Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef BLK_MQ_H
3 : #define BLK_MQ_H
4 :
5 : #include <linux/blkdev.h>
6 : #include <linux/sbitmap.h>
7 : #include <linux/lockdep.h>
8 : #include <linux/scatterlist.h>
9 : #include <linux/prefetch.h>
10 : #include <linux/srcu.h>
11 :
12 : struct blk_mq_tags;
13 : struct blk_flush_queue;
14 :
15 : #define BLKDEV_MIN_RQ 4
16 : #define BLKDEV_DEFAULT_RQ 128
17 :
18 : enum rq_end_io_ret {
19 : RQ_END_IO_NONE,
20 : RQ_END_IO_FREE,
21 : };
22 :
23 : typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24 :
25 : /*
26 : * request flags */
27 : typedef __u32 __bitwise req_flags_t;
28 :
29 : /* drive already may have started this one */
30 : #define RQF_STARTED ((__force req_flags_t)(1 << 1))
31 : /* may not be passed by ioscheduler */
32 : #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
33 : /* request for flush sequence */
34 : #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
35 : /* merge of different types, fail separately */
36 : #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
37 : /* track inflight for MQ */
38 : #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
39 : /* don't call prep for this one */
40 : #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
41 : /* vaguely specified driver internal error. Ignored by the block layer */
42 : #define RQF_FAILED ((__force req_flags_t)(1 << 10))
43 : /* don't warn about errors */
44 : #define RQF_QUIET ((__force req_flags_t)(1 << 11))
45 : /* elevator private data attached */
46 : #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
47 : /* account into disk and partition IO statistics */
48 : #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
49 : /* runtime pm request */
50 : #define RQF_PM ((__force req_flags_t)(1 << 15))
51 : /* on IO scheduler merge hash */
52 : #define RQF_HASHED ((__force req_flags_t)(1 << 16))
53 : /* track IO completion time */
54 : #define RQF_STATS ((__force req_flags_t)(1 << 17))
55 : /* Look at ->special_vec for the actual data payload instead of the
56 : bio chain. */
57 : #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
58 : /* The per-zone write lock is held for this request */
59 : #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
60 : /* ->timeout has been called, don't expire again */
61 : #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
62 : /* queue has elevator attached */
63 : #define RQF_ELV ((__force req_flags_t)(1 << 22))
64 : #define RQF_RESV ((__force req_flags_t)(1 << 23))
65 :
66 : /* flags that prevent us from merging requests: */
67 : #define RQF_NOMERGE_FLAGS \
68 : (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
69 :
70 : enum mq_rq_state {
71 : MQ_RQ_IDLE = 0,
72 : MQ_RQ_IN_FLIGHT = 1,
73 : MQ_RQ_COMPLETE = 2,
74 : };
75 :
76 : /*
77 : * Try to put the fields that are referenced together in the same cacheline.
78 : *
79 : * If you modify this structure, make sure to update blk_rq_init() and
80 : * especially blk_mq_rq_ctx_init() to take care of the added fields.
81 : */
82 : struct request {
83 : struct request_queue *q;
84 : struct blk_mq_ctx *mq_ctx;
85 : struct blk_mq_hw_ctx *mq_hctx;
86 :
87 : blk_opf_t cmd_flags; /* op and common flags */
88 : req_flags_t rq_flags;
89 :
90 : int tag;
91 : int internal_tag;
92 :
93 : unsigned int timeout;
94 :
95 : /* the following two fields are internal, NEVER access directly */
96 : unsigned int __data_len; /* total data len */
97 : sector_t __sector; /* sector cursor */
98 :
99 : struct bio *bio;
100 : struct bio *biotail;
101 :
102 : union {
103 : struct list_head queuelist;
104 : struct request *rq_next;
105 : };
106 :
107 : struct block_device *part;
108 : #ifdef CONFIG_BLK_RQ_ALLOC_TIME
109 : /* Time that the first bio started allocating this request. */
110 : u64 alloc_time_ns;
111 : #endif
112 : /* Time that this request was allocated for this IO. */
113 : u64 start_time_ns;
114 : /* Time that I/O was submitted to the device. */
115 : u64 io_start_time_ns;
116 :
117 : #ifdef CONFIG_BLK_WBT
118 : unsigned short wbt_flags;
119 : #endif
120 : /*
121 : * rq sectors used for blk stats. It has the same value
122 : * with blk_rq_sectors(rq), except that it never be zeroed
123 : * by completion.
124 : */
125 : unsigned short stats_sectors;
126 :
127 : /*
128 : * Number of scatter-gather DMA addr+len pairs after
129 : * physical address coalescing is performed.
130 : */
131 : unsigned short nr_phys_segments;
132 :
133 : #ifdef CONFIG_BLK_DEV_INTEGRITY
134 : unsigned short nr_integrity_segments;
135 : #endif
136 :
137 : #ifdef CONFIG_BLK_INLINE_ENCRYPTION
138 : struct bio_crypt_ctx *crypt_ctx;
139 : struct blk_crypto_keyslot *crypt_keyslot;
140 : #endif
141 :
142 : unsigned short ioprio;
143 :
144 : enum mq_rq_state state;
145 : atomic_t ref;
146 :
147 : unsigned long deadline;
148 :
149 : /*
150 : * The hash is used inside the scheduler, and killed once the
151 : * request reaches the dispatch list. The ipi_list is only used
152 : * to queue the request for softirq completion, which is long
153 : * after the request has been unhashed (and even removed from
154 : * the dispatch list).
