LCOV - code coverage report
Current view: top level - include/linux - slab.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 40 52 76.9 %
Date: 2023-07-19 18:55:55 Functions: 4 4 100.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : /*
       3             :  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
       4             :  *
       5             :  * (C) SGI 2006, Christoph Lameter
       6             :  *      Cleaned up and restructured to ease the addition of alternative
       7             :  *      implementations of SLAB allocators.
       8             :  * (C) Linux Foundation 2008-2013
       9             :  *      Unified interface for all slab allocators
      10             :  */
      11             : 
      12             : #ifndef _LINUX_SLAB_H
      13             : #define _LINUX_SLAB_H
      14             : 
      15             : #include <linux/gfp.h>
      16             : #include <linux/overflow.h>
      17             : #include <linux/types.h>
      18             : #include <linux/workqueue.h>
      19             : #include <linux/percpu-refcount.h>
      20             : 
      21             : 
      22             : /*
      23             :  * Flags to pass to kmem_cache_create().
      24             :  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
      25             :  */
      26             : /* DEBUG: Perform (expensive) checks on alloc/free */
      27             : #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
      28             : /* DEBUG: Red zone objs in a cache */
      29             : #define SLAB_RED_ZONE           ((slab_flags_t __force)0x00000400U)
      30             : /* DEBUG: Poison objects */
      31             : #define SLAB_POISON             ((slab_flags_t __force)0x00000800U)
      32             : /* Indicate a kmalloc slab */
      33             : #define SLAB_KMALLOC            ((slab_flags_t __force)0x00001000U)
      34             : /* Align objs on cache lines */
      35             : #define SLAB_HWCACHE_ALIGN      ((slab_flags_t __force)0x00002000U)
      36             : /* Use GFP_DMA memory */
      37             : #define SLAB_CACHE_DMA          ((slab_flags_t __force)0x00004000U)
      38             : /* Use GFP_DMA32 memory */
      39             : #define SLAB_CACHE_DMA32        ((slab_flags_t __force)0x00008000U)
      40             : /* DEBUG: Store the last owner for bug hunting */
      41             : #define SLAB_STORE_USER         ((slab_flags_t __force)0x00010000U)
      42             : /* Panic if kmem_cache_create() fails */
      43             : #define SLAB_PANIC              ((slab_flags_t __force)0x00040000U)
      44             : /*
      45             :  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
      46             :  *
      47             :  * This delays freeing the SLAB page by a grace period, it does _NOT_
      48             :  * delay object freeing. This means that if you do kmem_cache_free()
      49             :  * that memory location is free to be reused at any time. Thus it may
      50             :  * be possible to see another object there in the same RCU grace period.
      51             :  *
      52             :  * This feature only ensures the memory location backing the object
      53             :  * stays valid, the trick to using this is relying on an independent
      54             :  * object validation pass. Something like:
      55             :  *
      56             :  *  rcu_read_lock()
      57             :  * again:
      58             :  *  obj = lockless_lookup(key);
      59             :  *  if (obj) {
      60             :  *    if (!try_get_ref(obj)) // might fail for free objects
      61             :  *      goto again;
      62             :  *
      63             :  *    if (obj->key != key) { // not the object we expected
      64             :  *      put_ref(obj);
      65             :  *      goto again;
      66             :  *    }
      67             :  *  }
      68             :  *  rcu_read_unlock();
      69             :  *
      70             :  * This is useful if we need to approach a kernel structure obliquely,
      71             :  * from its address obtained without the usual locking. We can lock
      72             :  * the structure to stabilize it and check it's still at the given address,
      73             :  * only if we can be sure that the memory has not been meanwhile reused
      74             :  * for some other kind of object (which our subsystem's lock might corrupt).
      75             :  *
      76             :  * rcu_read_lock before reading the address, then rcu_read_unlock after
      77             :  * taking the spinlock within the structure expected at that address.
      78             :  *
      79             :  * Note that it is not possible to acquire a lock within a structure
      80             :  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
      81             :  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
      82             :  * are not zeroed before being given to the slab, which means that any
      83             :  * locks must be initialized after each and every kmem_struct_alloc().
      84             :  * Alternatively, make the ctor passed to kmem_cache_create() initialize
      85             :  * the locks at page-allocation time, as is done in __i915_request_ctor(),
      86             :  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
      87             :  * to safely acquire those ctor-initialized locks under rcu_read_lock()
      88             :  * protection.
