LCOV - code coverage report
Current view: top level - include/linux - pgtable.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 16 41 39.0 %
Date: 2023-07-19 18:55:55 Functions: 0 1 0.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_PGTABLE_H
       3             : #define _LINUX_PGTABLE_H
       4             : 
       5             : #include <linux/pfn.h>
       6             : #include <asm/pgtable.h>
       7             : 
       8             : #ifndef __ASSEMBLY__
       9             : #ifdef CONFIG_MMU
      10             : 
      11             : #include <linux/mm_types.h>
      12             : #include <linux/bug.h>
      13             : #include <linux/errno.h>
      14             : #include <asm-generic/pgtable_uffd.h>
      15             : #include <linux/page_table_check.h>
      16             : 
      17             : #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
      18             :         defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
      19             : #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
      20             : #endif
      21             : 
      22             : /*
      23             :  * On almost all architectures and configurations, 0 can be used as the
      24             :  * upper ceiling to free_pgtables(): on many architectures it has the same
      25             :  * effect as using TASK_SIZE.  However, there is one configuration which
      26             :  * must impose a more careful limit, to avoid freeing kernel pgtables.
      27             :  */
      28             : #ifndef USER_PGTABLES_CEILING
      29             : #define USER_PGTABLES_CEILING   0UL
      30             : #endif
      31             : 
      32             : /*
      33             :  * This defines the first usable user address. Platforms
      34             :  * can override its value with custom FIRST_USER_ADDRESS
      35             :  * defined in their respective <asm/pgtable.h>.
      36             :  */
      37             : #ifndef FIRST_USER_ADDRESS
      38             : #define FIRST_USER_ADDRESS      0UL
      39             : #endif
      40             : 
      41             : /*
      42             :  * This defines the generic helper for accessing PMD page
      43             :  * table page. Although platforms can still override this
      44             :  * via their respective <asm/pgtable.h>.
      45             :  */
      46             : #ifndef pmd_pgtable
      47             : #define pmd_pgtable(pmd) pmd_page(pmd)
      48             : #endif
      49             : 
      50             : /*
      51             :  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
      52             :  *
      53             :  * The pXx_index() functions return the index of the entry in the page
      54             :  * table page which would control the given virtual address
      55             :  *
      56             :  * As these functions may be used by the same code for different levels of
      57             :  * the page table folding, they are always available, regardless of
      58             :  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
      59             :  * because in such cases PTRS_PER_PxD equals 1.
      60             :  */
      61             : 
      62             : static inline unsigned long pte_index(unsigned long address)
      63             : {
      64      127962 :         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
      65             : }
      66             : #define pte_index pte_index
      67             : 
      68             : #ifndef pmd_index
      69             : static inline unsigned long pmd_index(unsigned long address)
      70             : {
      71      127807 :         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
      72             : }
      73             : #define pmd_index pmd_index
      74             : #endif
      75             : 
      76             : #ifndef pud_index
      77             : static inline unsigned long pud_index(unsigned long address)
      78             : {
      79             :         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
      80             : }
      81             : #define pud_index pud_index
      82             : #endif
      83             : 
      84             : #ifndef pgd_index
      85             : /* Must be a compile-time constant, so implement it as a macro */
      86             : #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
      87             : #endif
      88             : 
      89             : #ifndef pte_offset_kernel
      90             : static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
      91             : {
      92      383887 :         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
      93             : }
      94             : #define pte_offset_kernel pte_offset_kernel
      95             : #endif
      96             : 
      97             : #if defined(CONFIG_HIGHPTE)
      98             : #define pte_offset_map(dir, address)                            \
      99             :         ((pte_t *)kmap_atomic(pmd_page(*(dir))) +               \
     100             :          pte_index((address)))
     101             : #define pte_unmap(pte) kunmap_atomic((pte))
     102             : #else
     103             : #define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
     104             : #define pte_unmap(pte) ((void)(pte))    /* NOP */
     105             : #endif
     106             : 
     107             : /* Find an entry in the second-level page table.. */
     108             : #ifndef pmd_offset
     109             : static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
     110             : {
     111      383420 :         return pud_pgtable(*pud) + pmd_index(address);
     112             : }
     113             : #define pmd_offset pmd_offset
     114             : #endif
     115             : 
     116             : #ifndef pud_offset
     117             : static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
     118             : {
     119             :         return p4d_pgtable(*p4d) + pud_index(address);
     120             : }
     121             : #define pud_offset pud_offset
     122             : #endif
     123             : 
     124             : static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
     125             : {
     126      127805 :         return (pgd + pgd_index(address));
     127             : };
     128             : 
     129             : /*
     130             :  * a shortcut to get a pgd_t in a given mm
     131             :  */
     132             : #ifndef pgd_offset
     133             : #define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
     134             : #endif
     135             : 
     136             : /*
     137             :  * a shortcut which implies the use of the kernel's pgd, instead
     138             :  * of a process's
     139             :  */
     140             : #ifndef pgd_offset_k
     141             : #define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
     142             : #endif
     143             : 
     144             : /*
     145             :  * In many cases it is known that a virtual address is mapped at PMD or PTE
     146             :  * level, so instead of traversing all the page table levels, we can get a
     147             :  * pointer to the PMD entry in user or kernel page table or translate a virtual
     148             :  * address to the pointer in the PTE in the kernel page tables with simple
     149             :  * helpers.
     150             :  */
     151             : static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
     152             : {
     153           0 :         return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
     154             : }
     155             : 
     156             : static inline pmd_t *pmd_off_k(unsigned long va)
     157             : {
     158             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
     159             : }
     160             : 
     161             : static inline pte_t *virt_to_kpte(unsigned long vaddr)
     162             : {
     163             :         pmd_t *pmd = pmd_off_k(vaddr);
     164             : 
     165             :         return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
     166             : }
     167             : 
     168             : #ifndef pmd_young
     169             : static inline int pmd_young(pmd_t pmd)
     170             : {
     171             :         return 0;
     172             : }
     173             : #endif
     174             : 
     175             : #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
     176             : extern int ptep_set_access_flags(struct vm_area_struct *vma,
     177             :                                  unsigned long address, pte_t *ptep,
     178             :                                  pte_t entry, int dirty);
     179             : #endif
     180             : 
     181             : #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
     182             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     183             : extern int pmdp_set_access_flags(struct vm_area_struct *vma,
     184             :                                  unsigned long address, pmd_t *pmdp,
     185             :                                  pmd_t entry, int dirty);
     186             : extern int pudp_set_access_flags(struct vm_area_struct *vma,
     187             :                                  unsigned long address, pud_t *pudp,
     188             :                                  pud_t entry, int dirty);
     189             : #else
     190             : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
     191             :                                         unsigned long address, pmd_t *pmdp,
     192             :                                         pmd_t entry, int dirty)
     193             : {
     194             :         BUILD_BUG();
     195             :         return 0;
     196             : }
     197             : static inline int pudp_set_access_flags(struct vm_area_struct *vma,
     198             :                                         unsigned long address, pud_t *pudp,
     199             :                                         pud_t entry, int dirty)
     200             : {
     201             :         BUILD_BUG();
     202             :         return 0;
     203             : }
     204             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     205             : #endif
     206             : 
     207             : #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
     208             : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
     209             :                                             unsigned long address,
     210             :                                             pte_t *ptep)
     211             : {
     212           0 :         pte_t pte = *ptep;
     213           0 :         int r = 1;
     214           0 :         if (!pte_young(pte))
     215             :                 r = 0;
     216             :         else
     217           0 :                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
     218             :         return r;
     219             : }
     220             : #endif
     221             : 
     222             : #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
     223             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
     224             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     225             :                                             unsigned long address,
     226             :                                             pmd_t *pmdp)
     227             : {
     228             :         pmd_t pmd = *pmdp;
     229             :         int r = 1;
     230             :         if (!pmd_young(pmd))
     231             :                 r = 0;
     232             :         else
     233             :                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
     234             :         return r;
     235             : }
     236             : #else
     237             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     238             :                                             unsigned long address,
     239             :                                             pmd_t *pmdp)
     240             : {
     241             :         BUILD_BUG();
     242             :         return 0;
     243             : }
     244             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
     245             : #endif
     246             : 
     247             : #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
     248             : int ptep_clear_flush_young(struct vm_area_struct *vma,
     249             :                            unsigned long address, pte_t *ptep);
     250             : #endif
     251             : 
     252             : #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
     253             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     254             : extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
     255             :                                   unsigned long address, pmd_t *pmdp);
     256             : #else
     257             : /*
     258             :  * Despite relevant to THP only, this API is called from generic rmap code
     259             :  * under PageTransHuge(), hence needs a dummy implementation for !THP
     260             :  */
     261             : static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
     262             :                                          unsigned long address, pmd_t *pmdp)
     263             : {
     264             :         BUILD_BUG();
     265             :         return 0;
     266             : }
     267             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     268             : #endif
     269             : 
     270             : #ifndef arch_has_hw_nonleaf_pmd_young
     271             : /*
     272             :  * Return whether the accessed bit in non-leaf PMD entries is supported on the
     273             :  * local CPU.