155 : */
156 : union {
157 : struct hlist_node hash; /* merge hash */
158 : struct llist_node ipi_list;
159 : };
160 :
161 : /*
162 : * The rb_node is only used inside the io scheduler, requests
163 : * are pruned when moved to the dispatch queue. So let the
164 : * completion_data share space with the rb_node.
165 : */
166 : union {
167 : struct rb_node rb_node; /* sort/lookup */
168 : struct bio_vec special_vec;
169 : void *completion_data;
170 : };
171 :
172 :
173 : /*
174 : * Three pointers are available for the IO schedulers, if they need
175 : * more they have to dynamically allocate it. Flush requests are
176 : * never put on the IO scheduler. So let the flush fields share
177 : * space with the elevator data.
178 : */
179 : union {
180 : struct {
181 : struct io_cq *icq;
182 : void *priv[2];
183 : } elv;
184 :
185 : struct {
186 : unsigned int seq;
187 : struct list_head list;
188 : rq_end_io_fn *saved_end_io;
189 : } flush;
190 : };
191 :
192 : union {
193 : struct __call_single_data csd;
194 : u64 fifo_time;
195 : };
196 :
197 : /*
198 : * completion callback.
199 : */
200 : rq_end_io_fn *end_io;
201 : void *end_io_data;
202 : };
203 :
204 : static inline enum req_op req_op(const struct request *req)
205 : {
206 0 : return req->cmd_flags & REQ_OP_MASK;
207 : }
208 :
209 : static inline bool blk_rq_is_passthrough(struct request *rq)
210 : {
211 0 : return blk_op_is_passthrough(req_op(rq));
212 : }
213 :
214 : static inline unsigned short req_get_ioprio(struct request *req)
215 : {
216 : return req->ioprio;
217 : }
218 :
219 : #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
220 :
221 : #define rq_dma_dir(rq) \
222 : (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
223 :
224 : #define rq_list_add(listptr, rq) do { \
225 : (rq)->rq_next = *(listptr); \
226 : *(listptr) = rq; \
227 : } while (0)
228 :
229 : #define rq_list_add_tail(lastpptr, rq) do { \
230 : (rq)->rq_next = NULL; \
231 : **(lastpptr) = rq; \
232 : *(lastpptr) = &rq->rq_next; \
233 : } while (0)
234 :
235 : #define rq_list_pop(listptr) \
236 : ({ \
237 : struct request *__req = NULL; \
238 : if ((listptr) && *(listptr)) { \
239 : __req = *(listptr); \
240 : *(listptr) = __req->rq_next; \
241 : } \
242 : __req; \
243 : })
244 :
245 : #define rq_list_peek(listptr) \
246 : ({ \
247 : struct request *__req = NULL; \
248 : if ((listptr) && *(listptr)) \
249 : __req = *(listptr); \
250 : __req; \
251 : })
252 :
253 : #define rq_list_for_each(listptr, pos) \
254 : for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
255 :
256 : #define rq_list_for_each_safe(listptr, pos, nxt) \
257 : for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
258 : pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
259 :
260 : #define rq_list_next(rq) (rq)->rq_next
261 : #define rq_list_empty(list) ((list) == (struct request *) NULL)
262 :
263 : /**
264 : * rq_list_move() - move a struct request from one list to another
265 : * @src: The source list @rq is currently in
266 : * @dst: The destination list that @rq will be appended to
267 : * @rq: The request to move
268 : * @prev: The request preceding @rq in @src (NULL if @rq is the head)
269 : */
270 : static inline void rq_list_move(struct request **src, struct request **dst,
271 : struct request *rq, struct request *prev)
272 : {
273 : if (prev)
274 : prev->rq_next = rq->rq_next;
275 : else
276 : *src = rq->rq_next;
277 : rq_list_add(dst, rq);
278 : }
279 :
280 : /**
281 : * enum blk_eh_timer_return - How the timeout handler should proceed
282 : * @BLK_EH_DONE: The block driver completed the command or will complete it at
283 : * a later time.
284 : * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
285 : * request to complete.
286 : */
287 : enum blk_eh_timer_return {
288 : BLK_EH_DONE,
289 : BLK_EH_RESET_TIMER,
290 : };
291 :
292 : #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
293 : #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
294 :
295 : /**
296 : * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
297 : * block device
298 : */
299 : struct blk_mq_hw_ctx {
300 : struct {
301 : /** @lock: Protects the dispatch list. */
302 : spinlock_t lock;
303 : /**
304 : * @dispatch: Used for requests that are ready to be
305 : * dispatched to the hardware but for some reason (e.g. lack of
306 : * resources) could not be sent to the hardware. As soon as the
307 : * driver can send new requests, requests at this list will
308 : * be sent first for a fairer dispatch.
309 : */
310 : struct list_head dispatch;
311 : /**
312 : * @state: BLK_MQ_S_* flags. Defines the state of the hw
313 : * queue (active, scheduled to restart, stopped).
