LCOV - code coverage report
Current view: top level - fs/kernfs - dir.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 229 618 37.1 %
Date: 2023-07-19 18:55:55 Functions: 21 51 41.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * fs/kernfs/dir.c - kernfs directory implementation
       4             :  *
       5             :  * Copyright (c) 2001-3 Patrick Mochel
       6             :  * Copyright (c) 2007 SUSE Linux Products GmbH
       7             :  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
       8             :  */
       9             : 
      10             : #include <linux/sched.h>
      11             : #include <linux/fs.h>
      12             : #include <linux/namei.h>
      13             : #include <linux/idr.h>
      14             : #include <linux/slab.h>
      15             : #include <linux/security.h>
      16             : #include <linux/hash.h>
      17             : 
      18             : #include "kernfs-internal.h"
      19             : 
      20             : static DEFINE_RWLOCK(kernfs_rename_lock);       /* kn->parent and ->name */
      21             : /*
      22             :  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
      23             :  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
      24             :  * will perform wakeups when releasing console_sem. Holding rename_lock
      25             :  * will introduce deadlock if the scheduler reads the kernfs_name in the
      26             :  * wakeup path.
      27             :  */
      28             : static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
      29             : static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by pr_cont_lock */
      30             : static DEFINE_SPINLOCK(kernfs_idr_lock);        /* root->ino_idr */
      31             : 
      32             : #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
      33             : 
      34             : static bool __kernfs_active(struct kernfs_node *kn)
      35             : {
      36       19616 :         return atomic_read(&kn->active) >= 0;
      37             : }
      38             : 
      39             : static bool kernfs_active(struct kernfs_node *kn)
      40             : {
      41        9808 :         lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
      42        9808 :         return __kernfs_active(kn);
      43             : }
      44             : 
      45             : static bool kernfs_lockdep(struct kernfs_node *kn)
      46             : {
      47             : #ifdef CONFIG_DEBUG_LOCK_ALLOC
      48             :         return kn->flags & KERNFS_LOCKDEP;
      49             : #else
      50             :         return false;
      51             : #endif
      52             : }
      53             : 
      54           0 : static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
      55             : {
      56           0 :         if (!kn)
      57           0 :                 return strlcpy(buf, "(null)", buflen);
      58             : 
      59           0 :         return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
      60             : }
      61             : 
      62             : /* kernfs_node_depth - compute depth from @from to @to */
      63             : static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
      64             : {
      65           0 :         size_t depth = 0;
      66             : 
      67           0 :         while (to->parent && to != from) {
      68           0 :                 depth++;
      69           0 :                 to = to->parent;
      70             :         }
      71             :         return depth;
      72             : }
      73             : 
      74           0 : static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
      75             :                                                   struct kernfs_node *b)
      76             : {
      77             :         size_t da, db;
      78           0 :         struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
      79             : 
      80           0 :         if (ra != rb)
      81             :                 return NULL;
      82             : 
      83           0 :         da = kernfs_depth(ra->kn, a);
      84           0 :         db = kernfs_depth(rb->kn, b);
      85             : 
      86           0 :         while (da > db) {
      87           0 :                 a = a->parent;
      88           0 :                 da--;
      89             :         }
      90           0 :         while (db > da) {
      91           0 :                 b = b->parent;
      92           0 :                 db--;
      93             :         }
      94             : 
      95             :         /* worst case b and a will be the same at root */
      96           0 :         while (b != a) {
      97           0 :                 b = b->parent;
      98           0 :                 a = a->parent;
      99             :         }
     100             : 
     101             :         return a;
     102             : }
     103             : 
     104             : /**
     105             :  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
     106             :  * where kn_from is treated as root of the path.
     107             :  * @kn_from: kernfs node which should be treated as root for the path
     108             :  * @kn_to: kernfs node to which path is needed
     109             :  * @buf: buffer to copy the path into
     110             :  * @buflen: size of @buf
     111             :  *
     112             :  * We need to handle couple of scenarios here:
     113             :  * [1] when @kn_from is an ancestor of @kn_to at some level
     114             :  * kn_from: /n1/n2/n3
     115             :  * kn_to:   /n1/n2/n3/n4/n5
     116             :  * result:  /n4/n5
     117             :  *
     118             :  * [2] when @kn_from is on a different hierarchy and we need to find common
     119             :  * ancestor between @kn_from and @kn_to.
     120             :  * kn_from: /n1/n2/n3/n4
     121             :  * kn_to:   /n1/n2/n5
     122             :  * result:  /../../n5
     123             :  * OR
     124             :  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
     125             :  * kn_to:   /n1/n2/n3         [depth=3]
     126             :  * result:  /../..
     127             :  *
     128             :  * [3] when @kn_to is %NULL result will be "(null)"
     129             :  *
     130             :  * Return: the length of the full path.  If the full length is equal to or
     131             :  * greater than @buflen, @buf contains the truncated path with the trailing
     132             :  * '\0'.  On error, -errno is returned.
     133             :  */
     134           0 : static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
     135             :                                         struct kernfs_node *kn_from,
     136             :                                         char *buf, size_t buflen)
     137             : {
     138             :         struct kernfs_node *kn, *common;
     139           0 :         const char parent_str[] = "/..";
     140           0 :         size_t depth_from, depth_to, len = 0;
     141             :         int i, j;
     142             : 
     143           0 :         if (!kn_to)
     144           0 :                 return strlcpy(buf, "(null)", buflen);
     145             : 
     146           0 :         if (!kn_from)
     147           0 :                 kn_from = kernfs_root(kn_to)->kn;
     148             : 
     149           0 :         if (kn_from == kn_to)
     150           0 :                 return strlcpy(buf, "/", buflen);
     151             : 
     152           0 :         common = kernfs_common_ancestor(kn_from, kn_to);
     153           0 :         if (WARN_ON(!common))
     154             :                 return -EINVAL;
     155             : 
     156             :         depth_to = kernfs_depth(common, kn_to);
     157           0 :         depth_from = kernfs_depth(common, kn_from);
     158             : 
     159           0 :         buf[0] = '\0';
     160             : 
     161           0 :         for (i = 0; i < depth_from; i++)
     162           0 :                 len += strlcpy(buf + len, parent_str,
     163             :                                len < buflen ? buflen - len : 0);
     164             : 
     165             :         /* Calculate how many bytes we need for the rest */
     166           0 :         for (i = depth_to - 1; i >= 0; i--) {
     167           0 :                 for (kn = kn_to, j = 0; j < i; j++)
     168           0 :                         kn = kn->parent;
     169           0 :                 len += strlcpy(buf + len, "/",
     170             :                                len < buflen ? buflen - len : 0);
     171           0 :                 len += strlcpy(buf + len, kn->name,
     172             :                                len < buflen ? buflen - len : 0);
     173             :         }
     174             : 
     175           0 :         return len;
     176             : }
     177             : 
     178             : /**
     179             :  * kernfs_name - obtain the name of a given node
     180             :  * @kn: kernfs_node of interest
     181             :  * @buf: buffer to copy @kn's name into
     182             :  * @buflen: size of @buf
     183             :  *
     184             :  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
     185             :  * similar to strlcpy().
     186             :  *
     187             :  * Fills buffer with "(null)" if @kn is %NULL.
     188             :  *
     189             :  * Return: the length of @kn's name and if @buf isn't long enough,
     190             :  * it's filled up to @buflen-1 and nul terminated.
     191             :  *
     192             :  * This function can be called from any context.
     193             :  */
     194           0 : int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
     195             : {
     196             :         unsigned long flags;
     197             :         int ret;
     198             : 
     199           0 :         read_lock_irqsave(&kernfs_rename_lock, flags);
     200           0 :         ret = kernfs_name_locked(kn, buf, buflen);
     201           0 :         read_unlock_irqrestore(&kernfs_rename_lock, flags);
     202           0 :         return ret;
     203             : }
     204             : 
     205             : /**
     206             :  * kernfs_path_from_node - build path of node @to relative to @from.
     207             :  * @from: parent kernfs_node relative to which we need to build the path
     208             :  * @to: kernfs_node of interest
     209             :  * @buf: buffer to copy @to's path into
     210             :  * @buflen: size of @buf
     211             :  *
     212             :  * Builds @to's path relative to @from in @buf. @from and @to must
     213             :  * be on the same kernfs-root. If @from is not parent of @to, then a relative
     214             :  * path (which includes '..'s) as needed to reach from @from to @to is
     215             :  * returned.
     216             :  *
     217             :  * Return: the length of the full path.  If the full length is equal to or
     218             :  * greater than @buflen, @buf contains the truncated path with the trailing
     219             :  * '\0'.  On error, -errno is returned.
     220             :  */
     221           0 : int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
     222             :                           char *buf, size_t buflen)
     223             : {
     224             :         unsigned long flags;
     225             :         int ret;
     226             : 
     227           0 :         read_lock_irqsave(&kernfs_rename_lock, flags);
     228           0 :         ret = kernfs_path_from_node_locked(to, from, buf, buflen);
     229           0 :         read_unlock_irqrestore(&kernfs_rename_lock, flags);
     230           0 :         return ret;
     231             : }
     232             : EXPORT_SYMBOL_GPL(kernfs_path_from_node);
     233             : 
     234             : /**
     235             :  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
     236             :  * @kn: kernfs_node of interest
     237             :  *
     238             :  * This function can be called from any context.