     274             :  */
     275             : static inline bool arch_has_hw_nonleaf_pmd_young(void)
     276             : {
     277             :         return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
     278             : }
     279             : #endif
     280             : 
     281             : #ifndef arch_has_hw_pte_young
     282             : /*
     283             :  * Return whether the accessed bit is supported on the local CPU.
     284             :  *
     285             :  * This stub assumes accessing through an old PTE triggers a page fault.
     286             :  * Architectures that automatically set the access bit should overwrite it.
     287             :  */
     288             : static inline bool arch_has_hw_pte_young(void)
     289             : {
     290             :         return false;
     291             : }
     292             : #endif
     293             : 
     294             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
     295             : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
     296             :                                        unsigned long address,
     297             :                                        pte_t *ptep)
     298             : {
     299       42734 :         pte_t pte = *ptep;
     300       42734 :         pte_clear(mm, address, ptep);
     301       42734 :         page_table_check_pte_clear(mm, address, pte);
     302             :         return pte;
     303             : }
     304             : #endif
     305             : 
     306             : static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
     307             :                               pte_t *ptep)
     308             : {
     309             :         ptep_get_and_clear(mm, addr, ptep);
     310             : }
     311             : 
     312             : #ifndef ptep_get
     313             : static inline pte_t ptep_get(pte_t *ptep)
     314             : {
     315             :         return READ_ONCE(*ptep);
     316             : }
     317             : #endif
     318             : 
     319             : #ifndef pmdp_get
     320             : static inline pmd_t pmdp_get(pmd_t *pmdp)
     321             : {
     322           0 :         return READ_ONCE(*pmdp);
     323             : }
     324             : #endif
     325             : 
     326             : #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
     327             : /*
     328             :  * For walking the pagetables without holding any locks.  Some architectures
     329             :  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
     330             :  * instructions.  We are guaranteed that a PTE will only either go from not
     331             :  * present to present, or present to not present -- it will not switch to a
     332             :  * completely different present page without a TLB flush inbetween; which we
     333             :  * are blocking by holding interrupts off.
     334             :  *
     335             :  * Setting ptes from not present to present goes:
     336             :  *
     337             :  *   ptep->pte_high = h;
     338             :  *   smp_wmb();
     339             :  *   ptep->pte_low = l;
     340             :  *
     341             :  * And present to not present goes:
     342             :  *
     343             :  *   ptep->pte_low = 0;
     344             :  *   smp_wmb();
     345             :  *   ptep->pte_high = 0;
     346             :  *
     347             :  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
     348             :  * We load pte_high *after* loading pte_low, which ensures we don't see an older
     349             :  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
     350             :  * picked up a changed pte high. We might have gotten rubbish values from
     351             :  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
     352             :  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
     353             :  * operates on present ptes we're safe.
     354             :  */
     355             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     356             : {
     357             :         pte_t pte;
     358             : 
     359             :         do {
     360             :                 pte.pte_low = ptep->pte_low;
     361             :                 smp_rmb();
     362             :                 pte.pte_high = ptep->pte_high;
     363             :                 smp_rmb();
     364             :         } while (unlikely(pte.pte_low != ptep->pte_low));
     365             : 
     366             :         return pte;
     367             : }
     368             : #define ptep_get_lockless ptep_get_lockless
     369             : 
     370             : #if CONFIG_PGTABLE_LEVELS > 2
     371             : static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
     372             : {
     373             :         pmd_t pmd;
     374             : 
     375             :         do {
     376             :                 pmd.pmd_low = pmdp->pmd_low;
     377             :                 smp_rmb();
     378             :                 pmd.pmd_high = pmdp->pmd_high;
     379             :                 smp_rmb();
     380             :         } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
     381             : 
     382             :         return pmd;
     383             : }
     384             : #define pmdp_get_lockless pmdp_get_lockless
     385             : #endif /* CONFIG_PGTABLE_LEVELS > 2 */
     386             : #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
     387             : 
     388             : /*
     389             :  * We require that the PTE can be read atomically.
     390             :  */
     391             : #ifndef ptep_get_lockless
     392             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     393             : {
     394             :         return ptep_get(ptep);
     395             : }
     396             : #endif
     397             : 
     398             : #ifndef pmdp_get_lockless
     399             : static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
     400             : {
     401           0 :         return pmdp_get(pmdp);
     402             : }
     403             : #endif
     404             : 
     405             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     406             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
     407             : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
     408             :                                             unsigned long address,
     409             :                                             pmd_t *pmdp)
     410             : {
     411             :         pmd_t pmd = *pmdp;
     412             : 
     413             :         pmd_clear(pmdp);
     414             :         page_table_check_pmd_clear(mm, address, pmd);
     415             : 
     416             :         return pmd;
     417             : }
     418             : #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
     419             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
     420             : static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
     421             :                                             unsigned long address,
     422             :                                             pud_t *pudp)
     423             : {
     424             :         pud_t pud = *pudp;
     425             : 
     426             :         pud_clear(pudp);
     427             :         page_table_check_pud_clear(mm, address, pud);
     428             : 
     429             :         return pud;
     430             : }
     431             : #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
     432             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     433             : 
     434             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     435             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
     436             : static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
     437             :                                             unsigned long address, pmd_t *pmdp,
     438             :                                             int full)
     439             : {
     440             :         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
     441             : }
     442             : #endif
     443             : 
     444             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
     445             : static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
     446             :                                             unsigned long address, pud_t *pudp,
     447             :                                             int full)
     448             : {
     449             :         return pudp_huge_get_and_clear(mm, address, pudp);
     450             : }
     451             : #endif
     452             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     453             : 
     454             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
     455             : static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
     456             :                                             unsigned long address, pte_t *ptep,
     457             :                                             int full)
     458             : {
     459           0 :         return ptep_get_and_clear(mm, address, ptep);
     460             : }
     461             : #endif
     462             : 
     463             : 
     464             : /*
     465             :  * If two threads concurrently fault at the same page, the thread that
     466             :  * won the race updates the PTE and its local TLB/Cache. The other thread
     467             :  * gives up, simply does nothing, and continues; on architectures where
     468             :  * software can update TLB,  local TLB can be updated here to avoid next page
     469             :  * fault. This function updates TLB only, do nothing with cache or others.
