Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_SCHED_H
3 : #define _LINUX_SCHED_H
4 :
5 : /*
6 : * Define 'struct task_struct' and provide the main scheduler
7 : * APIs (schedule(), wakeup variants, etc.)
8 : */
9 :
10 : #include <uapi/linux/sched.h>
11 :
12 : #include <asm/current.h>
13 :
14 : #include <linux/pid.h>
15 : #include <linux/sem.h>
16 : #include <linux/shm.h>
17 : #include <linux/kmsan_types.h>
18 : #include <linux/mutex.h>
19 : #include <linux/plist.h>
20 : #include <linux/hrtimer.h>
21 : #include <linux/irqflags.h>
22 : #include <linux/seccomp.h>
23 : #include <linux/nodemask.h>
24 : #include <linux/rcupdate.h>
25 : #include <linux/refcount.h>
26 : #include <linux/resource.h>
27 : #include <linux/latencytop.h>
28 : #include <linux/sched/prio.h>
29 : #include <linux/sched/types.h>
30 : #include <linux/signal_types.h>
31 : #include <linux/syscall_user_dispatch.h>
32 : #include <linux/mm_types_task.h>
33 : #include <linux/task_io_accounting.h>
34 : #include <linux/posix-timers.h>
35 : #include <linux/rseq.h>
36 : #include <linux/seqlock.h>
37 : #include <linux/kcsan.h>
38 : #include <linux/rv.h>
39 : #include <linux/livepatch_sched.h>
40 : #include <asm/kmap_size.h>
41 :
42 : /* task_struct member predeclarations (sorted alphabetically): */
43 : struct audit_context;
44 : struct backing_dev_info;
45 : struct bio_list;
46 : struct blk_plug;
47 : struct bpf_local_storage;
48 : struct bpf_run_ctx;
49 : struct capture_control;
50 : struct cfs_rq;
51 : struct fs_struct;
52 : struct futex_pi_state;
53 : struct io_context;
54 : struct io_uring_task;
55 : struct mempolicy;
56 : struct nameidata;
57 : struct nsproxy;
58 : struct perf_event_context;
59 : struct pid_namespace;
60 : struct pipe_inode_info;
61 : struct rcu_node;
62 : struct reclaim_state;
63 : struct robust_list_head;
64 : struct root_domain;
65 : struct rq;
66 : struct sched_attr;
67 : struct sched_param;
68 : struct seq_file;
69 : struct sighand_struct;
70 : struct signal_struct;
71 : struct task_delay_info;
72 : struct task_group;
73 : struct user_event_mm;
74 :
75 : /*
76 : * Task state bitmask. NOTE! These bits are also
77 : * encoded in fs/proc/array.c: get_task_state().
78 : *
79 : * We have two separate sets of flags: task->state
80 : * is about runnability, while task->exit_state are
81 : * about the task exiting. Confusing, but this way
82 : * modifying one set can't modify the other one by
83 : * mistake.
84 : */
85 :
86 : /* Used in tsk->state: */
87 : #define TASK_RUNNING 0x00000000
88 : #define TASK_INTERRUPTIBLE 0x00000001
89 : #define TASK_UNINTERRUPTIBLE 0x00000002
90 : #define __TASK_STOPPED 0x00000004
91 : #define __TASK_TRACED 0x00000008
92 : /* Used in tsk->exit_state: */
93 : #define EXIT_DEAD 0x00000010
94 : #define EXIT_ZOMBIE 0x00000020
95 : #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96 : /* Used in tsk->state again: */
97 : #define TASK_PARKED 0x00000040
98 : #define TASK_DEAD 0x00000080
99 : #define TASK_WAKEKILL 0x00000100
100 : #define TASK_WAKING 0x00000200
101 : #define TASK_NOLOAD 0x00000400
102 : #define TASK_NEW 0x00000800
103 : #define TASK_RTLOCK_WAIT 0x00001000
104 : #define TASK_FREEZABLE 0x00002000
105 : #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
106 : #define TASK_FROZEN 0x00008000
107 : #define TASK_STATE_MAX 0x00010000
108 :
109 : #define TASK_ANY (TASK_STATE_MAX-1)
110 :
111 : /*
112 : * DO NOT ADD ANY NEW USERS !
113 : */
114 : #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
115 :
116 : /* Convenience macros for the sake of set_current_state: */
117 : #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
118 : #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
119 : #define TASK_TRACED __TASK_TRACED
120 :
121 : #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
122 :
123 : /* Convenience macros for the sake of wake_up(): */
124 : #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
125 :
126 : /* get_task_state(): */
127 : #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
128 : TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
129 : __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
130 : TASK_PARKED)
131 :
132 : #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
133 :
134 : #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
135 : #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
136 : #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
137 :
138 : /*
139 : * Special states are those that do not use the normal wait-loop pattern. See
140 : * the comment with set_special_state().
141 : */
142 : #define is_special_task_state(state) \
143 : ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
144 :
145 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
146 : # define debug_normal_state_change(state_value) \
147 : do { \
148 : WARN_ON_ONCE(is_special_task_state(state_value)); \
149 : current->task_state_change = _THIS_IP_; \
150 : } while (0)
151 :
152 : # define debug_special_state_change(state_value) \
153 : do { \
154 : WARN_ON_ONCE(!is_special_task_state(state_value)); \
155 : current->task_state_change = _THIS_IP_; \
156 : } while (0)
157 :
158 : # define debug_rtlock_wait_set_state() \
159 : do { \
160 : current->saved_state_change = current->task_state_change;\
161 : current->task_state_change = _THIS_IP_; \
162 : } while (0)
163 :
164 : # define debug_rtlock_wait_restore_state() \
165 : do { \
166 : current->task_state_change = current->saved_state_change;\
167 : } while (0)
168 :
169 : #else
170 : # define debug_normal_state_change(cond) do { } while (0)
171 : # define debug_special_state_change(cond) do { } while (0)
172 : # define debug_rtlock_wait_set_state() do { } while (0)
173 : # define debug_rtlock_wait_restore_state() do { } while (0)
174 : #endif
175 :
176 : /*
177 : * set_current_state() includes a barrier so that the write of current->state
178 : * is correctly serialised wrt the caller's subsequent test of whether to
179 : * actually sleep:
180 : *
181 : * for (;;) {
182 : * set_current_state(TASK_UNINTERRUPTIBLE);
183 : * if (CONDITION)
184 : * break;
185 : *
186 : * schedule();
187 : * }
188 : * __set_current_state(TASK_RUNNING);
189 : *
190 : * If the caller does not need such serialisation (because, for instance, the
191 : * CONDITION test and condition change and wakeup are under the same lock) then
192 : * use __set_current_state().
193 : *
194 : * The above is typically ordered against the wakeup, which does:
195 : *
196 : * CONDITION = 1;
197 : * wake_up_state(p, TASK_UNINTERRUPTIBLE);
198 : *
199 : * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
200 : * accessing p->state.
201 : *
202 : * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
203 : * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
204 : * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
205 : *
206 : * However, with slightly different timing the wakeup TASK_RUNNING store can
207 : * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
208 : * a problem either because that will result in one extra go around the loop
209 : * and our @cond test will save the day.
210 : *
211 : * Also see the comments of try_to_wake_up().
212 : */
213 : #define __set_current_state(state_value) \
214 : do { \
215 : debug_normal_state_change((state_value)); \
216 : WRITE_ONCE(current->__state, (state_value)); \
217 : } while (0)
218 :
219 : #define set_current_state(state_value) \
220 : do { \
221 : debug_normal_state_change((state_value)); \
222 : smp_store_mb(current->__state, (state_value)); \
223 : } while (0)
224 :
225 : /*
226 : * set_special_state() should be used for those states when the blocking task
227 : * can not use the regular condition based wait-loop. In that case we must
228 : * serialize against wakeups such that any possible in-flight TASK_RUNNING
229 : * stores will not collide with our state change.
230 : */
231 : #define set_special_state(state_value) \
232 : do { \
233 : unsigned long flags; /* may shadow */ \
234 : \
235 : raw_spin_lock_irqsave(¤t->pi_lock, flags); \
236 : debug_special_state_change((state_value)); \
237 : WRITE_ONCE(current->__state, (state_value)); \
238 : raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
239 : } while (0)
240 :
241 : /*
242 : * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
243 : *
244 : * RT's spin/rwlock substitutions are state preserving. The state of the
245 : * task when blocking on the lock is saved in task_struct::saved_state and
246 : * restored after the lock has been acquired. These operations are
247 : * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
248 : * lock related wakeups while the task is blocked on the lock are
249 : * redirected to operate on task_struct::saved_state to ensure that these
250 : * are not dropped. On restore task_struct::saved_state is set to
251 : * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
252 : *
253 : * The lock operation looks like this:
254 : *
255 : * current_save_and_set_rtlock_wait_state();
256 : * for (;;) {
257 : * if (try_lock())
258 : * break;
259 : * raw_spin_unlock_irq(&lock->wait_lock);
260 : * schedule_rtlock();
261 : * raw_spin_lock_irq(&lock->wait_lock);
262 : * set_current_state(TASK_RTLOCK_WAIT);
263 : * }
264 : * current_restore_rtlock_saved_state();
265 : */
266 : #define current_save_and_set_rtlock_wait_state() \
267 : do { \
268 : lockdep_assert_irqs_disabled(); \
269 : raw_spin_lock(¤t->pi_lock); \
270 : current->saved_state = current->__state; \
271 : debug_rtlock_wait_set_state(); \
272 : WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
273 : raw_spin_unlock(¤t->pi_lock); \
274 : } while (0);
275 :
276 : #define current_restore_rtlock_saved_state() \
277 : do { \
278 : lockdep_assert_irqs_disabled(); \
279 : raw_spin_lock(¤t->pi_lock); \
280 : debug_rtlock_wait_restore_state(); \
281 : WRITE_ONCE(current->__state, current->saved_state); \
282 : current->saved_state = TASK_RUNNING; \
283 : raw_spin_unlock(¤t->pi_lock); \
284 : } while (0);
285 :
286 : #define get_current_state() READ_ONCE(current->__state)
287 :
288 : /*
289 : * Define the task command name length as enum, then it can be visible to
290 : * BPF programs.
