Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-only */
2 : /*
3 : * kernfs.h - pseudo filesystem decoupled from vfs locking
4 : */
5 :
6 : #ifndef __LINUX_KERNFS_H
7 : #define __LINUX_KERNFS_H
8 :
9 : #include <linux/err.h>
10 : #include <linux/list.h>
11 : #include <linux/mutex.h>
12 : #include <linux/idr.h>
13 : #include <linux/lockdep.h>
14 : #include <linux/rbtree.h>
15 : #include <linux/atomic.h>
16 : #include <linux/bug.h>
17 : #include <linux/types.h>
18 : #include <linux/uidgid.h>
19 : #include <linux/wait.h>
20 : #include <linux/rwsem.h>
21 : #include <linux/cache.h>
22 :
23 : struct file;
24 : struct dentry;
25 : struct iattr;
26 : struct seq_file;
27 : struct vm_area_struct;
28 : struct vm_operations_struct;
29 : struct super_block;
30 : struct file_system_type;
31 : struct poll_table_struct;
32 : struct fs_context;
33 :
34 : struct kernfs_fs_context;
35 : struct kernfs_open_node;
36 : struct kernfs_iattrs;
37 :
38 : /*
39 : * NR_KERNFS_LOCK_BITS determines size (NR_KERNFS_LOCKS) of hash
40 : * table of locks.
41 : * Having a small hash table would impact scalability, since
42 : * more and more kernfs_node objects will end up using same lock
43 : * and having a very large hash table would waste memory.
44 : *
45 : * At the moment size of hash table of locks is being set based on
46 : * the number of CPUs as follows:
47 : *
48 : * NR_CPU NR_KERNFS_LOCK_BITS NR_KERNFS_LOCKS
49 : * 1 1 2
50 : * 2-3 2 4
51 : * 4-7 4 16
52 : * 8-15 6 64
53 : * 16-31 8 256
54 : * 32 and more 10 1024
55 : *
56 : * The above relation between NR_CPU and number of locks is based
57 : * on some internal experimentation which involved booting qemu
58 : * with different values of smp, performing some sysfs operations
59 : * on all CPUs and observing how increase in number of locks impacts
60 : * completion time of these sysfs operations on each CPU.
61 : */
62 : #ifdef CONFIG_SMP
63 : #define NR_KERNFS_LOCK_BITS (2 * (ilog2(NR_CPUS < 32 ? NR_CPUS : 32)))
64 : #else
65 : #define NR_KERNFS_LOCK_BITS 1
66 : #endif
67 :
68 : #define NR_KERNFS_LOCKS (1 << NR_KERNFS_LOCK_BITS)
69 :
70 : /*
71 : * There's one kernfs_open_file for each open file and one kernfs_open_node
72 : * for each kernfs_node with one or more open files.
73 : *
74 : * filp->private_data points to seq_file whose ->private points to
75 : * kernfs_open_file.
76 : *
77 : * kernfs_open_files are chained at kernfs_open_node->files, which is
78 : * protected by kernfs_global_locks.open_file_mutex[i].
79 : *
80 : * To reduce possible contention in sysfs access, arising due to single
81 : * locks, use an array of locks (e.g. open_file_mutex) and use kernfs_node
82 : * object address as hash keys to get the index of these locks.
83 : *
84 : * Hashed mutexes are safe to use here because operations using these don't
85 : * rely on global exclusion.
86 : *
87 : * In future we intend to replace other global locks with hashed ones as well.
88 : * kernfs_global_locks acts as a holder for all such hash tables.