     470             :  * It is the difference with function update_mmu_cache.
     471             :  */
     472             : #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
     473             : static inline void update_mmu_tlb(struct vm_area_struct *vma,
     474             :                                 unsigned long address, pte_t *ptep)
     475             : {
     476             : }
     477             : #define __HAVE_ARCH_UPDATE_MMU_TLB
     478             : #endif
     479             : 
     480             : /*
     481             :  * Some architectures may be able to avoid expensive synchronization
     482             :  * primitives when modifications are made to PTE's which are already
     483             :  * not present, or in the process of an address space destruction.
     484             :  */
     485             : #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
     486             : static inline void pte_clear_not_present_full(struct mm_struct *mm,
     487             :                                               unsigned long address,
     488             :                                               pte_t *ptep,
     489             :                                               int full)
     490             : {
     491           0 :         pte_clear(mm, address, ptep);
     492             : }
     493             : #endif
     494             : 
     495             : #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
     496             : extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
     497             :                               unsigned long address,
     498             :                               pte_t *ptep);
     499             : #endif
     500             : 
     501             : #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
     502             : extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
     503             :                               unsigned long address,
     504             :                               pmd_t *pmdp);
     505             : extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
     506             :                               unsigned long address,
     507             :                               pud_t *pudp);
     508             : #endif
     509             : 
     510             : #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
     511             : struct mm_struct;
     512             : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
     513             : {
     514           0 :         pte_t old_pte = *ptep;
     515           0 :         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
     516             : }
     517             : #endif
     518             : 
     519             : /*
     520             :  * On some architectures hardware does not set page access bit when accessing
     521             :  * memory page, it is responsibility of software setting this bit. It brings
     522             :  * out extra page fault penalty to track page access bit. For optimization page
     523             :  * access bit can be set during all page fault flow on these arches.
     524             :  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
     525             :  * where software maintains page access bit.
     526             :  */
     527             : #ifndef pte_sw_mkyoung
     528             : static inline pte_t pte_sw_mkyoung(pte_t pte)
     529             : {
     530             :         return pte;
     531             : }
     532             : #define pte_sw_mkyoung  pte_sw_mkyoung
     533             : #endif
     534             : 
     535             : #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
     536             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     537             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     538             :                                       unsigned long address, pmd_t *pmdp)
     539             : {
     540             :         pmd_t old_pmd = *pmdp;
     541             :         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
     542             : }
     543             : #else
     544             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     545             :                                       unsigned long address, pmd_t *pmdp)
     546             : {
     547             :         BUILD_BUG();
     548             : }
     549             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     550             : #endif
     551             : #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
     552             : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
     553             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     554             :                                       unsigned long address, pud_t *pudp)
     555             : {
     556             :         pud_t old_pud = *pudp;
     557             : 
     558             :         set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
     559             : }
     560             : #else
     561             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     562             :                                       unsigned long address, pud_t *pudp)
     563             : {
     564             :         BUILD_BUG();
     565             : }
     566             : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
     567             : #endif
     568             : 
     569             : #ifndef pmdp_collapse_flush
     570             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     571             : extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     572             :                                  unsigned long address, pmd_t *pmdp);
     573             : #else
     574             : static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     575             :                                         unsigned long address,
     576             :                                         pmd_t *pmdp)
     577             : {
     578             :         BUILD_BUG();
     579             :         return *pmdp;
     580             : }
     581             : #define pmdp_collapse_flush pmdp_collapse_flush
     582             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     583             : #endif
     584             : 
     585             : #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
     586             : extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
     587             :                                        pgtable_t pgtable);
     588             : #endif
     589             : 
     590             : #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
     591             : extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
     592             : #endif
     593             : 
     594             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     595             : /*
     596             :  * This is an implementation of pmdp_establish() that is only suitable for an
     597             :  * architecture that doesn't have hardware dirty/accessed bits. In this case we
     598             :  * can't race with CPU which sets these bits and non-atomic approach is fine.
     599             :  */
     600             : static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
     601             :                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
     602             : {
     603             :         pmd_t old_pmd = *pmdp;
     604             :         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
     605             :         return old_pmd;
     606             : }
     607             : #endif
     608             : 
     609             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE
     610             : extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
     611             :                             pmd_t *pmdp);
     612             : #endif
     613             : 
     614             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
     615             : 
     616             : /*
     617             :  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
     618             :  * hugepage mapping in the page tables. This function is similar to
     619             :  * pmdp_invalidate(), but should only be used if the access and dirty bits would
     620             :  * not be cleared by the software in the new PMD value. The function ensures
     621             :  * that hardware changes of the access and dirty bits updates would not be lost.
     622             :  *
     623             :  * Doing so can allow in certain architectures to avoid a TLB flush in most
     624             :  * cases. Yet, another TLB flush might be necessary later if the PMD update
     625             :  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
     626             :  * even when a TLB flush is needed because of the update, the caller may be able
     627             :  * to batch these TLB flushing operations, so fewer TLB flush operations are
     628             :  * needed.
     629             :  */
     630             : extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
     631             :                                 unsigned long address, pmd_t *pmdp);
     632             : #endif
     633             : 
     634             : #ifndef __HAVE_ARCH_PTE_SAME
     635             : static inline int pte_same(pte_t pte_a, pte_t pte_b)
     636             : {
     637             :         return pte_val(pte_a) == pte_val(pte_b);
     638             : }
     639             : #endif
     640             : 
     641             : #ifndef __HAVE_ARCH_PTE_UNUSED
     642             : /*
     643             :  * Some architectures provide facilities to virtualization guests
     644             :  * so that they can flag allocated pages as unused. This allows the
     645             :  * host to transparently reclaim unused pages. This function returns
     646             :  * whether the pte's page is unused.
     647             :  */
     648             : static inline int pte_unused(pte_t pte)
     649             : {
     650             :         return 0;
     651             : }
     652             : #endif
     653             : 
     654             : #ifndef pte_access_permitted
     655             : #define pte_access_permitted(pte, write) \
     656             :         (pte_present(pte) && (!(write) || pte_write(pte)))
     657             : #endif
     658             : 
     659             : #ifndef pmd_access_permitted
     660             : #define pmd_access_permitted(pmd, write) \
     661             :         (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
     662             : #endif
     663             : 
     664             : #ifndef pud_access_permitted
     665             : #define pud_access_permitted(pud, write) \
     666             :         (pud_present(pud) && (!(write) || pud_write(pud)))
     667             : #endif
     668             : 
     669             : #ifndef p4d_access_permitted
     670             : #define p4d_access_permitted(p4d, write) \
     671             :         (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
     672             : #endif
     673             : 
     674             : #ifndef pgd_access_permitted
     675             : #define pgd_access_permitted(pgd, write) \
     676             :         (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
     677             : #endif
     678             : 
     679             : #ifndef __HAVE_ARCH_PMD_SAME
     680             : static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
     681             : {
     682             :         return pmd_val(pmd_a) == pmd_val(pmd_b);
     683             : }
     684             : 
     685             : static inline int pud_same(pud_t pud_a, pud_t pud_b)
     686             : {
     687             :         return pud_val(pud_a) == pud_val(pud_b);
     688             : }
     689             : #endif
     690             : 
     691             : #ifndef __HAVE_ARCH_P4D_SAME
     692             : static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
     693             : {
     694             :         return p4d_val(p4d_a) == p4d_val(p4d_b);
     695             : }
     696             : #endif
     697             : 
     698             : #ifndef __HAVE_ARCH_PGD_SAME
     699             : static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
     700             : {
     701             :         return pgd_val(pgd_a) == pgd_val(pgd_b);
     702             : }
     703             : #endif
     704             : 
     705             : /*
     706             :  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
     707             :  * TLB flush will be required as a result of the "set". For example, use
     708             :  * in scenarios where it is known ahead of time that the routine is
     709             :  * setting non-present entries, or re-setting an existing entry to the
     710             :  * same value. Otherwise, use the typical "set" helpers and flush the
     711             :  * TLB.