291 : */
292 : enum {
293 : TASK_COMM_LEN = 16,
294 : };
295 :
296 : extern void scheduler_tick(void);
297 :
298 : #define MAX_SCHEDULE_TIMEOUT LONG_MAX
299 :
300 : extern long schedule_timeout(long timeout);
301 : extern long schedule_timeout_interruptible(long timeout);
302 : extern long schedule_timeout_killable(long timeout);
303 : extern long schedule_timeout_uninterruptible(long timeout);
304 : extern long schedule_timeout_idle(long timeout);
305 : asmlinkage void schedule(void);
306 : extern void schedule_preempt_disabled(void);
307 : asmlinkage void preempt_schedule_irq(void);
308 : #ifdef CONFIG_PREEMPT_RT
309 : extern void schedule_rtlock(void);
310 : #endif
311 :
312 : extern int __must_check io_schedule_prepare(void);
313 : extern void io_schedule_finish(int token);
314 : extern long io_schedule_timeout(long timeout);
315 : extern void io_schedule(void);
316 :
317 : /**
318 : * struct prev_cputime - snapshot of system and user cputime
319 : * @utime: time spent in user mode
320 : * @stime: time spent in system mode
321 : * @lock: protects the above two fields
322 : *
323 : * Stores previous user/system time values such that we can guarantee
324 : * monotonicity.
325 : */
326 : struct prev_cputime {
327 : #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
328 : u64 utime;
329 : u64 stime;
330 : raw_spinlock_t lock;
331 : #endif
332 : };
333 :
334 : enum vtime_state {
335 : /* Task is sleeping or running in a CPU with VTIME inactive: */
336 : VTIME_INACTIVE = 0,
337 : /* Task is idle */
338 : VTIME_IDLE,
339 : /* Task runs in kernelspace in a CPU with VTIME active: */
340 : VTIME_SYS,
341 : /* Task runs in userspace in a CPU with VTIME active: */
342 : VTIME_USER,
343 : /* Task runs as guests in a CPU with VTIME active: */
344 : VTIME_GUEST,
345 : };
346 :
347 : struct vtime {
348 : seqcount_t seqcount;
349 : unsigned long long starttime;
350 : enum vtime_state state;
351 : unsigned int cpu;
352 : u64 utime;
353 : u64 stime;
354 : u64 gtime;
355 : };
356 :
357 : /*
358 : * Utilization clamp constraints.
359 : * @UCLAMP_MIN: Minimum utilization
360 : * @UCLAMP_MAX: Maximum utilization
361 : * @UCLAMP_CNT: Utilization clamp constraints count
362 : */
363 : enum uclamp_id {
364 : UCLAMP_MIN = 0,
365 : UCLAMP_MAX,
366 : UCLAMP_CNT
367 : };
368 :
369 : #ifdef CONFIG_SMP
370 : extern struct root_domain def_root_domain;
371 : extern struct mutex sched_domains_mutex;
372 : #endif
373 :
374 : struct sched_info {
375 : #ifdef CONFIG_SCHED_INFO
376 : /* Cumulative counters: */
377 :
378 : /* # of times we have run on this CPU: */
379 : unsigned long pcount;
380 :
381 : /* Time spent waiting on a runqueue: */
382 : unsigned long long run_delay;
383 :
384 : /* Timestamps: */
385 :
386 : /* When did we last run on a CPU? */
387 : unsigned long long last_arrival;
388 :
389 : /* When were we last queued to run? */
390 : unsigned long long last_queued;
391 :
392 : #endif /* CONFIG_SCHED_INFO */
393 : };
394 :
395 : /*
396 : * Integer metrics need fixed point arithmetic, e.g., sched/fair
397 : * has a few: load, load_avg, util_avg, freq, and capacity.
398 : *
399 : * We define a basic fixed point arithmetic range, and then formalize
400 : * all these metrics based on that basic range.
401 : */
402 : # define SCHED_FIXEDPOINT_SHIFT 10
403 : # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
404 :
405 : /* Increase resolution of cpu_capacity calculations */
406 : # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
407 : # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
408 :
409 : struct load_weight {
410 : unsigned long weight;
411 : u32 inv_weight;
412 : };
413 :
414 : /**
415 : * struct util_est - Estimation utilization of FAIR tasks
416 : * @enqueued: instantaneous estimated utilization of a task/cpu
417 : * @ewma: the Exponential Weighted Moving Average (EWMA)
418 : * utilization of a task
419 : *
420 : * Support data structure to track an Exponential Weighted Moving Average
421 : * (EWMA) of a FAIR task's utilization. New samples are added to the moving
422 : * average each time a task completes an activation. Sample's weight is chosen
423 : * so that the EWMA will be relatively insensitive to transient changes to the
424 : * task's workload.
425 : *
426 : * The enqueued attribute has a slightly different meaning for tasks and cpus:
427 : * - task: the task's util_avg at last task dequeue time
428 : * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
429 : * Thus, the util_est.enqueued of a task represents the contribution on the
430 : * estimated utilization of the CPU where that task is currently enqueued.
431 : *
432 : * Only for tasks we track a moving average of the past instantaneous
433 : * estimated utilization. This allows to absorb sporadic drops in utilization
434 : * of an otherwise almost periodic task.
435 : *
436 : * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
437 : * updates. When a task is dequeued, its util_est should not be updated if its
438 : * util_avg has not been updated in the meantime.
439 : * This information is mapped into the MSB bit of util_est.enqueued at dequeue
440 : * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
441 : * for a task) it is safe to use MSB.
442 : */
443 : struct util_est {
444 : unsigned int enqueued;
445 : unsigned int ewma;
446 : #define UTIL_EST_WEIGHT_SHIFT 2
447 : #define UTIL_AVG_UNCHANGED 0x80000000
448 : } __attribute__((__aligned__(sizeof(u64))));
449 :
450 : /*
451 : * The load/runnable/util_avg accumulates an infinite geometric series
452 : * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
453 : *
454 : * [load_avg definition]
455 : *
456 : * load_avg = runnable% * scale_load_down(load)
457 : *
458 : * [runnable_avg definition]
459 : *
460 : * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
461 : *
462 : * [util_avg definition]
463 : *
464 : * util_avg = running% * SCHED_CAPACITY_SCALE
465 : *
466 : * where runnable% is the time ratio that a sched_entity is runnable and
467 : * running% the time ratio that a sched_entity is running.
468 : *
469 : * For cfs_rq, they are the aggregated values of all runnable and blocked
470 : * sched_entities.
471 : *
472 : * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
473 : * capacity scaling. The scaling is done through the rq_clock_pelt that is used
474 : * for computing those signals (see update_rq_clock_pelt())
475 : *
476 : * N.B., the above ratios (runnable% and running%) themselves are in the
477 : * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
478 : * to as large a range as necessary. This is for example reflected by
479 : * util_avg's SCHED_CAPACITY_SCALE.
480 : *
481 : * [Overflow issue]
482 : *
483 : * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
484 : * with the highest load (=88761), always runnable on a single cfs_rq,
485 : * and should not overflow as the number already hits PID_MAX_LIMIT.
486 : *
487 : * For all other cases (including 32-bit kernels), struct load_weight's
488 : * weight will overflow first before we do, because:
489 : *
490 : * Max(load_avg) <= Max(load.weight)
491 : *
492 : * Then it is the load_weight's responsibility to consider overflow
493 : * issues.
494 : */
495 : struct sched_avg {
496 : u64 last_update_time;
497 : u64 load_sum;
498 : u64 runnable_sum;
499 : u32 util_sum;
500 : u32 period_contrib;
501 : unsigned long load_avg;
502 : unsigned long runnable_avg;
503 : unsigned long util_avg;
504 : struct util_est util_est;
505 : } ____cacheline_aligned;
506 :
507 : struct sched_statistics {
508 : #ifdef CONFIG_SCHEDSTATS
509 : u64 wait_start;
510 : u64 wait_max;
511 : u64 wait_count;
512 : u64 wait_sum;
513 : u64 iowait_count;
514 : u64 iowait_sum;
515 :
516 : u64 sleep_start;
517 : u64 sleep_max;
518 : s64 sum_sleep_runtime;
519 :
520 : u64 block_start;
521 : u64 block_max;
522 : s64 sum_block_runtime;
523 :
524 : u64 exec_max;
525 : u64 slice_max;
526 :
527 : u64 nr_migrations_cold;
528 : u64 nr_failed_migrations_affine;
529 : u64 nr_failed_migrations_running;
530 : u64 nr_failed_migrations_hot;
531 : u64 nr_forced_migrations;
532 :
533 : u64 nr_wakeups;
534 : u64 nr_wakeups_sync;
535 : u64 nr_wakeups_migrate;
536 : u64 nr_wakeups_local;
537 : u64 nr_wakeups_remote;
538 : u64 nr_wakeups_affine;
539 : u64 nr_wakeups_affine_attempts;
540 : u64 nr_wakeups_passive;
541 : u64 nr_wakeups_idle;
542 :
543 : #ifdef CONFIG_SCHED_CORE
544 : u64 core_forceidle_sum;
545 : #endif
546 : #endif /* CONFIG_SCHEDSTATS */
547 : } ____cacheline_aligned;
548 :
549 : struct sched_entity {
550 : /* For load-balancing: */
551 : struct load_weight load;
552 : struct rb_node run_node;
553 : struct list_head group_node;
554 : unsigned int on_rq;
555 :
556 : u64 exec_start;
557 : u64 sum_exec_runtime;
558 : u64 vruntime;
559 : u64 prev_sum_exec_runtime;
560 :
561 : u64 nr_migrations;
562 :
563 : #ifdef CONFIG_FAIR_GROUP_SCHED
564 : int depth;
565 : struct sched_entity *parent;
566 : /* rq on which this entity is (to be) queued: */
567 : struct cfs_rq *cfs_rq;
568 : /* rq "owned" by this entity/group: */
569 : struct cfs_rq *my_q;
570 : /* cached value of my_q->h_nr_running */
571 : unsigned long runnable_weight;
572 : #endif
573 :
574 : #ifdef CONFIG_SMP
575 : /*
576 : * Per entity load average tracking.
577 : *
578 : * Put into separate cache line so it does not
579 : * collide with read-mostly values above.
