Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * fs/eventpoll.c (Efficient event retrieval implementation)
4 : * Copyright (C) 2001,...,2009 Davide Libenzi
5 : *
6 : * Davide Libenzi <davidel@xmailserver.org>
7 : */
8 :
9 : #include <linux/init.h>
10 : #include <linux/kernel.h>
11 : #include <linux/sched/signal.h>
12 : #include <linux/fs.h>
13 : #include <linux/file.h>
14 : #include <linux/signal.h>
15 : #include <linux/errno.h>
16 : #include <linux/mm.h>
17 : #include <linux/slab.h>
18 : #include <linux/poll.h>
19 : #include <linux/string.h>
20 : #include <linux/list.h>
21 : #include <linux/hash.h>
22 : #include <linux/spinlock.h>
23 : #include <linux/syscalls.h>
24 : #include <linux/rbtree.h>
25 : #include <linux/wait.h>
26 : #include <linux/eventpoll.h>
27 : #include <linux/mount.h>
28 : #include <linux/bitops.h>
29 : #include <linux/mutex.h>
30 : #include <linux/anon_inodes.h>
31 : #include <linux/device.h>
32 : #include <linux/uaccess.h>
33 : #include <asm/io.h>
34 : #include <asm/mman.h>
35 : #include <linux/atomic.h>
36 : #include <linux/proc_fs.h>
37 : #include <linux/seq_file.h>
38 : #include <linux/compat.h>
39 : #include <linux/rculist.h>
40 : #include <net/busy_poll.h>
41 :
42 : /*
43 : * LOCKING:
44 : * There are three level of locking required by epoll :
45 : *
46 : * 1) epnested_mutex (mutex)
47 : * 2) ep->mtx (mutex)
48 : * 3) ep->lock (rwlock)
49 : *
50 : * The acquire order is the one listed above, from 1 to 3.
51 : * We need a rwlock (ep->lock) because we manipulate objects
52 : * from inside the poll callback, that might be triggered from
53 : * a wake_up() that in turn might be called from IRQ context.
54 : * So we can't sleep inside the poll callback and hence we need
55 : * a spinlock. During the event transfer loop (from kernel to
56 : * user space) we could end up sleeping due a copy_to_user(), so
57 : * we need a lock that will allow us to sleep. This lock is a
58 : * mutex (ep->mtx). It is acquired during the event transfer loop,
59 : * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 : * The epnested_mutex is acquired when inserting an epoll fd onto another
61 : * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 : * insertion does not create a cycle of epoll file descriptors, which
63 : * could lead to deadlock. We need a global mutex to prevent two
64 : * simultaneous inserts (A into B and B into A) from racing and
65 : * constructing a cycle without either insert observing that it is
66 : * going to.
67 : * It is necessary to acquire multiple "ep->mtx"es at once in the
68 : * case when one epoll fd is added to another. In this case, we
69 : * always acquire the locks in the order of nesting (i.e. after
70 : * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 : * before e2->mtx). Since we disallow cycles of epoll file
72 : * descriptors, this ensures that the mutexes are well-ordered. In
73 : * order to communicate this nesting to lockdep, when walking a tree
74 : * of epoll file descriptors, we use the current recursion depth as
75 : * the lockdep subkey.
76 : * It is possible to drop the "ep->mtx" and to use the global
77 : * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 : * but having "ep->mtx" will make the interface more scalable.
79 : * Events that require holding "epnested_mutex" are very rare, while for
80 : * normal operations the epoll private "ep->mtx" will guarantee
81 : * a better scalability.
82 : */
83 :
84 : /* Epoll private bits inside the event mask */
85 : #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86 :
87 : #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88 :
89 : #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 : EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91 :
92 : /* Maximum number of nesting allowed inside epoll sets */
93 : #define EP_MAX_NESTS 4
94 :
95 : #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 :
97 : #define EP_UNACTIVE_PTR ((void *) -1L)
98 :
99 : #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 :
101 : struct epoll_filefd {
102 : struct file *file;
103 : int fd;
104 : } __packed;
105 :
106 : /* Wait structure used by the poll hooks */
107 : struct eppoll_entry {
108 : /* List header used to link this structure to the "struct epitem" */
109 : struct eppoll_entry *next;
110 :
111 : /* The "base" pointer is set to the container "struct epitem" */
112 : struct epitem *base;
113 :
114 : /*
115 : * Wait queue item that will be linked to the target file wait
116 : * queue head.
117 : */
118 : wait_queue_entry_t wait;
119 :
120 : /* The wait queue head that linked the "wait" wait queue item */
121 : wait_queue_head_t *whead;
122 : };
123 :
124 : /*
125 : * Each file descriptor added to the eventpoll interface will
126 : * have an entry of this type linked to the "rbr" RB tree.
127 : * Avoid increasing the size of this struct, there can be many thousands
128 : * of these on a server and we do not want this to take another cache line.
129 : */
130 : struct epitem {
131 : union {
132 : /* RB tree node links this structure to the eventpoll RB tree */
133 : struct rb_node rbn;
134 : /* Used to free the struct epitem */
135 : struct rcu_head rcu;
136 : };
137 :
138 : /* List header used to link this structure to the eventpoll ready list */
139 : struct list_head rdllink;
140 :
141 : /*
142 : * Works together "struct eventpoll"->ovflist in keeping the
143 : * single linked chain of items.
144 : */
145 : struct epitem *next;
146 :
147 : /* The file descriptor information this item refers to */
148 : struct epoll_filefd ffd;
149 :
150 : /*
151 : * Protected by file->f_lock, true for to-be-released epitem already
152 : * removed from the "struct file" items list; together with
153 : * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 : */
155 : bool dying;
156 :
157 : /* List containing poll wait queues */
158 : struct eppoll_entry *pwqlist;
159 :
160 : /* The "container" of this item */
161 : struct eventpoll *ep;
162 :
163 : /* List header used to link this item to the "struct file" items list */
164 : struct hlist_node fllink;
165 :
166 : /* wakeup_source used when EPOLLWAKEUP is set */
167 : struct wakeup_source __rcu *ws;
168 :
169 : /* The structure that describe the interested events and the source fd */
170 : struct epoll_event event;
171 : };
172 :
173 : /*
174 : * This structure is stored inside the "private_data" member of the file
175 : * structure and represents the main data structure for the eventpoll
176 : * interface.
177 : */
178 : struct eventpoll {
179 : /*
180 : * This mutex is used to ensure that files are not removed
181 : * while epoll is using them. This is held during the event
182 : * collection loop, the file cleanup path, the epoll file exit
183 : * code and the ctl operations.
184 : */
185 : struct mutex mtx;
186 :
187 : /* Wait queue used by sys_epoll_wait() */
188 : wait_queue_head_t wq;
189 :
190 : /* Wait queue used by file->poll() */
191 : wait_queue_head_t poll_wait;
192 :
193 : /* List of ready file descriptors */
194 : struct list_head rdllist;
195 :
196 : /* Lock which protects rdllist and ovflist */
197 : rwlock_t lock;
198 :
199 : /* RB tree root used to store monitored fd structs */
200 : struct rb_root_cached rbr;
201 :
202 : /*
203 : * This is a single linked list that chains all the "struct epitem" that
204 : * happened while transferring ready events to userspace w/out
205 : * holding ->lock.
206 : */
207 : struct epitem *ovflist;
208 :
209 : /* wakeup_source used when ep_scan_ready_list is running */
210 : struct wakeup_source *ws;
211 :
212 : /* The user that created the eventpoll descriptor */
213 : struct user_struct *user;
214 :
215 : struct file *file;
216 :
217 : /* used to optimize loop detection check */
218 : u64 gen;
219 : struct hlist_head refs;
220 :
221 : /*
222 : * usage count, used together with epitem->dying to
223 : * orchestrate the disposal of this struct
224 : */
225 : refcount_t refcount;
226 :
227 : #ifdef CONFIG_NET_RX_BUSY_POLL
228 : /* used to track busy poll napi_id */
229 : unsigned int napi_id;
230 : #endif
231 :
232 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 : /* tracks wakeup nests for lockdep validation */
234 : u8 nests;
235 : #endif
236 : };
237 :
238 : /* Wrapper struct used by poll queueing */
239 : struct ep_pqueue {
240 : poll_table pt;
241 : struct epitem *epi;
242 : };
243 :
244 : /*
245 : * Configuration options available inside /proc/sys/fs/epoll/
246 : */
247 : /* Maximum number of epoll watched descriptors, per user */
248 : static long max_user_watches __read_mostly;
249 :
250 : /* Used for cycles detection */
251 : static DEFINE_MUTEX(epnested_mutex);
252 :
253 : static u64 loop_check_gen = 0;
254 :
255 : /* Used to check for epoll file descriptor inclusion loops */
256 : static struct eventpoll *inserting_into;
257 :
258 : /* Slab cache used to allocate "struct epitem" */
259 : static struct kmem_cache *epi_cache __read_mostly;
260 :
261 : /* Slab cache used to allocate "struct eppoll_entry" */
262 : static struct kmem_cache *pwq_cache __read_mostly;
263 :
264 : /*
265 : * List of files with newly added links, where we may need to limit the number
266 : * of emanating paths. Protected by the epnested_mutex.