314 : */
315 : unsigned long state;
316 : } ____cacheline_aligned_in_smp;
317 :
318 : /**
319 : * @run_work: Used for scheduling a hardware queue run at a later time.
320 : */
321 : struct delayed_work run_work;
322 : /** @cpumask: Map of available CPUs where this hctx can run. */
323 : cpumask_var_t cpumask;
324 : /**
325 : * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
326 : * selection from @cpumask.
327 : */
328 : int next_cpu;
329 : /**
330 : * @next_cpu_batch: Counter of how many works left in the batch before
331 : * changing to the next CPU.
332 : */
333 : int next_cpu_batch;
334 :
335 : /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
336 : unsigned long flags;
337 :
338 : /**
339 : * @sched_data: Pointer owned by the IO scheduler attached to a request
340 : * queue. It's up to the IO scheduler how to use this pointer.
341 : */
342 : void *sched_data;
343 : /**
344 : * @queue: Pointer to the request queue that owns this hardware context.
345 : */
346 : struct request_queue *queue;
347 : /** @fq: Queue of requests that need to perform a flush operation. */
348 : struct blk_flush_queue *fq;
349 :
350 : /**
351 : * @driver_data: Pointer to data owned by the block driver that created
352 : * this hctx
353 : */
354 : void *driver_data;
355 :
356 : /**
357 : * @ctx_map: Bitmap for each software queue. If bit is on, there is a
358 : * pending request in that software queue.
359 : */
360 : struct sbitmap ctx_map;
361 :
362 : /**
363 : * @dispatch_from: Software queue to be used when no scheduler was
364 : * selected.
365 : */
366 : struct blk_mq_ctx *dispatch_from;
367 : /**
368 : * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
369 : * decide if the hw_queue is busy using Exponential Weighted Moving
370 : * Average algorithm.
371 : */
372 : unsigned int dispatch_busy;
373 :
374 : /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
375 : unsigned short type;
376 : /** @nr_ctx: Number of software queues. */
377 : unsigned short nr_ctx;
378 : /** @ctxs: Array of software queues. */
379 : struct blk_mq_ctx **ctxs;
380 :
381 : /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
382 : spinlock_t dispatch_wait_lock;
383 : /**
384 : * @dispatch_wait: Waitqueue to put requests when there is no tag
385 : * available at the moment, to wait for another try in the future.
386 : */
387 : wait_queue_entry_t dispatch_wait;
388 :
389 : /**
390 : * @wait_index: Index of next available dispatch_wait queue to insert
391 : * requests.
392 : */
393 : atomic_t wait_index;
394 :
395 : /**
396 : * @tags: Tags owned by the block driver. A tag at this set is only
397 : * assigned when a request is dispatched from a hardware queue.
398 : */
399 : struct blk_mq_tags *tags;
400 : /**
401 : * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
402 : * scheduler associated with a request queue, a tag is assigned when
403 : * that request is allocated. Else, this member is not used.
404 : */
405 : struct blk_mq_tags *sched_tags;
406 :
407 : /** @queued: Number of queued requests. */
408 : unsigned long queued;
409 : /** @run: Number of dispatched requests. */
410 : unsigned long run;
411 :
412 : /** @numa_node: NUMA node the storage adapter has been connected to. */
413 : unsigned int numa_node;
414 : /** @queue_num: Index of this hardware queue. */
415 : unsigned int queue_num;
416 :
417 : /**
418 : * @nr_active: Number of active requests. Only used when a tag set is
419 : * shared across request queues.
420 : */
421 : atomic_t nr_active;
422 :
423 : /** @cpuhp_online: List to store request if CPU is going to die */
424 : struct hlist_node cpuhp_online;
425 : /** @cpuhp_dead: List to store request if some CPU die. */
426 : struct hlist_node cpuhp_dead;
427 : /** @kobj: Kernel object for sysfs. */
428 : struct kobject kobj;
429 :
430 : #ifdef CONFIG_BLK_DEBUG_FS
431 : /**
432 : * @debugfs_dir: debugfs directory for this hardware queue. Named
433 : * as cpu<cpu_number>.
434 : */
435 : struct dentry *debugfs_dir;
436 : /** @sched_debugfs_dir: debugfs directory for the scheduler. */
437 : struct dentry *sched_debugfs_dir;
438 : #endif
439 :
440 : /**
441 : * @hctx_list: if this hctx is not in use, this is an entry in
442 : * q->unused_hctx_list.
443 : */
444 : struct list_head hctx_list;
445 : };
446 :
447 : /**
448 : * struct blk_mq_queue_map - Map software queues to hardware queues
449 : * @mq_map: CPU ID to hardware queue index map. This is an array
450 : * with nr_cpu_ids elements. Each element has a value in the range
451 : * [@queue_offset, @queue_offset + @nr_queues).
452 : * @nr_queues: Number of hardware queues to map CPU IDs onto.
453 : * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
454 : * driver to map each hardware queue type (enum hctx_type) onto a distinct
455 : * set of hardware queues.