580 : */
581 : struct sched_avg avg;
582 : #endif
583 : };
584 :
585 : struct sched_rt_entity {
586 : struct list_head run_list;
587 : unsigned long timeout;
588 : unsigned long watchdog_stamp;
589 : unsigned int time_slice;
590 : unsigned short on_rq;
591 : unsigned short on_list;
592 :
593 : struct sched_rt_entity *back;
594 : #ifdef CONFIG_RT_GROUP_SCHED
595 : struct sched_rt_entity *parent;
596 : /* rq on which this entity is (to be) queued: */
597 : struct rt_rq *rt_rq;
598 : /* rq "owned" by this entity/group: */
599 : struct rt_rq *my_q;
600 : #endif
601 : } __randomize_layout;
602 :
603 : struct sched_dl_entity {
604 : struct rb_node rb_node;
605 :
606 : /*
607 : * Original scheduling parameters. Copied here from sched_attr
608 : * during sched_setattr(), they will remain the same until
609 : * the next sched_setattr().
610 : */
611 : u64 dl_runtime; /* Maximum runtime for each instance */
612 : u64 dl_deadline; /* Relative deadline of each instance */
613 : u64 dl_period; /* Separation of two instances (period) */
614 : u64 dl_bw; /* dl_runtime / dl_period */
615 : u64 dl_density; /* dl_runtime / dl_deadline */
616 :
617 : /*
618 : * Actual scheduling parameters. Initialized with the values above,
619 : * they are continuously updated during task execution. Note that
620 : * the remaining runtime could be < 0 in case we are in overrun.
621 : */
622 : s64 runtime; /* Remaining runtime for this instance */
623 : u64 deadline; /* Absolute deadline for this instance */
624 : unsigned int flags; /* Specifying the scheduler behaviour */
625 :
626 : /*
627 : * Some bool flags:
628 : *
629 : * @dl_throttled tells if we exhausted the runtime. If so, the
630 : * task has to wait for a replenishment to be performed at the
631 : * next firing of dl_timer.
632 : *
633 : * @dl_yielded tells if task gave up the CPU before consuming
634 : * all its available runtime during the last job.
635 : *
636 : * @dl_non_contending tells if the task is inactive while still
637 : * contributing to the active utilization. In other words, it
638 : * indicates if the inactive timer has been armed and its handler
639 : * has not been executed yet. This flag is useful to avoid race
640 : * conditions between the inactive timer handler and the wakeup
641 : * code.
642 : *
643 : * @dl_overrun tells if the task asked to be informed about runtime
644 : * overruns.
645 : */
646 : unsigned int dl_throttled : 1;
647 : unsigned int dl_yielded : 1;
648 : unsigned int dl_non_contending : 1;
649 : unsigned int dl_overrun : 1;
650 :
651 : /*
652 : * Bandwidth enforcement timer. Each -deadline task has its
653 : * own bandwidth to be enforced, thus we need one timer per task.
654 : */
655 : struct hrtimer dl_timer;
656 :
657 : /*
658 : * Inactive timer, responsible for decreasing the active utilization
659 : * at the "0-lag time". When a -deadline task blocks, it contributes
660 : * to GRUB's active utilization until the "0-lag time", hence a
661 : * timer is needed to decrease the active utilization at the correct
662 : * time.
663 : */
664 : struct hrtimer inactive_timer;
665 :
666 : #ifdef CONFIG_RT_MUTEXES
667 : /*
668 : * Priority Inheritance. When a DEADLINE scheduling entity is boosted
669 : * pi_se points to the donor, otherwise points to the dl_se it belongs
670 : * to (the original one/itself).
671 : */
672 : struct sched_dl_entity *pi_se;
673 : #endif
674 : };
675 :
676 : #ifdef CONFIG_UCLAMP_TASK
677 : /* Number of utilization clamp buckets (shorter alias) */
678 : #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
679 :
680 : /*
681 : * Utilization clamp for a scheduling entity
682 : * @value: clamp value "assigned" to a se
683 : * @bucket_id: bucket index corresponding to the "assigned" value
684 : * @active: the se is currently refcounted in a rq's bucket
685 : * @user_defined: the requested clamp value comes from user-space
686 : *
687 : * The bucket_id is the index of the clamp bucket matching the clamp value
688 : * which is pre-computed and stored to avoid expensive integer divisions from
689 : * the fast path.
690 : *
691 : * The active bit is set whenever a task has got an "effective" value assigned,
692 : * which can be different from the clamp value "requested" from user-space.
693 : * This allows to know a task is refcounted in the rq's bucket corresponding
694 : * to the "effective" bucket_id.
695 : *
696 : * The user_defined bit is set whenever a task has got a task-specific clamp
697 : * value requested from userspace, i.e. the system defaults apply to this task
698 : * just as a restriction. This allows to relax default clamps when a less
699 : * restrictive task-specific value has been requested, thus allowing to
700 : * implement a "nice" semantic. For example, a task running with a 20%
701 : * default boost can still drop its own boosting to 0%.
702 : */
703 : struct uclamp_se {
704 : unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
705 : unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
706 : unsigned int active : 1;
707 : unsigned int user_defined : 1;
708 : };
709 : #endif /* CONFIG_UCLAMP_TASK */
710 :
711 : union rcu_special {
712 : struct {
713 : u8 blocked;
714 : u8 need_qs;
715 : u8 exp_hint; /* Hint for performance. */
716 : u8 need_mb; /* Readers need smp_mb(). */
717 : } b; /* Bits. */
718 : u32 s; /* Set of bits. */
719 : };
720 :
721 : enum perf_event_task_context {
722 : perf_invalid_context = -1,
723 : perf_hw_context = 0,
724 : perf_sw_context,
725 : perf_nr_task_contexts,
726 : };
727 :
728 : struct wake_q_node {
729 : struct wake_q_node *next;
730 : };
731 :
732 : struct kmap_ctrl {
733 : #ifdef CONFIG_KMAP_LOCAL
734 : int idx;
735 : pte_t pteval[KM_MAX_IDX];
736 : #endif
737 : };
738 :
739 : struct task_struct {
740 : #ifdef CONFIG_THREAD_INFO_IN_TASK
741 : /*
742 : * For reasons of header soup (see current_thread_info()), this
743 : * must be the first element of task_struct.
744 : */
745 : struct thread_info thread_info;
746 : #endif
747 : unsigned int __state;
748 :
749 : #ifdef CONFIG_PREEMPT_RT
750 : /* saved state for "spinlock sleepers" */
751 : unsigned int saved_state;
752 : #endif
753 :
754 : /*
755 : * This begins the randomizable portion of task_struct. Only
756 : * scheduling-critical items should be added above here.
757 : */
758 : randomized_struct_fields_start
759 :
760 : void *stack;
761 : refcount_t usage;
762 : /* Per task flags (PF_*), defined further below: */
763 : unsigned int flags;
764 : unsigned int ptrace;
765 :
766 : #ifdef CONFIG_SMP
767 : int on_cpu;
768 : struct __call_single_node wake_entry;
769 : unsigned int wakee_flips;
770 : unsigned long wakee_flip_decay_ts;
771 : struct task_struct *last_wakee;
772 :
773 : /*
774 : * recent_used_cpu is initially set as the last CPU used by a task
775 : * that wakes affine another task. Waker/wakee relationships can
776 : * push tasks around a CPU where each wakeup moves to the next one.
777 : * Tracking a recently used CPU allows a quick search for a recently
778 : * used CPU that may be idle.
779 : */
780 : int recent_used_cpu;
781 : int wake_cpu;
782 : #endif
783 : int on_rq;
784 :
785 : int prio;
786 : int static_prio;
787 : int normal_prio;
788 : unsigned int rt_priority;
789 :
790 : struct sched_entity se;
791 : struct sched_rt_entity rt;
792 : struct sched_dl_entity dl;
793 : const struct sched_class *sched_class;
794 :
795 : #ifdef CONFIG_SCHED_CORE
796 : struct rb_node core_node;
797 : unsigned long core_cookie;
798 : unsigned int core_occupation;
799 : #endif
800 :
801 : #ifdef CONFIG_CGROUP_SCHED
802 : struct task_group *sched_task_group;
803 : #endif
804 :
805 : #ifdef CONFIG_UCLAMP_TASK
806 : /*
807 : * Clamp values requested for a scheduling entity.
808 : * Must be updated with task_rq_lock() held.
809 : */
810 : struct uclamp_se uclamp_req[UCLAMP_CNT];
811 : /*
812 : * Effective clamp values used for a scheduling entity.
813 : * Must be updated with task_rq_lock() held.
814 : */
815 : struct uclamp_se uclamp[UCLAMP_CNT];
816 : #endif
817 :
818 : struct sched_statistics stats;
819 :
820 : #ifdef CONFIG_PREEMPT_NOTIFIERS
821 : /* List of struct preempt_notifier: */
822 : struct hlist_head preempt_notifiers;
823 : #endif
824 :
825 : #ifdef CONFIG_BLK_DEV_IO_TRACE
826 : unsigned int btrace_seq;
827 : #endif
828 :
829 : unsigned int policy;
830 : int nr_cpus_allowed;
831 : const cpumask_t *cpus_ptr;
832 : cpumask_t *user_cpus_ptr;
833 : cpumask_t cpus_mask;
834 : void *migration_pending;
835 : #ifdef CONFIG_SMP
836 : unsigned short migration_disabled;
837 : #endif
838 : unsigned short migration_flags;
839 :
840 : #ifdef CONFIG_PREEMPT_RCU
841 : int rcu_read_lock_nesting;
842 : union rcu_special rcu_read_unlock_special;
843 : struct list_head rcu_node_entry;
844 : struct rcu_node *rcu_blocked_node;
845 : #endif /* #ifdef CONFIG_PREEMPT_RCU */
846 :
847 : #ifdef CONFIG_TASKS_RCU
848 : unsigned long rcu_tasks_nvcsw;
849 : u8 rcu_tasks_holdout;
850 : u8 rcu_tasks_idx;
851 : int rcu_tasks_idle_cpu;
852 : struct list_head rcu_tasks_holdout_list;
853 : #endif /* #ifdef CONFIG_TASKS_RCU */
854 :
855 : #ifdef CONFIG_TASKS_TRACE_RCU
856 : int trc_reader_nesting;
857 : int trc_ipi_to_cpu;
858 : union rcu_special trc_reader_special;
859 : struct list_head trc_holdout_list;
860 : struct list_head trc_blkd_node;
861 : int trc_blkd_cpu;
862 : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
863 :
864 : struct sched_info sched_info;
865 :
866 : struct list_head tasks;
867 : #ifdef CONFIG_SMP
868 : struct plist_node pushable_tasks;
869 : struct rb_node pushable_dl_tasks;
870 : #endif
871 :
872 : struct mm_struct *mm;
873 : struct mm_struct *active_mm;
874 :
875 : int exit_state;
876 : int exit_code;
877 : int exit_signal;
878 : /* The signal sent when the parent dies: */
879 : int pdeath_signal;
880 : /* JOBCTL_*, siglock protected: */
881 : unsigned long jobctl;
882 :
883 : /* Used for emulating ABI behavior of previous Linux versions: */
884 : unsigned int personality;
885 :
886 : /* Scheduler bits, serialized by scheduler locks: */
887 : unsigned sched_reset_on_fork:1;
888 : unsigned sched_contributes_to_load:1;
889 : unsigned sched_migrated:1;
890 :
891 : /* Force alignment to the next boundary: */
892 : unsigned :0;
893 :
894 : /* Unserialized, strictly 'current' */
895 :
896 : /*
897 : * This field must not be in the scheduler word above due to wakelist
898 : * queueing no longer being serialized by p->on_cpu. However:
899 : *
900 : * p->XXX = X; ttwu()
901 : * schedule() if (p->on_rq && ..) // false
902 : * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
903 : * deactivate_task() ttwu_queue_wakelist())
904 : * p->on_rq = 0; p->sched_remote_wakeup = Y;
905 : *
906 : * guarantees all stores of 'current' are visible before
907 : * ->sched_remote_wakeup gets used, so it can be in this word.