267 : */
268 : struct epitems_head {
269 : struct hlist_head epitems;
270 : struct epitems_head *next;
271 : };
272 : static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273 :
274 : static struct kmem_cache *ephead_cache __read_mostly;
275 :
276 : static inline void free_ephead(struct epitems_head *head)
277 : {
278 0 : if (head)
279 0 : kmem_cache_free(ephead_cache, head);
280 : }
281 :
282 : static void list_file(struct file *file)
283 : {
284 : struct epitems_head *head;
285 :
286 0 : head = container_of(file->f_ep, struct epitems_head, epitems);
287 0 : if (!head->next) {
288 0 : head->next = tfile_check_list;
289 0 : tfile_check_list = head;
290 : }
291 : }
292 :
293 0 : static void unlist_file(struct epitems_head *head)
294 : {
295 0 : struct epitems_head *to_free = head;
296 0 : struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 0 : if (p) {
298 0 : struct epitem *epi= container_of(p, struct epitem, fllink);
299 0 : spin_lock(&epi->ffd.file->f_lock);
300 0 : if (!hlist_empty(&head->epitems))
301 0 : to_free = NULL;
302 0 : head->next = NULL;
303 0 : spin_unlock(&epi->ffd.file->f_lock);
304 : }
305 0 : free_ephead(to_free);
306 0 : }
307 :
308 : #ifdef CONFIG_SYSCTL
309 :
310 : #include <linux/sysctl.h>
311 :
312 : static long long_zero;
313 : static long long_max = LONG_MAX;
314 :
315 : static struct ctl_table epoll_table[] = {
316 : {
317 : .procname = "max_user_watches",
318 : .data = &max_user_watches,
319 : .maxlen = sizeof(max_user_watches),
320 : .mode = 0644,
321 : .proc_handler = proc_doulongvec_minmax,
322 : .extra1 = &long_zero,
323 : .extra2 = &long_max,
324 : },
325 : { }
326 : };
327 :
328 1 : static void __init epoll_sysctls_init(void)
329 : {
330 1 : register_sysctl("fs/epoll", epoll_table);
331 1 : }
332 : #else
333 : #define epoll_sysctls_init() do { } while (0)
334 : #endif /* CONFIG_SYSCTL */
335 :
336 : static const struct file_operations eventpoll_fops;
337 :
338 : static inline int is_file_epoll(struct file *f)
339 : {
340 0 : return f->f_op == &eventpoll_fops;
341 : }
342 :
343 : /* Setup the structure that is used as key for the RB tree */
344 : static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 : struct file *file, int fd)
346 : {
347 0 : ffd->file = file;
348 0 : ffd->fd = fd;
349 : }
350 :
351 : /* Compare RB tree keys */
352 : static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 : struct epoll_filefd *p2)
354 : {
355 0 : return (p1->file > p2->file ? +1:
356 0 : (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 : }
358 :
359 : /* Tells us if the item is currently linked */
360 : static inline int ep_is_linked(struct epitem *epi)
361 : {
362 0 : return !list_empty(&epi->rdllink);
363 : }
364 :
365 : static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 : {
367 0 : return container_of(p, struct eppoll_entry, wait);
368 : }
369 :
370 : /* Get the "struct epitem" from a wait queue pointer */
371 : static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 : {
373 0 : return container_of(p, struct eppoll_entry, wait)->base;
374 : }
375 :
376 : /**
377 : * ep_events_available - Checks if ready events might be available.
378 : *
379 : * @ep: Pointer to the eventpoll context.
380 : *
381 : * Return: a value different than %zero if ready events are available,
382 : * or %zero otherwise.
383 : */
384 : static inline int ep_events_available(struct eventpoll *ep)
385 : {
386 0 : return !list_empty_careful(&ep->rdllist) ||
387 0 : READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 : }
389 :
390 : #ifdef CONFIG_NET_RX_BUSY_POLL
391 : static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 : {
393 : struct eventpoll *ep = p;
394 :
395 : return ep_events_available(ep) || busy_loop_timeout(start_time);
396 : }
397 :
398 : /*
399 : * Busy poll if globally on and supporting sockets found && no events,
400 : * busy loop will return if need_resched or ep_events_available.
401 : *
402 : * we must do our busy polling with irqs enabled
403 : */
404 : static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 : {
406 : unsigned int napi_id = READ_ONCE(ep->napi_id);
407 :
408 : if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 : napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 : BUSY_POLL_BUDGET);
411 : if (ep_events_available(ep))
412 : return true;
413 : /*
414 : * Busy poll timed out. Drop NAPI ID for now, we can add
415 : * it back in when we have moved a socket with a valid NAPI
416 : * ID onto the ready list.
417 : */
418 : ep->napi_id = 0;
419 : return false;
420 : }
421 : return false;
422 : }
423 :
424 : /*
425 : * Set epoll busy poll NAPI ID from sk.
426 : */
427 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 : {
429 : struct eventpoll *ep;
430 : unsigned int napi_id;
431 : struct socket *sock;
432 : struct sock *sk;
433 :
434 : if (!net_busy_loop_on())
435 : return;
436 :
437 : sock = sock_from_file(epi->ffd.file);
438 : if (!sock)
439 : return;
440 :
441 : sk = sock->sk;
442 : if (!sk)
443 : return;
444 :
445 : napi_id = READ_ONCE(sk->sk_napi_id);
446 : ep = epi->ep;
447 :
448 : /* Non-NAPI IDs can be rejected
449 : * or
450 : * Nothing to do if we already have this ID
451 : */
452 : if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 : return;
454 :
455 : /* record NAPI ID for use in next busy poll */
456 : ep->napi_id = napi_id;
457 : }
458 :
459 : #else
460 :
461 : static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 : {
463 : return false;
464 : }
465 :
466 : static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 : {
468 : }
469 :
470 : #endif /* CONFIG_NET_RX_BUSY_POLL */
471 :
472 : /*
473 : * As described in commit 0ccf831cb lockdep: annotate epoll
474 : * the use of wait queues used by epoll is done in a very controlled
475 : * manner. Wake ups can nest inside each other, but are never done
476 : * with the same locking. For example:
477 : *
478 : * dfd = socket(...);
479 : * efd1 = epoll_create();
480 : * efd2 = epoll_create();
481 : * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 : * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 : *
484 : * When a packet arrives to the device underneath "dfd", the net code will
485 : * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 : * callback wakeup entry on that queue, and the wake_up() performed by the
487 : * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 : * (efd1) notices that it may have some event ready, so it needs to wake up
489 : * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 : * that ends up in another wake_up(), after having checked about the
491 : * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 : * stack blasting.
493 : *
494 : * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 : * this special case of epoll.
496 : */
497 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 :
499 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 : unsigned pollflags)
501 : {
502 : struct eventpoll *ep_src;
503 : unsigned long flags;
504 : u8 nests = 0;
505 :
506 : /*
507 : * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 : * it might be natural to create a per-cpu nest count. However, since
509 : * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 : * schedule() in the -rt kernel, the per-cpu variable are no longer
511 : * protected. Thus, we are introducing a per eventpoll nest field.
512 : * If we are not being call from ep_poll_callback(), epi is NULL and
513 : * we are at the first level of nesting, 0. Otherwise, we are being
514 : * called from ep_poll_callback() and if a previous wakeup source is
515 : * not an epoll file itself, we are at depth 1 since the wakeup source
516 : * is depth 0. If the wakeup source is a previous epoll file in the
517 : * wakeup chain then we use its nests value and record ours as
518 : * nests + 1. The previous epoll file nests value is stable since its
519 : * already holding its own poll_wait.lock.
520 : */
521 : if (epi) {
522 : if ((is_file_epoll(epi->ffd.file))) {
523 : ep_src = epi->ffd.file->private_data;
524 : nests = ep_src->nests;
525 : } else {
526 : nests = 1;
527 : }
528 : }
529 : spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 : ep->nests = nests + 1;
531 : wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 : ep->nests = 0;
533 : spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 : }
535 :
536 : #else
537 :
538 : static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 : unsigned pollflags)
540 : {
541 0 : wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 : }
543 :
544 : #endif
545 :
546 : static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 : {
548 : wait_queue_head_t *whead;
549 :
550 : rcu_read_lock();
551 : /*
552 : * If it is cleared by POLLFREE, it should be rcu-safe.
553 : * If we read NULL we need a barrier paired with
554 : * smp_store_release() in ep_poll_callback(), otherwise
555 : * we rely on whead->lock.
556 : */
557 0 : whead = smp_load_acquire(&pwq->whead);
558 0 : if (whead)
559 0 : remove_wait_queue(whead, &pwq->wait);
560 : rcu_read_unlock();
561 : }
562 :
563 : /*
564 : * This function unregisters poll callbacks from the associated file
565 : * descriptor. Must be called with "mtx" held.
566 : */
567 0 : static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 : {
569 0 : struct eppoll_entry **p = &epi->pwqlist;
570 : struct eppoll_entry *pwq;
571 :
572 0 : while ((pwq = *p) != NULL) {
573 0 : *p = pwq->next;
574 0 : ep_remove_wait_queue(pwq);
575 0 : kmem_cache_free(pwq_cache, pwq);
576 : }
577 0 : }
578 :
579 : /* call only when ep->mtx is held */
580 : static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 : {
582 0 : return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 : }
584 :
585 : /* call only when ep->mtx is held */
586 : static inline void ep_pm_stay_awake(struct epitem *epi)
587 : {
588 0 : struct wakeup_source *ws = ep_wakeup_source(epi);
589 :
590 0 : if (ws)
591 0 : __pm_stay_awake(ws);
592 : }
593 :
594 : static inline bool ep_has_wakeup_source(struct epitem *epi)
595 : {
596 0 : return rcu_access_pointer(epi->ws) ? true : false;
597 : }
598 :
599 : /* call when ep->mtx cannot be held (ep_poll_callback) */
600 : static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 : {
602 : struct wakeup_source *ws;
603 :
604 : rcu_read_lock();
605 0 : ws = rcu_dereference(epi->ws);
606 0 : if (ws)
607 0 : __pm_stay_awake(ws);
608 : rcu_read_unlock();
609 : }
610 :
611 :
612 : /*
613 : * ep->mutex needs to be held because we could be hit by
614 : * eventpoll_release_file() and epoll_ctl().
615 : */
616 0 : static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 : {
618 : /*
619 : * Steal the ready list, and re-init the original one to the
620 : * empty list. Also, set ep->ovflist to NULL so that events
621 : * happening while looping w/out locks, are not lost. We cannot
622 : * have the poll callback to queue directly on ep->rdllist,
623 : * because we want the "sproc" callback to be able to do it
624 : * in a lockless way.
625 : */
626 : lockdep_assert_irqs_enabled();
627 0 : write_lock_irq(&ep->lock);
628 0 : list_splice_init(&ep->rdllist, txlist);
629 0 : WRITE_ONCE(ep->ovflist, NULL);
630 0 : write_unlock_irq(&ep->lock);
631 0 : }
632 :
633 0 : static void ep_done_scan(struct eventpoll *ep,
634 : struct list_head *txlist)
635 : {
636 : struct epitem *epi, *nepi;
637 :
638 0 : write_lock_irq(&ep->lock);
639 : /*
640 : * During the time we spent inside the "sproc" callback, some
641 : * other events might have been queued by the poll callback.
642 : * We re-insert them inside the main ready-list here.
643 : */
644 0 : for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 0 : nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 : /*
647 : * We need to check if the item is already in the list.
648 : * During the "sproc" callback execution time, items are
649 : * queued into ->ovflist but the "txlist" might already
650 : * contain them, and the list_splice() below takes care of them.
651 : */
652 0 : if (!ep_is_linked(epi)) {
653 : /*
654 : * ->ovflist is LIFO, so we have to reverse it in order
655 : * to keep in FIFO.
656 : */
657 0 : list_add(&epi->rdllink, &ep->rdllist);
658 : ep_pm_stay_awake(epi);
659 : }
660 : }
661 : /*
662 : * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 : * releasing the lock, events will be queued in the normal way inside
664 : * ep->rdllist.
665 : */
666 0 : WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667 :
668 : /*
669 : * Quickly re-inject items left on "txlist".