456 : */
457 : struct blk_mq_queue_map {
458 : unsigned int *mq_map;
459 : unsigned int nr_queues;
460 : unsigned int queue_offset;
461 : };
462 :
463 : /**
464 : * enum hctx_type - Type of hardware queue
465 : * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
466 : * @HCTX_TYPE_READ: Just for READ I/O.
467 : * @HCTX_TYPE_POLL: Polled I/O of any kind.
468 : * @HCTX_MAX_TYPES: Number of types of hctx.
469 : */
470 : enum hctx_type {
471 : HCTX_TYPE_DEFAULT,
472 : HCTX_TYPE_READ,
473 : HCTX_TYPE_POLL,
474 :
475 : HCTX_MAX_TYPES,
476 : };
477 :
478 : /**
479 : * struct blk_mq_tag_set - tag set that can be shared between request queues
480 : * @ops: Pointers to functions that implement block driver behavior.
481 : * @map: One or more ctx -> hctx mappings. One map exists for each
482 : * hardware queue type (enum hctx_type) that the driver wishes
483 : * to support. There are no restrictions on maps being of the
484 : * same size, and it's perfectly legal to share maps between
485 : * types.
486 : * @nr_maps: Number of elements in the @map array. A number in the range
487 : * [1, HCTX_MAX_TYPES].
488 : * @nr_hw_queues: Number of hardware queues supported by the block driver that
489 : * owns this data structure.
490 : * @queue_depth: Number of tags per hardware queue, reserved tags included.
491 : * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
492 : * allocations.
493 : * @cmd_size: Number of additional bytes to allocate per request. The block
494 : * driver owns these additional bytes.
495 : * @numa_node: NUMA node the storage adapter has been connected to.
496 : * @timeout: Request processing timeout in jiffies.
497 : * @flags: Zero or more BLK_MQ_F_* flags.
498 : * @driver_data: Pointer to data owned by the block driver that created this
499 : * tag set.
500 : * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
501 : * elements.
502 : * @shared_tags:
503 : * Shared set of tags. Has @nr_hw_queues elements. If set,
504 : * shared by all @tags.
505 : * @tag_list_lock: Serializes tag_list accesses.
506 : * @tag_list: List of the request queues that use this tag set. See also
507 : * request_queue.tag_set_list.
508 : * @srcu: Use as lock when type of the request queue is blocking
509 : * (BLK_MQ_F_BLOCKING).
510 : */
511 : struct blk_mq_tag_set {
512 : const struct blk_mq_ops *ops;
513 : struct blk_mq_queue_map map[HCTX_MAX_TYPES];
514 : unsigned int nr_maps;
515 : unsigned int nr_hw_queues;
516 : unsigned int queue_depth;
517 : unsigned int reserved_tags;
518 : unsigned int cmd_size;
519 : int numa_node;
520 : unsigned int timeout;
521 : unsigned int flags;
522 : void *driver_data;
523 :
524 : struct blk_mq_tags **tags;
525 :
526 : struct blk_mq_tags *shared_tags;
527 :
528 : struct mutex tag_list_lock;
529 : struct list_head tag_list;
530 : struct srcu_struct *srcu;
531 : };
532 :
533 : /**
534 : * struct blk_mq_queue_data - Data about a request inserted in a queue
535 : *
536 : * @rq: Request pointer.
537 : * @last: If it is the last request in the queue.
538 : */
539 : struct blk_mq_queue_data {
540 : struct request *rq;
541 : bool last;
542 : };
543 :
544 : typedef bool (busy_tag_iter_fn)(struct request *, void *);
545 :
546 : /**
547 : * struct blk_mq_ops - Callback functions that implements block driver
548 : * behaviour.
549 : */
550 : struct blk_mq_ops {
551 : /**
552 : * @queue_rq: Queue a new request from block IO.
553 : */
554 : blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
555 : const struct blk_mq_queue_data *);
556 :
557 : /**
558 : * @commit_rqs: If a driver uses bd->last to judge when to submit
559 : * requests to hardware, it must define this function. In case of errors
560 : * that make us stop issuing further requests, this hook serves the
561 : * purpose of kicking the hardware (which the last request otherwise
562 : * would have done).
563 : */
564 : void (*commit_rqs)(struct blk_mq_hw_ctx *);
565 :
566 : /**
567 : * @queue_rqs: Queue a list of new requests. Driver is guaranteed
568 : * that each request belongs to the same queue. If the driver doesn't
569 : * empty the @rqlist completely, then the rest will be queued
570 : * individually by the block layer upon return.
571 : */
572 : void (*queue_rqs)(struct request **rqlist);
573 :
574 : /**
575 : * @get_budget: Reserve budget before queue request, once .queue_rq is
576 : * run, it is driver's responsibility to release the
577 : * reserved budget. Also we have to handle failure case
578 : * of .get_budget for avoiding I/O deadlock.
579 : */
580 : int (*get_budget)(struct request_queue *);
581 :
582 : /**
583 : * @put_budget: Release the reserved budget.
584 : */
585 : void (*put_budget)(struct request_queue *, int);
586 :
587 : /**
588 : * @set_rq_budget_token: store rq's budget token
589 : */
590 : void (*set_rq_budget_token)(struct request *, int);
591 : /**
592 : * @get_rq_budget_token: retrieve rq's budget token
593 : */
594 : int (*get_rq_budget_token)(struct request *);
595 :
596 : /**
597 : * @timeout: Called on request timeout.
