areas which are beyond those computed
585 : * limits.
586 : */
587 0 : if (chip == 0x0 && prod >= 0x20)
588 0 : dev->vpd.len = 8192;
589 0 : else if (chip >= 0x4 && func < 0x8)
590 0 : dev->vpd.len = 2048;
591 0 : }
592 :
593 : DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID,
594 : quirk_chelsio_extend_vpd);
595 :
596 : #endif
|