670 : */
671 0 : list_splice(txlist, &ep->rdllist);
672 0 : __pm_relax(ep->ws);
673 :
674 0 : if (!list_empty(&ep->rdllist)) {
675 0 : if (waitqueue_active(&ep->wq))
676 0 : wake_up(&ep->wq);
677 : }
678 :
679 0 : write_unlock_irq(&ep->lock);
680 0 : }
681 :
682 0 : static void epi_rcu_free(struct rcu_head *head)
683 : {
684 0 : struct epitem *epi = container_of(head, struct epitem, rcu);
685 0 : kmem_cache_free(epi_cache, epi);
686 0 : }
687 :
688 : static void ep_get(struct eventpoll *ep)
689 : {
690 0 : refcount_inc(&ep->refcount);
691 : }
692 :
693 : /*
694 : * Returns true if the event poll can be disposed
695 : */
696 0 : static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 : {
698 0 : if (!refcount_dec_and_test(&ep->refcount))
699 : return false;
700 :
701 0 : WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 : return true;
703 : }
704 :
705 0 : static void ep_free(struct eventpoll *ep)
706 : {
707 0 : mutex_destroy(&ep->mtx);
708 0 : free_uid(ep->user);
709 0 : wakeup_source_unregister(ep->ws);
710 0 : kfree(ep);
711 0 : }
712 :
713 : /*
714 : * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715 : * all the associated resources. Must be called with "mtx" held.
716 : * If the dying flag is set, do the removal only if force is true.
717 : * This prevents ep_clear_and_put() from dropping all the ep references
718 : * while running concurrently with eventpoll_release_file().
719 : * Returns true if the eventpoll can be disposed.
720 : */
721 0 : static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 : {
723 0 : struct file *file = epi->ffd.file;
724 : struct epitems_head *to_free;
725 : struct hlist_head *head;
726 :
727 : lockdep_assert_irqs_enabled();
728 :
729 : /*
730 : * Removes poll wait queue hooks.
731 : */
732 0 : ep_unregister_pollwait(ep, epi);
733 :
734 : /* Remove the current item from the list of epoll hooks */
735 0 : spin_lock(&file->f_lock);
736 0 : if (epi->dying && !force) {
737 0 : spin_unlock(&file->f_lock);
738 0 : return false;
739 : }
740 :
741 0 : to_free = NULL;
742 0 : head = file->f_ep;
743 0 : if (head->first == &epi->fllink && !epi->fllink.next) {
744 0 : file->f_ep = NULL;
745 0 : if (!is_file_epoll(file)) {
746 : struct epitems_head *v;
747 0 : v = container_of(head, struct epitems_head, epitems);
748 0 : if (!smp_load_acquire(&v->next))
749 0 : to_free = v;
750 : }
751 : }
752 0 : hlist_del_rcu(&epi->fllink);
753 0 : spin_unlock(&file->f_lock);
754 0 : free_ephead(to_free);
755 :
756 0 : rb_erase_cached(&epi->rbn, &ep->rbr);
757 :
758 0 : write_lock_irq(&ep->lock);
759 0 : if (ep_is_linked(epi))
760 0 : list_del_init(&epi->rdllink);
761 0 : write_unlock_irq(&ep->lock);
762 :
763 0 : wakeup_source_unregister(ep_wakeup_source(epi));
764 : /*
765 : * At this point it is safe to free the eventpoll item. Use the union
766 : * field epi->rcu, since we are trying to minimize the size of
767 : * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 : * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 : * use of the rbn field.
770 : */
771 0 : call_rcu(&epi->rcu, epi_rcu_free);
772 :
773 0 : percpu_counter_dec(&ep->user->epoll_watches);
774 0 : return ep_refcount_dec_and_test(ep);
775 : }
776 :
777 : /*
778 : * ep_remove variant for callers owing an additional reference to the ep
779 : */
780 0 : static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 : {
782 0 : WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 0 : }
784 :
785 0 : static void ep_clear_and_put(struct eventpoll *ep)
786 : {
787 : struct rb_node *rbp, *next;
788 : struct epitem *epi;
789 : bool dispose;
790 :
791 : /* We need to release all tasks waiting for these file */
792 0 : if (waitqueue_active(&ep->poll_wait))
793 0 : ep_poll_safewake(ep, NULL, 0);
794 :
795 0 : mutex_lock(&ep->mtx);
796 :
797 : /*
798 : * Walks through the whole tree by unregistering poll callbacks.
799 : */
800 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 0 : epi = rb_entry(rbp, struct epitem, rbn);
802 :
803 0 : ep_unregister_pollwait(ep, epi);
804 0 : cond_resched();
805 : }
806 :
807 : /*
808 : * Walks through the whole tree and try to free each "struct epitem".
809 : * Note that ep_remove_safe() will not remove the epitem in case of a
810 : * racing eventpoll_release_file(); the latter will do the removal.
811 : * At this point we are sure no poll callbacks will be lingering around.
812 : * Since we still own a reference to the eventpoll struct, the loop can't
813 : * dispose it.
814 : */
815 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 0 : next = rb_next(rbp);
817 0 : epi = rb_entry(rbp, struct epitem, rbn);
818 0 : ep_remove_safe(ep, epi);
819 0 : cond_resched();
820 : }
821 :
822 0 : dispose = ep_refcount_dec_and_test(ep);
823 0 : mutex_unlock(&ep->mtx);
824 :
825 0 : if (dispose)
826 0 : ep_free(ep);
827 0 : }
828 :
829 0 : static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 : {
831 0 : struct eventpoll *ep = file->private_data;
832 :
833 0 : if (ep)
834 0 : ep_clear_and_put(ep);
835 :
836 0 : return 0;
837 : }
838 :
839 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840 :
841 0 : static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 : {
843 0 : struct eventpoll *ep = file->private_data;
844 0 : LIST_HEAD(txlist);
845 : struct epitem *epi, *tmp;
846 : poll_table pt;
847 0 : __poll_t res = 0;
848 :
849 0 : init_poll_funcptr(&pt, NULL);
850 :
851 : /* Insert inside our poll wait queue */
852 0 : poll_wait(file, &ep->poll_wait, wait);
853 :
854 : /*
855 : * Proceed to find out if wanted events are really available inside
856 : * the ready list.
857 : */
858 0 : mutex_lock_nested(&ep->mtx, depth);
859 0 : ep_start_scan(ep, &txlist);
860 0 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 0 : if (ep_item_poll(epi, &pt, depth + 1)) {
862 : res = EPOLLIN | EPOLLRDNORM;
863 : break;
864 : } else {
865 : /*
866 : * Item has been dropped into the ready list by the poll
867 : * callback, but it's not actually ready, as far as
868 : * caller requested events goes. We can remove it here.
869 : */
870 0 : __pm_relax(ep_wakeup_source(epi));
871 0 : list_del_init(&epi->rdllink);
872 : }
873 : }
874 0 : ep_done_scan(ep, &txlist);
875 0 : mutex_unlock(&ep->mtx);
876 0 : return res;
877 : }
878 :
879 : /*
880 : * Differs from ep_eventpoll_poll() in that internal callers already have
881 : * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882 : * is correctly annotated.
883 : */
884 0 : static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 : int depth)
886 : {
887 0 : struct file *file = epi->ffd.file;
888 : __poll_t res;
889 :
890 0 : pt->_key = epi->event.events;
891 0 : if (!is_file_epoll(file))
892 : res = vfs_poll(file, pt);
893 : else
894 0 : res = __ep_eventpoll_poll(file, pt, depth);
895 0 : return res & epi->event.events;
896 : }
897 :
898 0 : static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
899 : {
900 0 : return __ep_eventpoll_poll(file, wait, 0);
901 : }
902 :
903 : #ifdef CONFIG_PROC_FS
904 0 : static void ep_show_fdinfo(struct seq_file *m, struct file *f)
905 : {
906 0 : struct eventpoll *ep = f->private_data;
907 : struct rb_node *rbp;
908 :
909 0 : mutex_lock(&ep->mtx);
910 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
911 0 : struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
912 0 : struct inode *inode = file_inode(epi->ffd.file);
913 :
914 0 : seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 : " pos:%lli ino:%lx sdev:%x\n",
916 : epi->ffd.fd, epi->event.events,
917 0 : (long long)epi->event.data,
918 0 : (long long)epi->ffd.file->f_pos,
919 0 : inode->i_ino, inode->i_sb->s_dev);
920 0 : if (seq_has_overflowed(m))
921 : break;
922 : }
923 0 : mutex_unlock(&ep->mtx);
924 0 : }
925 : #endif
926 :
927 : /* File callbacks that implement the eventpoll file behaviour */
928 : static const struct file_operations eventpoll_fops = {
929 : #ifdef CONFIG_PROC_FS
930 : .show_fdinfo = ep_show_fdinfo,
931 : #endif
932 : .release = ep_eventpoll_release,
933 : .poll = ep_eventpoll_poll,
934 : .llseek = noop_llseek,
935 : };
936 :
937 : /*
938 : * This is called from eventpoll_release() to unlink files from the eventpoll
939 : * interface. We need to have this facility to cleanup correctly files that are
940 : * closed without being removed from the eventpoll interface.
941 : */
942 0 : void eventpoll_release_file(struct file *file)
943 : {
944 : struct eventpoll *ep;
945 : struct epitem *epi;
946 : bool dispose;
947 :
948 : /*
949 : * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 : * touching the epitems list before eventpoll_release_file() can access
951 : * the ep->mtx.
952 : */
953 : again:
954 0 : spin_lock(&file->f_lock);
955 0 : if (file->f_ep && file->f_ep->first) {
956 0 : epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 0 : epi->dying = true;
958 0 : spin_unlock(&file->f_lock);
959 :
960 : /*
961 : * ep access is safe as we still own a reference to the ep
962 : * struct
963 : */
964 0 : ep = epi->ep;
965 0 : mutex_lock(&ep->mtx);
966 0 : dispose = __ep_remove(ep, epi, true);
967 0 : mutex_unlock(&ep->mtx);
968 :
969 0 : if (dispose)
970 0 : ep_free(ep);
971 : goto again;
972 : }
973 0 : spin_unlock(&file->f_lock);
974 0 : }
975 :
976 0 : static int ep_alloc(struct eventpoll **pep)
977 : {
978 : int error;
979 : struct user_struct *user;
980 : struct eventpoll *ep;
981 :
982 0 : user = get_current_user();
983 0 : error = -ENOMEM;
984 0 : ep = kzalloc(sizeof(*ep), GFP_KERNEL);
985 0 : if (unlikely(!ep))
986 : goto free_uid;
987 :
988 0 : mutex_init(&ep->mtx);
989 : rwlock_init(&ep->lock);
990 0 : init_waitqueue_head(&ep->wq);
991 0 : init_waitqueue_head(&ep->poll_wait);
992 0 : INIT_LIST_HEAD(&ep->rdllist);
993 0 : ep->rbr = RB_ROOT_CACHED;
994 0 : ep->ovflist = EP_UNACTIVE_PTR;
995 0 : ep->user = user;
996 0 : refcount_set(&ep->refcount, 1);
997 :
998 0 : *pep = ep;
999 :
1000 0 : return 0;
1001 :
1002 : free_uid:
1003 0 : free_uid(user);
1004 0 : return error;
1005 : }
1006 :
1007 : /*
1008 : * Search the file inside the eventpoll tree. The RB tree operations
1009 : * are protected by the "mtx" mutex, and ep_find() must be called with
1010 : * "mtx" held.