908 : */
909 : unsigned sched_remote_wakeup:1;
910 :
911 : /* Bit to tell LSMs we're in execve(): */
912 : unsigned in_execve:1;
913 : unsigned in_iowait:1;
914 : #ifndef TIF_RESTORE_SIGMASK
915 : unsigned restore_sigmask:1;
916 : #endif
917 : #ifdef CONFIG_MEMCG
918 : unsigned in_user_fault:1;
919 : #endif
920 : #ifdef CONFIG_LRU_GEN
921 : /* whether the LRU algorithm may apply to this access */
922 : unsigned in_lru_fault:1;
923 : #endif
924 : #ifdef CONFIG_COMPAT_BRK
925 : unsigned brk_randomized:1;
926 : #endif
927 : #ifdef CONFIG_CGROUPS
928 : /* disallow userland-initiated cgroup migration */
929 : unsigned no_cgroup_migration:1;
930 : /* task is frozen/stopped (used by the cgroup freezer) */
931 : unsigned frozen:1;
932 : #endif
933 : #ifdef CONFIG_BLK_CGROUP
934 : unsigned use_memdelay:1;
935 : #endif
936 : #ifdef CONFIG_PSI
937 : /* Stalled due to lack of memory */
938 : unsigned in_memstall:1;
939 : #endif
940 : #ifdef CONFIG_PAGE_OWNER
941 : /* Used by page_owner=on to detect recursion in page tracking. */
942 : unsigned in_page_owner:1;
943 : #endif
944 : #ifdef CONFIG_EVENTFD
945 : /* Recursion prevention for eventfd_signal() */
946 : unsigned in_eventfd:1;
947 : #endif
948 : #ifdef CONFIG_IOMMU_SVA
949 : unsigned pasid_activated:1;
950 : #endif
951 : #ifdef CONFIG_CPU_SUP_INTEL
952 : unsigned reported_split_lock:1;
953 : #endif
954 : #ifdef CONFIG_TASK_DELAY_ACCT
955 : /* delay due to memory thrashing */
956 : unsigned in_thrashing:1;
957 : #endif
958 :
959 : unsigned long atomic_flags; /* Flags requiring atomic access. */
960 :
961 : struct restart_block restart_block;
962 :
963 : pid_t pid;
964 : pid_t tgid;
965 :
966 : #ifdef CONFIG_STACKPROTECTOR
967 : /* Canary value for the -fstack-protector GCC feature: */
968 : unsigned long stack_canary;
969 : #endif
970 : /*
971 : * Pointers to the (original) parent process, youngest child, younger sibling,
972 : * older sibling, respectively. (p->father can be replaced with
973 : * p->real_parent->pid)
974 : */
975 :
976 : /* Real parent process: */
977 : struct task_struct __rcu *real_parent;
978 :
979 : /* Recipient of SIGCHLD, wait4() reports: */
980 : struct task_struct __rcu *parent;
981 :
982 : /*
983 : * Children/sibling form the list of natural children:
984 : */
985 : struct list_head children;
986 : struct list_head sibling;
987 : struct task_struct *group_leader;
988 :
989 : /*
990 : * 'ptraced' is the list of tasks this task is using ptrace() on.
991 : *
992 : * This includes both natural children and PTRACE_ATTACH targets.
993 : * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
994 : */
995 : struct list_head ptraced;
996 : struct list_head ptrace_entry;
997 :
998 : /* PID/PID hash table linkage. */
999 : struct pid *thread_pid;
1000 : struct hlist_node pid_links[PIDTYPE_MAX];
1001 : struct list_head thread_group;
1002 : struct list_head thread_node;
1003 :
1004 : struct completion *vfork_done;
1005 :
1006 : /* CLONE_CHILD_SETTID: */
1007 : int __user *set_child_tid;
1008 :
1009 : /* CLONE_CHILD_CLEARTID: */
1010 : int __user *clear_child_tid;
1011 :
1012 : /* PF_KTHREAD | PF_IO_WORKER */
1013 : void *worker_private;
1014 :
1015 : u64 utime;
1016 : u64 stime;
1017 : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1018 : u64 utimescaled;
1019 : u64 stimescaled;
1020 : #endif
1021 : u64 gtime;
1022 : struct prev_cputime prev_cputime;
1023 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1024 : struct vtime vtime;
1025 : #endif
1026 :
1027 : #ifdef CONFIG_NO_HZ_FULL
1028 : atomic_t tick_dep_mask;
1029 : #endif
1030 : /* Context switch counts: */
1031 : unsigned long nvcsw;
1032 : unsigned long nivcsw;
1033 :
1034 : /* Monotonic time in nsecs: */
1035 : u64 start_time;
1036 :
1037 : /* Boot based time in nsecs: */
1038 : u64 start_boottime;
1039 :
1040 : /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1041 : unsigned long min_flt;
1042 : unsigned long maj_flt;
1043 :
1044 : /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1045 : struct posix_cputimers posix_cputimers;
1046 :
1047 : #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1048 : struct posix_cputimers_work posix_cputimers_work;
1049 : #endif
1050 :
1051 : /* Process credentials: */
1052 :
1053 : /* Tracer's credentials at attach: */
1054 : const struct cred __rcu *ptracer_cred;
1055 :
1056 : /* Objective and real subjective task credentials (COW): */
1057 : const struct cred __rcu *real_cred;
1058 :
1059 : /* Effective (overridable) subjective task credentials (COW): */
1060 : const struct cred __rcu *cred;
1061 :
1062 : #ifdef CONFIG_KEYS
1063 : /* Cached requested key. */
1064 : struct key *cached_requested_key;
1065 : #endif
1066 :
1067 : /*
1068 : * executable name, excluding path.
1069 : *
1070 : * - normally initialized setup_new_exec()
1071 : * - access it with [gs]et_task_comm()
1072 : * - lock it with task_lock()
1073 : */
1074 : char comm[TASK_COMM_LEN];
1075 :
1076 : struct nameidata *nameidata;
1077 :
1078 : #ifdef CONFIG_SYSVIPC
1079 : struct sysv_sem sysvsem;
1080 : struct sysv_shm sysvshm;
1081 : #endif
1082 : #ifdef CONFIG_DETECT_HUNG_TASK
1083 : unsigned long last_switch_count;
1084 : unsigned long last_switch_time;
1085 : #endif
1086 : /* Filesystem information: */
1087 : struct fs_struct *fs;
1088 :
1089 : /* Open file information: */
1090 : struct files_struct *files;
1091 :
1092 : #ifdef CONFIG_IO_URING
1093 : struct io_uring_task *io_uring;
1094 : #endif
1095 :
1096 : /* Namespaces: */
1097 : struct nsproxy *nsproxy;
1098 :
1099 : /* Signal handlers: */
1100 : struct signal_struct *signal;
1101 : struct sighand_struct __rcu *sighand;
1102 : sigset_t blocked;
1103 : sigset_t real_blocked;
1104 : /* Restored if set_restore_sigmask() was used: */
1105 : sigset_t saved_sigmask;
1106 : struct sigpending pending;
1107 : unsigned long sas_ss_sp;
1108 : size_t sas_ss_size;
1109 : unsigned int sas_ss_flags;
1110 :
1111 : struct callback_head *task_works;
1112 :
1113 : #ifdef CONFIG_AUDIT
1114 : #ifdef CONFIG_AUDITSYSCALL
1115 : struct audit_context *audit_context;
1116 : #endif
1117 : kuid_t loginuid;
1118 : unsigned int sessionid;
1119 : #endif
1120 : struct seccomp seccomp;
1121 : struct syscall_user_dispatch syscall_dispatch;
1122 :
1123 : /* Thread group tracking: */
1124 : u64 parent_exec_id;
1125 : u64 self_exec_id;
1126 :
1127 : /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1128 : spinlock_t alloc_lock;
1129 :
1130 : /* Protection of the PI data structures: */
1131 : raw_spinlock_t pi_lock;
1132 :
1133 : struct wake_q_node wake_q;
1134 :
1135 : #ifdef CONFIG_RT_MUTEXES
1136 : /* PI waiters blocked on a rt_mutex held by this task: */
1137 : struct rb_root_cached pi_waiters;
1138 : /* Updated under owner's pi_lock and rq lock */
1139 : struct task_struct *pi_top_task;
1140 : /* Deadlock detection and priority inheritance handling: */
1141 : struct rt_mutex_waiter *pi_blocked_on;