598 : */
599 : enum blk_eh_timer_return (*timeout)(struct request *);
600 :
601 : /**
602 : * @poll: Called to poll for completion of a specific tag.
603 : */
604 : int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
605 :
606 : /**
607 : * @complete: Mark the request as complete.
608 : */
609 : void (*complete)(struct request *);
610 :
611 : /**
612 : * @init_hctx: Called when the block layer side of a hardware queue has
613 : * been set up, allowing the driver to allocate/init matching
614 : * structures.
615 : */
616 : int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
617 : /**
618 : * @exit_hctx: Ditto for exit/teardown.
619 : */
620 : void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
621 :
622 : /**
623 : * @init_request: Called for every command allocated by the block layer
624 : * to allow the driver to set up driver specific data.
625 : *
626 : * Tag greater than or equal to queue_depth is for setting up
627 : * flush request.
628 : */
629 : int (*init_request)(struct blk_mq_tag_set *set, struct request *,
630 : unsigned int, unsigned int);
631 : /**
632 : * @exit_request: Ditto for exit/teardown.
633 : */
634 : void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
635 : unsigned int);
636 :
637 : /**
638 : * @cleanup_rq: Called before freeing one request which isn't completed
639 : * yet, and usually for freeing the driver private data.
640 : */
641 : void (*cleanup_rq)(struct request *);
642 :
643 : /**
644 : * @busy: If set, returns whether or not this queue currently is busy.
645 : */
646 : bool (*busy)(struct request_queue *);
647 :
648 : /**
649 : * @map_queues: This allows drivers specify their own queue mapping by
650 : * overriding the setup-time function that builds the mq_map.
651 : */
652 : void (*map_queues)(struct blk_mq_tag_set *set);
653 :
654 : #ifdef CONFIG_BLK_DEBUG_FS
655 : /**
656 : * @show_rq: Used by the debugfs implementation to show driver-specific
657 : * information about a request.
658 : */
659 : void (*show_rq)(struct seq_file *m, struct request *rq);
660 : #endif
661 : };
662 :
663 : enum {
664 : BLK_MQ_F_SHOULD_MERGE = 1 << 0,
665 : BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
666 : /*
667 : * Set when this device requires underlying blk-mq device for
668 : * completing IO:
669 : */
670 : BLK_MQ_F_STACKING = 1 << 2,
671 : BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
672 : BLK_MQ_F_BLOCKING = 1 << 5,
673 : /* Do not allow an I/O scheduler to be configured. */
674 : BLK_MQ_F_NO_SCHED = 1 << 6,
675 : /*
676 : * Select 'none' during queue registration in case of a single hwq
677 : * or shared hwqs instead of 'mq-deadline'.
678 : */
679 : BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
680 : BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
681 : BLK_MQ_F_ALLOC_POLICY_BITS = 1,
682 :
683 : BLK_MQ_S_STOPPED = 0,
684 : BLK_MQ_S_TAG_ACTIVE = 1,
685 : BLK_MQ_S_SCHED_RESTART = 2,
686 :
687 : /* hw queue is inactive after all its CPUs become offline */
688 : BLK_MQ_S_INACTIVE = 3,
689 :
690 : BLK_MQ_MAX_DEPTH = 10240,
691 :
692 : BLK_MQ_CPU_WORK_BATCH = 8,
693 : };
694 : #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
695 : ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
696 : ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
697 : #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
698 : ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
699 : << BLK_MQ_F_ALLOC_POLICY_START_BIT)
700 :
701 : #define BLK_MQ_NO_HCTX_IDX (-1U)
702 :
703 : struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
704 : struct lock_class_key *lkclass);
705 : #define blk_mq_alloc_disk(set, queuedata) \
706 : ({ \
707 : static struct lock_class_key __key; \
708 : \
709 : __blk_mq_alloc_disk(set, queuedata, &__key); \
710 : })
711 : struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
712 : struct lock_class_key *lkclass);
713 : struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
714 : int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
715 : struct request_queue *q);
716 : void blk_mq_destroy_queue(struct request_queue *);
717 :
718 : int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
719 : int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
720 : const struct blk_mq_ops *ops, unsigned int queue_depth,
721 : unsigned int set_flags);
722 : void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
723 :
724 : void blk_mq_free_request(struct request *rq);
725 :
726 : bool blk_mq_queue_inflight(struct request_queue *q);
727 :
728 : enum {
729 : /* return when out of requests */
730 : BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
731 : /* allocate from reserved pool */
732 : BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
733 : /* set RQF_PM */
734 : BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
735 : };
736 :
737 : struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
738 : blk_mq_req_flags_t flags);
739 : struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
740 : blk_opf_t opf, blk_mq_req_flags_t flags,
741 : unsigned int hctx_idx);
742 :
743 : /*
744 : * Tag address space map.