      89             :  *
      90             :  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
      91             :  */
      92             : /* Defer freeing slabs to RCU */
      93             : #define SLAB_TYPESAFE_BY_RCU    ((slab_flags_t __force)0x00080000U)
      94             : /* Spread some memory over cpuset */
      95             : #define SLAB_MEM_SPREAD         ((slab_flags_t __force)0x00100000U)
      96             : /* Trace allocations and frees */
      97             : #define SLAB_TRACE              ((slab_flags_t __force)0x00200000U)
      98             : 
      99             : /* Flag to prevent checks on free */
     100             : #ifdef CONFIG_DEBUG_OBJECTS
     101             : # define SLAB_DEBUG_OBJECTS     ((slab_flags_t __force)0x00400000U)
     102             : #else
     103             : # define SLAB_DEBUG_OBJECTS     0
     104             : #endif
     105             : 
     106             : /* Avoid kmemleak tracing */
     107             : #define SLAB_NOLEAKTRACE        ((slab_flags_t __force)0x00800000U)
     108             : 
     109             : /* Fault injection mark */
     110             : #ifdef CONFIG_FAILSLAB
     111             : # define SLAB_FAILSLAB          ((slab_flags_t __force)0x02000000U)
     112             : #else
     113             : # define SLAB_FAILSLAB          0
     114             : #endif
     115             : /* Account to memcg */
     116             : #ifdef CONFIG_MEMCG_KMEM
     117             : # define SLAB_ACCOUNT           ((slab_flags_t __force)0x04000000U)
     118             : #else
     119             : # define SLAB_ACCOUNT           0
     120             : #endif
     121             : 
     122             : #ifdef CONFIG_KASAN_GENERIC
     123             : #define SLAB_KASAN              ((slab_flags_t __force)0x08000000U)
     124             : #else
     125             : #define SLAB_KASAN              0
     126             : #endif
     127             : 
     128             : /*
     129             :  * Ignore user specified debugging flags.
     130             :  * Intended for caches created for self-tests so they have only flags
     131             :  * specified in the code and other flags are ignored.
     132             :  */
     133             : #define SLAB_NO_USER_FLAGS      ((slab_flags_t __force)0x10000000U)
     134             : 
     135             : #ifdef CONFIG_KFENCE
     136             : #define SLAB_SKIP_KFENCE        ((slab_flags_t __force)0x20000000U)
     137             : #else
     138             : #define SLAB_SKIP_KFENCE        0
     139             : #endif
     140             : 
     141             : /* The following flags affect the page allocator grouping pages by mobility */
     142             : /* Objects are reclaimable */
     143             : #ifndef CONFIG_SLUB_TINY
     144             : #define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0x00020000U)
     145             : #else
     146             : #define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0)
     147             : #endif
     148             : #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
     149             : 
     150             : /*
     151             :  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
     152             :  *
     153             :  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
     154             :  *
     155             :  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
     156             :  * Both make kfree a no-op.
     157             :  */
     158             : #define ZERO_SIZE_PTR ((void *)16)
     159             : 
     160             : #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
     161             :                                 (unsigned long)ZERO_SIZE_PTR)
     162             : 
     163             : #include <linux/kasan.h>
     164             : 
     165             : struct list_lru;
     166             : struct mem_cgroup;
     167             : /*
     168             :  * struct kmem_cache related prototypes
     169             :  */
     170             : bool slab_is_available(void);
     171             : 
     172             : struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
     173             :                         unsigned int align, slab_flags_t flags,
     174             :                         void (*ctor)(void *));
     175             : struct kmem_cache *kmem_cache_create_usercopy(const char *name,
     176             :                         unsigned int size, unsigned int align,
     177             :                         slab_flags_t flags,
     178             :                         unsigned int useroffset, unsigned int usersize,
     179             :                         void (*ctor)(void *));
     180             : void kmem_cache_destroy(struct kmem_cache *s);
     181             : int kmem_cache_shrink(struct kmem_cache *s);
     182             : 
     183             : /*
     184             :  * Please use this macro to create slab caches. Simply specify the
     185             :  * name of the structure and maybe some flags that are listed above.
     186             :  *
     187             :  * The alignment of the struct determines object alignment. If you
     188             :  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
     189             :  * then the objects will be properly aligned in SMP configurations.
     190             :  */
     191             : #define KMEM_CACHE(__struct, __flags)                                   \
     192             :                 kmem_cache_create(#__struct, sizeof(struct __struct),   \
     193             :                         __alignof__(struct __struct), (__flags), NULL)
     194             : 
     195             : /*
     196             :  * To whitelist a single field for copying to/from usercopy, use this
     197             :  * macro instead for KMEM_CACHE() above.