89 : */
90 : struct kernfs_global_locks {
91 : struct mutex open_file_mutex[NR_KERNFS_LOCKS];
92 : };
93 :
94 : enum kernfs_node_type {
95 : KERNFS_DIR = 0x0001,
96 : KERNFS_FILE = 0x0002,
97 : KERNFS_LINK = 0x0004,
98 : };
99 :
100 : #define KERNFS_TYPE_MASK 0x000f
101 : #define KERNFS_FLAG_MASK ~KERNFS_TYPE_MASK
102 : #define KERNFS_MAX_USER_XATTRS 128
103 : #define KERNFS_USER_XATTR_SIZE_LIMIT (128 << 10)
104 :
105 : enum kernfs_node_flag {
106 : KERNFS_ACTIVATED = 0x0010,
107 : KERNFS_NS = 0x0020,
108 : KERNFS_HAS_SEQ_SHOW = 0x0040,
109 : KERNFS_HAS_MMAP = 0x0080,
110 : KERNFS_LOCKDEP = 0x0100,
111 : KERNFS_HIDDEN = 0x0200,
112 : KERNFS_SUICIDAL = 0x0400,
113 : KERNFS_SUICIDED = 0x0800,
114 : KERNFS_EMPTY_DIR = 0x1000,
115 : KERNFS_HAS_RELEASE = 0x2000,
116 : KERNFS_REMOVING = 0x4000,
117 : };
118 :
119 : /* @flags for kernfs_create_root() */
120 : enum kernfs_root_flag {
121 : /*
122 : * kernfs_nodes are created in the deactivated state and invisible.
123 : * They require explicit kernfs_activate() to become visible. This
124 : * can be used to make related nodes become visible atomically
125 : * after all nodes are created successfully.
126 : */
127 : KERNFS_ROOT_CREATE_DEACTIVATED = 0x0001,
128 :
129 : /*
130 : * For regular files, if the opener has CAP_DAC_OVERRIDE, open(2)
131 : * succeeds regardless of the RW permissions. sysfs had an extra
132 : * layer of enforcement where open(2) fails with -EACCES regardless
133 : * of CAP_DAC_OVERRIDE if the permission doesn't have the
134 : * respective read or write access at all (none of S_IRUGO or
135 : * S_IWUGO) or the respective operation isn't implemented. The
136 : * following flag enables that behavior.
137 : */
138 : KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK = 0x0002,
139 :
140 : /*
141 : * The filesystem supports exportfs operation, so userspace can use
142 : * fhandle to access nodes of the fs.
143 : */
144 : KERNFS_ROOT_SUPPORT_EXPORTOP = 0x0004,
145 :
146 : /*
147 : * Support user xattrs to be written to nodes rooted at this root.
148 : */
149 : KERNFS_ROOT_SUPPORT_USER_XATTR = 0x0008,
150 : };
151 :
152 : /* type-specific structures for kernfs_node union members */
153 : struct kernfs_elem_dir {
154 : unsigned long subdirs;
155 : /* children rbtree starts here and goes through kn->rb */
156 : struct rb_root children;
157 :
158 : /*
159 : * The kernfs hierarchy this directory belongs to. This fits
160 : * better directly in kernfs_node but is here to save space.
161 : */
162 : struct kernfs_root *root;
163 : /*
164 : * Monotonic revision counter, used to identify if a directory
165 : * node has changed during negative dentry revalidation.
166 : */
167 : unsigned long rev;
168 : };
169 :
170 : struct kernfs_elem_symlink {
171 : struct kernfs_node *target_kn;
172 : };
173 :
174 : struct kernfs_elem_attr {
175 : const struct kernfs_ops *ops;
176 : struct kernfs_open_node __rcu *open;
177 : loff_t size;
178 : struct kernfs_node *notify_next; /* for kernfs_notify() */
179 : };
180 :
181 : /*
182 : * kernfs_node - the building block of kernfs hierarchy. Each and every
183 : * kernfs node is represented by single kernfs_node. Most fields are
184 : * private to kernfs and shouldn't be accessed directly by kernfs users.
185 : *
186 : * As long as count reference is held, the kernfs_node itself is
187 : * accessible. Dereferencing elem or any other outer entity requires
188 : * active reference.
189 : */
190 : struct kernfs_node {
191 : atomic_t count;
192 : atomic_t active;
193 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
194 : struct lockdep_map dep_map;
195 : #endif
196 : /*
197 : * Use kernfs_get_parent() and kernfs_name/path() instead of
198 : * accessing the following two fields directly. If the node is
199 : * never moved to a different parent, it is safe to access the
200 : * parent directly.