745 : */
746 : struct blk_mq_tags {
747 : unsigned int nr_tags;
748 : unsigned int nr_reserved_tags;
749 :
750 : atomic_t active_queues;
751 :
752 : struct sbitmap_queue bitmap_tags;
753 : struct sbitmap_queue breserved_tags;
754 :
755 : struct request **rqs;
756 : struct request **static_rqs;
757 : struct list_head page_list;
758 :
759 : /*
760 : * used to clear request reference in rqs[] before freeing one
761 : * request pool
762 : */
763 : spinlock_t lock;
764 : };
765 :
766 : static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
767 : unsigned int tag)
768 : {
769 : if (tag < tags->nr_tags) {
770 : prefetch(tags->rqs[tag]);
771 : return tags->rqs[tag];
772 : }
773 :
774 : return NULL;
775 : }
776 :
777 : enum {
778 : BLK_MQ_UNIQUE_TAG_BITS = 16,
779 : BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
780 : };
781 :
782 : u32 blk_mq_unique_tag(struct request *rq);
783 :
784 : static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
785 : {
786 : return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
787 : }
788 :
789 : static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
790 : {
791 : return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
792 : }
793 :
794 : /**
795 : * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
796 : * @rq: target request.
797 : */
798 : static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
799 : {
800 0 : return READ_ONCE(rq->state);
801 : }
802 :
803 : static inline int blk_mq_request_started(struct request *rq)
804 : {
805 0 : return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
806 : }
807 :
808 : static inline int blk_mq_request_completed(struct request *rq)
809 : {
810 0 : return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
811 : }
812 :
813 : /*
814 : *
815 : * Set the state to complete when completing a request from inside ->queue_rq.
816 : * This is used by drivers that want to ensure special complete actions that
817 : * need access to the request are called on failure, e.g. by nvme for
818 : * multipathing.
819 : */
820 : static inline void blk_mq_set_request_complete(struct request *rq)
821 : {
822 : WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
823 : }
824 :
825 : /*
826 : * Complete the request directly instead of deferring it to softirq or
827 : * completing it another CPU. Useful in preemptible instead of an interrupt.
828 : */
829 : static inline void blk_mq_complete_request_direct(struct request *rq,
830 : void (*complete)(struct request *rq))
831 : {
832 : WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
833 : complete(rq);
834 : }
835 :
836 : void blk_mq_start_request(struct request *rq);
837 : void blk_mq_end_request(struct request *rq, blk_status_t error);
838 : void __blk_mq_end_request(struct request *rq, blk_status_t error);
839 : void blk_mq_end_request_batch(struct io_comp_batch *ib);
840 :
841 : /*
842 : * Only need start/end time stamping if we have iostat or
843 : * blk stats enabled, or using an IO scheduler.
844 : */
845 : static inline bool blk_mq_need_time_stamp(struct request *rq)
846 : {
847 0 : return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
848 : }
849 :
850 : static inline bool blk_mq_is_reserved_rq(struct request *rq)
851 : {
852 : return rq->rq_flags & RQF_RESV;
853 : }
854 :
855 : /*
856 : * Batched completions only work when there is no I/O error and no special
857 : * ->end_io handler.
858 : */
859 : static inline bool blk_mq_add_to_batch(struct request *req,
860 : struct io_comp_batch *iob, int ioerror,
861 : void (*complete)(struct io_comp_batch *))
862 : {
863 : if (!iob || (req->rq_flags & RQF_ELV) || ioerror ||
864 : (req->end_io && !blk_rq_is_passthrough(req)))
865 : return false;
866 :
867 : if (!iob->complete)
868 : iob->complete = complete;
869 : else if (iob->complete != complete)
870 : return false;
871 : iob->need_ts |= blk_mq_need_time_stamp(req);
872 : rq_list_add(&iob->req_list, req);
873 : return true;
874 : }
875 :
876 : void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
877 : void blk_mq_kick_requeue_list(struct request_queue *q);
878 : void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
879 : void blk_mq_complete_request(struct request *rq);
880 : bool blk_mq_complete_request_remote(struct request *rq);
881 : void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
882 : void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
883 : void blk_mq_stop_hw_queues(struct request_queue *q);
884 : void blk_mq_start_hw_queues(struct request_queue *q);
885 : void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
886 : void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
887 : void blk_mq_quiesce_queue(struct request_queue *q);
888 : void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
889 : void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
890 : void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
891 : void blk_mq_unquiesce_queue(struct request_queue *q);
892 : void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
893 : void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
894 : void blk_mq_run_hw_queues(struct request_queue *q, bool async);
895 : void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
896 : void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
897 : busy_tag_iter_fn *fn, void *priv);
898 : void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
899 : void blk_mq_freeze_queue(struct request_queue *q);
900 : void blk_mq_unfreeze_queue(struct request_queue *q);
901 : void blk_freeze_queue_start(struct request_queue *q);
902 : void blk_mq_freeze_queue_wait(struct request_queue *q);
903 : int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
904 : unsigned long timeout);
905 :
906 : void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
907 : void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
908 :
909 : void blk_mq_quiesce_queue_nowait(struct request_queue *q);
910 :
911 : unsigned int blk_mq_rq_cpu(struct request *rq);
912 :
913 : bool __blk_should_fake_timeout(struct request_queue *q);
914 : static inline bool blk_should_fake_timeout(struct request_queue *q)
915 : {
916 : if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
917 : test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
918 : return __blk_should_fake_timeout(q);
919 : return false;
920 : }
921 :
922 : /**
923 : * blk_mq_rq_from_pdu - cast a PDU to a request
924 : * @pdu: the PDU (Protocol Data Unit) to be casted
925 : *
926 : * Return: request
927 : *
928 : * Driver command data is immediately after the request. So subtract request
929 : * size to get back to the original request.