     712             :  */
     713             : #define set_pte_safe(ptep, pte) \
     714             : ({ \
     715             :         WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
     716             :         set_pte(ptep, pte); \
     717             : })
     718             : 
     719             : #define set_pmd_safe(pmdp, pmd) \
     720             : ({ \
     721             :         WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
     722             :         set_pmd(pmdp, pmd); \
     723             : })
     724             : 
     725             : #define set_pud_safe(pudp, pud) \
     726             : ({ \
     727             :         WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
     728             :         set_pud(pudp, pud); \
     729             : })
     730             : 
     731             : #define set_p4d_safe(p4dp, p4d) \
     732             : ({ \
     733             :         WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
     734             :         set_p4d(p4dp, p4d); \
     735             : })
     736             : 
     737             : #define set_pgd_safe(pgdp, pgd) \
     738             : ({ \
     739             :         WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
     740             :         set_pgd(pgdp, pgd); \
     741             : })
     742             : 
     743             : #ifndef __HAVE_ARCH_DO_SWAP_PAGE
     744             : /*
     745             :  * Some architectures support metadata associated with a page. When a
     746             :  * page is being swapped out, this metadata must be saved so it can be
     747             :  * restored when the page is swapped back in. SPARC M7 and newer
     748             :  * processors support an ADI (Application Data Integrity) tag for the
     749             :  * page as metadata for the page. arch_do_swap_page() can restore this
     750             :  * metadata when a page is swapped back in.
     751             :  */
     752             : static inline void arch_do_swap_page(struct mm_struct *mm,
     753             :                                      struct vm_area_struct *vma,
     754             :                                      unsigned long addr,
     755             :                                      pte_t pte, pte_t oldpte)
     756             : {
     757             : 
     758             : }
     759             : #endif
     760             : 
     761             : #ifndef __HAVE_ARCH_UNMAP_ONE
     762             : /*
     763             :  * Some architectures support metadata associated with a page. When a
     764             :  * page is being swapped out, this metadata must be saved so it can be
     765             :  * restored when the page is swapped back in. SPARC M7 and newer
     766             :  * processors support an ADI (Application Data Integrity) tag for the
     767             :  * page as metadata for the page. arch_unmap_one() can save this
     768             :  * metadata on a swap-out of a page.
     769             :  */
     770             : static inline int arch_unmap_one(struct mm_struct *mm,
     771             :                                   struct vm_area_struct *vma,
     772             :                                   unsigned long addr,
     773             :                                   pte_t orig_pte)
     774             : {
     775             :         return 0;
     776             : }
     777             : #endif
     778             : 
     779             : /*
     780             :  * Allow architectures to preserve additional metadata associated with
     781             :  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
     782             :  * prototypes must be defined in the arch-specific asm/pgtable.h file.
     783             :  */
     784             : #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
     785             : static inline int arch_prepare_to_swap(struct page *page)
     786             : {
     787             :         return 0;
     788             : }
     789             : #endif
     790             : 
     791             : #ifndef __HAVE_ARCH_SWAP_INVALIDATE
     792             : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
     793             : {
     794             : }
     795             : 
     796             : static inline void arch_swap_invalidate_area(int type)
     797             : {
     798             : }
     799             : #endif
     800             : 
     801             : #ifndef __HAVE_ARCH_SWAP_RESTORE
     802             : static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
     803             : {
     804             : }
     805             : #endif
     806             : 
     807             : #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
     808             : #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
     809             : #endif
     810             : 
     811             : #ifndef __HAVE_ARCH_MOVE_PTE
     812             : #define move_pte(pte, prot, old_addr, new_addr) (pte)
     813             : #endif
     814             : 
     815             : #ifndef pte_accessible
     816             : # define pte_accessible(mm, pte)        ((void)(pte), 1)
     817             : #endif
     818             : 
     819             : #ifndef flush_tlb_fix_spurious_fault
     820             : #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
     821             : #endif
     822             : 
     823             : /*
     824             :  * When walking page tables, get the address of the next boundary,
     825             :  * or the end address of the range if that comes earlier.  Although no
     826             :  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
     827             :  */
     828             : 
     829             : #define pgd_addr_end(addr, end)                                         \
     830             : ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;      \
     831             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     832             : })
     833             : 
     834             : #ifndef p4d_addr_end
     835             : #define p4d_addr_end(addr, end)                                         \
     836             : ({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;  \
     837             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     838             : })
     839             : #endif
     840             : 
     841             : #ifndef pud_addr_end
     842             : #define pud_addr_end(addr, end)                                         \
     843             : ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;  \
     844             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     845             : })
     846             : #endif
     847             : 
     848             : #ifndef pmd_addr_end
     849             : #define pmd_addr_end(addr, end)                                         \
     850             : ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;  \
     851             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     852             : })
     853             : #endif
     854             : 
     855             : /*
     856             :  * When walking page tables, we usually want to skip any p?d_none entries;
     857             :  * and any p?d_bad entries - reporting the error before resetting to none.
     858             :  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
     859             :  */
     860             : void pgd_clear_bad(pgd_t *);
     861             : 
     862             : #ifndef __PAGETABLE_P4D_FOLDED
     863             : void p4d_clear_bad(p4d_t *);
     864             : #else
     865             : #define p4d_clear_bad(p4d)        do { } while (0)
     866             : #endif
     867             : 
     868             : #ifndef __PAGETABLE_PUD_FOLDED
     869             : void pud_clear_bad(pud_t *);
     870             : #else
     871             : #define pud_clear_bad(p4d)        do { } while (0)
     872             : #endif
     873             : 
     874             : void pmd_clear_bad(pmd_t *);
     875             : 
     876             : static inline int pgd_none_or_clear_bad(pgd_t *pgd)
     877             : {
     878         258 :         if (pgd_none(*pgd))
     879             :                 return 1;
     880         258 :         if (unlikely(pgd_bad(*pgd))) {
     881             :                 pgd_clear_bad(pgd);
     882             :                 return 1;
     883             :         }
     884             :         return 0;
     885             : }
     886             : 
     887             : static inline int p4d_none_or_clear_bad(p4d_t *p4d)
     888             : {
     889         258 :         if (p4d_none(*p4d))
     890             :                 return 1;
     891         258 :         if (unlikely(p4d_bad(*p4d))) {
     892             :                 p4d_clear_bad(p4d);
     893             :                 return 1;
     894             :         }
     895             :         return 0;
     896             : }
     897             : 
     898             : static inline int pud_none_or_clear_bad(pud_t *pud)
     899             : {
     900         258 :         if (pud_none(*pud))
     901             :                 return 1;
     902         258 :         if (unlikely(pud_bad(*pud))) {
     903             :                 pud_clear_bad(pud);
     904             :                 return 1;
     905             :         }
     906             :         return 0;
     907             : }
     908             : 
     909             : static inline int pmd_none_or_clear_bad(pmd_t *pmd)
     910             : {
     911         338 :         if (pmd_none(*pmd))
     912             :                 return 1;
     913         337 :         if (unlikely(pmd_bad(*pmd))) {
     914           0 :                 pmd_clear_bad(pmd);
     915             :                 return 1;
     916             :         }
     917             :         return 0;
     918             : }
     919             : 
     920             : static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
     921             :                                              unsigned long addr,
     922             :                                              pte_t *ptep)
     923             : {
     924             :         /*
     925             :          * Get the current pte state, but zero it out to make it
     926             :          * non-present, preventing the hardware from asynchronously
     927             :          * updating it.