1011 : */
1012 : static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1013 : {
1014 : int kcmp;
1015 : struct rb_node *rbp;
1016 0 : struct epitem *epi, *epir = NULL;
1017 : struct epoll_filefd ffd;
1018 :
1019 0 : ep_set_ffd(&ffd, file, fd);
1020 0 : for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1021 0 : epi = rb_entry(rbp, struct epitem, rbn);
1022 0 : kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1023 0 : if (kcmp > 0)
1024 0 : rbp = rbp->rb_right;
1025 0 : else if (kcmp < 0)
1026 0 : rbp = rbp->rb_left;
1027 : else {
1028 : epir = epi;
1029 : break;
1030 : }
1031 : }
1032 :
1033 : return epir;
1034 : }
1035 :
1036 : #ifdef CONFIG_KCMP
1037 0 : static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1038 : {
1039 : struct rb_node *rbp;
1040 : struct epitem *epi;
1041 :
1042 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1043 0 : epi = rb_entry(rbp, struct epitem, rbn);
1044 0 : if (epi->ffd.fd == tfd) {
1045 0 : if (toff == 0)
1046 : return epi;
1047 : else
1048 0 : toff--;
1049 : }
1050 0 : cond_resched();
1051 : }
1052 :
1053 : return NULL;
1054 : }
1055 :
1056 0 : struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1057 : unsigned long toff)
1058 : {
1059 : struct file *file_raw;
1060 : struct eventpoll *ep;
1061 : struct epitem *epi;
1062 :
1063 0 : if (!is_file_epoll(file))
1064 : return ERR_PTR(-EINVAL);
1065 :
1066 0 : ep = file->private_data;
1067 :
1068 0 : mutex_lock(&ep->mtx);
1069 0 : epi = ep_find_tfd(ep, tfd, toff);
1070 0 : if (epi)
1071 0 : file_raw = epi->ffd.file;
1072 : else
1073 : file_raw = ERR_PTR(-ENOENT);
1074 0 : mutex_unlock(&ep->mtx);
1075 :
1076 0 : return file_raw;
1077 : }
1078 : #endif /* CONFIG_KCMP */
1079 :
1080 : /*
1081 : * Adds a new entry to the tail of the list in a lockless way, i.e.
1082 : * multiple CPUs are allowed to call this function concurrently.
1083 : *
1084 : * Beware: it is necessary to prevent any other modifications of the
1085 : * existing list until all changes are completed, in other words
1086 : * concurrent list_add_tail_lockless() calls should be protected
1087 : * with a read lock, where write lock acts as a barrier which
1088 : * makes sure all list_add_tail_lockless() calls are fully
1089 : * completed.
1090 : *
1091 : * Also an element can be locklessly added to the list only in one
1092 : * direction i.e. either to the tail or to the head, otherwise
1093 : * concurrent access will corrupt the list.
1094 : *
1095 : * Return: %false if element has been already added to the list, %true
1096 : * otherwise.
1097 : */
1098 : static inline bool list_add_tail_lockless(struct list_head *new,
1099 : struct list_head *head)
1100 : {
1101 : struct list_head *prev;
1102 :
1103 : /*
1104 : * This is simple 'new->next = head' operation, but cmpxchg()
1105 : * is used in order to detect that same element has been just
1106 : * added to the list from another CPU: the winner observes
1107 : * new->next == new.
1108 : */
1109 0 : if (!try_cmpxchg(&new->next, &new, head))
1110 : return false;
1111 :
1112 : /*
1113 : * Initially ->next of a new element must be updated with the head
1114 : * (we are inserting to the tail) and only then pointers are atomically
1115 : * exchanged. XCHG guarantees memory ordering, thus ->next should be
1116 : * updated before pointers are actually swapped and pointers are
1117 : * swapped before prev->next is updated.
1118 : */
1119 :
1120 0 : prev = xchg(&head->prev, new);
1121 :
1122 : /*
1123 : * It is safe to modify prev->next and new->prev, because a new element
1124 : * is added only to the tail and new->next is updated before XCHG.
1125 : */
1126 :
1127 0 : prev->next = new;
1128 0 : new->prev = prev;
1129 :
1130 : return true;
1131 : }
1132 :
1133 : /*
1134 : * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1135 : * i.e. multiple CPUs are allowed to call this function concurrently.
1136 : *
1137 : * Return: %false if epi element has been already chained, %true otherwise.
1138 : */
1139 : static inline bool chain_epi_lockless(struct epitem *epi)
1140 : {
1141 0 : struct eventpoll *ep = epi->ep;
1142 :
1143 : /* Fast preliminary check */
1144 0 : if (epi->next != EP_UNACTIVE_PTR)
1145 : return false;
1146 :
1147 : /* Check that the same epi has not been just chained from another CPU */
1148 0 : if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1149 : return false;
1150 :
1151 : /* Atomically exchange tail */
1152 0 : epi->next = xchg(&ep->ovflist, epi);
1153 :
1154 : return true;
1155 : }
1156 :
1157 : /*
1158 : * This is the callback that is passed to the wait queue wakeup
1159 : * mechanism. It is called by the stored file descriptors when they
1160 : * have events to report.
1161 : *
1162 : * This callback takes a read lock in order not to contend with concurrent
1163 : * events from another file descriptor, thus all modifications to ->rdllist
1164 : * or ->ovflist are lockless. Read lock is paired with the write lock from
1165 : * ep_scan_ready_list(), which stops all list modifications and guarantees
1166 : * that lists state is seen correctly.
1167 : *
1168 : * Another thing worth to mention is that ep_poll_callback() can be called
1169 : * concurrently for the same @epi from different CPUs if poll table was inited
1170 : * with several wait queues entries. Plural wakeup from different CPUs of a
1171 : * single wait queue is serialized by wq.lock, but the case when multiple wait
1172 : * queues are used should be detected accordingly. This is detected using
1173 : * cmpxchg() operation.
1174 : */
1175 0 : static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1176 : {
1177 0 : int pwake = 0;
1178 0 : struct epitem *epi = ep_item_from_wait(wait);
1179 0 : struct eventpoll *ep = epi->ep;
1180 0 : __poll_t pollflags = key_to_poll(key);
1181 : unsigned long flags;
1182 0 : int ewake = 0;
1183 :
1184 0 : read_lock_irqsave(&ep->lock, flags);
1185 :
1186 : ep_set_busy_poll_napi_id(epi);
1187 :
1188 : /*
1189 : * If the event mask does not contain any poll(2) event, we consider the
1190 : * descriptor to be disabled. This condition is likely the effect of the
1191 : * EPOLLONESHOT bit that disables the descriptor when an event is received,
1192 : * until the next EPOLL_CTL_MOD will be issued.
1193 : */
1194 0 : if (!(epi->event.events & ~EP_PRIVATE_BITS))
1195 : goto out_unlock;
1196 :
1197 : /*
1198 : * Check the events coming with the callback. At this stage, not
1199 : * every device reports the events in the "key" parameter of the
1200 : * callback. We need to be able to handle both cases here, hence the
1201 : * test for "key" != NULL before the event match test.
1202 : */
1203 0 : if (pollflags && !(pollflags & epi->event.events))
1204 : goto out_unlock;
1205 :
1206 : /*
1207 : * If we are transferring events to userspace, we can hold no locks
1208 : * (because we're accessing user memory, and because of linux f_op->poll()
1209 : * semantics). All the events that happen during that period of time are
1210 : * chained in ep->ovflist and requeued later on.
1211 : */
1212 0 : if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1213 0 : if (chain_epi_lockless(epi))
1214 : ep_pm_stay_awake_rcu(epi);
1215 0 : } else if (!ep_is_linked(epi)) {
1216 : /* In the usual case, add event to ready list. */
1217 0 : if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1218 : ep_pm_stay_awake_rcu(epi);
1219 : }
1220 :
1221 : /*
1222 : * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1223 : * wait list.
1224 : */
1225 0 : if (waitqueue_active(&ep->wq)) {
1226 0 : if ((epi->event.events & EPOLLEXCLUSIVE) &&
1227 0 : !(pollflags & POLLFREE)) {
1228 0 : switch (pollflags & EPOLLINOUT_BITS) {
1229 : case EPOLLIN:
1230 0 : if (epi->event.events & EPOLLIN)
1231 0 : ewake = 1;
1232 : break;
1233 : case EPOLLOUT:
1234 0 : if (epi->event.events & EPOLLOUT)
1235 0 : ewake = 1;
1236 : break;
1237 : case 0:
1238 0 : ewake = 1;
1239 0 : break;
1240 : }
1241 : }
1242 0 : wake_up(&ep->wq);
1243 : }
1244 0 : if (waitqueue_active(&ep->poll_wait))
1245 0 : pwake++;
1246 :
1247 : out_unlock:
1248 0 : read_unlock_irqrestore(&ep->lock, flags);
1249 :
1250 : /* We have to call this outside the lock */
1251 0 : if (pwake)
1252 0 : ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1253 :
1254 0 : if (!(epi->event.events & EPOLLEXCLUSIVE))
1255 0 : ewake = 1;
1256 :
1257 0 : if (pollflags & POLLFREE) {
1258 : /*
1259 : * If we race with ep_remove_wait_queue() it can miss
1260 : * ->whead = NULL and do another remove_wait_queue() after
1261 : * us, so we can't use __remove_wait_queue().
1262 : */
1263 0 : list_del_init(&wait->entry);
1264 : /*
1265 : * ->whead != NULL protects us from the race with
1266 : * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1267 : * takes whead->lock held by the caller. Once we nullify it,
1268 : * nothing protects ep/epi or even wait.
1269 : */
1270 0 : smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1271 : }
1272 :
1273 0 : return ewake;
1274 : }
1275 :
1276 : /*
1277 : * This is the callback that is used to add our wait queue to the
1278 : * target file wakeup lists.