     239             :  */
     240           0 : void pr_cont_kernfs_name(struct kernfs_node *kn)
     241             : {
     242             :         unsigned long flags;
     243             : 
     244           0 :         spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
     245             : 
     246           0 :         kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
     247           0 :         pr_cont("%s", kernfs_pr_cont_buf);
     248             : 
     249           0 :         spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
     250           0 : }
     251             : 
     252             : /**
     253             :  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
     254             :  * @kn: kernfs_node of interest
     255             :  *
     256             :  * This function can be called from any context.
     257             :  */
     258           0 : void pr_cont_kernfs_path(struct kernfs_node *kn)
     259             : {
     260             :         unsigned long flags;
     261             :         int sz;
     262             : 
     263           0 :         spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
     264             : 
     265           0 :         sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
     266             :                                    sizeof(kernfs_pr_cont_buf));
     267           0 :         if (sz < 0) {
     268           0 :                 pr_cont("(error)");
     269           0 :                 goto out;
     270             :         }
     271             : 
     272           0 :         if (sz >= sizeof(kernfs_pr_cont_buf)) {
     273           0 :                 pr_cont("(name too long)");
     274           0 :                 goto out;
     275             :         }
     276             : 
     277           0 :         pr_cont("%s", kernfs_pr_cont_buf);
     278             : 
     279             : out:
     280           0 :         spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
     281           0 : }
     282             : 
     283             : /**
     284             :  * kernfs_get_parent - determine the parent node and pin it
     285             :  * @kn: kernfs_node of interest
     286             :  *
     287             :  * Determines @kn's parent, pins and returns it.  This function can be
     288             :  * called from any context.
     289             :  *
     290             :  * Return: parent node of @kn
     291             :  */
     292           0 : struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
     293             : {
     294             :         struct kernfs_node *parent;
     295             :         unsigned long flags;
     296             : 
     297           0 :         read_lock_irqsave(&kernfs_rename_lock, flags);
     298           0 :         parent = kn->parent;
     299           0 :         kernfs_get(parent);
     300           0 :         read_unlock_irqrestore(&kernfs_rename_lock, flags);
     301             : 
     302           0 :         return parent;
     303             : }
     304             : 
     305             : /**
     306             :  *      kernfs_name_hash - calculate hash of @ns + @name
     307             :  *      @name: Null terminated string to hash
     308             :  *      @ns:   Namespace tag to hash
     309             :  *
     310             :  *      Return: 31-bit hash of ns + name (so it fits in an off_t)
     311             :  */
     312       10409 : static unsigned int kernfs_name_hash(const char *name, const void *ns)
     313             : {
     314       10409 :         unsigned long hash = init_name_hash(ns);
     315       10409 :         unsigned int len = strlen(name);
     316      125596 :         while (len--)
     317      209556 :                 hash = partial_name_hash(*name++, hash);
     318       10409 :         hash = end_name_hash(hash);
     319       10409 :         hash &= 0x7fffffffU;
     320             :         /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
     321       10409 :         if (hash < 2)
     322           0 :                 hash += 2;
     323       10409 :         if (hash >= INT_MAX)
     324           0 :                 hash = INT_MAX - 1;
     325       10409 :         return hash;
     326             : }
     327             : 
     328       28164 : static int kernfs_name_compare(unsigned int hash, const char *name,
     329             :                                const void *ns, const struct kernfs_node *kn)
     330             : {
     331       28164 :         if (hash < kn->hash)
     332             :                 return -1;
     333       14015 :         if (hash > kn->hash)
     334             :                 return 1;
     335        1154 :         if (ns < kn->ns)
     336             :                 return -1;
     337        1154 :         if (ns > kn->ns)
     338             :                 return 1;
     339        1154 :         return strcmp(name, kn->name);
     340             : }
     341             : 
     342             : static int kernfs_sd_compare(const struct kernfs_node *left,
     343             :                              const struct kernfs_node *right)
     344             : {
     345       25525 :         return kernfs_name_compare(left->hash, left->name, left->ns, right);
     346             : }
     347             : 
     348             : /**
     349             :  *      kernfs_link_sibling - link kernfs_node into sibling rbtree
     350             :  *      @kn: kernfs_node of interest
     351             :  *
     352             :  *      Link @kn into its sibling rbtree which starts from
     353             :  *      @kn->parent->dir.children.
     354             :  *
     355             :  *      Locking:
     356             :  *      kernfs_rwsem held exclusive
     357             :  *
     358             :  *      Return:
     359             :  *      %0 on success, -EEXIST on failure.
     360             :  */
     361        8759 : static int kernfs_link_sibling(struct kernfs_node *kn)
     362             : {
     363        8759 :         struct rb_node **node = &kn->parent->dir.children.rb_node;
     364        8759 :         struct rb_node *parent = NULL;
     365             : 
     366       43043 :         while (*node) {
     367             :                 struct kernfs_node *pos;
     368             :                 int result;
     369             : 
     370       25525 :                 pos = rb_to_kn(*node);
     371       25525 :                 parent = *node;
     372       25525 :                 result = kernfs_sd_compare(kn, pos);
     373       25525 :                 if (result < 0)
     374       13288 :                         node = &pos->rb.rb_left;
     375       12237 :                 else if (result > 0)
     376       12237 :                         node = &pos->rb.rb_right;
     377             :                 else
     378             :                         return -EEXIST;
     379             :         }
     380             : 
     381             :         /* add new node and rebalance the tree */
     382       17518 :         rb_link_node(&kn->rb, parent, node);
     383        8759 :         rb_insert_color(&kn->rb, &kn->parent->dir.children);
     384             : 
     385             :         /* successfully added, account subdir number */
     386       17518 :         if (kernfs_type(kn) == KERNFS_DIR)
     387        1348 :                 kn->parent->dir.subdirs++;
     388        8759 :         kernfs_inc_rev(kn->parent);
     389             : 
     390        8759 :         return 0;
     391             : }
     392             : 
     393             : /**
     394             :  *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
     395             :  *      @kn: kernfs_node of interest
     396             :  *
     397             :  *      Try to unlink @kn from its sibling rbtree which starts from
     398             :  *      kn->parent->dir.children.
     399             :  *
     400             :  *      Return: %true if @kn was actually removed,
     401             :  *      %false if @kn wasn't on the rbtree.
     402             :  *
     403             :  *      Locking:
     404             :  *      kernfs_rwsem held exclusive
     405             :  */
     406         524 : static bool kernfs_unlink_sibling(struct kernfs_node *kn)
     407             : {
     408         524 :         if (RB_EMPTY_NODE(&kn->rb))
     409             :                 return false;
     410             : 
     411        1048 :         if (kernfs_type(kn) == KERNFS_DIR)
     412          98 :                 kn->parent->dir.subdirs--;
     413         524 :         kernfs_inc_rev(kn->parent);
     414             : 
     415         524 :         rb_erase(&kn->rb, &kn->parent->dir.children);
     416         524 :         RB_CLEAR_NODE(&kn->rb);
     417         524 :         return true;
     418             : }
     419             : 
     420             : /**
     421             :  *      kernfs_get_active - get an active reference to kernfs_node
     422             :  *      @kn: kernfs_node to get an active reference to
     423             :  *
     424             :  *      Get an active reference of @kn.  This function is noop if @kn
     425             :  *      is %NULL.
     426             :  *
     427             :  *      Return:
     428             :  *      Pointer to @kn on success, %NULL on failure.
     429             :  */
     430           0 : struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
     431             : {
     432           0 :         if (unlikely(!kn))
     433             :                 return NULL;
     434             : 
     435           0 :         if (!atomic_inc_unless_negative(&kn->active))
     436             :                 return NULL;
     437             : 
     438           0 :         if (kernfs_lockdep(kn))
     439             :                 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
     440           0 :         return kn;
     441             : }
     442             : 
     443             : /**
     444             :  *      kernfs_put_active - put an active reference to kernfs_node
     445             :  *      @kn: kernfs_node to put an active reference to
     446             :  *
     447             :  *      Put an active reference to @kn.  This function is noop if @kn
     448             :  *      is %NULL.
     449             :  */
     450           0 : void kernfs_put_active(struct kernfs_node *kn)
     451             : {
     452             :         int v;
     453             : 
     454           0 :         if (unlikely(!kn))
     455             :                 return;
     456             : 
     457           0 :         if (kernfs_lockdep(kn))
     458             :                 rwsem_release(&kn->dep_map, _RET_IP_);
     459           0 :         v = atomic_dec_return(&kn->active);
     460           0 :         if (likely(v != KN_DEACTIVATED_BIAS))
     461             :                 return;
     462             : 
     463           0 :         wake_up_all(&kernfs_root(kn)->deactivate_waitq);
     464             : }
     465             : 
     466             : /**
     467             :  * kernfs_drain - drain kernfs_node
     468             :  * @kn: kernfs_node to drain
     469             :  *
     470             :  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
     471             :  * removers may invoke this function concurrently on @kn and all will
     472             :  * return after draining is complete.
     473             :  */
     474         524 : static void kernfs_drain(struct kernfs_node *kn)
     475             :         __releases(&kernfs_root(kn)->kernfs_rwsem)
     476             :         __acquires(&kernfs_root(kn)->kernfs_rwsem)
     477             : {
     478         524 :         struct kernfs_root *root = kernfs_root(kn);
     479             : 
     480             :         lockdep_assert_held_write(&root->kernfs_rwsem);
     481         524 :         WARN_ON_ONCE(kernfs_active(kn));
     482             : 
     483             :         /*
     484             :          * Skip draining if already fully drained. This avoids draining and its
     485             :          * lockdep annotations for nodes which have never been activated
     486             :          * allowing embedding kernfs_remove() in create error paths without
     487             :          * worrying about draining.