     198             :  */
     199             : #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)                 \
     200             :                 kmem_cache_create_usercopy(#__struct,                   \
     201             :                         sizeof(struct __struct),                        \
     202             :                         __alignof__(struct __struct), (__flags),        \
     203             :                         offsetof(struct __struct, __field),             \
     204             :                         sizeof_field(struct __struct, __field), NULL)
     205             : 
     206             : /*
     207             :  * Common kmalloc functions provided by all allocators
     208             :  */
     209             : void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
     210             : void kfree(const void *objp);
     211             : void kfree_sensitive(const void *objp);
     212             : size_t __ksize(const void *objp);
     213             : 
     214             : /**
     215             :  * ksize - Report actual allocation size of associated object
     216             :  *
     217             :  * @objp: Pointer returned from a prior kmalloc()-family allocation.
     218             :  *
     219             :  * This should not be used for writing beyond the originally requested
     220             :  * allocation size. Either use krealloc() or round up the allocation size
     221             :  * with kmalloc_size_roundup() prior to allocation. If this is used to
     222             :  * access beyond the originally requested allocation size, UBSAN_BOUNDS
     223             :  * and/or FORTIFY_SOURCE may trip, since they only know about the
     224             :  * originally allocated size via the __alloc_size attribute.
     225             :  */
     226             : size_t ksize(const void *objp);
     227             : 
     228             : #ifdef CONFIG_PRINTK
     229             : bool kmem_valid_obj(void *object);
     230             : void kmem_dump_obj(void *object);
     231             : #endif
     232             : 
     233             : /*
     234             :  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
     235             :  * alignment larger than the alignment of a 64-bit integer.
     236             :  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
     237             :  */
     238             : #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
     239             : #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
     240             : #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
     241             : #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
     242             : #else
     243             : #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
     244             : #endif
     245             : 
     246             : /*
     247             :  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
     248             :  * Intended for arches that get misalignment faults even for 64 bit integer
     249             :  * aligned buffers.
     250             :  */
     251             : #ifndef ARCH_SLAB_MINALIGN
     252             : #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
     253             : #endif
     254             : 
     255             : /*
     256             :  * Arches can define this function if they want to decide the minimum slab
     257             :  * alignment at runtime. The value returned by the function must be a power
     258             :  * of two and >= ARCH_SLAB_MINALIGN.
     259             :  */
     260             : #ifndef arch_slab_minalign
     261             : static inline unsigned int arch_slab_minalign(void)
     262             : {
     263             :         return ARCH_SLAB_MINALIGN;
     264             : }
     265             : #endif
     266             : 
     267             : /*
     268             :  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
     269             :  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
     270             :  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
     271             :  */
     272             : #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
     273             : #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
     274             : #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
     275             : 
     276             : /*
     277             :  * Kmalloc array related definitions
     278             :  */
     279             : 
     280             : #ifdef CONFIG_SLAB
     281             : /*
     282             :  * SLAB and SLUB directly allocates requests fitting in to an order-1 page
     283             :  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
     284             :  */
     285             : #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
     286             : #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
     287             : #ifndef KMALLOC_SHIFT_LOW
     288             : #define KMALLOC_SHIFT_LOW       5
     289             : #endif
     290             : #endif
     291             : 
     292             : #ifdef CONFIG_SLUB
     293             : #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
     294             : #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
     295             : #ifndef KMALLOC_SHIFT_LOW
     296             : #define KMALLOC_SHIFT_LOW       3
     297             : #endif
     298             : #endif
     299             : 
     300             : /* Maximum allocatable size */
     301             : #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
     302             : /* Maximum size for which we actually use a slab cache */
     303             : #define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
     304             : /* Maximum order allocatable via the slab allocator */
     305             : #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
     306             : 
     307             : /*
     308             :  * Kmalloc subsystem.
     309             :  */
     310             : #ifndef KMALLOC_MIN_SIZE
     311             : #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
     312             : #endif
     313             : 
     314             : /*
     315             :  * This restriction comes from byte sized index implementation.
     316             :  * Page size is normally 2^12 bytes and, in this case, if we want to use
     317             :  * byte sized index which can represent 2^8 entries, the size of the object
     318             :  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
     319             :  * If minimum size of kmalloc is less than 16, we use it as minimum object
     320             :  * size and give up to use byte sized index.
     321             :  */
     322             : #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
     323             :                                (KMALLOC_MIN_SIZE) : 16)
     324             : 
     325             : /*
     326             :  * Whenever changing this, take care of that kmalloc_type() and
     327             :  * create_kmalloc_caches() still work as intended.