     928             :          */
     929           0 :         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
     930             : }
     931             : 
     932             : static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
     933             :                                              unsigned long addr,
     934             :                                              pte_t *ptep, pte_t pte)
     935             : {
     936             :         /*
     937             :          * The pte is non-present, so there's no hardware state to
     938             :          * preserve.
     939             :          */
     940           0 :         set_pte_at(vma->vm_mm, addr, ptep, pte);
     941             : }
     942             : 
     943             : #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
     944             : /*
     945             :  * Start a pte protection read-modify-write transaction, which
     946             :  * protects against asynchronous hardware modifications to the pte.
     947             :  * The intention is not to prevent the hardware from making pte
     948             :  * updates, but to prevent any updates it may make from being lost.
     949             :  *
     950             :  * This does not protect against other software modifications of the
     951             :  * pte; the appropriate pte lock must be held over the transaction.
     952             :  *
     953             :  * Note that this interface is intended to be batchable, meaning that
     954             :  * ptep_modify_prot_commit may not actually update the pte, but merely
     955             :  * queue the update to be done at some later time.  The update must be
     956             :  * actually committed before the pte lock is released, however.
     957             :  */
     958             : static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
     959             :                                            unsigned long addr,
     960             :                                            pte_t *ptep)
     961             : {
     962           0 :         return __ptep_modify_prot_start(vma, addr, ptep);
     963             : }
     964             : 
     965             : /*
     966             :  * Commit an update to a pte, leaving any hardware-controlled bits in
     967             :  * the PTE unmodified.
     968             :  */
     969             : static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
     970             :                                            unsigned long addr,
     971             :                                            pte_t *ptep, pte_t old_pte, pte_t pte)
     972             : {
     973           0 :         __ptep_modify_prot_commit(vma, addr, ptep, pte);
     974             : }
     975             : #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
     976             : #endif /* CONFIG_MMU */
     977             : 
     978             : /*
     979             :  * No-op macros that just return the current protection value. Defined here
     980             :  * because these macros can be used even if CONFIG_MMU is not defined.
     981             :  */
     982             : 
     983             : #ifndef pgprot_nx
     984             : #define pgprot_nx(prot) (prot)
     985             : #endif
     986             : 
     987             : #ifndef pgprot_noncached
     988             : #define pgprot_noncached(prot)  (prot)
     989             : #endif
     990             : 
     991             : #ifndef pgprot_writecombine
     992             : #define pgprot_writecombine pgprot_noncached
     993             : #endif
     994             : 
     995             : #ifndef pgprot_writethrough
     996             : #define pgprot_writethrough pgprot_noncached
     997             : #endif
     998             : 
     999             : #ifndef pgprot_device
    1000             : #define pgprot_device pgprot_noncached
    1001             : #endif
    1002             : 
    1003             : #ifndef pgprot_mhp
    1004             : #define pgprot_mhp(prot)        (prot)
    1005             : #endif
    1006             : 
    1007             : #ifdef CONFIG_MMU
    1008             : #ifndef pgprot_modify
    1009             : #define pgprot_modify pgprot_modify
    1010             : static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
    1011             : {
    1012             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
    1013             :                 newprot = pgprot_noncached(newprot);
    1014             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
    1015             :                 newprot = pgprot_writecombine(newprot);
    1016             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
    1017             :                 newprot = pgprot_device(newprot);
    1018             :         return newprot;
    1019             : }
    1020             : #endif
    1021             : #endif /* CONFIG_MMU */
    1022             : 
    1023             : #ifndef pgprot_encrypted
    1024             : #define pgprot_encrypted(prot)  (prot)
    1025             : #endif
    1026             : 
    1027             : #ifndef pgprot_decrypted
    1028             : #define pgprot_decrypted(prot)  (prot)
    1029             : #endif
    1030             : 
    1031             : /*
    1032             :  * A facility to provide lazy MMU batching.  This allows PTE updates and
    1033             :  * page invalidations to be delayed until a call to leave lazy MMU mode
    1034             :  * is issued.  Some architectures may benefit from doing this, and it is
    1035             :  * beneficial for both shadow and direct mode hypervisors, which may batch
    1036             :  * the PTE updates which happen during this window.  Note that using this
    1037             :  * interface requires that read hazards be removed from the code.  A read
    1038             :  * hazard could result in the direct mode hypervisor case, since the actual
    1039             :  * write to the page tables may not yet have taken place, so reads though
    1040             :  * a raw PTE pointer after it has been modified are not guaranteed to be
    1041             :  * up to date.  This mode can only be entered and left under the protection of
    1042             :  * the page table locks for all page tables which may be modified.  In the UP
    1043             :  * case, this is required so that preemption is disabled, and in the SMP case,
    1044             :  * it must synchronize the delayed page table writes properly on other CPUs.
    1045             :  */
    1046             : #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
    1047             : #define arch_enter_lazy_mmu_mode()      do {} while (0)
    1048             : #define arch_leave_lazy_mmu_mode()      do {} while (0)
    1049             : #define arch_flush_lazy_mmu_mode()      do {} while (0)
    1050             : #endif
    1051             : 
    1052             : /*
    1053             :  * A facility to provide batching of the reload of page tables and
    1054             :  * other process state with the actual context switch code for
    1055             :  * paravirtualized guests.  By convention, only one of the batched
    1056             :  * update (lazy) modes (CPU, MMU) should be active at any given time,
    1057             :  * entry should never be nested, and entry and exits should always be
    1058             :  * paired.  This is for sanity of maintaining and reasoning about the
    1059             :  * kernel code.  In this case, the exit (end of the context switch) is
    1060             :  * in architecture-specific code, and so doesn't need a generic
    1061             :  * definition.