     488             :          */
     489        1572 :         if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
     490         524 :             !kernfs_should_drain_open_files(kn))
     491             :                 return;
     492             : 
     493           0 :         up_write(&root->kernfs_rwsem);
     494             : 
     495           0 :         if (kernfs_lockdep(kn)) {
     496             :                 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
     497             :                 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
     498             :                         lock_contended(&kn->dep_map, _RET_IP_);
     499             :         }
     500             : 
     501           0 :         wait_event(root->deactivate_waitq,
     502             :                    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
     503             : 
     504           0 :         if (kernfs_lockdep(kn)) {
     505             :                 lock_acquired(&kn->dep_map, _RET_IP_);
     506             :                 rwsem_release(&kn->dep_map, _RET_IP_);
     507             :         }
     508             : 
     509           0 :         if (kernfs_should_drain_open_files(kn))
     510           0 :                 kernfs_drain_open_files(kn);
     511             : 
     512           0 :         down_write(&root->kernfs_rwsem);
     513             : }
     514             : 
     515             : /**
     516             :  * kernfs_get - get a reference count on a kernfs_node
     517             :  * @kn: the target kernfs_node
     518             :  */
     519       15414 : void kernfs_get(struct kernfs_node *kn)
     520             : {
     521       15414 :         if (kn) {
     522       30828 :                 WARN_ON(!atomic_read(&kn->count));
     523       15414 :                 atomic_inc(&kn->count);
     524             :         }
     525       15414 : }
     526             : EXPORT_SYMBOL_GPL(kernfs_get);
     527             : 
     528             : /**
     529             :  * kernfs_put - put a reference count on a kernfs_node
     530             :  * @kn: the target kernfs_node
     531             :  *
     532             :  * Put a reference count of @kn and destroy it if it reached zero.
     533             :  */
     534        4828 : void kernfs_put(struct kernfs_node *kn)
     535             : {
     536             :         struct kernfs_node *parent;
     537             :         struct kernfs_root *root;
     538             : 
     539        9656 :         if (!kn || !atomic_dec_and_test(&kn->count))
     540             :                 return;
     541         524 :         root = kernfs_root(kn);
     542             :  repeat:
     543             :         /*
     544             :          * Moving/renaming is always done while holding reference.
     545             :          * kn->parent won't change beneath us.
     546             :          */
     547         524 :         parent = kn->parent;
     548             : 
     549        1048 :         WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
     550             :                   "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
     551             :                   parent ? parent->name : "", kn->name, atomic_read(&kn->active));
     552             : 
     553        1048 :         if (kernfs_type(kn) == KERNFS_LINK)
     554          93 :                 kernfs_put(kn->symlink.target_kn);
     555             : 
     556         524 :         kfree_const(kn->name);
     557             : 
     558         524 :         if (kn->iattr) {
     559           0 :                 simple_xattrs_free(&kn->iattr->xattrs);
     560           0 :                 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
     561             :         }
     562         524 :         spin_lock(&kernfs_idr_lock);
     563        1048 :         idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
     564         524 :         spin_unlock(&kernfs_idr_lock);
     565         524 :         kmem_cache_free(kernfs_node_cache, kn);
     566             : 
     567         524 :         kn = parent;
     568         524 :         if (kn) {
     569        1048 :                 if (atomic_dec_and_test(&kn->count))
     570             :                         goto repeat;
     571             :         } else {
     572             :                 /* just released the root kn, free @root too */
     573           0 :                 idr_destroy(&root->ino_idr);
     574           0 :                 kfree(root);
     575             :         }
     576             : }
     577             : EXPORT_SYMBOL_GPL(kernfs_put);
     578             : 
     579             : /**
     580             :  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
     581             :  * @dentry: the dentry in question
     582             :  *
     583             :  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
     584             :  * kernfs one, %NULL is returned.
     585             :  *
     586             :  * While the returned kernfs_node will stay accessible as long as @dentry
     587             :  * is accessible, the returned node can be in any state and the caller is
     588             :  * fully responsible for determining what's accessible.
     589             :  */
     590           0 : struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
     591             : {
     592           0 :         if (dentry->d_sb->s_op == &kernfs_sops)
     593             :                 return kernfs_dentry_node(dentry);
     594             :         return NULL;
     595             : }
     596             : 
     597        8760 : static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
     598             :                                              struct kernfs_node *parent,
     599             :                                              const char *name, umode_t mode,
     600             :                                              kuid_t uid, kgid_t gid,
     601             :                                              unsigned flags)
     602             : {
     603             :         struct kernfs_node *kn;
     604             :         u32 id_highbits;
     605             :         int ret;
     606             : 
     607        8760 :         name = kstrdup_const(name, GFP_KERNEL);
     608        8760 :         if (!name)
     609             :                 return NULL;
     610             : 
     611       17520 :         kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
     612        8760 :         if (!kn)
     613             :                 goto err_out1;
     614             : 
     615        8760 :         idr_preload(GFP_KERNEL);
     616        8760 :         spin_lock(&kernfs_idr_lock);
     617        8760 :         ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
     618        8760 :         if (ret >= 0 && ret < root->last_id_lowbits)
     619           0 :                 root->id_highbits++;
     620        8760 :         id_highbits = root->id_highbits;
     621        8760 :         root->last_id_lowbits = ret;
     622        8760 :         spin_unlock(&kernfs_idr_lock);
     623             :         idr_preload_end();
     624        8760 :         if (ret < 0)
     625             :                 goto err_out2;
     626             : 
     627        8760 :         kn->id = (u64)id_highbits << 32 | ret;
     628             : 
     629       17520 :         atomic_set(&kn->count, 1);
     630       17520 :         atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
     631        8760 :         RB_CLEAR_NODE(&kn->rb);
     632             : 
     633        8760 :         kn->name = name;
     634        8760 :         kn->mode = mode;
     635        8760 :         kn->flags = flags;
     636             : 
     637        8760 :         if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
     638           0 :                 struct iattr iattr = {
     639             :                         .ia_valid = ATTR_UID | ATTR_GID,
     640             :                         .ia_uid = uid,
     641             :                         .ia_gid = gid,
     642             :                 };
     643             : 
     644           0 :                 ret = __kernfs_setattr(kn, &iattr);
     645           0 :                 if (ret < 0)
     646             :                         goto err_out3;
     647             :         }
     648             : 
     649             :         if (parent) {
     650             :                 ret = security_kernfs_init_security(parent, kn);
     651             :                 if (ret)
     652             :                         goto err_out3;
     653             :         }
     654             : 
     655             :         return kn;
     656             : 
     657             :  err_out3:
     658           0 :         idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
     659             :  err_out2:
     660           0 :         kmem_cache_free(kernfs_node_cache, kn);
     661             :  err_out1:
     662           0 :         kfree_const(name);
     663           0 :         return NULL;
     664             : }
     665             : 
     666        8759 : struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
     667             :                                     const char *name, umode_t mode,
     668             :                                     kuid_t uid, kgid_t gid,
     669             :                                     unsigned flags)
     670             : {
     671             :         struct kernfs_node *kn;
     672             : 
     673       17518 :         kn = __kernfs_new_node(kernfs_root(parent), parent,
     674             :                                name, mode, uid, gid, flags);
     675        8759 :         if (kn) {
     676        8759 :                 kernfs_get(parent);
     677        8759 :                 kn->parent = parent;
     678             :         }
     679        8759 :         return kn;
     680             : }
     681             : 
     682             : /*
     683             :  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
     684             :  * @root: the kernfs root
     685             :  * @id: the target node id
     686             :  *
     687             :  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
     688             :  * zero, all generations are matched.
     689             :  *
     690             :  * Return: %NULL on failure,
     691             :  * otherwise a kernfs node with reference counter incremented.
     692             :  */
     693           0 : struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
     694             :                                                    u64 id)
     695             : {
     696             :         struct kernfs_node *kn;
     697           0 :         ino_t ino = kernfs_id_ino(id);
     698           0 :         u32 gen = kernfs_id_gen(id);
     699             : 
     700           0 :         spin_lock(&kernfs_idr_lock);
     701             : 
     702           0 :         kn = idr_find(&root->ino_idr, (u32)ino);
     703           0 :         if (!kn)
     704             :                 goto err_unlock;
     705             : 
     706             :         if (sizeof(ino_t) >= sizeof(u64)) {
     707             :                 /* we looked up with the low 32bits, compare the whole */
     708           0 :                 if (kernfs_ino(kn) != ino)
     709             :                         goto err_unlock;
     710             :         } else {
     711             :                 /* 0 matches all generations */
     712             :                 if (unlikely(gen && kernfs_gen(kn) != gen))
     713             :                         goto err_unlock;
     714             :         }
     715             : 
     716             :         /*
     717             :          * We should fail if @kn has never been activated and guarantee success
     718             :          * if the caller knows that @kn is active. Both can be achieved by
     719             :          * __kernfs_active() which tests @kn->active without kernfs_rwsem.