930 : */
931 : static inline struct request *blk_mq_rq_from_pdu(void *pdu)
932 : {
933 : return pdu - sizeof(struct request);
934 : }
935 :
936 : /**
937 : * blk_mq_rq_to_pdu - cast a request to a PDU
938 : * @rq: the request to be casted
939 : *
940 : * Return: pointer to the PDU
941 : *
942 : * Driver command data is immediately after the request. So add request to get
943 : * the PDU.
944 : */
945 : static inline void *blk_mq_rq_to_pdu(struct request *rq)
946 : {
947 : return rq + 1;
948 : }
949 :
950 : #define queue_for_each_hw_ctx(q, hctx, i) \
951 : xa_for_each(&(q)->hctx_table, (i), (hctx))
952 :
953 : #define hctx_for_each_ctx(hctx, ctx, i) \
954 : for ((i) = 0; (i) < (hctx)->nr_ctx && \
955 : ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
956 :
957 : static inline void blk_mq_cleanup_rq(struct request *rq)
958 : {
959 : if (rq->q->mq_ops->cleanup_rq)
960 : rq->q->mq_ops->cleanup_rq(rq);
961 : }
962 :
963 : static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
964 : unsigned int nr_segs)
965 : {
966 0 : rq->nr_phys_segments = nr_segs;
967 0 : rq->__data_len = bio->bi_iter.bi_size;
968 0 : rq->bio = rq->biotail = bio;
969 0 : rq->ioprio = bio_prio(bio);
970 : }
971 :
972 : void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
973 : struct lock_class_key *key);
974 :
975 : static inline bool rq_is_sync(struct request *rq)
976 : {
977 : return op_is_sync(rq->cmd_flags);
978 : }
979 :
980 : void blk_rq_init(struct request_queue *q, struct request *rq);
981 : int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
982 : struct bio_set *bs, gfp_t gfp_mask,
983 : int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
984 : void blk_rq_unprep_clone(struct request *rq);
985 : blk_status_t blk_insert_cloned_request(struct request *rq);
986 :
987 : struct rq_map_data {
988 : struct page **pages;
989 : unsigned long offset;
990 : unsigned short page_order;
991 : unsigned short nr_entries;
992 : bool null_mapped;
993 : bool from_user;
994 : };
995 :
996 : int blk_rq_map_user(struct request_queue *, struct request *,
997 : struct rq_map_data *, void __user *, unsigned long, gfp_t);
998 : int blk_rq_map_user_io(struct request *, struct rq_map_data *,
999 : void __user *, unsigned long, gfp_t, bool, int, bool, int);
1000 : int blk_rq_map_user_iov(struct request_queue *, struct request *,
1001 : struct rq_map_data *, const struct iov_iter *, gfp_t);
1002 : int blk_rq_unmap_user(struct bio *);
1003 : int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1004 : unsigned int, gfp_t);
1005 : int blk_rq_append_bio(struct request *rq, struct bio *bio);
1006 : void blk_execute_rq_nowait(struct request *rq, bool at_head);
1007 : blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1008 : bool blk_rq_is_poll(struct request *rq);
1009 :
1010 : struct req_iterator {
1011 : struct bvec_iter iter;
1012 : struct bio *bio;
1013 : };
1014 :
1015 : #define __rq_for_each_bio(_bio, rq) \
1016 : if ((rq->bio)) \
1017 : for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1018 :
1019 : #define rq_for_each_segment(bvl, _rq, _iter) \
1020 : __rq_for_each_bio(_iter.bio, _rq) \
1021 : bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1022 :
1023 : #define rq_for_each_bvec(bvl, _rq, _iter) \
1024 : __rq_for_each_bio(_iter.bio, _rq) \
1025 : bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1026 :
1027 : #define rq_iter_last(bvec, _iter) \
1028 : (_iter.bio->bi_next == NULL && \
1029 : bio_iter_last(bvec, _iter.iter))
1030 :
1031 : /*
1032 : * blk_rq_pos() : the current sector
1033 : * blk_rq_bytes() : bytes left in the entire request
1034 : * blk_rq_cur_bytes() : bytes left in the current segment
1035 : * blk_rq_sectors() : sectors left in the entire request
1036 : * blk_rq_cur_sectors() : sectors left in the current segment
1037 : * blk_rq_stats_sectors() : sectors of the entire request used for stats
1038 : */
1039 : static inline sector_t blk_rq_pos(const struct request *rq)
1040 : {
1041 : return rq->__sector;
1042 : }
1043 :
1044 : static inline unsigned int blk_rq_bytes(const struct request *rq)
1045 : {
1046 : return rq->__data_len;
1047 : }
1048 :
1049 0 : static inline int blk_rq_cur_bytes(const struct request *rq)
1050 : {
1051 0 : if (!rq->bio)
1052 : return 0;
1053 0 : if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1054 0 : return rq->bio->bi_iter.bi_size;
1055 0 : return bio_iovec(rq->bio).bv_len;
1056 : }
1057 :
1058 : static inline unsigned int blk_rq_sectors(const struct request *rq)
1059 : {
1060 0 : return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1061 : }
1062 :
1063 : static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1064 : {
1065 0 : return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1066 : }
1067 :
1068 : static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1069 : {
1070 : return rq->stats_sectors;
1071 : }
1072 :
1073 : /*
1074 : * Some commands like WRITE SAME have a payload or data transfer size which
1075 : * is different from the size of the request. Any driver that supports such
1076 : * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1077 : * calculate the data transfer size.