    1062             :  */
    1063             : #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
    1064             : #define arch_start_context_switch(prev) do {} while (0)
    1065             : #endif
    1066             : 
    1067             : #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
    1068             : #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
    1069             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1070             : {
    1071             :         return pmd;
    1072             : }
    1073             : 
    1074             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1075             : {
    1076             :         return 0;
    1077             : }
    1078             : 
    1079             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1080             : {
    1081             :         return pmd;
    1082             : }
    1083             : #endif
    1084             : #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
    1085             : static inline int pte_soft_dirty(pte_t pte)
    1086             : {
    1087             :         return 0;
    1088             : }
    1089             : 
    1090             : static inline int pmd_soft_dirty(pmd_t pmd)
    1091             : {
    1092             :         return 0;
    1093             : }
    1094             : 
    1095             : static inline pte_t pte_mksoft_dirty(pte_t pte)
    1096             : {
    1097             :         return pte;
    1098             : }
    1099             : 
    1100             : static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
    1101             : {
    1102             :         return pmd;
    1103             : }
    1104             : 
    1105             : static inline pte_t pte_clear_soft_dirty(pte_t pte)
    1106             : {
    1107             :         return pte;
    1108             : }
    1109             : 
    1110             : static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
    1111             : {
    1112             :         return pmd;
    1113             : }
    1114             : 
    1115             : static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
    1116             : {
    1117             :         return pte;
    1118             : }
    1119             : 
    1120             : static inline int pte_swp_soft_dirty(pte_t pte)
    1121             : {
    1122             :         return 0;
    1123             : }
    1124             : 
    1125             : static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
    1126             : {
    1127             :         return pte;
    1128             : }
    1129             : 
    1130             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1131             : {
    1132             :         return pmd;
    1133             : }
    1134             : 
    1135             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1136             : {
    1137             :         return 0;
    1138             : }
    1139             : 
    1140             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1141             : {
    1142             :         return pmd;
    1143             : }
    1144             : #endif
    1145             : 
    1146             : #ifndef __HAVE_PFNMAP_TRACKING
    1147             : /*
    1148             :  * Interfaces that can be used by architecture code to keep track of
    1149             :  * memory type of pfn mappings specified by the remap_pfn_range,
    1150             :  * vmf_insert_pfn.
    1151             :  */
    1152             : 
    1153             : /*
    1154             :  * track_pfn_remap is called when a _new_ pfn mapping is being established
    1155             :  * by remap_pfn_range() for physical range indicated by pfn and size.
    1156             :  */
    1157             : static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1158             :                                   unsigned long pfn, unsigned long addr,
    1159             :                                   unsigned long size)
    1160             : {
    1161             :         return 0;
    1162             : }
    1163             : 
    1164             : /*
    1165             :  * track_pfn_insert is called when a _new_ single pfn is established
    1166             :  * by vmf_insert_pfn().
    1167             :  */
    1168             : static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1169             :                                     pfn_t pfn)
    1170             : {
    1171             : }
    1172             : 
    1173             : /*
    1174             :  * track_pfn_copy is called when vma that is covering the pfnmap gets
    1175             :  * copied through copy_page_range().
    1176             :  */
    1177             : static inline int track_pfn_copy(struct vm_area_struct *vma)
    1178             : {
    1179             :         return 0;
    1180             : }
    1181             : 
    1182             : /*
    1183             :  * untrack_pfn is called while unmapping a pfnmap for a region.
    1184             :  * untrack can be called for a specific region indicated by pfn and size or
    1185             :  * can be for the entire vma (in which case pfn, size are zero).
    1186             :  */
    1187             : static inline void untrack_pfn(struct vm_area_struct *vma,
    1188             :                                unsigned long pfn, unsigned long size,
    1189             :                                bool mm_wr_locked)
    1190             : {
    1191             : }
    1192             : 
    1193             : /*
    1194             :  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
    1195             :  * or fails to copy pgtable during duplicate vm area.
    1196             :  */
    1197             : static inline void untrack_pfn_clear(struct vm_area_struct *vma)
    1198             : {
    1199             : }
    1200             : #else
    1201             : extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1202             :                            unsigned long pfn, unsigned long addr,
    1203             :                            unsigned long size);
    1204             : extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1205             :                              pfn_t pfn);
    1206             : extern int track_pfn_copy(struct vm_area_struct *vma);
    1207             : extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
    1208             :                         unsigned long size, bool mm_wr_locked);
    1209             : extern void untrack_pfn_clear(struct vm_area_struct *vma);
    1210             : #endif
    1211             : 
    1212             : #ifdef CONFIG_MMU
    1213             : #ifdef __HAVE_COLOR_ZERO_PAGE
    1214             : static inline int is_zero_pfn(unsigned long pfn)
    1215             : {
    1216             :         extern unsigned long zero_pfn;
    1217             :         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
    1218             :         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
    1219             : }
    1220             : 
    1221             : #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
    1222             : 
    1223             : #else
    1224             : static inline int is_zero_pfn(unsigned long pfn)
    1225             : {
    1226             :         extern unsigned long zero_pfn;
    1227           0 :         return pfn == zero_pfn;
    1228             : }
    1229             : 
    1230             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1231             : {
    1232             :         extern unsigned long zero_pfn;
    1233           0 :         return zero_pfn;
    1234             : }
    1235             : #endif
    1236             : #else
    1237             : static inline int is_zero_pfn(unsigned long pfn)
    1238             : {
    1239             :         return 0;
    1240             : }
    1241             : 
    1242             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1243             : {
    1244             :         return 0;
    1245             : }
    1246             : #endif /* CONFIG_MMU */
    1247             : 
    1248             : #ifdef CONFIG_MMU
    1249             : 
    1250             : #ifndef CONFIG_TRANSPARENT_HUGEPAGE
    1251             : static inline int pmd_trans_huge(pmd_t pmd)
    1252             : {
    1253             :         return 0;
    1254             : }
    1255             : #ifndef pmd_write
    1256             : static inline int pmd_write(pmd_t pmd)
    1257             : {
    1258             :         BUG();
    1259             :         return 0;
    1260             : }
    1261             : #endif /* pmd_write */
    1262             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    1263             : 
    1264             : #ifndef pud_write
    1265             : static inline int pud_write(pud_t pud)
    1266             : {
    1267             :         BUG();
    1268             :         return 0;
    1269             : }
    1270             : #endif /* pud_write */
    1271             : 
    1272             : #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
    1273             : static inline int pmd_devmap(pmd_t pmd)
    1274             : {
    1275             :         return 0;
    1276             : }
    1277             : static inline int pud_devmap(pud_t pud)
    1278             : {
    1279             :         return 0;
    1280             : }
    1281             : static inline int pgd_devmap(pgd_t pgd)
    1282             : {
    1283             :         return 0;
    1284             : }
    1285             : #endif
    1286             : 
    1287             : #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
    1288             :         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1289             : static inline int pud_trans_huge(pud_t pud)
    1290             : {
    1291             :         return 0;
    1292             : }
    1293             : #endif
    1294             : 
    1295             : /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
    1296             : static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
    1297             : {
    1298             :         pud_t pudval = READ_ONCE(*pud);
    1299             : 
    1300             :         if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
    1301             :                 return 1;
    1302             :         if (unlikely(pud_bad(pudval))) {
    1303             :                 pud_clear_bad(pud);
    1304             :                 return 1;
    1305             :         }
    1306             :         return 0;
    1307             : }
    1308             : 
    1309             : /* See pmd_trans_unstable for discussion. */
    1310             : static inline int pud_trans_unstable(pud_t *pud)
    1311             : {
    1312             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    1313             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1314             :         return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
    1315             : #else
    1316             :         return 0;
    1317             : #endif
    1318             : }
    1319             : 
    1320             : #ifndef arch_needs_pgtable_deposit
    1321             : #define arch_needs_pgtable_deposit() (false)
    1322             : #endif
    1323             : /*
    1324             :  * This function is meant to be used by sites walking pagetables with
    1325             :  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
    1326             :  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
    1327             :  * into a null pmd and the transhuge page fault can convert a null pmd
    1328             :  * into an hugepmd or into a regular pmd (if the hugepage allocation
    1329             :  * fails). While holding the mmap_lock in read mode the pmd becomes
    1330             :  * stable and stops changing under us only if it's not null and not a
    1331             :  * transhuge pmd. When those races occurs and this function makes a
    1332             :  * difference vs the standard pmd_none_or_clear_bad, the result is
    1333             :  * undefined so behaving like if the pmd was none is safe (because it
    1334             :  * can return none anyway). The compiler level barrier() is critically
    1335             :  * important to compute the two checks atomically on the same pmdval.