1142 : #endif
1143 :
1144 : #ifdef CONFIG_DEBUG_MUTEXES
1145 : /* Mutex deadlock detection: */
1146 : struct mutex_waiter *blocked_on;
1147 : #endif
1148 :
1149 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1150 : int non_block_count;
1151 : #endif
1152 :
1153 : #ifdef CONFIG_TRACE_IRQFLAGS
1154 : struct irqtrace_events irqtrace;
1155 : unsigned int hardirq_threaded;
1156 : u64 hardirq_chain_key;
1157 : int softirqs_enabled;
1158 : int softirq_context;
1159 : int irq_config;
1160 : #endif
1161 : #ifdef CONFIG_PREEMPT_RT
1162 : int softirq_disable_cnt;
1163 : #endif
1164 :
1165 : #ifdef CONFIG_LOCKDEP
1166 : # define MAX_LOCK_DEPTH 48UL
1167 : u64 curr_chain_key;
1168 : int lockdep_depth;
1169 : unsigned int lockdep_recursion;
1170 : struct held_lock held_locks[MAX_LOCK_DEPTH];
1171 : #endif
1172 :
1173 : #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1174 : unsigned int in_ubsan;
1175 : #endif
1176 :
1177 : /* Journalling filesystem info: */
1178 : void *journal_info;
1179 :
1180 : /* Stacked block device info: */
1181 : struct bio_list *bio_list;
1182 :
1183 : /* Stack plugging: */
1184 : struct blk_plug *plug;
1185 :
1186 : /* VM state: */
1187 : struct reclaim_state *reclaim_state;
1188 :
1189 : struct backing_dev_info *backing_dev_info;
1190 :
1191 : struct io_context *io_context;
1192 :
1193 : #ifdef CONFIG_COMPACTION
1194 : struct capture_control *capture_control;
1195 : #endif
1196 : /* Ptrace state: */
1197 : unsigned long ptrace_message;
1198 : kernel_siginfo_t *last_siginfo;
1199 :
1200 : struct task_io_accounting ioac;
1201 : #ifdef CONFIG_PSI
1202 : /* Pressure stall state */
1203 : unsigned int psi_flags;
1204 : #endif
1205 : #ifdef CONFIG_TASK_XACCT
1206 : /* Accumulated RSS usage: */
1207 : u64 acct_rss_mem1;
1208 : /* Accumulated virtual memory usage: */
1209 : u64 acct_vm_mem1;
1210 : /* stime + utime since last update: */
1211 : u64 acct_timexpd;
1212 : #endif
1213 : #ifdef CONFIG_CPUSETS
1214 : /* Protected by ->alloc_lock: */
1215 : nodemask_t mems_allowed;
1216 : /* Sequence number to catch updates: */
1217 : seqcount_spinlock_t mems_allowed_seq;
1218 : int cpuset_mem_spread_rotor;
1219 : int cpuset_slab_spread_rotor;
1220 : #endif
1221 : #ifdef CONFIG_CGROUPS
1222 : /* Control Group info protected by css_set_lock: */
1223 : struct css_set __rcu *cgroups;
1224 : /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1225 : struct list_head cg_list;
1226 : #endif
1227 : #ifdef CONFIG_X86_CPU_RESCTRL
1228 : u32 closid;
1229 : u32 rmid;
1230 : #endif
1231 : #ifdef CONFIG_FUTEX
1232 : struct robust_list_head __user *robust_list;
1233 : #ifdef CONFIG_COMPAT
1234 : struct compat_robust_list_head __user *compat_robust_list;
1235 : #endif
1236 : struct list_head pi_state_list;
1237 : struct futex_pi_state *pi_state_cache;
1238 : struct mutex futex_exit_mutex;
1239 : unsigned int futex_state;
1240 : #endif
1241 : #ifdef CONFIG_PERF_EVENTS
1242 : struct perf_event_context *perf_event_ctxp;
1243 : struct mutex perf_event_mutex;
1244 : struct list_head perf_event_list;
1245 : #endif
1246 : #ifdef CONFIG_DEBUG_PREEMPT
1247 : unsigned long preempt_disable_ip;
1248 : #endif
1249 : #ifdef CONFIG_NUMA
1250 : /* Protected by alloc_lock: */
1251 : struct mempolicy *mempolicy;
1252 : short il_prev;
1253 : short pref_node_fork;
1254 : #endif
1255 : #ifdef CONFIG_NUMA_BALANCING
1256 : int numa_scan_seq;
1257 : unsigned int numa_scan_period;
1258 : unsigned int numa_scan_period_max;
1259 : int numa_preferred_nid;
1260 : unsigned long numa_migrate_retry;
1261 : /* Migration stamp: */
1262 : u64 node_stamp;
1263 : u64 last_task_numa_placement;
1264 : u64 last_sum_exec_runtime;
1265 : struct callback_head numa_work;
1266 :
1267 : /*
1268 : * This pointer is only modified for current in syscall and
1269 : * pagefault context (and for tasks being destroyed), so it can be read
1270 : * from any of the following contexts:
1271 : * - RCU read-side critical section
1272 : * - current->numa_group from everywhere
1273 : * - task's runqueue locked, task not running
1274 : */
1275 : struct numa_group __rcu *numa_group;
1276 :
1277 : /*
1278 : * numa_faults is an array split into four regions:
1279 : * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1280 : * in this precise order.
1281 : *
1282 : * faults_memory: Exponential decaying average of faults on a per-node
1283 : * basis. Scheduling placement decisions are made based on these
1284 : * counts. The values remain static for the duration of a PTE scan.
1285 : * faults_cpu: Track the nodes the process was running on when a NUMA
1286 : * hinting fault was incurred.
1287 : * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1288 : * during the current scan window. When the scan completes, the counts
1289 : * in faults_memory and faults_cpu decay and these values are copied.
1290 : */
1291 : unsigned long *numa_faults;
1292 : unsigned long total_numa_faults;
1293 :
1294 : /*
1295 : * numa_faults_locality tracks if faults recorded during the last
1296 : * scan window were remote/local or failed to migrate. The task scan
1297 : * period is adapted based on the locality of the faults with different
1298 : * weights depending on whether they were shared or private faults
1299 : */
1300 : unsigned long numa_faults_locality[3];
1301 :
1302 : unsigned long numa_pages_migrated;
1303 : #endif /* CONFIG_NUMA_BALANCING */
1304 :
1305 : #ifdef CONFIG_RSEQ
1306 : struct rseq __user *rseq;
1307 : u32 rseq_len;
1308 : u32 rseq_sig;
1309 : /*
1310 : * RmW on rseq_event_mask must be performed atomically
1311 : * with respect to preemption.
1312 : */
1313 : unsigned long rseq_event_mask;
1314 : #endif
1315 :
1316 : #ifdef CONFIG_SCHED_MM_CID
1317 : int mm_cid; /* Current cid in mm */
1318 : int last_mm_cid; /* Most recent cid in mm */
1319 : int migrate_from_cpu;
1320 : int mm_cid_active; /* Whether cid bitmap is active */
1321 : struct callback_head cid_work;
1322 : #endif
1323 :
1324 : struct tlbflush_unmap_batch tlb_ubc;
1325 :
1326 : /* Cache last used pipe for splice(): */
1327 : struct pipe_inode_info *splice_pipe;
1328 :
1329 : struct page_frag task_frag;
1330 :
1331 : #ifdef CONFIG_TASK_DELAY_ACCT
1332 : struct task_delay_info *delays;
1333 : #endif
1334 :
1335 : #ifdef CONFIG_FAULT_INJECTION
1336 : int make_it_fail;
1337 : unsigned int fail_nth;
1338 : #endif
1339 : /*
1340 : * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1341 : * balance_dirty_pages() for a dirty throttling pause:
1342 : */
1343 : int nr_dirtied;
1344 : int nr_dirtied_pause;
1345 : /* Start of a write-and-pause period: */
1346 : unsigned long dirty_paused_when;
1347 :
1348 : #ifdef CONFIG_LATENCYTOP
1349 : int latency_record_count;
1350 : struct latency_record latency_record[LT_SAVECOUNT];
1351 : #endif
1352 : /*
1353 : * Time slack values; these are used to round up poll() and
1354 : * select() etc timeout values. These are in nanoseconds.