1279 : */
1280 0 : static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1281 : poll_table *pt)
1282 : {
1283 0 : struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1284 0 : struct epitem *epi = epq->epi;
1285 : struct eppoll_entry *pwq;
1286 :
1287 0 : if (unlikely(!epi)) // an earlier allocation has failed
1288 : return;
1289 :
1290 0 : pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1291 0 : if (unlikely(!pwq)) {
1292 0 : epq->epi = NULL;
1293 0 : return;
1294 : }
1295 :
1296 0 : init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1297 0 : pwq->whead = whead;
1298 0 : pwq->base = epi;
1299 0 : if (epi->event.events & EPOLLEXCLUSIVE)
1300 0 : add_wait_queue_exclusive(whead, &pwq->wait);
1301 : else
1302 0 : add_wait_queue(whead, &pwq->wait);
1303 0 : pwq->next = epi->pwqlist;
1304 0 : epi->pwqlist = pwq;
1305 : }
1306 :
1307 0 : static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1308 : {
1309 : int kcmp;
1310 0 : struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1311 : struct epitem *epic;
1312 0 : bool leftmost = true;
1313 :
1314 0 : while (*p) {
1315 0 : parent = *p;
1316 0 : epic = rb_entry(parent, struct epitem, rbn);
1317 0 : kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1318 0 : if (kcmp > 0) {
1319 0 : p = &parent->rb_right;
1320 0 : leftmost = false;
1321 : } else
1322 0 : p = &parent->rb_left;
1323 : }
1324 0 : rb_link_node(&epi->rbn, parent, p);
1325 0 : rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1326 0 : }
1327 :
1328 :
1329 :
1330 : #define PATH_ARR_SIZE 5
1331 : /*
1332 : * These are the number paths of length 1 to 5, that we are allowing to emanate
1333 : * from a single file of interest. For example, we allow 1000 paths of length
1334 : * 1, to emanate from each file of interest. This essentially represents the
1335 : * potential wakeup paths, which need to be limited in order to avoid massive
1336 : * uncontrolled wakeup storms. The common use case should be a single ep which
1337 : * is connected to n file sources. In this case each file source has 1 path
1338 : * of length 1. Thus, the numbers below should be more than sufficient. These
1339 : * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1340 : * and delete can't add additional paths. Protected by the epnested_mutex.
1341 : */
1342 : static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1343 : static int path_count[PATH_ARR_SIZE];
1344 :
1345 : static int path_count_inc(int nests)
1346 : {
1347 : /* Allow an arbitrary number of depth 1 paths */
1348 0 : if (nests == 0)
1349 : return 0;
1350 :
1351 0 : if (++path_count[nests] > path_limits[nests])
1352 : return -1;
1353 : return 0;
1354 : }
1355 :
1356 : static void path_count_init(void)
1357 : {
1358 : int i;
1359 :
1360 0 : for (i = 0; i < PATH_ARR_SIZE; i++)
1361 0 : path_count[i] = 0;
1362 : }
1363 :
1364 0 : static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1365 : {
1366 0 : int error = 0;
1367 : struct epitem *epi;
1368 :
1369 0 : if (depth > EP_MAX_NESTS) /* too deep nesting */
1370 : return -1;
1371 :
1372 : /* CTL_DEL can remove links here, but that can't increase our count */
1373 0 : hlist_for_each_entry_rcu(epi, refs, fllink) {
1374 0 : struct hlist_head *refs = &epi->ep->refs;
1375 0 : if (hlist_empty(refs))
1376 : error = path_count_inc(depth);
1377 : else
1378 0 : error = reverse_path_check_proc(refs, depth + 1);
1379 0 : if (error != 0)
1380 : break;
1381 : }
1382 : return error;
1383 : }
1384 :
1385 : /**
1386 : * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1387 : * links that are proposed to be newly added. We need to
1388 : * make sure that those added links don't add too many
1389 : * paths such that we will spend all our time waking up
1390 : * eventpoll objects.
1391 : *
1392 : * Return: %zero if the proposed links don't create too many paths,
1393 : * %-1 otherwise.
1394 : */
1395 0 : static int reverse_path_check(void)
1396 : {
1397 : struct epitems_head *p;
1398 :
1399 0 : for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1400 : int error;
1401 0 : path_count_init();
1402 : rcu_read_lock();
1403 0 : error = reverse_path_check_proc(&p->epitems, 0);
1404 : rcu_read_unlock();
1405 0 : if (error)
1406 : return error;
1407 : }
1408 : return 0;
1409 : }
1410 :
1411 0 : static int ep_create_wakeup_source(struct epitem *epi)
1412 : {
1413 : struct name_snapshot n;
1414 : struct wakeup_source *ws;
1415 :
1416 0 : if (!epi->ep->ws) {
1417 0 : epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1418 0 : if (!epi->ep->ws)
1419 : return -ENOMEM;
1420 : }
1421 :
1422 0 : take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1423 0 : ws = wakeup_source_register(NULL, n.name.name);
1424 0 : release_dentry_name_snapshot(&n);
1425 :
1426 0 : if (!ws)
1427 : return -ENOMEM;
1428 0 : rcu_assign_pointer(epi->ws, ws);
1429 :
1430 0 : return 0;
1431 : }
1432 :
1433 : /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1434 0 : static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1435 : {
1436 0 : struct wakeup_source *ws = ep_wakeup_source(epi);
1437 :
1438 0 : RCU_INIT_POINTER(epi->ws, NULL);
1439 :
1440 : /*
1441 : * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1442 : * used internally by wakeup_source_remove, too (called by
1443 : * wakeup_source_unregister), so we cannot use call_rcu
1444 : */
1445 0 : synchronize_rcu();
1446 0 : wakeup_source_unregister(ws);
1447 0 : }
1448 :
1449 0 : static int attach_epitem(struct file *file, struct epitem *epi)
1450 : {
1451 0 : struct epitems_head *to_free = NULL;
1452 0 : struct hlist_head *head = NULL;
1453 0 : struct eventpoll *ep = NULL;
1454 :
1455 0 : if (is_file_epoll(file))
1456 0 : ep = file->private_data;
1457 :
1458 0 : if (ep) {
1459 0 : head = &ep->refs;
1460 0 : } else if (!READ_ONCE(file->f_ep)) {
1461 : allocate:
1462 0 : to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1463 0 : if (!to_free)
1464 : return -ENOMEM;
1465 0 : head = &to_free->epitems;
1466 : }
1467 0 : spin_lock(&file->f_lock);
1468 0 : if (!file->f_ep) {
1469 0 : if (unlikely(!head)) {
1470 0 : spin_unlock(&file->f_lock);
1471 : goto allocate;
1472 : }
1473 0 : file->f_ep = head;
1474 0 : to_free = NULL;
1475 : }
1476 0 : hlist_add_head_rcu(&epi->fllink, file->f_ep);
1477 0 : spin_unlock(&file->f_lock);
1478 : free_ephead(to_free);
1479 : return 0;
1480 : }
1481 :
1482 : /*
1483 : * Must be called with "mtx" held.
1484 : */
1485 0 : static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1486 : struct file *tfile, int fd, int full_check)
1487 : {
1488 0 : int error, pwake = 0;
1489 : __poll_t revents;
1490 : struct epitem *epi;
1491 : struct ep_pqueue epq;
1492 0 : struct eventpoll *tep = NULL;
1493 :
1494 0 : if (is_file_epoll(tfile))
1495 0 : tep = tfile->private_data;
1496 :
1497 : lockdep_assert_irqs_enabled();
1498 :
1499 0 : if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1500 : max_user_watches) >= 0))
1501 : return -ENOSPC;
1502 0 : percpu_counter_inc(&ep->user->epoll_watches);
1503 :
1504 0 : if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1505 0 : percpu_counter_dec(&ep->user->epoll_watches);
1506 0 : return -ENOMEM;
1507 : }
1508 :
1509 : /* Item initialization follow here ... */
1510 0 : INIT_LIST_HEAD(&epi->rdllink);
1511 0 : epi->ep = ep;
1512 0 : ep_set_ffd(&epi->ffd, tfile, fd);
1513 0 : epi->event = *event;
1514 0 : epi->next = EP_UNACTIVE_PTR;
1515 :
1516 0 : if (tep)
1517 0 : mutex_lock_nested(&tep->mtx, 1);
1518 : /* Add the current item to the list of active epoll hook for this file */
1519 0 : if (unlikely(attach_epitem(tfile, epi) < 0)) {
1520 0 : if (tep)
1521 0 : mutex_unlock(&tep->mtx);
1522 0 : kmem_cache_free(epi_cache, epi);
1523 0 : percpu_counter_dec(&ep->user->epoll_watches);
1524 0 : return -ENOMEM;
1525 : }
1526 :
1527 0 : if (full_check && !tep)
1528 0 : list_file(tfile);
1529 :
1530 : /*
1531 : * Add the current item to the RB tree. All RB tree operations are
1532 : * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 : */
1534 0 : ep_rbtree_insert(ep, epi);
1535 0 : if (tep)
1536 0 : mutex_unlock(&tep->mtx);
1537 :
1538 : /*
1539 : * ep_remove_safe() calls in the later error paths can't lead to
1540 : * ep_free() as the ep file itself still holds an ep reference.
1541 : */
1542 0 : ep_get(ep);
1543 :
1544 : /* now check if we've created too many backpaths */
1545 0 : if (unlikely(full_check && reverse_path_check())) {
1546 0 : ep_remove_safe(ep, epi);
1547 0 : return -EINVAL;
1548 : }
1549 :
1550 0 : if (epi->event.events & EPOLLWAKEUP) {
1551 0 : error = ep_create_wakeup_source(epi);
1552 0 : if (error) {
1553 0 : ep_remove_safe(ep, epi);
1554 0 : return error;
1555 : }
1556 : }
1557 :
1558 : /* Initialize the poll table using the queue callback */
1559 0 : epq.epi = epi;
1560 0 : init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1561 :
1562 : /*
1563 : * Attach the item to the poll hooks and get current event bits.
1564 : * We can safely use the file* here because its usage count has
1565 : * been increased by the caller of this function. Note that after
1566 : * this operation completes, the poll callback can start hitting
1567 : * the new item.
1568 : */
1569 0 : revents = ep_item_poll(epi, &epq.pt, 1);
1570 :
1571 : /*
1572 : * We have to check if something went wrong during the poll wait queue
1573 : * install process. Namely an allocation for a wait queue failed due
1574 : * high memory pressure.