201 : */
202 : struct kernfs_node *parent;
203 : const char *name;
204 :
205 : struct rb_node rb;
206 :
207 : const void *ns; /* namespace tag */
208 : unsigned int hash; /* ns + name hash */
209 : union {
210 : struct kernfs_elem_dir dir;
211 : struct kernfs_elem_symlink symlink;
212 : struct kernfs_elem_attr attr;
213 : };
214 :
215 : void *priv;
216 :
217 : /*
218 : * 64bit unique ID. On 64bit ino setups, id is the ino. On 32bit,
219 : * the low 32bits are ino and upper generation.
220 : */
221 : u64 id;
222 :
223 : unsigned short flags;
224 : umode_t mode;
225 : struct kernfs_iattrs *iattr;
226 : };
227 :
228 : /*
229 : * kernfs_syscall_ops may be specified on kernfs_create_root() to support
230 : * syscalls. These optional callbacks are invoked on the matching syscalls
231 : * and can perform any kernfs operations which don't necessarily have to be
232 : * the exact operation requested. An active reference is held for each
233 : * kernfs_node parameter.
234 : */
235 : struct kernfs_syscall_ops {
236 : int (*show_options)(struct seq_file *sf, struct kernfs_root *root);
237 :
238 : int (*mkdir)(struct kernfs_node *parent, const char *name,
239 : umode_t mode);
240 : int (*rmdir)(struct kernfs_node *kn);
241 : int (*rename)(struct kernfs_node *kn, struct kernfs_node *new_parent,
242 : const char *new_name);
243 : int (*show_path)(struct seq_file *sf, struct kernfs_node *kn,
244 : struct kernfs_root *root);
245 : };
246 :
247 : struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root);
248 :
249 : struct kernfs_open_file {
250 : /* published fields */
251 : struct kernfs_node *kn;
252 : struct file *file;
253 : struct seq_file *seq_file;
254 : void *priv;
255 :
256 : /* private fields, do not use outside kernfs proper */
257 : struct mutex mutex;
258 : struct mutex prealloc_mutex;
259 : int event;
260 : struct list_head list;
261 : char *prealloc_buf;
262 :
263 : size_t atomic_write_len;
264 : bool mmapped:1;
265 : bool released:1;
266 : const struct vm_operations_struct *vm_ops;
267 : };
268 :
269 : struct kernfs_ops {
270 : /*
271 : * Optional open/release methods. Both are called with
272 : * @of->seq_file populated.
273 : */
274 : int (*open)(struct kernfs_open_file *of);
275 : void (*release)(struct kernfs_open_file *of);
276 :
277 : /*
278 : * Read is handled by either seq_file or raw_read().
279 : *
280 : * If seq_show() is present, seq_file path is active. Other seq
281 : * operations are optional and if not implemented, the behavior is
282 : * equivalent to single_open(). @sf->private points to the
283 : * associated kernfs_open_file.
284 : *
285 : * read() is bounced through kernel buffer and a read larger than
286 : * PAGE_SIZE results in partial operation of PAGE_SIZE.
287 : */
288 : int (*seq_show)(struct seq_file *sf, void *v);
289 :
290 : void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
291 : void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
292 : void (*seq_stop)(struct seq_file *sf, void *v);
293 :
294 : ssize_t (*read)(struct kernfs_open_file *of, char *buf, size_t bytes,
295 : loff_t off);
296 :
297 : /*
298 : * write() is bounced through kernel buffer. If atomic_write_len
299 : * is not set, a write larger than PAGE_SIZE results in partial
300 : * operations of PAGE_SIZE chunks. If atomic_write_len is set,
301 : * writes upto the specified size are executed atomically but
302 : * larger ones are rejected with -E2BIG.
303 : */
304 : size_t atomic_write_len;
305 : /*
306 : * "prealloc" causes a buffer to be allocated at open for
307 : * all read/write requests. As ->seq_show uses seq_read()
308 : * which does its own allocation, it is incompatible with
309 : * ->prealloc. Provide ->read and ->write with ->prealloc.