1355 : */
1356 : u64 timer_slack_ns;
1357 : u64 default_timer_slack_ns;
1358 :
1359 : #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1360 : unsigned int kasan_depth;
1361 : #endif
1362 :
1363 : #ifdef CONFIG_KCSAN
1364 : struct kcsan_ctx kcsan_ctx;
1365 : #ifdef CONFIG_TRACE_IRQFLAGS
1366 : struct irqtrace_events kcsan_save_irqtrace;
1367 : #endif
1368 : #ifdef CONFIG_KCSAN_WEAK_MEMORY
1369 : int kcsan_stack_depth;
1370 : #endif
1371 : #endif
1372 :
1373 : #ifdef CONFIG_KMSAN
1374 : struct kmsan_ctx kmsan_ctx;
1375 : #endif
1376 :
1377 : #if IS_ENABLED(CONFIG_KUNIT)
1378 : struct kunit *kunit_test;
1379 : #endif
1380 :
1381 : #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1382 : /* Index of current stored address in ret_stack: */
1383 : int curr_ret_stack;
1384 : int curr_ret_depth;
1385 :
1386 : /* Stack of return addresses for return function tracing: */
1387 : struct ftrace_ret_stack *ret_stack;
1388 :
1389 : /* Timestamp for last schedule: */
1390 : unsigned long long ftrace_timestamp;
1391 :
1392 : /*
1393 : * Number of functions that haven't been traced
1394 : * because of depth overrun:
1395 : */
1396 : atomic_t trace_overrun;
1397 :
1398 : /* Pause tracing: */
1399 : atomic_t tracing_graph_pause;
1400 : #endif
1401 :
1402 : #ifdef CONFIG_TRACING
1403 : /* Bitmask and counter of trace recursion: */
1404 : unsigned long trace_recursion;
1405 : #endif /* CONFIG_TRACING */
1406 :
1407 : #ifdef CONFIG_KCOV
1408 : /* See kernel/kcov.c for more details. */
1409 :
1410 : /* Coverage collection mode enabled for this task (0 if disabled): */
1411 : unsigned int kcov_mode;
1412 :
1413 : /* Size of the kcov_area: */
1414 : unsigned int kcov_size;
1415 :
1416 : /* Buffer for coverage collection: */
1417 : void *kcov_area;
1418 :
1419 : /* KCOV descriptor wired with this task or NULL: */
1420 : struct kcov *kcov;
1421 :
1422 : /* KCOV common handle for remote coverage collection: */
1423 : u64 kcov_handle;
1424 :
1425 : /* KCOV sequence number: */
1426 : int kcov_sequence;
1427 :
1428 : /* Collect coverage from softirq context: */
1429 : unsigned int kcov_softirq;
1430 : #endif
1431 :
1432 : #ifdef CONFIG_MEMCG
1433 : struct mem_cgroup *memcg_in_oom;
1434 : gfp_t memcg_oom_gfp_mask;
1435 : int memcg_oom_order;
1436 :
1437 : /* Number of pages to reclaim on returning to userland: */
1438 : unsigned int memcg_nr_pages_over_high;
1439 :
1440 : /* Used by memcontrol for targeted memcg charge: */
1441 : struct mem_cgroup *active_memcg;
1442 : #endif
1443 :
1444 : #ifdef CONFIG_BLK_CGROUP
1445 : struct gendisk *throttle_disk;
1446 : #endif
1447 :
1448 : #ifdef CONFIG_UPROBES
1449 : struct uprobe_task *utask;
1450 : #endif
1451 : #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1452 : unsigned int sequential_io;
1453 : unsigned int sequential_io_avg;
1454 : #endif
1455 : struct kmap_ctrl kmap_ctrl;
1456 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1457 : unsigned long task_state_change;
1458 : # ifdef CONFIG_PREEMPT_RT
1459 : unsigned long saved_state_change;
1460 : # endif
1461 : #endif
1462 : struct rcu_head rcu;
1463 : refcount_t rcu_users;
1464 : int pagefault_disabled;
1465 : #ifdef CONFIG_MMU
1466 : struct task_struct *oom_reaper_list;
1467 : struct timer_list oom_reaper_timer;
1468 : #endif
1469 : #ifdef CONFIG_VMAP_STACK
1470 : struct vm_struct *stack_vm_area;
1471 : #endif
1472 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1473 : /* A live task holds one reference: */
1474 : refcount_t stack_refcount;
1475 : #endif
1476 : #ifdef CONFIG_LIVEPATCH
1477 : int patch_state;
1478 : #endif
1479 : #ifdef CONFIG_SECURITY
1480 : /* Used by LSM modules for access restriction: */
1481 : void *security;
1482 : #endif
1483 : #ifdef CONFIG_BPF_SYSCALL
1484 : /* Used by BPF task local storage */
1485 : struct bpf_local_storage __rcu *bpf_storage;
1486 : /* Used for BPF run context */
1487 : struct bpf_run_ctx *bpf_ctx;
1488 : #endif
1489 :
1490 : #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1491 : unsigned long lowest_stack;
1492 : unsigned long prev_lowest_stack;
1493 : #endif
1494 :
1495 : #ifdef CONFIG_X86_MCE
1496 : void __user *mce_vaddr;
1497 : __u64 mce_kflags;
1498 : u64 mce_addr;
1499 : __u64 mce_ripv : 1,
1500 : mce_whole_page : 1,
1501 : __mce_reserved : 62;
1502 : struct callback_head mce_kill_me;
1503 : int mce_count;
1504 : #endif
1505 :
1506 : #ifdef CONFIG_KRETPROBES
1507 : struct llist_head kretprobe_instances;
1508 : #endif
1509 : #ifdef CONFIG_RETHOOK
1510 : struct llist_head rethooks;
1511 : #endif
1512 :
1513 : #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1514 : /*
1515 : * If L1D flush is supported on mm context switch
1516 : * then we use this callback head to queue kill work
1517 : * to kill tasks that are not running on SMT disabled
1518 : * cores
1519 : */
1520 : struct callback_head l1d_flush_kill;
1521 : #endif
1522 :
1523 : #ifdef CONFIG_RV
1524 : /*
1525 : * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1526 : * If we find justification for more monitors, we can think
1527 : * about adding more or developing a dynamic method. So far,
1528 : * none of these are justified.
1529 : */
1530 : union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1531 : #endif
1532 :
1533 : #ifdef CONFIG_USER_EVENTS
1534 : struct user_event_mm *user_event_mm;
1535 : #endif
1536 :
1537 : /*
1538 : * New fields for task_struct should be added above here, so that
1539 : * they are included in the randomized portion of task_struct.
1540 : */
1541 : randomized_struct_fields_end
1542 :
1543 : /* CPU-specific state of this task: */
1544 : struct thread_struct thread;
1545 :
1546 : /*
1547 : * WARNING: on x86, 'thread_struct' contains a variable-sized
1548 : * structure. It *MUST* be at the end of 'task_struct'.
1549 : *
1550 : * Do not put anything below here!
1551 : */
1552 : };
1553 :
1554 : static inline struct pid *task_pid(struct task_struct *task)
1555 : {
1556 : return task->thread_pid;
1557 : }
1558 :
1559 : /*
1560 : * the helpers to get the task's different pids as they are seen
1561 : * from various namespaces
1562 : *
1563 : * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1564 : * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1565 : * current.
1566 : * task_xid_nr_ns() : id seen from the ns specified;
1567 : *
1568 : * see also pid_nr() etc in include/linux/pid.h
1569 : */
1570 : pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1571 :
1572 : static inline pid_t task_pid_nr(struct task_struct *tsk)
1573 : {
1574 : return tsk->pid;
1575 : }
1576 :
1577 : static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1578 : {
1579 367 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1580 : }
1581 :
1582 : static inline pid_t task_pid_vnr(struct task_struct *tsk)
1583 : {
1584 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1585 : }
1586 :
1587 :
1588 : static inline pid_t task_tgid_nr(struct task_struct *tsk)
1589 : {
1590 : return tsk->tgid;
1591 : }
1592 :
1593 : /**
1594 : * pid_alive - check that a task structure is not stale
1595 : * @p: Task structure to be checked.
1596 : *
1597 : * Test if a process is not yet dead (at most zombie state)
1598 : * If pid_alive fails, then pointers within the task structure
1599 : * can be stale and must not be dereferenced.
1600 : *
1601 : * Return: 1 if the process is alive. 0 otherwise.
1602 : */
1603 : static inline int pid_alive(const struct task_struct *p)
1604 : {
1605 : return p->thread_pid != NULL;
1606 : }
1607 :
1608 : static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1609 : {
1610 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1611 : }
1612 :
1613 : static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1614 : {
1615 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1616 : }
1617 :
1618 :
1619 : static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1620 : {
1621 0 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1622 : }
1623 :
1624 : static inline pid_t task_session_vnr(struct task_struct *tsk)
1625 : {
1626 0 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1627 : }
1628 :
1629 : static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1630 : {
1631 0 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1632 : }
1633 :
1634 : static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1635 : {
1636 0 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1637 : }
1638 :
1639 : static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1640 : {
1641 : pid_t pid = 0;
1642 :
1643 : rcu_read_lock();
1644 : if (pid_alive(tsk))
1645 : pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1646 : rcu_read_unlock();
1647 :
1648 : return pid;
1649 : }
1650 :
1651 : static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1652 : {
1653 : return task_ppid_nr_ns(tsk, &init_pid_ns);
1654 : }
1655 :
1656 : /* Obsolete, do not use: */
1657 : static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1658 : {
1659 : return task_pgrp_nr_ns(tsk, &init_pid_ns);
1660 : }
1661 :
1662 : #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1663 : #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1664 :
1665 : static inline unsigned int __task_state_index(unsigned int tsk_state,
1666 : unsigned int tsk_exit_state)
1667 : {
1668 0 : unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1669 :
1670 : BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1671 :
1672 0 : if (tsk_state == TASK_IDLE)
1673 0 : state = TASK_REPORT_IDLE;
1674 :
1675 : /*
1676 : * We're lying here, but rather than expose a completely new task state
1677 : * to userspace, we can make this appear as if the task has gone through
1678 : * a regular rt_mutex_lock() call.
1679 : */
1680 0 : if (tsk_state == TASK_RTLOCK_WAIT)
1681 0 : state = TASK_UNINTERRUPTIBLE;
1682 :
1683 0 : return fls(state);
1684 : }
1685 :
1686 : static inline unsigned int task_state_index(struct task_struct *tsk)
1687 : {
1688 0 : return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1689 : }
1690 :
1691 : static inline char task_index_to_char(unsigned int state)
1692 : {
1693 : static const char state_char[] = "RSDTtXZPI";
1694 :
1695 : BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1696 :
1697 0 : return state_char[state];
1698 : }
1699 :
1700 : static inline char task_state_to_char(struct task_struct *tsk)
1701 : {
1702 0 : return task_index_to_char(task_state_index(tsk));
1703 : }
1704 :
1705 : /**
1706 : * is_global_init - check if a task structure is init. Since init
1707 : * is free to have sub-threads we need to check tgid.
1708 : * @tsk: Task structure to be checked.
1709 : *
1710 : * Check if a task structure is the first user space task the kernel created.
1711 : *
1712 : * Return: 1 if the task structure is init. 0 otherwise.
1713 : */
1714 : static inline int is_global_init(struct task_struct *tsk)
1715 : {
1716 367 : return task_tgid_nr(tsk) == 1;
1717 : }
1718 :
1719 : extern struct pid *cad_pid;
1720 :
1721 : /*
1722 : * Per process flags
1723 : */
1724 : #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1725 : #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1726 : #define PF_EXITING 0x00000004 /* Getting shut down */
1727 : #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1728 : #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1729 : #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1730 : #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1731 : #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1732 : #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1733 : #define PF_DUMPCORE 0x00000200 /* Dumped core */
1734 : #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1735 : #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1736 : #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1737 : #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1738 : #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1739 : #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1740 : #define PF__HOLE__00010000 0x00010000
1741 : #define PF_KSWAPD 0x00020000 /* I am kswapd */
1742 : #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1743 : #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1744 : #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1745 : * I am cleaning dirty pages from some other bdi. */
1746 : #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1747 : #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1748 : #define PF__HOLE__00800000 0x00800000
1749 : #define PF__HOLE__01000000 0x01000000
1750 : #define PF__HOLE__02000000 0x02000000
1751 : #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1752 : #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1753 : #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1754 : #define PF__HOLE__20000000 0x20000000
1755 : #define PF__HOLE__40000000 0x40000000
1756 : #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1757 :
1758 : /*
1759 : * Only the _current_ task can read/write to tsk->flags, but other
1760 : * tasks can access tsk->flags in readonly mode for example
1761 : * with tsk_used_math (like during threaded core dumping).