     720             :          */
     721           0 :         if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
     722             :                 goto err_unlock;
     723             : 
     724           0 :         spin_unlock(&kernfs_idr_lock);
     725           0 :         return kn;
     726             : err_unlock:
     727           0 :         spin_unlock(&kernfs_idr_lock);
     728           0 :         return NULL;
     729             : }
     730             : 
     731             : /**
     732             :  *      kernfs_add_one - add kernfs_node to parent without warning
     733             :  *      @kn: kernfs_node to be added
     734             :  *
     735             :  *      The caller must already have initialized @kn->parent.  This
     736             :  *      function increments nlink of the parent's inode if @kn is a
     737             :  *      directory and link into the children list of the parent.
     738             :  *
     739             :  *      Return:
     740             :  *      %0 on success, -EEXIST if entry with the given name already
     741             :  *      exists.
     742             :  */
     743        8759 : int kernfs_add_one(struct kernfs_node *kn)
     744             : {
     745        8759 :         struct kernfs_node *parent = kn->parent;
     746        8759 :         struct kernfs_root *root = kernfs_root(parent);
     747             :         struct kernfs_iattrs *ps_iattr;
     748             :         bool has_ns;
     749             :         int ret;
     750             : 
     751        8759 :         down_write(&root->kernfs_rwsem);
     752             : 
     753        8759 :         ret = -EINVAL;
     754       17518 :         has_ns = kernfs_ns_enabled(parent);
     755        8759 :         if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
     756             :                  has_ns ? "required" : "invalid", parent->name, kn->name))
     757             :                 goto out_unlock;
     758             : 
     759       17518 :         if (kernfs_type(parent) != KERNFS_DIR)
     760             :                 goto out_unlock;
     761             : 
     762        8759 :         ret = -ENOENT;
     763        8759 :         if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
     764             :                 goto out_unlock;
     765             : 
     766        8759 :         kn->hash = kernfs_name_hash(kn->name, kn->ns);
     767             : 
     768        8759 :         ret = kernfs_link_sibling(kn);
     769        8759 :         if (ret)
     770             :                 goto out_unlock;
     771             : 
     772             :         /* Update timestamps on the parent */
     773        8759 :         down_write(&root->kernfs_iattr_rwsem);
     774             : 
     775        8759 :         ps_iattr = parent->iattr;
     776        8759 :         if (ps_iattr) {
     777           0 :                 ktime_get_real_ts64(&ps_iattr->ia_ctime);
     778           0 :                 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
     779             :         }
     780             : 
     781        8759 :         up_write(&root->kernfs_iattr_rwsem);
     782        8759 :         up_write(&root->kernfs_rwsem);
     783             : 
     784             :         /*
     785             :          * Activate the new node unless CREATE_DEACTIVATED is requested.
     786             :          * If not activated here, the kernfs user is responsible for
     787             :          * activating the node with kernfs_activate().  A node which hasn't
     788             :          * been activated is not visible to userland and its removal won't
     789             :          * trigger deactivation.
     790             :          */
     791        8759 :         if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
     792        8759 :                 kernfs_activate(kn);
     793             :         return 0;
     794             : 
     795             : out_unlock:
     796           0 :         up_write(&root->kernfs_rwsem);
     797           0 :         return ret;
     798             : }
     799             : 
     800             : /**
     801             :  * kernfs_find_ns - find kernfs_node with the given name
     802             :  * @parent: kernfs_node to search under
     803             :  * @name: name to look for
     804             :  * @ns: the namespace tag to use
     805             :  *
     806             :  * Look for kernfs_node with name @name under @parent.
     807             :  *
     808             :  * Return: pointer to the found kernfs_node on success, %NULL on failure.
     809             :  */
     810        1650 : static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
     811             :                                           const unsigned char *name,
     812             :                                           const void *ns)
     813             : {
     814        1650 :         struct rb_node *node = parent->dir.children.rb_node;
     815        3300 :         bool has_ns = kernfs_ns_enabled(parent);
     816             :         unsigned int hash;
     817             : 
     818        1650 :         lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
     819             : 
     820        1650 :         if (has_ns != (bool)ns) {
     821           0 :                 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
     822             :                      has_ns ? "required" : "invalid", parent->name, name);
     823           0 :                 return NULL;
     824             :         }
     825             : 
     826        1650 :         hash = kernfs_name_hash(name, ns);
     827        4785 :         while (node) {
     828             :                 struct kernfs_node *kn;
     829             :                 int result;
     830             : 
     831        2639 :                 kn = rb_to_kn(node);
     832        2639 :                 result = kernfs_name_compare(hash, name, ns, kn);
     833        2639 :                 if (result < 0)
     834         861 :                         node = node->rb_left;
     835        1778 :                 else if (result > 0)
     836         624 :                         node = node->rb_right;
     837             :                 else
     838             :                         return kn;
     839             :         }
     840             :         return NULL;
     841             : }
     842             : 
     843           0 : static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
     844             :                                           const unsigned char *path,
     845             :                                           const void *ns)
     846             : {
     847             :         size_t len;
     848             :         char *p, *name;
     849             : 
     850           0 :         lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
     851             : 
     852           0 :         spin_lock_irq(&kernfs_pr_cont_lock);
     853             : 
     854           0 :         len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
     855             : 
     856           0 :         if (len >= sizeof(kernfs_pr_cont_buf)) {
     857           0 :                 spin_unlock_irq(&kernfs_pr_cont_lock);
     858           0 :                 return NULL;
     859             :         }
     860             : 
     861           0 :         p = kernfs_pr_cont_buf;
     862             : 
     863           0 :         while ((name = strsep(&p, "/")) && parent) {
     864           0 :                 if (*name == '\0')
     865           0 :                         continue;
     866           0 :                 parent = kernfs_find_ns(parent, name, ns);
     867             :         }
     868             : 
     869           0 :         spin_unlock_irq(&kernfs_pr_cont_lock);
     870             : 
     871           0 :         return parent;
     872             : }
     873             : 
     874             : /**
     875             :  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
     876             :  * @parent: kernfs_node to search under
     877             :  * @name: name to look for
     878             :  * @ns: the namespace tag to use
     879             :  *
     880             :  * Look for kernfs_node with name @name under @parent and get a reference
     881             :  * if found.  This function may sleep.
     882             :  *
     883             :  * Return: pointer to the found kernfs_node on success, %NULL on failure.
     884             :  */
     885         728 : struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
     886             :                                            const char *name, const void *ns)
     887             : {
     888             :         struct kernfs_node *kn;
     889         728 :         struct kernfs_root *root = kernfs_root(parent);
     890             : 
     891         728 :         down_read(&root->kernfs_rwsem);
     892         728 :         kn = kernfs_find_ns(parent, name, ns);
     893         728 :         kernfs_get(kn);
     894         728 :         up_read(&root->kernfs_rwsem);
     895             : 
     896         728 :         return kn;
     897             : }
     898             : EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
     899             : 
     900             : /**
     901             :  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
     902             :  * @parent: kernfs_node to search under
     903             :  * @path: path to look for
     904             :  * @ns: the namespace tag to use
     905             :  *
     906             :  * Look for kernfs_node with path @path under @parent and get a reference
     907             :  * if found.  This function may sleep.
     908             :  *
     909             :  * Return: pointer to the found kernfs_node on success, %NULL on failure.
     910             :  */
     911           0 : struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
     912             :                                            const char *path, const void *ns)
     913             : {
     914             :         struct kernfs_node *kn;
     915           0 :         struct kernfs_root *root = kernfs_root(parent);
     916             : 
     917           0 :         down_read(&root->kernfs_rwsem);
     918           0 :         kn = kernfs_walk_ns(parent, path, ns);
     919           0 :         kernfs_get(kn);
     920           0 :         up_read(&root->kernfs_rwsem);
     921             : 
     922           0 :         return kn;
     923             : }
     924             : 
     925             : /**
     926             :  * kernfs_create_root - create a new kernfs hierarchy
     927             :  * @scops: optional syscall operations for the hierarchy
     928             :  * @flags: KERNFS_ROOT_* flags
     929             :  * @priv: opaque data associated with the new directory
     930             :  *
     931             :  * Return: the root of the new hierarchy on success, ERR_PTR() value on
     932             :  * failure.
     933             :  */
     934           1 : struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
     935             :                                        unsigned int flags, void *priv)
     936             : {
     937             :         struct kernfs_root *root;
     938             :         struct kernfs_node *kn;
     939             : 
     940           1 :         root = kzalloc(sizeof(*root), GFP_KERNEL);
     941           1 :         if (!root)
     942             :                 return ERR_PTR(-ENOMEM);
     943             : 
     944           2 :         idr_init(&root->ino_idr);
     945           1 :         init_rwsem(&root->kernfs_rwsem);
     946           1 :         init_rwsem(&root->kernfs_iattr_rwsem);
     947           1 :         init_rwsem(&root->kernfs_supers_rwsem);
     948           2 :         INIT_LIST_HEAD(&root->supers);
     949             : 
     950             :         /*
     951             :          * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
     952             :          * High bits generation.  The starting value for both ino and
     953             :          * genenration is 1.  Initialize upper 32bit allocation
     954             :          * accordingly.