1575 : */
1576 0 : if (unlikely(!epq.epi)) {
1577 0 : ep_remove_safe(ep, epi);
1578 0 : return -ENOMEM;
1579 : }
1580 :
1581 : /* We have to drop the new item inside our item list to keep track of it */
1582 0 : write_lock_irq(&ep->lock);
1583 :
1584 : /* record NAPI ID of new item if present */
1585 : ep_set_busy_poll_napi_id(epi);
1586 :
1587 : /* If the file is already "ready" we drop it inside the ready list */
1588 0 : if (revents && !ep_is_linked(epi)) {
1589 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1590 0 : ep_pm_stay_awake(epi);
1591 :
1592 : /* Notify waiting tasks that events are available */
1593 0 : if (waitqueue_active(&ep->wq))
1594 0 : wake_up(&ep->wq);
1595 0 : if (waitqueue_active(&ep->poll_wait))
1596 0 : pwake++;
1597 : }
1598 :
1599 0 : write_unlock_irq(&ep->lock);
1600 :
1601 : /* We have to call this outside the lock */
1602 0 : if (pwake)
1603 0 : ep_poll_safewake(ep, NULL, 0);
1604 :
1605 : return 0;
1606 : }
1607 :
1608 : /*
1609 : * Modify the interest event mask by dropping an event if the new mask
1610 : * has a match in the current file status. Must be called with "mtx" held.
1611 : */
1612 0 : static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1613 : const struct epoll_event *event)
1614 : {
1615 0 : int pwake = 0;
1616 : poll_table pt;
1617 :
1618 : lockdep_assert_irqs_enabled();
1619 :
1620 0 : init_poll_funcptr(&pt, NULL);
1621 :
1622 : /*
1623 : * Set the new event interest mask before calling f_op->poll();
1624 : * otherwise we might miss an event that happens between the
1625 : * f_op->poll() call and the new event set registering.
1626 : */
1627 0 : epi->event.events = event->events; /* need barrier below */
1628 0 : epi->event.data = event->data; /* protected by mtx */
1629 0 : if (epi->event.events & EPOLLWAKEUP) {
1630 0 : if (!ep_has_wakeup_source(epi))
1631 0 : ep_create_wakeup_source(epi);
1632 0 : } else if (ep_has_wakeup_source(epi)) {
1633 0 : ep_destroy_wakeup_source(epi);
1634 : }
1635 :
1636 : /*
1637 : * The following barrier has two effects:
1638 : *
1639 : * 1) Flush epi changes above to other CPUs. This ensures
1640 : * we do not miss events from ep_poll_callback if an
1641 : * event occurs immediately after we call f_op->poll().
1642 : * We need this because we did not take ep->lock while
1643 : * changing epi above (but ep_poll_callback does take
1644 : * ep->lock).
1645 : *
1646 : * 2) We also need to ensure we do not miss _past_ events
1647 : * when calling f_op->poll(). This barrier also
1648 : * pairs with the barrier in wq_has_sleeper (see
1649 : * comments for wq_has_sleeper).
1650 : *
1651 : * This barrier will now guarantee ep_poll_callback or f_op->poll
1652 : * (or both) will notice the readiness of an item.
1653 : */
1654 0 : smp_mb();
1655 :
1656 : /*
1657 : * Get current event bits. We can safely use the file* here because
1658 : * its usage count has been increased by the caller of this function.
1659 : * If the item is "hot" and it is not registered inside the ready
1660 : * list, push it inside.
1661 : */
1662 0 : if (ep_item_poll(epi, &pt, 1)) {
1663 0 : write_lock_irq(&ep->lock);
1664 0 : if (!ep_is_linked(epi)) {
1665 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1666 0 : ep_pm_stay_awake(epi);
1667 :
1668 : /* Notify waiting tasks that events are available */
1669 0 : if (waitqueue_active(&ep->wq))
1670 0 : wake_up(&ep->wq);
1671 0 : if (waitqueue_active(&ep->poll_wait))
1672 0 : pwake++;
1673 : }
1674 0 : write_unlock_irq(&ep->lock);
1675 : }
1676 :
1677 : /* We have to call this outside the lock */
1678 0 : if (pwake)
1679 0 : ep_poll_safewake(ep, NULL, 0);
1680 :
1681 0 : return 0;
1682 : }
1683 :
1684 0 : static int ep_send_events(struct eventpoll *ep,
1685 : struct epoll_event __user *events, int maxevents)
1686 : {
1687 : struct epitem *epi, *tmp;
1688 0 : LIST_HEAD(txlist);
1689 : poll_table pt;
1690 0 : int res = 0;
1691 :
1692 : /*
1693 : * Always short-circuit for fatal signals to allow threads to make a
1694 : * timely exit without the chance of finding more events available and
1695 : * fetching repeatedly.
1696 : */
1697 0 : if (fatal_signal_pending(current))
1698 : return -EINTR;
1699 :
1700 0 : init_poll_funcptr(&pt, NULL);
1701 :
1702 0 : mutex_lock(&ep->mtx);
1703 0 : ep_start_scan(ep, &txlist);
1704 :
1705 : /*
1706 : * We can loop without lock because we are passed a task private list.
1707 : * Items cannot vanish during the loop we are holding ep->mtx.
1708 : */
1709 0 : list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1710 : struct wakeup_source *ws;
1711 : __poll_t revents;
1712 :
1713 0 : if (res >= maxevents)
1714 : break;
1715 :
1716 : /*
1717 : * Activate ep->ws before deactivating epi->ws to prevent
1718 : * triggering auto-suspend here (in case we reactive epi->ws
1719 : * below).
1720 : *
1721 : * This could be rearranged to delay the deactivation of epi->ws
1722 : * instead, but then epi->ws would temporarily be out of sync
1723 : * with ep_is_linked().
1724 : */
1725 0 : ws = ep_wakeup_source(epi);
1726 0 : if (ws) {
1727 0 : if (ws->active)
1728 0 : __pm_stay_awake(ep->ws);
1729 0 : __pm_relax(ws);
1730 : }
1731 :
1732 0 : list_del_init(&epi->rdllink);
1733 :
1734 : /*
1735 : * If the event mask intersect the caller-requested one,
1736 : * deliver the event to userspace. Again, we are holding ep->mtx,
1737 : * so no operations coming from userspace can change the item.
1738 : */
1739 0 : revents = ep_item_poll(epi, &pt, 1);
1740 0 : if (!revents)
1741 0 : continue;
1742 :
1743 0 : events = epoll_put_uevent(revents, epi->event.data, events);
1744 0 : if (!events) {
1745 0 : list_add(&epi->rdllink, &txlist);
1746 0 : ep_pm_stay_awake(epi);
1747 0 : if (!res)
1748 0 : res = -EFAULT;
1749 : break;
1750 : }
1751 0 : res++;
1752 0 : if (epi->event.events & EPOLLONESHOT)
1753 0 : epi->event.events &= EP_PRIVATE_BITS;
1754 0 : else if (!(epi->event.events & EPOLLET)) {
1755 : /*
1756 : * If this file has been added with Level
1757 : * Trigger mode, we need to insert back inside
1758 : * the ready list, so that the next call to
1759 : * epoll_wait() will check again the events
1760 : * availability. At this point, no one can insert
1761 : * into ep->rdllist besides us. The epoll_ctl()
1762 : * callers are locked out by
1763 : * ep_scan_ready_list() holding "mtx" and the
1764 : * poll callback will queue them in ep->ovflist.
1765 : */
1766 0 : list_add_tail(&epi->rdllink, &ep->rdllist);
1767 : ep_pm_stay_awake(epi);
1768 : }
1769 : }
1770 0 : ep_done_scan(ep, &txlist);
1771 0 : mutex_unlock(&ep->mtx);
1772 :
1773 0 : return res;
1774 : }
1775 :
1776 0 : static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1777 : {
1778 : struct timespec64 now;
1779 :
1780 0 : if (ms < 0)
1781 : return NULL;
1782 :
1783 0 : if (!ms) {
1784 0 : to->tv_sec = 0;
1785 0 : to->tv_nsec = 0;
1786 0 : return to;
1787 : }
1788 :
1789 0 : to->tv_sec = ms / MSEC_PER_SEC;
1790 0 : to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1791 :
1792 0 : ktime_get_ts64(&now);
1793 0 : *to = timespec64_add_safe(now, *to);
1794 0 : return to;
1795 : }
1796 :
1797 : /*
1798 : * autoremove_wake_function, but remove even on failure to wake up, because we
1799 : * know that default_wake_function/ttwu will only fail if the thread is already
1800 : * woken, and in that case the ep_poll loop will remove the entry anyways, not
1801 : * try to reuse it.
1802 : */
1803 0 : static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1804 : unsigned int mode, int sync, void *key)
1805 : {
1806 0 : int ret = default_wake_function(wq_entry, mode, sync, key);
1807 :
1808 : /*
1809 : * Pairs with list_empty_careful in ep_poll, and ensures future loop
1810 : * iterations see the cause of this wakeup.
1811 : */
1812 0 : list_del_init_careful(&wq_entry->entry);
1813 0 : return ret;
1814 : }
1815 :
1816 : /**
1817 : * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1818 : * event buffer.
1819 : *
1820 : * @ep: Pointer to the eventpoll context.
1821 : * @events: Pointer to the userspace buffer where the ready events should be
1822 : * stored.
1823 : * @maxevents: Size (in terms of number of events) of the caller event buffer.
1824 : * @timeout: Maximum timeout for the ready events fetch operation, in
1825 : * timespec. If the timeout is zero, the function will not block,
1826 : * while if the @timeout ptr is NULL, the function will block
1827 : * until at least one event has been retrieved (or an error
1828 : * occurred).
1829 : *
1830 : * Return: the number of ready events which have been fetched, or an
1831 : * error code, in case of error.
1832 : */
1833 0 : static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1834 : int maxevents, struct timespec64 *timeout)
1835 : {
1836 0 : int res, eavail, timed_out = 0;
1837 0 : u64 slack = 0;
1838 : wait_queue_entry_t wait;
1839 0 : ktime_t expires, *to = NULL;
1840 :
1841 : lockdep_assert_irqs_enabled();
1842 :
1843 0 : if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1844 0 : slack = select_estimate_accuracy(timeout);
1845 0 : to = &expires;
1846 0 : *to = timespec64_to_ktime(*timeout);
1847 0 : } else if (timeout) {
1848 : /*
1849 : * Avoid the unnecessary trip to the wait queue loop, if the
1850 : * caller specified a non blocking operation.
1851 : */
1852 0 : timed_out = 1;
1853 : }
1854 :
1855 : /*
1856 : * This call is racy: We may or may not see events that are being added
1857 : * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1858 : * with a non-zero timeout, this thread will check the ready list under
1859 : * lock and will add to the wait queue. For cases with a zero
1860 : * timeout, the user by definition should not care and will have to
1861 : * recheck again.
1862 : */
1863 : eavail = ep_events_available(ep);
1864 :
1865 : while (1) {
1866 0 : if (eavail) {
1867 : /*
1868 : * Try to transfer events to user space. In case we get
1869 : * 0 events and there's still timeout left over, we go
1870 : * trying again in search of more luck.