1762 : * There is however an exception to this rule during ptrace
1763 : * or during fork: the ptracer task is allowed to write to the
1764 : * child->flags of its traced child (same goes for fork, the parent
1765 : * can write to the child->flags), because we're guaranteed the
1766 : * child is not running and in turn not changing child->flags
1767 : * at the same time the parent does it.
1768 : */
1769 : #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1770 : #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1771 : #define clear_used_math() clear_stopped_child_used_math(current)
1772 : #define set_used_math() set_stopped_child_used_math(current)
1773 :
1774 : #define conditional_stopped_child_used_math(condition, child) \
1775 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1776 :
1777 : #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1778 :
1779 : #define copy_to_stopped_child_used_math(child) \
1780 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1781 :
1782 : /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1783 : #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1784 : #define used_math() tsk_used_math(current)
1785 :
1786 : static __always_inline bool is_percpu_thread(void)
1787 : {
1788 : #ifdef CONFIG_SMP
1789 : return (current->flags & PF_NO_SETAFFINITY) &&
1790 : (current->nr_cpus_allowed == 1);
1791 : #else
1792 : return true;
1793 : #endif
1794 : }
1795 :
1796 : /* Per-process atomic flags. */
1797 : #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1798 : #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1799 : #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1800 : #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1801 : #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1802 : #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1803 : #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1804 : #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1805 :
1806 : #define TASK_PFA_TEST(name, func) \
1807 : static inline bool task_##func(struct task_struct *p) \
1808 : { return test_bit(PFA_##name, &p->atomic_flags); }
1809 :
1810 : #define TASK_PFA_SET(name, func) \
1811 : static inline void task_set_##func(struct task_struct *p) \
1812 : { set_bit(PFA_##name, &p->atomic_flags); }
1813 :
1814 : #define TASK_PFA_CLEAR(name, func) \
1815 : static inline void task_clear_##func(struct task_struct *p) \
1816 : { clear_bit(PFA_##name, &p->atomic_flags); }
1817 :
1818 764 : TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1819 0 : TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1820 :
1821 : TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1822 : TASK_PFA_SET(SPREAD_PAGE, spread_page)
1823 : TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1824 :
1825 : TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1826 : TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1827 : TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1828 :
1829 : TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1830 : TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1831 : TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1832 :
1833 : TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1834 : TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1835 : TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1836 :
1837 : TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1838 : TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1839 :
1840 : TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1841 : TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1842 : TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1843 :
1844 : TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1845 : TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1846 :
1847 : static inline void
1848 : current_restore_flags(unsigned long orig_flags, unsigned long flags)
1849 : {
1850 481 : current->flags &= ~flags;
1851 481 : current->flags |= orig_flags & flags;
1852 : }
1853 :
1854 : extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1855 : extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1856 : #ifdef CONFIG_SMP
1857 : extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1858 : extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1859 : extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1860 : extern void release_user_cpus_ptr(struct task_struct *p);
1861 : extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1862 : extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1863 : extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1864 : #else
1865 : static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1866 : {
1867 : }
1868 : static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1869 : {
1870 385 : if (!cpumask_test_cpu(0, new_mask))
1871 : return -EINVAL;
1872 : return 0;
1873 : }
1874 : static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1875 : {
1876 : if (src->user_cpus_ptr)
1877 : return -EINVAL;
1878 : return 0;
1879 : }
1880 : static inline void release_user_cpus_ptr(struct task_struct *p)
1881 : {
1882 366 : WARN_ON(p->user_cpus_ptr);
1883 : }
1884 :
1885 : static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1886 : {
1887 : return 0;
1888 : }
1889 : #endif
1890 :
1891 : extern int yield_to(struct task_struct *p, bool preempt);
1892 : extern void set_user_nice(struct task_struct *p, long nice);
1893 : extern int task_prio(const struct task_struct *p);
1894 :
1895 : /**
1896 : * task_nice - return the nice value of a given task.
1897 : * @p: the task in question.
1898 : *
1899 : * Return: The nice value [ -20 ... 0 ... 19 ].
1900 : */
1901 : static inline int task_nice(const struct task_struct *p)
1902 : {
1903 3326 : return PRIO_TO_NICE((p)->static_prio);
1904 : }
1905 :
1906 : extern int can_nice(const struct task_struct *p, const int nice);
1907 : extern int task_curr(const struct task_struct *p);
1908 : extern int idle_cpu(int cpu);
1909 : extern int available_idle_cpu(int cpu);
1910 : extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1911 : extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1912 : extern void sched_set_fifo(struct task_struct *p);
1913 : extern void sched_set_fifo_low(struct task_struct *p);
1914 : extern void sched_set_normal(struct task_struct *p, int nice);
1915 : extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1916 : extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1917 : extern struct task_struct *idle_task(int cpu);
1918 :
1919 : /**
1920 : * is_idle_task - is the specified task an idle task?
1921 : * @p: the task in question.
1922 : *
1923 : * Return: 1 if @p is an idle task. 0 otherwise.
1924 : */
1925 : static __always_inline bool is_idle_task(const struct task_struct *p)
1926 : {
1927 4865 : return !!(p->flags & PF_IDLE);
1928 : }
1929 :
1930 : extern struct task_struct *curr_task(int cpu);
1931 : extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1932 :
1933 : void yield(void);
1934 :
1935 : union thread_union {
1936 : #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1937 : struct task_struct task;
1938 : #endif
1939 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1940 : struct thread_info thread_info;
1941 : #endif
1942 : unsigned long stack[THREAD_SIZE/sizeof(long)];
1943 : };
1944 :
1945 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1946 : extern struct thread_info init_thread_info;
1947 : #endif
1948 :
1949 : extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1950 :
1951 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1952 : # define task_thread_info(task) (&(task)->thread_info)
1953 : #elif !defined(__HAVE_THREAD_FUNCTIONS)
1954 : # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1955 : #endif
1956 :
1957 : /*
1958 : * find a task by one of its numerical ids
1959 : *
1960 : * find_task_by_pid_ns():
1961 : * finds a task by its pid in the specified namespace
1962 : * find_task_by_vpid():
1963 : * finds a task by its virtual pid
1964 : *
1965 : * see also find_vpid() etc in include/linux/pid.h
1966 : */
1967 :
1968 : extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 : extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1970 :
1971 : /*
1972 : * find a task by its virtual pid and get the task struct
1973 : */
1974 : extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1975 :
1976 : extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1977 : extern int wake_up_process(struct task_struct *tsk);
1978 : extern void wake_up_new_task(struct task_struct *tsk);
1979 :
1980 : #ifdef CONFIG_SMP
1981 : extern void kick_process(struct task_struct *tsk);
1982 : #else
1983 : static inline void kick_process(struct task_struct *tsk) { }
1984 : #endif
1985 :
1986 : extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1987 :
1988 : static inline void set_task_comm(struct task_struct *tsk, const char *from)
1989 : {
1990 1 : __set_task_comm(tsk, from, false);
1991 : }
1992 :
1993 : extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1994 : #define get_task_comm(buf, tsk) ({ \
1995 : BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1996 : __get_task_comm(buf, sizeof(buf), tsk); \
1997 : })
1998 :
1999 : #ifdef CONFIG_SMP
2000 : static __always_inline void scheduler_ipi(void)
2001 : {
2002 : /*
2003 : * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2004 : * TIF_NEED_RESCHED remotely (for the first time) will also send
2005 : * this IPI.
2006 : */
2007 : preempt_fold_need_resched();
2008 : }
2009 : extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2010 : #else
2011 : static inline void scheduler_ipi(void) { }
2012 : static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2013 : {
2014 : return 1;
2015 : }
2016 : #endif
2017 :
2018 : /*
2019 : * Set thread flags in other task's structures.
2020 : * See asm/thread_info.h for TIF_xxxx flags available:
2021 : */
2022 : static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2023 : {
2024 2450 : set_ti_thread_flag(task_thread_info(tsk), flag);
2025 : }
2026 :
2027 : static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2028 : {
2029 7290 : clear_ti_thread_flag(task_thread_info(tsk), flag);
2030 : }
2031 :
2032 : static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2033 : bool value)
2034 : {
2035 : update_ti_thread_flag(task_thread_info(tsk), flag, value);
2036 : }
2037 :
2038 : static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2039 : {
2040 0 : return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2041 : }
2042 :
2043 : static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2044 : {
2045 : return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2046 : }
2047 :
2048 : static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2049 : {
2050 12072 : return test_ti_thread_flag(task_thread_info(tsk), flag);
2051 : }
2052 :
2053 : static inline void set_tsk_need_resched(struct task_struct *tsk)
2054 : {
2055 1686 : set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2056 : }
2057 :
2058 : static inline void clear_tsk_need_resched(struct task_struct *tsk)
2059 : {
2060 5790 : clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2061 : }
2062 :
2063 : static inline int test_tsk_need_resched(struct task_struct *tsk)
2064 : {
2065 11912 : return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2066 : }
2067 :
2068 : /*
2069 : * cond_resched() and cond_resched_lock(): latency reduction via
2070 : * explicit rescheduling in places that are safe. The return
2071 : * value indicates whether a reschedule was done in fact.
2072 : * cond_resched_lock() will drop the spinlock before scheduling,
2073 : */
2074 : #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2075 : extern int __cond_resched(void);
2076 :
2077 : #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2078 :
2079 : void sched_dynamic_klp_enable(void);
2080 : void sched_dynamic_klp_disable(void);
2081 :
2082 : DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2083 :
2084 : static __always_inline int _cond_resched(void)
2085 : {
2086 : return static_call_mod(cond_resched)();
2087 : }
2088 :
2089 : #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2090 :
2091 : extern int dynamic_cond_resched(void);
2092 :
2093 : static __always_inline int _cond_resched(void)
2094 : {
2095 : return dynamic_cond_resched();
2096 : }
2097 :
2098 : #else /* !CONFIG_PREEMPTION */
2099 :
2100 : static inline int _cond_resched(void)
2101 : {
2102 : klp_sched_try_switch();
2103 47766 : return __cond_resched();
2104 : }
2105 :
2106 : #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2107 :
2108 : #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2109 :
2110 : static inline int _cond_resched(void)
2111 : {
2112 : klp_sched_try_switch();
2113 : return 0;
2114 : }
2115 :
2116 : #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2117 :
2118 : #define cond_resched() ({ \
2119 : __might_resched(__FILE__, __LINE__, 0); \
2120 : _cond_resched(); \
2121 : })
2122 :
2123 : extern int __cond_resched_lock(spinlock_t *lock);
2124 : extern int __cond_resched_rwlock_read(rwlock_t *lock);
2125 : extern int __cond_resched_rwlock_write(rwlock_t *lock);
2126 :
2127 : #define MIGHT_RESCHED_RCU_SHIFT 8
2128 : #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2129 :
2130 : #ifndef CONFIG_PREEMPT_RT
2131 : /*
2132 : * Non RT kernels have an elevated preempt count due to the held lock,
2133 : * but are not allowed to be inside a RCU read side critical section
2134 : */
2135 : # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2136 : #else
2137 : /*
2138 : * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2139 : * cond_resched*lock() has to take that into account because it checks for
2140 : * preempt_count() and rcu_preempt_depth().