     955             :          */
     956             :         if (sizeof(ino_t) >= sizeof(u64))
     957           1 :                 root->id_highbits = 0;
     958             :         else
     959             :                 root->id_highbits = 1;
     960             : 
     961           1 :         kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
     962           1 :                                GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
     963             :                                KERNFS_DIR);
     964           1 :         if (!kn) {
     965           0 :                 idr_destroy(&root->ino_idr);
     966           0 :                 kfree(root);
     967           0 :                 return ERR_PTR(-ENOMEM);
     968             :         }
     969             : 
     970           1 :         kn->priv = priv;
     971           1 :         kn->dir.root = root;
     972             : 
     973           1 :         root->syscall_ops = scops;
     974           1 :         root->flags = flags;
     975           1 :         root->kn = kn;
     976           1 :         init_waitqueue_head(&root->deactivate_waitq);
     977             : 
     978           1 :         if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
     979           1 :                 kernfs_activate(kn);
     980             : 
     981             :         return root;
     982             : }
     983             : 
     984             : /**
     985             :  * kernfs_destroy_root - destroy a kernfs hierarchy
     986             :  * @root: root of the hierarchy to destroy
     987             :  *
     988             :  * Destroy the hierarchy anchored at @root by removing all existing
     989             :  * directories and destroying @root.
     990             :  */
     991           0 : void kernfs_destroy_root(struct kernfs_root *root)
     992             : {
     993             :         /*
     994             :          *  kernfs_remove holds kernfs_rwsem from the root so the root
     995             :          *  shouldn't be freed during the operation.
     996             :          */
     997           0 :         kernfs_get(root->kn);
     998           0 :         kernfs_remove(root->kn);
     999           0 :         kernfs_put(root->kn); /* will also free @root */
    1000           0 : }
    1001             : 
    1002             : /**
    1003             :  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
    1004             :  * @root: root to use to lookup
    1005             :  *
    1006             :  * Return: @root's kernfs_node
    1007             :  */
    1008           1 : struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
    1009             : {
    1010           1 :         return root->kn;
    1011             : }
    1012             : 
    1013             : /**
    1014             :  * kernfs_create_dir_ns - create a directory
    1015             :  * @parent: parent in which to create a new directory
    1016             :  * @name: name of the new directory
    1017             :  * @mode: mode of the new directory
    1018             :  * @uid: uid of the new directory
    1019             :  * @gid: gid of the new directory
    1020             :  * @priv: opaque data associated with the new directory
    1021             :  * @ns: optional namespace tag of the directory
    1022             :  *
    1023             :  * Return: the created node on success, ERR_PTR() value on failure.
    1024             :  */
    1025        1348 : struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
    1026             :                                          const char *name, umode_t mode,
    1027             :                                          kuid_t uid, kgid_t gid,
    1028             :                                          void *priv, const void *ns)
    1029             : {
    1030             :         struct kernfs_node *kn;
    1031             :         int rc;
    1032             : 
    1033             :         /* allocate */
    1034        1348 :         kn = kernfs_new_node(parent, name, mode | S_IFDIR,
    1035             :                              uid, gid, KERNFS_DIR);
    1036        1348 :         if (!kn)
    1037             :                 return ERR_PTR(-ENOMEM);
    1038             : 
    1039        1348 :         kn->dir.root = parent->dir.root;
    1040        1348 :         kn->ns = ns;
    1041        1348 :         kn->priv = priv;
    1042             : 
    1043             :         /* link in */
    1044        1348 :         rc = kernfs_add_one(kn);
    1045        1348 :         if (!rc)
    1046             :                 return kn;
    1047             : 
    1048           0 :         kernfs_put(kn);
    1049           0 :         return ERR_PTR(rc);
    1050             : }
    1051             : 
    1052             : /**
    1053             :  * kernfs_create_empty_dir - create an always empty directory
    1054             :  * @parent: parent in which to create a new directory
    1055             :  * @name: name of the new directory
    1056             :  *
    1057             :  * Return: the created node on success, ERR_PTR() value on failure.
    1058             :  */
    1059           0 : struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
    1060             :                                             const char *name)
    1061             : {
    1062             :         struct kernfs_node *kn;
    1063             :         int rc;
    1064             : 
    1065             :         /* allocate */
    1066           0 :         kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
    1067           0 :                              GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
    1068           0 :         if (!kn)
    1069             :                 return ERR_PTR(-ENOMEM);
    1070             : 
    1071           0 :         kn->flags |= KERNFS_EMPTY_DIR;
    1072           0 :         kn->dir.root = parent->dir.root;
    1073           0 :         kn->ns = NULL;
    1074           0 :         kn->priv = NULL;
    1075             : 
    1076             :         /* link in */
    1077           0 :         rc = kernfs_add_one(kn);
    1078           0 :         if (!rc)
    1079             :                 return kn;
    1080             : 
    1081           0 :         kernfs_put(kn);
    1082           0 :         return ERR_PTR(rc);
    1083             : }
    1084             : 
    1085           0 : static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
    1086             : {
    1087             :         struct kernfs_node *kn;
    1088             :         struct kernfs_root *root;
    1089             : 
    1090           0 :         if (flags & LOOKUP_RCU)
    1091             :                 return -ECHILD;
    1092             : 
    1093             :         /* Negative hashed dentry? */
    1094           0 :         if (d_really_is_negative(dentry)) {
    1095             :                 struct kernfs_node *parent;
    1096             : 
    1097             :                 /* If the kernfs parent node has changed discard and
    1098             :                  * proceed to ->lookup.
    1099             :                  *
    1100             :                  * There's nothing special needed here when getting the
    1101             :                  * dentry parent, even if a concurrent rename is in
    1102             :                  * progress. That's because the dentry is negative so
    1103             :                  * it can only be the target of the rename and it will
    1104             :                  * be doing a d_move() not a replace. Consequently the
    1105             :                  * dentry d_parent won't change over the d_move().
    1106             :                  *
    1107             :                  * Also kernfs negative dentries transitioning from
    1108             :                  * negative to positive during revalidate won't happen
    1109             :                  * because they are invalidated on containing directory
    1110             :                  * changes and the lookup re-done so that a new positive
    1111             :                  * dentry can be properly created.
    1112             :                  */
    1113           0 :                 root = kernfs_root_from_sb(dentry->d_sb);
    1114           0 :                 down_read(&root->kernfs_rwsem);
    1115           0 :                 parent = kernfs_dentry_node(dentry->d_parent);
    1116           0 :                 if (parent) {
    1117           0 :                         if (kernfs_dir_changed(parent, dentry)) {
    1118           0 :                                 up_read(&root->kernfs_rwsem);
    1119           0 :                                 return 0;
    1120             :                         }
    1121             :                 }
    1122           0 :                 up_read(&root->kernfs_rwsem);
    1123             : 
    1124             :                 /* The kernfs parent node hasn't changed, leave the
    1125             :                  * dentry negative and return success.
    1126             :                  */
    1127           0 :                 return 1;
    1128             :         }
    1129             : 
    1130           0 :         kn = kernfs_dentry_node(dentry);
    1131           0 :         root = kernfs_root(kn);
    1132           0 :         down_read(&root->kernfs_rwsem);
    1133             : 
    1134             :         /* The kernfs node has been deactivated */
    1135           0 :         if (!kernfs_active(kn))
    1136             :                 goto out_bad;
    1137             : 
    1138             :         /* The kernfs node has been moved? */
    1139           0 :         if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
    1140             :                 goto out_bad;
    1141             : 
    1142             :         /* The kernfs node has been renamed */
    1143           0 :         if (strcmp(dentry->d_name.name, kn->name) != 0)
    1144             :                 goto out_bad;
    1145             : 
    1146             :         /* The kernfs node has been moved to a different namespace */
    1147           0 :         if (kn->parent && kernfs_ns_enabled(kn->parent) &&
    1148           0 :             kernfs_info(dentry->d_sb)->ns != kn->ns)
    1149             :                 goto out_bad;
    1150             : 
    1151           0 :         up_read(&root->kernfs_rwsem);
    1152           0 :         return 1;
    1153             : out_bad:
    1154           0 :         up_read(&root->kernfs_rwsem);
    1155           0 :         return 0;
    1156             : }
    1157             : 
    1158             : const struct dentry_operations kernfs_dops = {
    1159             :         .d_revalidate   = kernfs_dop_revalidate,
    1160             : };
    1161             : 
    1162           0 : static struct dentry *kernfs_iop_lookup(struct inode *dir,
    1163             :                                         struct dentry *dentry,
    1164             :                                         unsigned int flags)
    1165             : {
    1166           0 :         struct kernfs_node *parent = dir->i_private;
    1167             :         struct kernfs_node *kn;
    1168             :         struct kernfs_root *root;
    1169           0 :         struct inode *inode = NULL;
    1170           0 :         const void *ns = NULL;
    1171             : 
    1172           0 :         root = kernfs_root(parent);
    1173           0 :         down_read(&root->kernfs_rwsem);
    1174           0 :         if (kernfs_ns_enabled(parent))
    1175           0 :                 ns = kernfs_info(dir->i_sb)->ns;
    1176             : 
    1177           0 :         kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
    1178             :         /* attach dentry and inode */
    1179           0 :         if (kn) {
    1180             :                 /* Inactive nodes are invisible to the VFS so don't
    1181             :                  * create a negative.
    1182             :                  */
    1183           0 :                 if (!kernfs_active(kn)) {
    1184           0 :                         up_read(&root->kernfs_rwsem);
    1185           0 :                         return NULL;
    1186             :                 }
    1187           0 :                 inode = kernfs_get_inode(dir->i_sb, kn);
    1188           0 :                 if (!inode)
    1189           0 :                         inode = ERR_PTR(-ENOMEM);
    1190             :         }
    1191             :         /*
    1192             :          * Needed for negative dentry validation.