    1336             :  *
    1337             :  * For 32bit kernels with a 64bit large pmd_t this automatically takes
    1338             :  * care of reading the pmd atomically to avoid SMP race conditions
    1339             :  * against pmd_populate() when the mmap_lock is hold for reading by the
    1340             :  * caller (a special atomic read not done by "gcc" as in the generic
    1341             :  * version above, is also needed when THP is disabled because the page
    1342             :  * fault can populate the pmd from under us).
    1343             :  */
    1344           0 : static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
    1345             : {
    1346           0 :         pmd_t pmdval = pmdp_get_lockless(pmd);
    1347             :         /*
    1348             :          * The barrier will stabilize the pmdval in a register or on
    1349             :          * the stack so that it will stop changing under the code.
    1350             :          *
    1351             :          * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
    1352             :          * pmdp_get_lockless is allowed to return a not atomic pmdval
    1353             :          * (for example pointing to an hugepage that has never been
    1354             :          * mapped in the pmd). The below checks will only care about
    1355             :          * the low part of the pmd with 32bit PAE x86 anyway, with the
    1356             :          * exception of pmd_none(). So the important thing is that if
    1357             :          * the low part of the pmd is found null, the high part will
    1358             :          * be also null or the pmd_none() check below would be
    1359             :          * confused.
    1360             :          */
    1361             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1362             :         barrier();
    1363             : #endif
    1364             :         /*
    1365             :          * !pmd_present() checks for pmd migration entries
    1366             :          *
    1367             :          * The complete check uses is_pmd_migration_entry() in linux/swapops.h
    1368             :          * But using that requires moving current function and pmd_trans_unstable()
    1369             :          * to linux/swapops.h to resolve dependency, which is too much code move.
    1370             :          *
    1371             :          * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
    1372             :          * because !pmd_present() pages can only be under migration not swapped
    1373             :          * out.
    1374             :          *
    1375             :          * pmd_none() is preserved for future condition checks on pmd migration
    1376             :          * entries and not confusing with this function name, although it is
    1377             :          * redundant with !pmd_present().
    1378             :          */
    1379           0 :         if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
    1380             :                 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
    1381             :                 return 1;
    1382           0 :         if (unlikely(pmd_bad(pmdval))) {
    1383           0 :                 pmd_clear_bad(pmd);
    1384           0 :                 return 1;
    1385             :         }
    1386             :         return 0;
    1387             : }
    1388             : 
    1389             : /*
    1390             :  * This is a noop if Transparent Hugepage Support is not built into
    1391             :  * the kernel. Otherwise it is equivalent to
    1392             :  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
    1393             :  * places that already verified the pmd is not none and they want to
    1394             :  * walk ptes while holding the mmap sem in read mode (write mode don't
    1395             :  * need this). If THP is not enabled, the pmd can't go away under the
    1396             :  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
    1397             :  * run a pmd_trans_unstable before walking the ptes after
    1398             :  * split_huge_pmd returns (because it may have run when the pmd become
    1399             :  * null, but then a page fault can map in a THP and not a regular page).
    1400             :  */
    1401             : static inline int pmd_trans_unstable(pmd_t *pmd)
    1402             : {
    1403             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1404             :         return pmd_none_or_trans_huge_or_clear_bad(pmd);
    1405             : #else
    1406             :         return 0;
    1407             : #endif
    1408             : }
    1409             : 
    1410             : /*
    1411             :  * the ordering of these checks is important for pmds with _page_devmap set.
    1412             :  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
    1413             :  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
    1414             :  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
    1415             :  */
    1416             : static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
    1417             : {
    1418           0 :         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
    1419             : }
    1420             : 
    1421             : #ifndef CONFIG_NUMA_BALANCING
    1422             : /*
    1423             :  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
    1424             :  * the only case the kernel cares is for NUMA balancing and is only ever set
    1425             :  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
    1426             :  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
    1427             :  * is the responsibility of the caller to distinguish between PROT_NONE
    1428             :  * protections and NUMA hinting fault protections.
    1429             :  */
    1430             : static inline int pte_protnone(pte_t pte)
    1431             : {
    1432             :         return 0;
    1433             : }
    1434             : 
    1435             : static inline int pmd_protnone(pmd_t pmd)
    1436             : {
    1437             :         return 0;
    1438             : }
    1439             : #endif /* CONFIG_NUMA_BALANCING */
    1440             : 
    1441             : #endif /* CONFIG_MMU */
    1442             : 
    1443             : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
    1444             : 
    1445             : #ifndef __PAGETABLE_P4D_FOLDED
    1446             : int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
    1447             : void p4d_clear_huge(p4d_t *p4d);
    1448             : #else
    1449             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1450             : {
    1451             :         return 0;
    1452             : }
    1453             : static inline void p4d_clear_huge(p4d_t *p4d) { }
    1454             : #endif /* !__PAGETABLE_P4D_FOLDED */
    1455             : 
    1456             : int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
    1457             : int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
    1458             : int pud_clear_huge(pud_t *pud);
    1459             : int pmd_clear_huge(pmd_t *pmd);
    1460             : int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
    1461             : int pud_free_pmd_page(pud_t *pud, unsigned long addr);
    1462             : int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
    1463             : #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
    1464             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1465             : {
    1466             :         return 0;
    1467             : }
    1468             : static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
    1469             : {
    1470             :         return 0;
    1471             : }
    1472             : static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
    1473             : {
    1474             :         return 0;
    1475             : }
    1476             : static inline void p4d_clear_huge(p4d_t *p4d) { }
    1477             : static inline int pud_clear_huge(pud_t *pud)
    1478             : {
    1479             :         return 0;
    1480             : }
    1481             : static inline int pmd_clear_huge(pmd_t *pmd)
    1482             : {
    1483             :         return 0;
    1484             : }
    1485             : static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
    1486             : {
    1487             :         return 0;
    1488             : }
    1489             : static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    1490             : {
    1491             :         return 0;
    1492             : }
    1493             : static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    1494             : {
    1495             :         return 0;
    1496             : }
    1497             : #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
    1498             : 
    1499             : #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
    1500             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1501             : /*
    1502             :  * ARCHes with special requirements for evicting THP backing TLB entries can
    1503             :  * implement this. Otherwise also, it can help optimize normal TLB flush in
    1504             :  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
    1505             :  * entire TLB if flush span is greater than a threshold, which will
    1506             :  * likely be true for a single huge page. Thus a single THP flush will
    1507             :  * invalidate the entire TLB which is not desirable.