310 : */
311 : bool prealloc;
312 : ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t bytes,
313 : loff_t off);
314 :
315 : __poll_t (*poll)(struct kernfs_open_file *of,
316 : struct poll_table_struct *pt);
317 :
318 : int (*mmap)(struct kernfs_open_file *of, struct vm_area_struct *vma);
319 : };
320 :
321 : /*
322 : * The kernfs superblock creation/mount parameter context.
323 : */
324 : struct kernfs_fs_context {
325 : struct kernfs_root *root; /* Root of the hierarchy being mounted */
326 : void *ns_tag; /* Namespace tag of the mount (or NULL) */
327 : unsigned long magic; /* File system specific magic number */
328 :
329 : /* The following are set/used by kernfs_mount() */
330 : bool new_sb_created; /* Set to T if we allocated a new sb */
331 : };
332 :
333 : #ifdef CONFIG_KERNFS
334 :
335 : static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn)
336 : {
337 18615 : return kn->flags & KERNFS_TYPE_MASK;
338 : }
339 :
340 : static inline ino_t kernfs_id_ino(u64 id)
341 : {
342 : /* id is ino if ino_t is 64bit; otherwise, low 32bits */
343 : if (sizeof(ino_t) >= sizeof(u64))
344 : return id;
345 : else
346 : return (u32)id;
347 : }
348 :
349 : static inline u32 kernfs_id_gen(u64 id)
350 : {
351 : /* gen is fixed at 1 if ino_t is 64bit; otherwise, high 32bits */
352 : if (sizeof(ino_t) >= sizeof(u64))
353 : return 1;
354 : else
355 : return id >> 32;
356 : }
357 :
358 : static inline ino_t kernfs_ino(struct kernfs_node *kn)
359 : {
360 524 : return kernfs_id_ino(kn->id);
361 : }
362 :
363 : static inline ino_t kernfs_gen(struct kernfs_node *kn)
364 : {
365 0 : return kernfs_id_gen(kn->id);
366 : }
367 :
368 : /**
369 : * kernfs_enable_ns - enable namespace under a directory
370 : * @kn: directory of interest, should be empty
371 : *
372 : * This is to be called right after @kn is created to enable namespace
373 : * under it. All children of @kn must have non-NULL namespace tags and
374 : * only the ones which match the super_block's tag will be visible.
375 : */
376 0 : static inline void kernfs_enable_ns(struct kernfs_node *kn)
377 : {
378 0 : WARN_ON_ONCE(kernfs_type(kn) != KERNFS_DIR);
379 0 : WARN_ON_ONCE(!RB_EMPTY_ROOT(&kn->dir.children));
380 0 : kn->flags |= KERNFS_NS;
381 0 : }
382 :
383 : /**
384 : * kernfs_ns_enabled - test whether namespace is enabled
385 : * @kn: the node to test
386 : *
387 : * Test whether namespace filtering is enabled for the children of @ns.