    1193             :          * The negative dentry can be created in kernfs_iop_lookup()
    1194             :          * or transforms from positive dentry in dentry_unlink_inode()
    1195             :          * called from vfs_rmdir().
    1196             :          */
    1197           0 :         if (!IS_ERR(inode))
    1198           0 :                 kernfs_set_rev(parent, dentry);
    1199           0 :         up_read(&root->kernfs_rwsem);
    1200             : 
    1201             :         /* instantiate and hash (possibly negative) dentry */
    1202           0 :         return d_splice_alias(inode, dentry);
    1203             : }
    1204             : 
    1205           0 : static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
    1206             :                             struct inode *dir, struct dentry *dentry,
    1207             :                             umode_t mode)
    1208             : {
    1209           0 :         struct kernfs_node *parent = dir->i_private;
    1210           0 :         struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
    1211             :         int ret;
    1212             : 
    1213           0 :         if (!scops || !scops->mkdir)
    1214             :                 return -EPERM;
    1215             : 
    1216           0 :         if (!kernfs_get_active(parent))
    1217             :                 return -ENODEV;
    1218             : 
    1219           0 :         ret = scops->mkdir(parent, dentry->d_name.name, mode);
    1220             : 
    1221           0 :         kernfs_put_active(parent);
    1222           0 :         return ret;
    1223             : }
    1224             : 
    1225           0 : static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
    1226             : {
    1227           0 :         struct kernfs_node *kn  = kernfs_dentry_node(dentry);
    1228           0 :         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
    1229             :         int ret;
    1230             : 
    1231           0 :         if (!scops || !scops->rmdir)
    1232             :                 return -EPERM;
    1233             : 
    1234           0 :         if (!kernfs_get_active(kn))
    1235             :                 return -ENODEV;
    1236             : 
    1237           0 :         ret = scops->rmdir(kn);
    1238             : 
    1239           0 :         kernfs_put_active(kn);
    1240           0 :         return ret;
    1241             : }
    1242             : 
    1243           0 : static int kernfs_iop_rename(struct mnt_idmap *idmap,
    1244             :                              struct inode *old_dir, struct dentry *old_dentry,
    1245             :                              struct inode *new_dir, struct dentry *new_dentry,
    1246             :                              unsigned int flags)
    1247             : {
    1248           0 :         struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
    1249           0 :         struct kernfs_node *new_parent = new_dir->i_private;
    1250           0 :         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
    1251             :         int ret;
    1252             : 
    1253           0 :         if (flags)
    1254             :                 return -EINVAL;
    1255             : 
    1256           0 :         if (!scops || !scops->rename)
    1257             :                 return -EPERM;
    1258             : 
    1259           0 :         if (!kernfs_get_active(kn))
    1260             :                 return -ENODEV;
    1261             : 
    1262           0 :         if (!kernfs_get_active(new_parent)) {
    1263           0 :                 kernfs_put_active(kn);
    1264           0 :                 return -ENODEV;
    1265             :         }
    1266             : 
    1267           0 :         ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
    1268             : 
    1269           0 :         kernfs_put_active(new_parent);
    1270           0 :         kernfs_put_active(kn);
    1271           0 :         return ret;
    1272             : }
    1273             : 
    1274             : const struct inode_operations kernfs_dir_iops = {
    1275             :         .lookup         = kernfs_iop_lookup,
    1276             :         .permission     = kernfs_iop_permission,
    1277             :         .setattr        = kernfs_iop_setattr,
    1278             :         .getattr        = kernfs_iop_getattr,
    1279             :         .listxattr      = kernfs_iop_listxattr,
    1280             : 
    1281             :         .mkdir          = kernfs_iop_mkdir,
    1282             :         .rmdir          = kernfs_iop_rmdir,
    1283             :         .rename         = kernfs_iop_rename,
    1284             : };
    1285             : 
    1286             : static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
    1287             : {
    1288             :         struct kernfs_node *last;
    1289             : 
    1290             :         while (true) {
    1291             :                 struct rb_node *rbn;
    1292             : 
    1293        9808 :                 last = pos;
    1294             : 
    1295        9808 :                 if (kernfs_type(pos) != KERNFS_DIR)
    1296             :                         break;
    1297             : 
    1298        1545 :                 rbn = rb_first(&pos->dir.children);
    1299        1545 :                 if (!rbn)
    1300             :                         break;
    1301             : 
    1302           0 :                 pos = rb_to_kn(rbn);
    1303             :         }
    1304             : 
    1305             :         return last;
    1306             : }
    1307             : 
    1308             : /**
    1309             :  * kernfs_next_descendant_post - find the next descendant for post-order walk
    1310             :  * @pos: the current position (%NULL to initiate traversal)
    1311             :  * @root: kernfs_node whose descendants to walk
    1312             :  *
    1313             :  * Find the next descendant to visit for post-order traversal of @root's
    1314             :  * descendants.  @root is included in the iteration and the last node to be
    1315             :  * visited.
    1316             :  *
    1317             :  * Return: the next descendant to visit or %NULL when done.
    1318             :  */
    1319       18568 : static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
    1320             :                                                        struct kernfs_node *root)
    1321             : {
    1322             :         struct rb_node *rbn;
    1323             : 
    1324       18568 :         lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
    1325             : 
    1326             :         /* if first iteration, visit leftmost descendant which may be root */
    1327       18568 :         if (!pos)
    1328             :                 return kernfs_leftmost_descendant(root);
    1329             : 
    1330             :         /* if we visited @root, we're done */
    1331        9284 :         if (pos == root)
    1332             :                 return NULL;
    1333             : 
    1334             :         /* if there's an unvisited sibling, visit its leftmost descendant */
    1335           0 :         rbn = rb_next(&pos->rb);
    1336           0 :         if (rbn)
    1337           0 :                 return kernfs_leftmost_descendant(rb_to_kn(rbn));
    1338             : 
    1339             :         /* no sibling left, visit parent */
    1340           0 :         return pos->parent;
    1341             : }
    1342             : 
    1343        8760 : static void kernfs_activate_one(struct kernfs_node *kn)
    1344             : {
    1345        8760 :         lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
    1346             : 
    1347        8760 :         kn->flags |= KERNFS_ACTIVATED;
    1348             : 
    1349        8760 :         if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
    1350             :                 return;
    1351             : 
    1352        8760 :         WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
    1353       17520 :         WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
    1354             : 
    1355        8760 :         atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
    1356             : }
    1357             : 
    1358             : /**
    1359             :  * kernfs_activate - activate a node which started deactivated
    1360             :  * @kn: kernfs_node whose subtree is to be activated
    1361             :  *
    1362             :  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
    1363             :  * needs to be explicitly activated.  A node which hasn't been activated
    1364             :  * isn't visible to userland and deactivation is skipped during its
    1365             :  * removal.  This is useful to construct atomic init sequences where
    1366             :  * creation of multiple nodes should either succeed or fail atomically.
    1367             :  *
    1368             :  * The caller is responsible for ensuring that this function is not called
    1369             :  * after kernfs_remove*() is invoked on @kn.
    1370             :  */
    1371        8760 : void kernfs_activate(struct kernfs_node *kn)
    1372             : {
    1373             :         struct kernfs_node *pos;
    1374        8760 :         struct kernfs_root *root = kernfs_root(kn);
    1375             : 
    1376        8760 :         down_write(&root->kernfs_rwsem);
    1377             : 
    1378        8760 :         pos = NULL;
    1379       26280 :         while ((pos = kernfs_next_descendant_post(pos, kn)))
    1380        8760 :                 kernfs_activate_one(pos);
    1381             : 
    1382        8760 :         up_write(&root->kernfs_rwsem);
    1383        8760 : }
    1384             : 
    1385             : /**
    1386             :  * kernfs_show - show or hide a node
    1387             :  * @kn: kernfs_node to show or hide
    1388             :  * @show: whether to show or hide
    1389             :  *
    1390             :  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
    1391             :  * ignored in future activaitons. If %true, the mark is removed and activation
    1392             :  * state is restored. This function won't implicitly activate a new node in a
    1393             :  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
    1394             :  *
    1395             :  * To avoid recursion complexities, directories aren't supported for now.
    1396             :  */
    1397           0 : void kernfs_show(struct kernfs_node *kn, bool show)
    1398             : {
    1399           0 :         struct kernfs_root *root = kernfs_root(kn);
    1400             : 
    1401           0 :         if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
    1402             :                 return;
    1403             : 
    1404           0 :         down_write(&root->kernfs_rwsem);
    1405             : 
    1406           0 :         if (show) {
    1407           0 :                 kn->flags &= ~KERNFS_HIDDEN;
    1408           0 :                 if (kn->flags & KERNFS_ACTIVATED)
    1409           0 :                         kernfs_activate_one(kn);
    1410             :         } else {
    1411           0 :                 kn->flags |= KERNFS_HIDDEN;
    1412           0 :                 if (kernfs_active(kn))
    1413           0 :                         atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
    1414           0 :                 kernfs_drain(kn);
    1415             :         }
    1416             : 
    1417           0 :         up_write(&root->kernfs_rwsem);
    1418             : }
    1419             : 
    1420         524 : static void __kernfs_remove(struct kernfs_node *kn)
    1421             : {
    1422             :         struct kernfs_node *pos;
    1423             : 
    1424             :         /* Short-circuit if non-root @kn has already finished removal. */
    1425         524 :         if (!kn)
    1426             :                 return;
    1427             : 
    1428         524 :         lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
    1429             : 
    1430             :         /*
    1431             :          * This is for kernfs_remove_self() which plays with active ref
    1432             :          * after removal.