    1508             :  * e.g. see arch/arc: flush_pmd_tlb_range
    1509             :  */
    1510             : #define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1511             : #define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1512             : #else
    1513             : #define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
    1514             : #define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
    1515             : #endif
    1516             : #endif
    1517             : 
    1518             : struct file;
    1519             : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
    1520             :                         unsigned long size, pgprot_t *vma_prot);
    1521             : 
    1522             : #ifndef CONFIG_X86_ESPFIX64
    1523             : static inline void init_espfix_bsp(void) { }
    1524             : #endif
    1525             : 
    1526             : extern void __init pgtable_cache_init(void);
    1527             : 
    1528             : #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
    1529             : static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
    1530             : {
    1531             :         return true;
    1532             : }
    1533             : 
    1534             : static inline bool arch_has_pfn_modify_check(void)
    1535             : {
    1536             :         return false;
    1537             : }
    1538             : #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
    1539             : 
    1540             : /*
    1541             :  * Architecture PAGE_KERNEL_* fallbacks
    1542             :  *
    1543             :  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
    1544             :  * because they really don't support them, or the port needs to be updated to
    1545             :  * reflect the required functionality. Below are a set of relatively safe
    1546             :  * fallbacks, as best effort, which we can count on in lieu of the architectures
    1547             :  * not defining them on their own yet.
    1548             :  */
    1549             : 
    1550             : #ifndef PAGE_KERNEL_RO
    1551             : # define PAGE_KERNEL_RO PAGE_KERNEL
    1552             : #endif
    1553             : 
    1554             : #ifndef PAGE_KERNEL_EXEC
    1555             : # define PAGE_KERNEL_EXEC PAGE_KERNEL
    1556             : #endif
    1557             : 
    1558             : /*
    1559             :  * Page Table Modification bits for pgtbl_mod_mask.
    1560             :  *
    1561             :  * These are used by the p?d_alloc_track*() set of functions an in the generic
    1562             :  * vmalloc/ioremap code to track at which page-table levels entries have been
    1563             :  * modified. Based on that the code can better decide when vmalloc and ioremap
    1564             :  * mapping changes need to be synchronized to other page-tables in the system.
    1565             :  */
    1566             : #define         __PGTBL_PGD_MODIFIED    0
    1567             : #define         __PGTBL_P4D_MODIFIED    1
    1568             : #define         __PGTBL_PUD_MODIFIED    2
    1569             : #define         __PGTBL_PMD_MODIFIED    3
    1570             : #define         __PGTBL_PTE_MODIFIED    4
    1571             : 
    1572             : #define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
    1573             : #define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
    1574             : #define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
    1575             : #define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
    1576             : #define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
    1577             : 
    1578             : /* Page-Table Modification Mask */
    1579             : typedef unsigned int pgtbl_mod_mask;
    1580             : 
    1581             : #endif /* !__ASSEMBLY__ */
    1582             : 
    1583             : #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
    1584             : #ifdef CONFIG_PHYS_ADDR_T_64BIT
    1585             : /*
    1586             :  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
    1587             :  * with physical address space extension, but falls back to
    1588             :  * BITS_PER_LONG otherwise.
    1589             :  */
    1590             : #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
    1591             : #else
    1592             : #define MAX_POSSIBLE_PHYSMEM_BITS 32
    1593             : #endif
    1594             : #endif
    1595             : 
    1596             : #ifndef has_transparent_hugepage
    1597             : #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
    1598             : #endif
    1599             : 
    1600             : /*
    1601             :  * On some architectures it depends on the mm if the p4d/pud or pmd
    1602             :  * layer of the page table hierarchy is folded or not.
    1603             :  */
    1604             : #ifndef mm_p4d_folded
    1605             : #define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
    1606             : #endif
    1607             : 
    1608             : #ifndef mm_pud_folded
    1609             : #define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
    1610             : #endif
    1611             : 
    1612             : #ifndef mm_pmd_folded
    1613             : #define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
    1614             : #endif
    1615             : 
    1616             : #ifndef p4d_offset_lockless
    1617             : #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
    1618             : #endif
    1619             : #ifndef pud_offset_lockless
    1620             : #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
    1621             : #endif
    1622             : #ifndef pmd_offset_lockless
    1623             : #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
    1624             : #endif
    1625             : 
    1626             : /*
    1627             :  * p?d_leaf() - true if this entry is a final mapping to a physical address.
    1628             :  * This differs from p?d_huge() by the fact that they are always available (if
    1629             :  * the architecture supports large pages at the appropriate level) even
    1630             :  * if CONFIG_HUGETLB_PAGE is not defined.
    1631             :  * Only meaningful when called on a valid entry.
    1632             :  */
    1633             : #ifndef pgd_leaf
    1634             : #define pgd_leaf(x)     0
    1635             : #endif
    1636             : #ifndef p4d_leaf
    1637             : #define p4d_leaf(x)     0
    1638             : #endif
    1639             : #ifndef pud_leaf
    1640             : #define pud_leaf(x)     0
    1641             : #endif
    1642             : #ifndef pmd_leaf
    1643             : #define pmd_leaf(x)     0
    1644             : #endif
    1645             : 
    1646             : #ifndef pgd_leaf_size
    1647             : #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
    1648             : #endif
    1649             : #ifndef p4d_leaf_size
    1650             : #define p4d_leaf_size(x) P4D_SIZE
    1651             : #endif
    1652             : #ifndef pud_leaf_size
    1653             : #define pud_leaf_size(x) PUD_SIZE
    1654             : #endif
    1655             : #ifndef pmd_leaf_size
    1656             : #define pmd_leaf_size(x) PMD_SIZE
    1657             : #endif
    1658             : #ifndef pte_leaf_size
    1659             : #define pte_leaf_size(x) PAGE_SIZE
    1660             : #endif
    1661             : 
    1662             : /*
    1663             :  * Some architectures have MMUs that are configurable or selectable at boot
    1664             :  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
    1665             :  * helps to have a static maximum value.
    1666             :  */
    1667             : 
    1668             : #ifndef MAX_PTRS_PER_PTE
    1669             : #define MAX_PTRS_PER_PTE PTRS_PER_PTE
    1670             : #endif
    1671             : 
    1672             : #ifndef MAX_PTRS_PER_PMD
    1673             : #define MAX_PTRS_PER_PMD PTRS_PER_PMD
    1674             : #endif
    1675             : 
    1676             : #ifndef MAX_PTRS_PER_PUD
    1677             : #define MAX_PTRS_PER_PUD PTRS_PER_PUD
    1678             : #endif
    1679             : 
    1680             : #ifndef MAX_PTRS_PER_P4D
    1681             : #define MAX_PTRS_PER_P4D PTRS_PER_P4D
    1682             : #endif
    1683             : 
    1684             : /* description of effects of mapping type and prot in current implementation.
    1685             :  * this is due to the limited x86 page protection hardware.  The expected
    1686             :  * behavior is in parens:
    1687             :  *
    1688             :  * map_type     prot
    1689             :  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
    1690             :  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
    1691             :  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
    1692             :  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
    1693             :  *
    1694             :  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
    1695             :  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
    1696             :  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
    1697             :  *
    1698             :  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
    1699             :  * MAP_PRIVATE (with Enhanced PAN supported):
    1700             :  *                                                              r: (no) no
    1701             :  *                                                              w: (no) no
    1702             :  *                                                              x: (yes) yes
    1703             :  */
    1704             : #define DECLARE_VM_GET_PAGE_PROT                                        \
    1705             : pgprot_t vm_get_page_prot(unsigned long vm_flags)                       \
    1706             : {                                                                       \
    1707             :                 return protection_map[vm_flags &                    \
    1708             :                         (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];    \
    1709             : }                                                                       \
    1710             : EXPORT_SYMBOL(vm_get_page_prot);
    1711             : 
    1712             : #endif /* _LINUX_PGTABLE_H */

Generated by: LCOV version 1.14