1871 : */
1872 0 : res = ep_send_events(ep, events, maxevents);
1873 0 : if (res)
1874 : return res;
1875 : }
1876 :
1877 0 : if (timed_out)
1878 : return 0;
1879 :
1880 0 : eavail = ep_busy_loop(ep, timed_out);
1881 : if (eavail)
1882 : continue;
1883 :
1884 0 : if (signal_pending(current))
1885 : return -EINTR;
1886 :
1887 : /*
1888 : * Internally init_wait() uses autoremove_wake_function(),
1889 : * thus wait entry is removed from the wait queue on each
1890 : * wakeup. Why it is important? In case of several waiters
1891 : * each new wakeup will hit the next waiter, giving it the
1892 : * chance to harvest new event. Otherwise wakeup can be
1893 : * lost. This is also good performance-wise, because on
1894 : * normal wakeup path no need to call __remove_wait_queue()
1895 : * explicitly, thus ep->lock is not taken, which halts the
1896 : * event delivery.
1897 : *
1898 : * In fact, we now use an even more aggressive function that
1899 : * unconditionally removes, because we don't reuse the wait
1900 : * entry between loop iterations. This lets us also avoid the
1901 : * performance issue if a process is killed, causing all of its
1902 : * threads to wake up without being removed normally.
1903 : */
1904 0 : init_wait(&wait);
1905 0 : wait.func = ep_autoremove_wake_function;
1906 :
1907 0 : write_lock_irq(&ep->lock);
1908 : /*
1909 : * Barrierless variant, waitqueue_active() is called under
1910 : * the same lock on wakeup ep_poll_callback() side, so it
1911 : * is safe to avoid an explicit barrier.
1912 : */
1913 0 : __set_current_state(TASK_INTERRUPTIBLE);
1914 :
1915 : /*
1916 : * Do the final check under the lock. ep_scan_ready_list()
1917 : * plays with two lists (->rdllist and ->ovflist) and there
1918 : * is always a race when both lists are empty for short
1919 : * period of time although events are pending, so lock is
1920 : * important.
1921 : */
1922 0 : eavail = ep_events_available(ep);
1923 0 : if (!eavail)
1924 0 : __add_wait_queue_exclusive(&ep->wq, &wait);
1925 :
1926 0 : write_unlock_irq(&ep->lock);
1927 :
1928 0 : if (!eavail)
1929 0 : timed_out = !schedule_hrtimeout_range(to, slack,
1930 : HRTIMER_MODE_ABS);
1931 0 : __set_current_state(TASK_RUNNING);
1932 :
1933 : /*
1934 : * We were woken up, thus go and try to harvest some events.
1935 : * If timed out and still on the wait queue, recheck eavail
1936 : * carefully under lock, below.
1937 : */
1938 0 : eavail = 1;
1939 :
1940 0 : if (!list_empty_careful(&wait.entry)) {
1941 0 : write_lock_irq(&ep->lock);
1942 : /*
1943 : * If the thread timed out and is not on the wait queue,
1944 : * it means that the thread was woken up after its
1945 : * timeout expired before it could reacquire the lock.
1946 : * Thus, when wait.entry is empty, it needs to harvest
1947 : * events.
1948 : */
1949 0 : if (timed_out)
1950 0 : eavail = list_empty(&wait.entry);
1951 0 : __remove_wait_queue(&ep->wq, &wait);
1952 0 : write_unlock_irq(&ep->lock);
1953 : }
1954 : }
1955 : }
1956 :
1957 : /**
1958 : * ep_loop_check_proc - verify that adding an epoll file inside another
1959 : * epoll structure does not violate the constraints, in
1960 : * terms of closed loops, or too deep chains (which can
1961 : * result in excessive stack usage).
1962 : *
1963 : * @ep: the &struct eventpoll to be currently checked.
1964 : * @depth: Current depth of the path being checked.
1965 : *
1966 : * Return: %zero if adding the epoll @file inside current epoll
1967 : * structure @ep does not violate the constraints, or %-1 otherwise.
1968 : */
1969 0 : static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1970 : {
1971 0 : int error = 0;
1972 : struct rb_node *rbp;
1973 : struct epitem *epi;
1974 :
1975 0 : mutex_lock_nested(&ep->mtx, depth + 1);
1976 0 : ep->gen = loop_check_gen;
1977 0 : for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1978 0 : epi = rb_entry(rbp, struct epitem, rbn);
1979 0 : if (unlikely(is_file_epoll(epi->ffd.file))) {
1980 : struct eventpoll *ep_tovisit;
1981 0 : ep_tovisit = epi->ffd.file->private_data;
1982 0 : if (ep_tovisit->gen == loop_check_gen)
1983 0 : continue;
1984 0 : if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1985 : error = -1;
1986 : else
1987 0 : error = ep_loop_check_proc(ep_tovisit, depth + 1);
1988 0 : if (error != 0)
1989 : break;
1990 : } else {
1991 : /*
1992 : * If we've reached a file that is not associated with
1993 : * an ep, then we need to check if the newly added
1994 : * links are going to add too many wakeup paths. We do
1995 : * this by adding it to the tfile_check_list, if it's
1996 : * not already there, and calling reverse_path_check()
1997 : * during ep_insert().
1998 : */
1999 0 : list_file(epi->ffd.file);
2000 : }
2001 : }
2002 0 : mutex_unlock(&ep->mtx);
2003 :
2004 0 : return error;
2005 : }
2006 :
2007 : /**
2008 : * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2009 : * into another epoll file (represented by @ep) does not create
2010 : * closed loops or too deep chains.
2011 : *
2012 : * @ep: Pointer to the epoll we are inserting into.
2013 : * @to: Pointer to the epoll to be inserted.
2014 : *
2015 : * Return: %zero if adding the epoll @to inside the epoll @from
2016 : * does not violate the constraints, or %-1 otherwise.
2017 : */
2018 : static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2019 : {
2020 0 : inserting_into = ep;
2021 0 : return ep_loop_check_proc(to, 0);
2022 : }
2023 :
2024 : static void clear_tfile_check_list(void)
2025 : {
2026 : rcu_read_lock();
2027 0 : while (tfile_check_list != EP_UNACTIVE_PTR) {
2028 0 : struct epitems_head *head = tfile_check_list;
2029 0 : tfile_check_list = head->next;
2030 0 : unlist_file(head);
2031 : }
2032 : rcu_read_unlock();
2033 : }
2034 :
2035 : /*
2036 : * Open an eventpoll file descriptor.
2037 : */
2038 0 : static int do_epoll_create(int flags)
2039 : {
2040 : int error, fd;
2041 0 : struct eventpoll *ep = NULL;
2042 : struct file *file;
2043 :
2044 : /* Check the EPOLL_* constant for consistency. */
2045 : BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2046 :
2047 0 : if (flags & ~EPOLL_CLOEXEC)
2048 : return -EINVAL;
2049 : /*
2050 : * Create the internal data structure ("struct eventpoll").
2051 : */
2052 0 : error = ep_alloc(&ep);
2053 0 : if (error < 0)
2054 : return error;
2055 : /*
2056 : * Creates all the items needed to setup an eventpoll file. That is,
2057 : * a file structure and a free file descriptor.
2058 : */
2059 0 : fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2060 0 : if (fd < 0) {
2061 : error = fd;
2062 : goto out_free_ep;
2063 : }
2064 0 : file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2065 : O_RDWR | (flags & O_CLOEXEC));
2066 0 : if (IS_ERR(file)) {
2067 0 : error = PTR_ERR(file);
2068 : goto out_free_fd;
2069 : }
2070 0 : ep->file = file;
2071 0 : fd_install(fd, file);
2072 0 : return fd;
2073 :
2074 : out_free_fd:
2075 0 : put_unused_fd(fd);
2076 : out_free_ep:
2077 0 : ep_clear_and_put(ep);
2078 0 : return error;
2079 : }
2080 :
2081 0 : SYSCALL_DEFINE1(epoll_create1, int, flags)
2082 : {
2083 0 : return do_epoll_create(flags);
2084 : }
2085 :
2086 0 : SYSCALL_DEFINE1(epoll_create, int, size)
2087 : {
2088 0 : if (size <= 0)
2089 : return -EINVAL;
2090 :
2091 0 : return do_epoll_create(0);
2092 : }
2093 :
2094 : #ifdef CONFIG_PM_SLEEP
2095 0 : static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2096 : {
2097 0 : if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2098 0 : epev->events &= ~EPOLLWAKEUP;
2099 0 : }
2100 : #else
2101 : static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2102 : {
2103 : epev->events &= ~EPOLLWAKEUP;
2104 : }
2105 : #endif
2106 :
2107 : static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2108 : bool nonblock)
2109 : {
2110 0 : if (!nonblock) {
2111 0 : mutex_lock_nested(mutex, depth);
2112 : return 0;
2113 : }
2114 0 : if (mutex_trylock(mutex))
2115 : return 0;
2116 : return -EAGAIN;
2117 : }
2118 :
2119 0 : int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2120 : bool nonblock)
2121 : {
2122 : int error;
2123 0 : int full_check = 0;
2124 : struct fd f, tf;
2125 : struct eventpoll *ep;
2126 : struct epitem *epi;
2127 0 : struct eventpoll *tep = NULL;
2128 :
2129 0 : error = -EBADF;
2130 0 : f = fdget(epfd);
2131 0 : if (!f.file)
2132 : goto error_return;
2133 :
2134 : /* Get the "struct file *" for the target file */
2135 0 : tf = fdget(fd);
2136 0 : if (!tf.file)
2137 : goto error_fput;
2138 :
2139 : /* The target file descriptor must support poll */
2140 0 : error = -EPERM;
2141 0 : if (!file_can_poll(tf.file))
2142 : goto error_tgt_fput;
2143 :
2144 : /* Check if EPOLLWAKEUP is allowed */
2145 0 : if (ep_op_has_event(op))
2146 0 : ep_take_care_of_epollwakeup(epds);
2147 :
2148 : /*
2149 : * We have to check that the file structure underneath the file descriptor
2150 : * the user passed to us _is_ an eventpoll file. And also we do not permit
2151 : * adding an epoll file descriptor inside itself.
2152 : */
2153 0 : error = -EINVAL;
2154 0 : if (f.file == tf.file || !is_file_epoll(f.file))
2155 : goto error_tgt_fput;
2156 :
2157 : /*
2158 : * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2159 : * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2160 : * Also, we do not currently supported nested exclusive wakeups.
2161 : */
2162 0 : if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2163 0 : if (op == EPOLL_CTL_MOD)
2164 : goto error_tgt_fput;
2165 0 : if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2166 0 : (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2167 : goto error_tgt_fput;
2168 : }
2169 :
2170 : /*
2171 : * At this point it is safe to assume that the "private_data" contains
2172 : * our own data structure.