    1433             :          */
    1434         524 :         if (kn->parent && RB_EMPTY_NODE(&kn->rb))
    1435             :                 return;
    1436             : 
    1437             :         pr_debug("kernfs %s: removing\n", kn->name);
    1438             : 
    1439             :         /* prevent new usage by marking all nodes removing and deactivating */
    1440             :         pos = NULL;
    1441        1048 :         while ((pos = kernfs_next_descendant_post(pos, kn))) {
    1442         524 :                 pos->flags |= KERNFS_REMOVING;
    1443         524 :                 if (kernfs_active(pos))
    1444         524 :                         atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
    1445             :         }
    1446             : 
    1447             :         /* deactivate and unlink the subtree node-by-node */
    1448             :         do {
    1449         524 :                 pos = kernfs_leftmost_descendant(kn);
    1450             : 
    1451             :                 /*
    1452             :                  * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
    1453             :                  * base ref could have been put by someone else by the time
    1454             :                  * the function returns.  Make sure it doesn't go away
    1455             :                  * underneath us.
    1456             :                  */
    1457         524 :                 kernfs_get(pos);
    1458             : 
    1459         524 :                 kernfs_drain(pos);
    1460             : 
    1461             :                 /*
    1462             :                  * kernfs_unlink_sibling() succeeds once per node.  Use it
    1463             :                  * to decide who's responsible for cleanups.
    1464             :                  */
    1465         524 :                 if (!pos->parent || kernfs_unlink_sibling(pos)) {
    1466         524 :                         struct kernfs_iattrs *ps_iattr =
    1467         524 :                                 pos->parent ? pos->parent->iattr : NULL;
    1468             : 
    1469             :                         /* update timestamps on the parent */
    1470         524 :                         down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
    1471             : 
    1472         524 :                         if (ps_iattr) {
    1473           0 :                                 ktime_get_real_ts64(&ps_iattr->ia_ctime);
    1474           0 :                                 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
    1475             :                         }
    1476             : 
    1477         524 :                         up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
    1478         524 :                         kernfs_put(pos);
    1479             :                 }
    1480             : 
    1481         524 :                 kernfs_put(pos);
    1482         524 :         } while (pos != kn);
    1483             : }
    1484             : 
    1485             : /**
    1486             :  * kernfs_remove - remove a kernfs_node recursively
    1487             :  * @kn: the kernfs_node to remove
    1488             :  *
    1489             :  * Remove @kn along with all its subdirectories and files.
    1490             :  */
    1491          98 : void kernfs_remove(struct kernfs_node *kn)
    1492             : {
    1493             :         struct kernfs_root *root;
    1494             : 
    1495          98 :         if (!kn)
    1496             :                 return;
    1497             : 
    1498          98 :         root = kernfs_root(kn);
    1499             : 
    1500          98 :         down_write(&root->kernfs_rwsem);
    1501          98 :         __kernfs_remove(kn);
    1502          98 :         up_write(&root->kernfs_rwsem);
    1503             : }
    1504             : 
    1505             : /**
    1506             :  * kernfs_break_active_protection - break out of active protection
    1507             :  * @kn: the self kernfs_node
    1508             :  *
    1509             :  * The caller must be running off of a kernfs operation which is invoked
    1510             :  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
    1511             :  * this function must also be matched with an invocation of
    1512             :  * kernfs_unbreak_active_protection().
    1513             :  *
    1514             :  * This function releases the active reference of @kn the caller is
    1515             :  * holding.  Once this function is called, @kn may be removed at any point
    1516             :  * and the caller is solely responsible for ensuring that the objects it
    1517             :  * dereferences are accessible.
    1518             :  */
    1519           0 : void kernfs_break_active_protection(struct kernfs_node *kn)
    1520             : {
    1521             :         /*
    1522             :          * Take out ourself out of the active ref dependency chain.  If
    1523             :          * we're called without an active ref, lockdep will complain.
    1524             :          */
    1525           0 :         kernfs_put_active(kn);
    1526           0 : }
    1527             : 
    1528             : /**
    1529             :  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
    1530             :  * @kn: the self kernfs_node
    1531             :  *
    1532             :  * If kernfs_break_active_protection() was called, this function must be
    1533             :  * invoked before finishing the kernfs operation.  Note that while this
    1534             :  * function restores the active reference, it doesn't and can't actually
    1535             :  * restore the active protection - @kn may already or be in the process of
    1536             :  * being removed.  Once kernfs_break_active_protection() is invoked, that
    1537             :  * protection is irreversibly gone for the kernfs operation instance.
    1538             :  *
    1539             :  * While this function may be called at any point after
    1540             :  * kernfs_break_active_protection() is invoked, its most useful location
    1541             :  * would be right before the enclosing kernfs operation returns.
    1542             :  */
    1543           0 : void kernfs_unbreak_active_protection(struct kernfs_node *kn)
    1544             : {
    1545             :         /*
    1546             :          * @kn->active could be in any state; however, the increment we do
    1547             :          * here will be undone as soon as the enclosing kernfs operation
    1548             :          * finishes and this temporary bump can't break anything.  If @kn
    1549             :          * is alive, nothing changes.  If @kn is being deactivated, the
    1550             :          * soon-to-follow put will either finish deactivation or restore
    1551             :          * deactivated state.  If @kn is already removed, the temporary
    1552             :          * bump is guaranteed to be gone before @kn is released.
    1553             :          */
    1554           0 :         atomic_inc(&kn->active);
    1555           0 :         if (kernfs_lockdep(kn))
    1556             :                 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
    1557           0 : }
    1558             : 
    1559             : /**
    1560             :  * kernfs_remove_self - remove a kernfs_node from its own method
    1561             :  * @kn: the self kernfs_node to remove
    1562             :  *
    1563             :  * The caller must be running off of a kernfs operation which is invoked
    1564             :  * with an active reference - e.g. one of kernfs_ops.  This can be used to
    1565             :  * implement a file operation which deletes itself.
    1566             :  *
    1567             :  * For example, the "delete" file for a sysfs device directory can be
    1568             :  * implemented by invoking kernfs_remove_self() on the "delete" file
    1569             :  * itself.  This function breaks the circular dependency of trying to
    1570             :  * deactivate self while holding an active ref itself.  It isn't necessary
    1571             :  * to modify the usual removal path to use kernfs_remove_self().  The
    1572             :  * "delete" implementation can simply invoke kernfs_remove_self() on self
    1573             :  * before proceeding with the usual removal path.  kernfs will ignore later
    1574             :  * kernfs_remove() on self.
    1575             :  *
    1576             :  * kernfs_remove_self() can be called multiple times concurrently on the
    1577             :  * same kernfs_node.  Only the first one actually performs removal and
    1578             :  * returns %true.  All others will wait until the kernfs operation which
    1579             :  * won self-removal finishes and return %false.  Note that the losers wait
    1580             :  * for the completion of not only the winning kernfs_remove_self() but also
    1581             :  * the whole kernfs_ops which won the arbitration.  This can be used to
    1582             :  * guarantee, for example, all concurrent writes to a "delete" file to
    1583             :  * finish only after the whole operation is complete.
    1584             :  *
    1585             :  * Return: %true if @kn is removed by this call, otherwise %false.
    1586             :  */
    1587           0 : bool kernfs_remove_self(struct kernfs_node *kn)
    1588             : {
    1589             :         bool ret;
    1590           0 :         struct kernfs_root *root = kernfs_root(kn);
    1591             : 
    1592           0 :         down_write(&root->kernfs_rwsem);
    1593           0 :         kernfs_break_active_protection(kn);
    1594             : 
    1595             :         /*
    1596             :          * SUICIDAL is used to arbitrate among competing invocations.  Only
    1597             :          * the first one will actually perform removal.  When the removal
    1598             :          * is complete, SUICIDED is set and the active ref is restored
    1599             :          * while kernfs_rwsem for held exclusive.  The ones which lost
    1600             :          * arbitration waits for SUICIDED && drained which can happen only
    1601             :          * after the enclosing kernfs operation which executed the winning
    1602             :          * instance of kernfs_remove_self() finished.
    1603             :          */
    1604           0 :         if (!(kn->flags & KERNFS_SUICIDAL)) {
    1605           0 :                 kn->flags |= KERNFS_SUICIDAL;
    1606           0 :                 __kernfs_remove(kn);
    1607           0 :                 kn->flags |= KERNFS_SUICIDED;
    1608           0 :                 ret = true;
    1609             :         } else {
    1610           0 :                 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
    1611           0 :                 DEFINE_WAIT(wait);
    1612             : 
    1613             :                 while (true) {
    1614           0 :                         prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
    1615             : 
    1616           0 :                         if ((kn->flags & KERNFS_SUICIDED) &&
    1617           0 :                             atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
    1618             :                                 break;
    1619             : 
    1620           0 :                         up_write(&root->kernfs_rwsem);
    1621           0 :                         schedule();
    1622           0 :                         down_write(&root->kernfs_rwsem);
    1623             :                 }
    1624           0 :                 finish_wait(waitq, &wait);
    1625           0 :                 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
    1626           0 :                 ret = false;
    1627             :         }
    1628             : 
    1629             :         /*
    1630             :          * This must be done while kernfs_rwsem held exclusive; otherwise,
    1631             :          * waiting for SUICIDED && deactivated could finish prematurely.