388 : */
389 : static inline bool kernfs_ns_enabled(struct kernfs_node *kn)
390 : {
391 10409 : return kn->flags & KERNFS_NS;
392 : }
393 :
394 : int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen);
395 : int kernfs_path_from_node(struct kernfs_node *root_kn, struct kernfs_node *kn,
396 : char *buf, size_t buflen);
397 : void pr_cont_kernfs_name(struct kernfs_node *kn);
398 : void pr_cont_kernfs_path(struct kernfs_node *kn);
399 : struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn);
400 : struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
401 : const char *name, const void *ns);
402 : struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
403 : const char *path, const void *ns);
404 : void kernfs_get(struct kernfs_node *kn);
405 : void kernfs_put(struct kernfs_node *kn);
406 :
407 : struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry);
408 : struct kernfs_root *kernfs_root_from_sb(struct super_block *sb);
409 : struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn);
410 :
411 : struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
412 : struct super_block *sb);
413 : struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
414 : unsigned int flags, void *priv);
415 : void kernfs_destroy_root(struct kernfs_root *root);
416 :
417 : struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
418 : const char *name, umode_t mode,
419 : kuid_t uid, kgid_t gid,
420 : void *priv, const void *ns);
421 : struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
422 : const char *name);
423 : struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
424 : const char *name, umode_t mode,
425 : kuid_t uid, kgid_t gid,
426 : loff_t size,
427 : const struct kernfs_ops *ops,
428 : void *priv, const void *ns,
429 : struct lock_class_key *key);
430 : struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,
431 : const char *name,
432 : struct kernfs_node *target);
433 : void kernfs_activate(struct kernfs_node *kn);
434 : void kernfs_show(struct kernfs_node *kn, bool show);
435 : void kernfs_remove(struct kernfs_node *kn);
436 : void kernfs_break_active_protection(struct kernfs_node *kn);
437 : void kernfs_unbreak_active_protection(struct kernfs_node *kn);
438 : bool kernfs_remove_self(struct kernfs_node *kn);
439 : int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
440 : const void *ns);
441 : int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
442 : const char *new_name, const void *new_ns);
443 : int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr);
444 : __poll_t kernfs_generic_poll(struct kernfs_open_file *of,
445 : struct poll_table_struct *pt);
446 : void kernfs_notify(struct kernfs_node *kn);
447 :
448 : int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
449 : void *value, size_t size);
450 : int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
451 : const void *value, size_t size, int flags);
452 :
453 : const void *kernfs_super_ns(struct super_block *sb);
454 : int kernfs_get_tree(struct fs_context *fc);
455 : void kernfs_free_fs_context(struct fs_context *fc);
456 : void kernfs_kill_sb(struct super_block *sb);
457 :
458 : void kernfs_init(void);
459 :
460 : struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
461 : u64 id);
462 : #else /* CONFIG_KERNFS */
463 :
464 : static inline enum kernfs_node_type kernfs_type(struct kernfs_node *kn)
465 : { return 0; } /* whatever */
466 :
467 : static inline void kernfs_enable_ns(struct kernfs_node *kn) { }
468 :
469 : static inline bool kernfs_ns_enabled(struct kernfs_node *kn)
470 : { return false; }
471 :
472 : static inline int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
473 : { return -ENOSYS; }
474 :
475 : static inline int kernfs_path_from_node(struct kernfs_node *root_kn,
476 : struct kernfs_node *kn,
477 : char *buf, size_t buflen)
478 : { return -ENOSYS; }
479 :
480 : static inline void pr_cont_kernfs_name(struct kernfs_node *kn) { }
481 : static inline void pr_cont_kernfs_path(struct kernfs_node *kn) { }
482 :
483 : static inline struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
484 : { return NULL; }
485 :
486 : static inline struct kernfs_node *
487 : kernfs_find_and_get_ns(struct kernfs_node *parent, const char *name,
488 : const void *ns)
489 : { return NULL; }
490 : static inline struct kernfs_node *
491 : kernfs_walk_and_get_ns(struct kernfs_node *parent, const char *path,
492 : const void *ns)
493 : { return NULL; }
494 :
495 : static inline void kernfs_get(struct kernfs_node *kn) { }
496 : static inline void kernfs_put(struct kernfs_node *kn) { }