1078 : */
1079 : static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1080 : {
1081 : if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1082 : return rq->special_vec.bv_len;
1083 : return blk_rq_bytes(rq);
1084 : }
1085 :
1086 : /*
1087 : * Return the first full biovec in the request. The caller needs to check that
1088 : * there are any bvecs before calling this helper.
1089 : */
1090 : static inline struct bio_vec req_bvec(struct request *rq)
1091 : {
1092 : if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1093 : return rq->special_vec;
1094 : return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1095 : }
1096 :
1097 : static inline unsigned int blk_rq_count_bios(struct request *rq)
1098 : {
1099 : unsigned int nr_bios = 0;
1100 : struct bio *bio;
1101 :
1102 : __rq_for_each_bio(bio, rq)
1103 : nr_bios++;
1104 :
1105 : return nr_bios;
1106 : }
1107 :
1108 : void blk_steal_bios(struct bio_list *list, struct request *rq);
1109 :
1110 : /*
1111 : * Request completion related functions.
1112 : *
1113 : * blk_update_request() completes given number of bytes and updates
1114 : * the request without completing it.
1115 : */
1116 : bool blk_update_request(struct request *rq, blk_status_t error,
1117 : unsigned int nr_bytes);
1118 : void blk_abort_request(struct request *);
1119 :
1120 : /*
1121 : * Number of physical segments as sent to the device.
1122 : *
1123 : * Normally this is the number of discontiguous data segments sent by the
1124 : * submitter. But for data-less command like discard we might have no
1125 : * actual data segments submitted, but the driver might have to add it's
1126 : * own special payload. In that case we still return 1 here so that this
1127 : * special payload will be mapped.
1128 : */
1129 : static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1130 : {
1131 0 : if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1132 : return 1;
1133 0 : return rq->nr_phys_segments;
1134 : }
1135 :
1136 : /*
1137 : * Number of discard segments (or ranges) the driver needs to fill in.
1138 : * Each discard bio merged into a request is counted as one segment.
1139 : */
1140 : static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1141 : {
1142 0 : return max_t(unsigned short, rq->nr_phys_segments, 1);
1143 : }
1144 :
1145 : int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1146 : struct scatterlist *sglist, struct scatterlist **last_sg);
1147 : static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1148 : struct scatterlist *sglist)
1149 : {
1150 : struct scatterlist *last_sg = NULL;
1151 :
1152 : return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1153 : }
1154 : void blk_dump_rq_flags(struct request *, char *);
1155 :
1156 : #ifdef CONFIG_BLK_DEV_ZONED
1157 : static inline unsigned int blk_rq_zone_no(struct request *rq)
1158 : {
1159 : return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1160 : }
1161 :
1162 : static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1163 : {
1164 : return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1165 : }
1166 :
1167 : bool blk_req_needs_zone_write_lock(struct request *rq);
1168 : bool blk_req_zone_write_trylock(struct request *rq);
1169 : void __blk_req_zone_write_lock(struct request *rq);
1170 : void __blk_req_zone_write_unlock(struct request *rq);
1171 :
1172 : static inline void blk_req_zone_write_lock(struct request *rq)
1173 : {
1174 : if (blk_req_needs_zone_write_lock(rq))
1175 : __blk_req_zone_write_lock(rq);
1176 : }
1177 :
1178 : static inline void blk_req_zone_write_unlock(struct request *rq)
1179 : {
1180 : if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1181 : __blk_req_zone_write_unlock(rq);
1182 : }
1183 :
1184 : static inline bool blk_req_zone_is_write_locked(struct request *rq)
1185 : {
1186 : return rq->q->disk->seq_zones_wlock &&
1187 : test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1188 : }
1189 :
1190 : static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1191 : {
1192 : if (!blk_req_needs_zone_write_lock(rq))
1193 : return true;
1194 : return !blk_req_zone_is_write_locked(rq);
1195 : }
1196 : #else /* CONFIG_BLK_DEV_ZONED */
1197 : static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1198 : {
1199 : return false;
1200 : }
1201 :
1202 : static inline void blk_req_zone_write_lock(struct request *rq)
1203 : {
1204 : }
1205 :
1206 : static inline void blk_req_zone_write_unlock(struct request *rq)
1207 : {
1208 : }
1209 : static inline bool blk_req_zone_is_write_locked(struct request *rq)
1210 : {
1211 : return false;
1212 : }
1213 :
1214 : static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1215 : {
1216 : return true;
1217 : }
1218 : #endif /* CONFIG_BLK_DEV_ZONED */
1219 :
1220 : #endif /* BLK_MQ_H */
|