    1632             :          */
    1633           0 :         kernfs_unbreak_active_protection(kn);
    1634             : 
    1635           0 :         up_write(&root->kernfs_rwsem);
    1636           0 :         return ret;
    1637             : }
    1638             : 
    1639             : /**
    1640             :  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
    1641             :  * @parent: parent of the target
    1642             :  * @name: name of the kernfs_node to remove
    1643             :  * @ns: namespace tag of the kernfs_node to remove
    1644             :  *
    1645             :  * Look for the kernfs_node with @name and @ns under @parent and remove it.
    1646             :  *
    1647             :  * Return: %0 on success, -ENOENT if such entry doesn't exist.
    1648             :  */
    1649         922 : int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
    1650             :                              const void *ns)
    1651             : {
    1652             :         struct kernfs_node *kn;
    1653             :         struct kernfs_root *root;
    1654             : 
    1655         922 :         if (!parent) {
    1656           0 :                 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
    1657             :                         name);
    1658           0 :                 return -ENOENT;
    1659             :         }
    1660             : 
    1661         922 :         root = kernfs_root(parent);
    1662         922 :         down_write(&root->kernfs_rwsem);
    1663             : 
    1664         922 :         kn = kernfs_find_ns(parent, name, ns);
    1665         922 :         if (kn) {
    1666         426 :                 kernfs_get(kn);
    1667         426 :                 __kernfs_remove(kn);
    1668         426 :                 kernfs_put(kn);
    1669             :         }
    1670             : 
    1671         922 :         up_write(&root->kernfs_rwsem);
    1672             : 
    1673         922 :         if (kn)
    1674             :                 return 0;
    1675             :         else
    1676         496 :                 return -ENOENT;
    1677             : }
    1678             : 
    1679             : /**
    1680             :  * kernfs_rename_ns - move and rename a kernfs_node
    1681             :  * @kn: target node
    1682             :  * @new_parent: new parent to put @sd under
    1683             :  * @new_name: new name
    1684             :  * @new_ns: new namespace tag
    1685             :  *
    1686             :  * Return: %0 on success, -errno on failure.
    1687             :  */
    1688           0 : int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
    1689             :                      const char *new_name, const void *new_ns)
    1690             : {
    1691             :         struct kernfs_node *old_parent;
    1692             :         struct kernfs_root *root;
    1693           0 :         const char *old_name = NULL;
    1694             :         int error;
    1695             : 
    1696             :         /* can't move or rename root */
    1697           0 :         if (!kn->parent)
    1698             :                 return -EINVAL;
    1699             : 
    1700           0 :         root = kernfs_root(kn);
    1701           0 :         down_write(&root->kernfs_rwsem);
    1702             : 
    1703           0 :         error = -ENOENT;
    1704           0 :         if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
    1705           0 :             (new_parent->flags & KERNFS_EMPTY_DIR))
    1706             :                 goto out;
    1707             : 
    1708           0 :         error = 0;
    1709           0 :         if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
    1710           0 :             (strcmp(kn->name, new_name) == 0))
    1711             :                 goto out;       /* nothing to rename */
    1712             : 
    1713           0 :         error = -EEXIST;
    1714           0 :         if (kernfs_find_ns(new_parent, new_name, new_ns))
    1715             :                 goto out;
    1716             : 
    1717             :         /* rename kernfs_node */
    1718           0 :         if (strcmp(kn->name, new_name) != 0) {
    1719           0 :                 error = -ENOMEM;
    1720           0 :                 new_name = kstrdup_const(new_name, GFP_KERNEL);
    1721           0 :                 if (!new_name)
    1722             :                         goto out;
    1723             :         } else {
    1724             :                 new_name = NULL;
    1725             :         }
    1726             : 
    1727             :         /*
    1728             :          * Move to the appropriate place in the appropriate directories rbtree.
    1729             :          */
    1730           0 :         kernfs_unlink_sibling(kn);
    1731           0 :         kernfs_get(new_parent);
    1732             : 
    1733             :         /* rename_lock protects ->parent and ->name accessors */
    1734           0 :         write_lock_irq(&kernfs_rename_lock);
    1735             : 
    1736           0 :         old_parent = kn->parent;
    1737           0 :         kn->parent = new_parent;
    1738             : 
    1739           0 :         kn->ns = new_ns;
    1740           0 :         if (new_name) {
    1741           0 :                 old_name = kn->name;
    1742           0 :                 kn->name = new_name;
    1743             :         }
    1744             : 
    1745           0 :         write_unlock_irq(&kernfs_rename_lock);
    1746             : 
    1747           0 :         kn->hash = kernfs_name_hash(kn->name, kn->ns);
    1748           0 :         kernfs_link_sibling(kn);
    1749             : 
    1750           0 :         kernfs_put(old_parent);
    1751           0 :         kfree_const(old_name);
    1752             : 
    1753           0 :         error = 0;
    1754             :  out:
    1755           0 :         up_write(&root->kernfs_rwsem);
    1756           0 :         return error;
    1757             : }
    1758             : 
    1759           0 : static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
    1760             : {
    1761           0 :         kernfs_put(filp->private_data);
    1762           0 :         return 0;
    1763             : }
    1764             : 
    1765           0 : static struct kernfs_node *kernfs_dir_pos(const void *ns,
    1766             :         struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
    1767             : {
    1768           0 :         if (pos) {
    1769           0 :                 int valid = kernfs_active(pos) &&
    1770           0 :                         pos->parent == parent && hash == pos->hash;
    1771           0 :                 kernfs_put(pos);
    1772           0 :                 if (!valid)
    1773           0 :                         pos = NULL;
    1774             :         }
    1775           0 :         if (!pos && (hash > 1) && (hash < INT_MAX)) {
    1776           0 :                 struct rb_node *node = parent->dir.children.rb_node;
    1777           0 :                 while (node) {
    1778           0 :                         pos = rb_to_kn(node);
    1779             : 
    1780           0 :                         if (hash < pos->hash)
    1781           0 :                                 node = node->rb_left;
    1782           0 :                         else if (hash > pos->hash)
    1783           0 :                                 node = node->rb_right;
    1784             :                         else
    1785             :                                 break;
    1786             :                 }
    1787             :         }
    1788             :         /* Skip over entries which are dying/dead or in the wrong namespace */
    1789           0 :         while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
    1790           0 :                 struct rb_node *node = rb_next(&pos->rb);
    1791           0 :                 if (!node)
    1792             :                         pos = NULL;
    1793             :                 else
    1794           0 :                         pos = rb_to_kn(node);
    1795             :         }
    1796           0 :         return pos;
    1797             : }
    1798             : 
    1799           0 : static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
    1800             :         struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
    1801             : {
    1802           0 :         pos = kernfs_dir_pos(ns, parent, ino, pos);
    1803           0 :         if (pos) {
    1804             :                 do {
    1805           0 :                         struct rb_node *node = rb_next(&pos->rb);
    1806           0 :                         if (!node)
    1807             :                                 pos = NULL;
    1808             :                         else
    1809           0 :                                 pos = rb_to_kn(node);
    1810           0 :                 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
    1811             :         }
    1812           0 :         return pos;
    1813             : }
    1814             : 
    1815           0 : static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
    1816             : {
    1817           0 :         struct dentry *dentry = file->f_path.dentry;
    1818           0 :         struct kernfs_node *parent = kernfs_dentry_node(dentry);
    1819           0 :         struct kernfs_node *pos = file->private_data;
    1820             :         struct kernfs_root *root;
    1821           0 :         const void *ns = NULL;
    1822             : 
    1823           0 :         if (!dir_emit_dots(file, ctx))
    1824             :                 return 0;
    1825             : 
    1826           0 :         root = kernfs_root(parent);
    1827           0 :         down_read(&root->kernfs_rwsem);
    1828             : 
    1829           0 :         if (kernfs_ns_enabled(parent))
    1830           0 :                 ns = kernfs_info(dentry->d_sb)->ns;
    1831             : 
    1832           0 :         for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
    1833             :              pos;
    1834           0 :              pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
    1835           0 :                 const char *name = pos->name;
    1836           0 :                 unsigned int type = fs_umode_to_dtype(pos->mode);
    1837           0 :                 int len = strlen(name);
    1838           0 :                 ino_t ino = kernfs_ino(pos);
    1839             : 
    1840           0 :                 ctx->pos = pos->hash;
    1841           0 :                 file->private_data = pos;
    1842           0 :                 kernfs_get(pos);
    1843             : 
    1844           0 :                 up_read(&root->kernfs_rwsem);
    1845           0 :                 if (!dir_emit(ctx, name, len, ino, type))
    1846             :                         return 0;
    1847           0 :                 down_read(&root->kernfs_rwsem);
    1848             :         }
    1849           0 :         up_read(&root->kernfs_rwsem);
    1850           0 :         file->private_data = NULL;
    1851           0 :         ctx->pos = INT_MAX;
    1852           0 :         return 0;
    1853             : }
    1854             : 
    1855             : const struct file_operations kernfs_dir_fops = {
    1856             :         .read           = generic_read_dir,
    1857             :         .iterate_shared = kernfs_fop_readdir,
    1858             :         .release        = kernfs_dir_fop_release,
    1859             :         .llseek         = generic_file_llseek,
    1860             : };

Generated by: LCOV version 1.14