497 :
498 : static inline struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
499 : { return NULL; }
500 :
501 : static inline struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
502 : { return NULL; }
503 :
504 : static inline struct inode *
505 : kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
506 : { return NULL; }
507 :
508 : static inline struct kernfs_root *
509 : kernfs_create_root(struct kernfs_syscall_ops *scops, unsigned int flags,
510 : void *priv)
511 : { return ERR_PTR(-ENOSYS); }
512 :
513 : static inline void kernfs_destroy_root(struct kernfs_root *root) { }
514 :
515 : static inline struct kernfs_node *
516 : kernfs_create_dir_ns(struct kernfs_node *parent, const char *name,
517 : umode_t mode, kuid_t uid, kgid_t gid,
518 : void *priv, const void *ns)
519 : { return ERR_PTR(-ENOSYS); }
520 :
521 : static inline struct kernfs_node *
522 : __kernfs_create_file(struct kernfs_node *parent, const char *name,
523 : umode_t mode, kuid_t uid, kgid_t gid,
524 : loff_t size, const struct kernfs_ops *ops,
525 : void *priv, const void *ns, struct lock_class_key *key)
526 : { return ERR_PTR(-ENOSYS); }
527 :
528 : static inline struct kernfs_node *
529 : kernfs_create_link(struct kernfs_node *parent, const char *name,
530 : struct kernfs_node *target)
531 : { return ERR_PTR(-ENOSYS); }
532 :
533 : static inline void kernfs_activate(struct kernfs_node *kn) { }
534 :
535 : static inline void kernfs_remove(struct kernfs_node *kn) { }
536 :
537 : static inline bool kernfs_remove_self(struct kernfs_node *kn)
538 : { return false; }
539 :
540 : static inline int kernfs_remove_by_name_ns(struct kernfs_node *kn,
541 : const char *name, const void *ns)
542 : { return -ENOSYS; }
543 :
544 : static inline int kernfs_rename_ns(struct kernfs_node *kn,
545 : struct kernfs_node *new_parent,
546 : const char *new_name, const void *new_ns)
547 : { return -ENOSYS; }
548 :
549 : static inline int kernfs_setattr(struct kernfs_node *kn,
550 : const struct iattr *iattr)
551 : { return -ENOSYS; }
552 :
553 : static inline void kernfs_notify(struct kernfs_node *kn) { }
554 :
555 : static inline int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
556 : void *value, size_t size)
557 : { return -ENOSYS; }
558 :
559 : static inline int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
560 : const void *value, size_t size, int flags)
561 : { return -ENOSYS; }
562 :
563 : static inline const void *kernfs_super_ns(struct super_block *sb)
564 : { return NULL; }
565 :
566 : static inline int kernfs_get_tree(struct fs_context *fc)
567 : { return -ENOSYS; }
568 :
569 : static inline void kernfs_free_fs_context(struct fs_context *fc) { }
570 :
571 : static inline void kernfs_kill_sb(struct super_block *sb) { }
572 :
573 : static inline void kernfs_init(void) { }
574 :
575 : #endif /* CONFIG_KERNFS */
576 :
577 : /**
578 : * kernfs_path - build full path of a given node
579 : * @kn: kernfs_node of interest
580 : * @buf: buffer to copy @kn's name into
581 : * @buflen: size of @buf
582 : *
583 : * If @kn is NULL result will be "(null)".
584 : *
585 : * Returns the length of the full path. If the full length is equal to or
586 : * greater than @buflen, @buf contains the truncated path with the trailing
587 : * '\0'. On error, -errno is returned.
588 : */
589 : static inline int kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
590 : {
591 0 : return kernfs_path_from_node(kn, NULL, buf, buflen);
592 : }
593 :
594 : static inline struct kernfs_node *
595 : kernfs_find_and_get(struct kernfs_node *kn, const char *name)
596 : {
597 728 : return kernfs_find_and_get_ns(kn, name, NULL);
598 : }
599 :
600 : static inline struct kernfs_node *
601 : kernfs_walk_and_get(struct kernfs_node *kn, const char *path)
602 : {
603 : return kernfs_walk_and_get_ns(kn, path, NULL);
604 : }
605 :
606 : static inline struct kernfs_node *
607 : kernfs_create_dir(struct kernfs_node *parent, const char *name, umode_t mode,
608 : void *priv)
609 : {
610 : return kernfs_create_dir_ns(parent, name, mode,
611 : GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
612 : priv, NULL);
613 : }
614 :
615 : static inline int kernfs_remove_by_name(struct kernfs_node *parent,
616 : const char *name)
617 : {
618 715 : return kernfs_remove_by_name_ns(parent, name, NULL);
619 : }
620 :
621 : static inline int kernfs_rename(struct kernfs_node *kn,
622 : struct kernfs_node *new_parent,
623 : const char *new_name)
624 : {
625 : return kernfs_rename_ns(kn, new_parent, new_name, NULL);
626 : }
627 :
628 : #endif /* __LINUX_KERNFS_H */
|