2141 : */
2142 : # define PREEMPT_LOCK_RESCHED_OFFSETS \
2143 : (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2144 : #endif
2145 :
2146 : #define cond_resched_lock(lock) ({ \
2147 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2148 : __cond_resched_lock(lock); \
2149 : })
2150 :
2151 : #define cond_resched_rwlock_read(lock) ({ \
2152 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2153 : __cond_resched_rwlock_read(lock); \
2154 : })
2155 :
2156 : #define cond_resched_rwlock_write(lock) ({ \
2157 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2158 : __cond_resched_rwlock_write(lock); \
2159 : })
2160 :
2161 : static inline void cond_resched_rcu(void)
2162 : {
2163 : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2164 : rcu_read_unlock();
2165 0 : cond_resched();
2166 : rcu_read_lock();
2167 : #endif
2168 : }
2169 :
2170 : #ifdef CONFIG_PREEMPT_DYNAMIC
2171 :
2172 : extern bool preempt_model_none(void);
2173 : extern bool preempt_model_voluntary(void);
2174 : extern bool preempt_model_full(void);
2175 :
2176 : #else
2177 :
2178 : static inline bool preempt_model_none(void)
2179 : {
2180 : return IS_ENABLED(CONFIG_PREEMPT_NONE);
2181 : }
2182 : static inline bool preempt_model_voluntary(void)
2183 : {
2184 : return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2185 : }
2186 : static inline bool preempt_model_full(void)
2187 : {
2188 : return IS_ENABLED(CONFIG_PREEMPT);
2189 : }
2190 :
2191 : #endif
2192 :
2193 : static inline bool preempt_model_rt(void)
2194 : {
2195 : return IS_ENABLED(CONFIG_PREEMPT_RT);
2196 : }
2197 :
2198 : /*
2199 : * Does the preemption model allow non-cooperative preemption?
2200 : *
2201 : * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2202 : * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2203 : * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2204 : * PREEMPT_NONE model.
2205 : */
2206 : static inline bool preempt_model_preemptible(void)
2207 : {
2208 : return preempt_model_full() || preempt_model_rt();
2209 : }
2210 :
2211 : /*
2212 : * Does a critical section need to be broken due to another
2213 : * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2214 : * but a general need for low latency)
2215 : */
2216 : static inline int spin_needbreak(spinlock_t *lock)
2217 : {
2218 : #ifdef CONFIG_PREEMPTION
2219 : return spin_is_contended(lock);
2220 : #else
2221 : return 0;
2222 : #endif
2223 : }
2224 :
2225 : /*
2226 : * Check if a rwlock is contended.
2227 : * Returns non-zero if there is another task waiting on the rwlock.
2228 : * Returns zero if the lock is not contended or the system / underlying
2229 : * rwlock implementation does not support contention detection.
2230 : * Technically does not depend on CONFIG_PREEMPTION, but a general need
2231 : * for low latency.
2232 : */
2233 : static inline int rwlock_needbreak(rwlock_t *lock)
2234 : {
2235 : #ifdef CONFIG_PREEMPTION
2236 : return rwlock_is_contended(lock);
2237 : #else
2238 : return 0;
2239 : #endif
2240 : }
2241 :
2242 : static __always_inline bool need_resched(void)
2243 : {
2244 2497 : return unlikely(tif_need_resched());
2245 : }
2246 :
2247 : /*
2248 : * Wrappers for p->thread_info->cpu access. No-op on UP.
2249 : */
2250 : #ifdef CONFIG_SMP
2251 :
2252 : static inline unsigned int task_cpu(const struct task_struct *p)
2253 : {
2254 : return READ_ONCE(task_thread_info(p)->cpu);
2255 : }
2256 :
2257 : extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2258 :
2259 : #else
2260 :
2261 : static inline unsigned int task_cpu(const struct task_struct *p)
2262 : {
2263 : return 0;
2264 : }
2265 :
2266 : static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2267 : {
2268 : }
2269 :
2270 : #endif /* CONFIG_SMP */
2271 :
2272 : extern bool sched_task_on_rq(struct task_struct *p);
2273 : extern unsigned long get_wchan(struct task_struct *p);
2274 : extern struct task_struct *cpu_curr_snapshot(int cpu);
2275 :
2276 : /*
2277 : * In order to reduce various lock holder preemption latencies provide an
2278 : * interface to see if a vCPU is currently running or not.
2279 : *
2280 : * This allows us to terminate optimistic spin loops and block, analogous to
2281 : * the native optimistic spin heuristic of testing if the lock owner task is
2282 : * running or not.
2283 : */
2284 : #ifndef vcpu_is_preempted
2285 : static inline bool vcpu_is_preempted(int cpu)
2286 : {
2287 : return false;
2288 : }
2289 : #endif
2290 :
2291 : extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2292 : extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2293 :
2294 : #ifndef TASK_SIZE_OF
2295 : #define TASK_SIZE_OF(tsk) TASK_SIZE
2296 : #endif
2297 :
2298 : #ifdef CONFIG_SMP
2299 : static inline bool owner_on_cpu(struct task_struct *owner)
2300 : {
2301 : /*
2302 : * As lock holder preemption issue, we both skip spinning if
2303 : * task is not on cpu or its cpu is preempted
2304 : */
2305 : return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2306 : }
2307 :
2308 : /* Returns effective CPU energy utilization, as seen by the scheduler */
2309 : unsigned long sched_cpu_util(int cpu);
2310 : #endif /* CONFIG_SMP */
2311 :
2312 : #ifdef CONFIG_RSEQ
2313 :
2314 : /*
2315 : * Map the event mask on the user-space ABI enum rseq_cs_flags
2316 : * for direct mask checks.
2317 : */
2318 : enum rseq_event_mask_bits {
2319 : RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2320 : RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2321 : RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2322 : };
2323 :
2324 : enum rseq_event_mask {
2325 : RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2326 : RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2327 : RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2328 : };
2329 :
2330 : static inline void rseq_set_notify_resume(struct task_struct *t)
2331 : {
2332 : if (t->rseq)
2333 : set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2334 : }
2335 :
2336 : void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2337 :
2338 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2339 : struct pt_regs *regs)
2340 : {
2341 : if (current->rseq)
2342 : __rseq_handle_notify_resume(ksig, regs);
2343 : }
2344 :
2345 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2346 : struct pt_regs *regs)
2347 : {
2348 : preempt_disable();
2349 : __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2350 : preempt_enable();
2351 : rseq_handle_notify_resume(ksig, regs);
2352 : }
2353 :
2354 : /* rseq_preempt() requires preemption to be disabled. */
2355 : static inline void rseq_preempt(struct task_struct *t)
2356 : {
2357 : __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2358 : rseq_set_notify_resume(t);
2359 : }
2360 :
2361 : /* rseq_migrate() requires preemption to be disabled. */
2362 : static inline void rseq_migrate(struct task_struct *t)
2363 : {
2364 : __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2365 : rseq_set_notify_resume(t);
2366 : }
2367 :
2368 : /*
2369 : * If parent process has a registered restartable sequences area, the
2370 : * child inherits. Unregister rseq for a clone with CLONE_VM set.
2371 : */
2372 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2373 : {
2374 : if (clone_flags & CLONE_VM) {
2375 : t->rseq = NULL;
2376 : t->rseq_len = 0;
2377 : t->rseq_sig = 0;
2378 : t->rseq_event_mask = 0;
2379 : } else {
2380 : t->rseq = current->rseq;
2381 : t->rseq_len = current->rseq_len;
2382 : t->rseq_sig = current->rseq_sig;
2383 : t->rseq_event_mask = current->rseq_event_mask;
2384 : }
2385 : }
2386 :
2387 : static inline void rseq_execve(struct task_struct *t)
2388 : {
2389 : t->rseq = NULL;
2390 : t->rseq_len = 0;
2391 : t->rseq_sig = 0;
2392 : t->rseq_event_mask = 0;
2393 : }
2394 :
2395 : #else
2396 :
2397 : static inline void rseq_set_notify_resume(struct task_struct *t)
2398 : {
2399 : }
2400 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2401 : struct pt_regs *regs)
2402 : {
2403 : }
2404 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2405 : struct pt_regs *regs)
2406 : {
2407 : }
2408 : static inline void rseq_preempt(struct task_struct *t)
2409 : {
2410 : }
2411 : static inline void rseq_migrate(struct task_struct *t)
2412 : {
2413 : }
2414 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2415 : {
2416 : }
2417 : static inline void rseq_execve(struct task_struct *t)
2418 : {
2419 : }
2420 :
2421 : #endif
2422 :
2423 : #ifdef CONFIG_DEBUG_RSEQ
2424 :
2425 : void rseq_syscall(struct pt_regs *regs);
2426 :
2427 : #else
2428 :
2429 : static inline void rseq_syscall(struct pt_regs *regs)
2430 : {
2431 : }
2432 :
2433 : #endif
2434 :
2435 : #ifdef CONFIG_SCHED_CORE
2436 : extern void sched_core_free(struct task_struct *tsk);
2437 : extern void sched_core_fork(struct task_struct *p);
2438 : extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2439 : unsigned long uaddr);
2440 : #else
2441 : static inline void sched_core_free(struct task_struct *tsk) { }
2442 : static inline void sched_core_fork(struct task_struct *p) { }
2443 : #endif
2444 :
2445 : extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2446 :
2447 : #endif
|