2173 : */
2174 0 : ep = f.file->private_data;
2175 :
2176 : /*
2177 : * When we insert an epoll file descriptor inside another epoll file
2178 : * descriptor, there is the chance of creating closed loops, which are
2179 : * better be handled here, than in more critical paths. While we are
2180 : * checking for loops we also determine the list of files reachable
2181 : * and hang them on the tfile_check_list, so we can check that we
2182 : * haven't created too many possible wakeup paths.
2183 : *
2184 : * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2185 : * the epoll file descriptor is attaching directly to a wakeup source,
2186 : * unless the epoll file descriptor is nested. The purpose of taking the
2187 : * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2188 : * deep wakeup paths from forming in parallel through multiple
2189 : * EPOLL_CTL_ADD operations.
2190 : */
2191 0 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2192 0 : if (error)
2193 : goto error_tgt_fput;
2194 0 : if (op == EPOLL_CTL_ADD) {
2195 0 : if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2196 0 : is_file_epoll(tf.file)) {
2197 0 : mutex_unlock(&ep->mtx);
2198 0 : error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2199 0 : if (error)
2200 : goto error_tgt_fput;
2201 0 : loop_check_gen++;
2202 0 : full_check = 1;
2203 0 : if (is_file_epoll(tf.file)) {
2204 0 : tep = tf.file->private_data;
2205 0 : error = -ELOOP;
2206 0 : if (ep_loop_check(ep, tep) != 0)
2207 : goto error_tgt_fput;
2208 : }
2209 0 : error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2210 0 : if (error)
2211 : goto error_tgt_fput;
2212 : }
2213 : }
2214 :
2215 : /*
2216 : * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2217 : * above, we can be sure to be able to use the item looked up by
2218 : * ep_find() till we release the mutex.
2219 : */
2220 0 : epi = ep_find(ep, tf.file, fd);
2221 :
2222 0 : error = -EINVAL;
2223 0 : switch (op) {
2224 : case EPOLL_CTL_ADD:
2225 0 : if (!epi) {
2226 0 : epds->events |= EPOLLERR | EPOLLHUP;
2227 0 : error = ep_insert(ep, epds, tf.file, fd, full_check);
2228 : } else
2229 : error = -EEXIST;
2230 : break;
2231 : case EPOLL_CTL_DEL:
2232 0 : if (epi) {
2233 : /*
2234 : * The eventpoll itself is still alive: the refcount
2235 : * can't go to zero here.
2236 : */
2237 0 : ep_remove_safe(ep, epi);
2238 0 : error = 0;
2239 : } else {
2240 : error = -ENOENT;
2241 : }
2242 : break;
2243 : case EPOLL_CTL_MOD:
2244 0 : if (epi) {
2245 0 : if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2246 0 : epds->events |= EPOLLERR | EPOLLHUP;
2247 0 : error = ep_modify(ep, epi, epds);
2248 : }
2249 : } else
2250 : error = -ENOENT;
2251 : break;
2252 : }
2253 0 : mutex_unlock(&ep->mtx);
2254 :
2255 : error_tgt_fput:
2256 0 : if (full_check) {
2257 : clear_tfile_check_list();
2258 0 : loop_check_gen++;
2259 0 : mutex_unlock(&epnested_mutex);
2260 : }
2261 :
2262 0 : fdput(tf);
2263 : error_fput:
2264 0 : fdput(f);
2265 : error_return:
2266 :
2267 0 : return error;
2268 : }
2269 :
2270 : /*
2271 : * The following function implements the controller interface for
2272 : * the eventpoll file that enables the insertion/removal/change of
2273 : * file descriptors inside the interest set.
2274 : */
2275 0 : SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2276 : struct epoll_event __user *, event)
2277 : {
2278 : struct epoll_event epds;
2279 :
2280 0 : if (ep_op_has_event(op) &&
2281 0 : copy_from_user(&epds, event, sizeof(struct epoll_event)))
2282 : return -EFAULT;
2283 :
2284 0 : return do_epoll_ctl(epfd, op, fd, &epds, false);
2285 : }
2286 :
2287 : /*
2288 : * Implement the event wait interface for the eventpoll file. It is the kernel
2289 : * part of the user space epoll_wait(2).
2290 : */
2291 0 : static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2292 : int maxevents, struct timespec64 *to)
2293 : {
2294 : int error;
2295 : struct fd f;
2296 : struct eventpoll *ep;
2297 :
2298 : /* The maximum number of event must be greater than zero */
2299 0 : if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2300 : return -EINVAL;
2301 :
2302 : /* Verify that the area passed by the user is writeable */
2303 0 : if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2304 : return -EFAULT;
2305 :
2306 : /* Get the "struct file *" for the eventpoll file */
2307 0 : f = fdget(epfd);
2308 0 : if (!f.file)
2309 : return -EBADF;
2310 :
2311 : /*
2312 : * We have to check that the file structure underneath the fd
2313 : * the user passed to us _is_ an eventpoll file.
2314 : */
2315 0 : error = -EINVAL;
2316 0 : if (!is_file_epoll(f.file))
2317 : goto error_fput;
2318 :
2319 : /*
2320 : * At this point it is safe to assume that the "private_data" contains
2321 : * our own data structure.
2322 : */
2323 0 : ep = f.file->private_data;
2324 :
2325 : /* Time to fish for events ... */
2326 0 : error = ep_poll(ep, events, maxevents, to);
2327 :
2328 : error_fput:
2329 0 : fdput(f);
2330 : return error;
2331 : }
2332 :
2333 0 : SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2334 : int, maxevents, int, timeout)
2335 : {
2336 : struct timespec64 to;
2337 :
2338 0 : return do_epoll_wait(epfd, events, maxevents,
2339 : ep_timeout_to_timespec(&to, timeout));
2340 : }
2341 :
2342 : /*
2343 : * Implement the event wait interface for the eventpoll file. It is the kernel
2344 : * part of the user space epoll_pwait(2).
2345 : */
2346 0 : static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2347 : int maxevents, struct timespec64 *to,
2348 : const sigset_t __user *sigmask, size_t sigsetsize)
2349 : {
2350 : int error;
2351 :
2352 : /*
2353 : * If the caller wants a certain signal mask to be set during the wait,
2354 : * we apply it here.
2355 : */
2356 0 : error = set_user_sigmask(sigmask, sigsetsize);
2357 0 : if (error)
2358 : return error;
2359 :
2360 0 : error = do_epoll_wait(epfd, events, maxevents, to);
2361 :
2362 0 : restore_saved_sigmask_unless(error == -EINTR);
2363 :
2364 0 : return error;
2365 : }
2366 :
2367 0 : SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2368 : int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2369 : size_t, sigsetsize)
2370 : {
2371 : struct timespec64 to;
2372 :
2373 0 : return do_epoll_pwait(epfd, events, maxevents,
2374 : ep_timeout_to_timespec(&to, timeout),
2375 : sigmask, sigsetsize);
2376 : }
2377 :
2378 0 : SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2379 : int, maxevents, const struct __kernel_timespec __user *, timeout,
2380 : const sigset_t __user *, sigmask, size_t, sigsetsize)
2381 : {
2382 0 : struct timespec64 ts, *to = NULL;
2383 :
2384 0 : if (timeout) {
2385 0 : if (get_timespec64(&ts, timeout))
2386 : return -EFAULT;
2387 0 : to = &ts;
2388 0 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2389 : return -EINVAL;
2390 : }
2391 :
2392 0 : return do_epoll_pwait(epfd, events, maxevents, to,
2393 : sigmask, sigsetsize);
2394 : }
2395 :
2396 : #ifdef CONFIG_COMPAT
2397 : static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2398 : int maxevents, struct timespec64 *timeout,
2399 : const compat_sigset_t __user *sigmask,
2400 : compat_size_t sigsetsize)
2401 : {
2402 : long err;
2403 :
2404 : /*
2405 : * If the caller wants a certain signal mask to be set during the wait,
2406 : * we apply it here.
2407 : */
2408 : err = set_compat_user_sigmask(sigmask, sigsetsize);
2409 : if (err)
2410 : return err;
2411 :
2412 : err = do_epoll_wait(epfd, events, maxevents, timeout);
2413 :
2414 : restore_saved_sigmask_unless(err == -EINTR);
2415 :
2416 : return err;
2417 : }
2418 :
2419 : COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2420 : struct epoll_event __user *, events,
2421 : int, maxevents, int, timeout,
2422 : const compat_sigset_t __user *, sigmask,
2423 : compat_size_t, sigsetsize)
2424 : {
2425 : struct timespec64 to;
2426 :
2427 : return do_compat_epoll_pwait(epfd, events, maxevents,
2428 : ep_timeout_to_timespec(&to, timeout),
2429 : sigmask, sigsetsize);
2430 : }
2431 :
2432 : COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2433 : struct epoll_event __user *, events,
2434 : int, maxevents,
2435 : const struct __kernel_timespec __user *, timeout,
2436 : const compat_sigset_t __user *, sigmask,
2437 : compat_size_t, sigsetsize)
2438 : {
2439 : struct timespec64 ts, *to = NULL;
2440 :
2441 : if (timeout) {
2442 : if (get_timespec64(&ts, timeout))
2443 : return -EFAULT;
2444 : to = &ts;
2445 : if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2446 : return -EINVAL;
2447 : }
2448 :
2449 : return do_compat_epoll_pwait(epfd, events, maxevents, to,
2450 : sigmask, sigsetsize);
2451 : }
2452 :
2453 : #endif
2454 :
2455 1 : static int __init eventpoll_init(void)
2456 : {
2457 : struct sysinfo si;
2458 :
2459 1 : si_meminfo(&si);
2460 : /*
2461 : * Allows top 4% of lomem to be allocated for epoll watches (per user).
2462 : */
2463 1 : max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2464 : EP_ITEM_COST;
2465 1 : BUG_ON(max_user_watches < 0);
2466 :
2467 : /*
2468 : * We can have many thousands of epitems, so prevent this from
2469 : * using an extra cache line on 64-bit (and smaller) CPUs
2470 : */
2471 : BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2472 :
2473 : /* Allocates slab cache used to allocate "struct epitem" items */
2474 1 : epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2475 : 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476 :
2477 : /* Allocates slab cache used to allocate "struct eppoll_entry" */
2478 1 : pwq_cache = kmem_cache_create("eventpoll_pwq",
2479 : sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2480 1 : epoll_sysctls_init();
2481 :
2482 1 : ephead_cache = kmem_cache_create("ep_head",
2483 : sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2484 :
2485 1 : return 0;
2486 : }
2487 : fs_initcall(eventpoll_init);
|