     328             :  *
     329             :  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
     330             :  * is for accounted but unreclaimable and non-dma objects. All the other
     331             :  * kmem caches can have both accounted and unaccounted objects.
     332             :  */
     333             : enum kmalloc_cache_type {
     334             :         KMALLOC_NORMAL = 0,
     335             : #ifndef CONFIG_ZONE_DMA
     336             :         KMALLOC_DMA = KMALLOC_NORMAL,
     337             : #endif
     338             : #ifndef CONFIG_MEMCG_KMEM
     339             :         KMALLOC_CGROUP = KMALLOC_NORMAL,
     340             : #endif
     341             : #ifdef CONFIG_SLUB_TINY
     342             :         KMALLOC_RECLAIM = KMALLOC_NORMAL,
     343             : #else
     344             :         KMALLOC_RECLAIM,
     345             : #endif
     346             : #ifdef CONFIG_ZONE_DMA
     347             :         KMALLOC_DMA,
     348             : #endif
     349             : #ifdef CONFIG_MEMCG_KMEM
     350             :         KMALLOC_CGROUP,
     351             : #endif
     352             :         NR_KMALLOC_TYPES
     353             : };
     354             : 
     355             : extern struct kmem_cache *
     356             : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
     357             : 
     358             : /*
     359             :  * Define gfp bits that should not be set for KMALLOC_NORMAL.
     360             :  */
     361             : #define KMALLOC_NOT_NORMAL_BITS                                 \
     362             :         (__GFP_RECLAIMABLE |                                    \
     363             :         (IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |       \
     364             :         (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
     365             : 
     366             : static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
     367             : {
     368             :         /*
     369             :          * The most common case is KMALLOC_NORMAL, so test for it
     370             :          * with a single branch for all the relevant flags.
     371             :          */
     372        7406 :         if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
     373             :                 return KMALLOC_NORMAL;
     374             : 
     375             :         /*
     376             :          * At least one of the flags has to be set. Their priorities in
     377             :          * decreasing order are:
     378             :          *  1) __GFP_DMA
     379             :          *  2) __GFP_RECLAIMABLE
     380             :          *  3) __GFP_ACCOUNT
     381             :          */
     382             :         if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
     383             :                 return KMALLOC_DMA;
     384             :         if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
     385             :                 return KMALLOC_RECLAIM;
     386             :         else
     387             :                 return KMALLOC_CGROUP;
     388             : }
     389             : 
     390             : /*
     391             :  * Figure out which kmalloc slab an allocation of a certain size
     392             :  * belongs to.
     393             :  * 0 = zero alloc
     394             :  * 1 =  65 .. 96 bytes
     395             :  * 2 = 129 .. 192 bytes
     396             :  * n = 2^(n-1)+1 .. 2^n
     397             :  *
     398             :  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
     399             :  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
     400             :  * Callers where !size_is_constant should only be test modules, where runtime
     401             :  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
     402             :  */
     403             : static __always_inline unsigned int __kmalloc_index(size_t size,
     404             :                                                     bool size_is_constant)
     405             : {
     406             :         if (!size)
     407             :                 return 0;
     408             : 
     409        2084 :         if (size <= KMALLOC_MIN_SIZE)
     410             :                 return KMALLOC_SHIFT_LOW;
     411             : 
     412        2051 :         if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
     413             :                 return 1;
     414        2051 :         if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
     415             :                 return 2;
     416             :         if (size <=          8) return 3;
     417        2050 :         if (size <=         16) return 4;
     418        2049 :         if (size <=         32) return 5;
     419        1984 :         if (size <=         64) return 6;
     420        1361 :         if (size <=        128) return 7;
     421        1361 :         if (size <=        256) return 8;
     422        1361 :         if (size <=        512) return 9;
     423        1338 :         if (size <=       1024) return 10;
     424         783 :         if (size <=   2 * 1024) return 11;
     425         751 :         if (size <=   4 * 1024) return 12;
     426             :         if (size <=   8 * 1024) return 13;
     427             :         if (size <=  16 * 1024) return 14;
     428             :         if (size <=  32 * 1024) return 15;
     429             :         if (size <=  64 * 1024) return 16;
     430             :         if (size <= 128 * 1024) return 17;
     431             :         if (size <= 256 * 1024) return 18;
     432             :         if (size <= 512 * 1024) return 19;
     433             :         if (size <= 1024 * 1024) return 20;
     434             :         if (size <=  2 * 1024 * 1024) return 21;
     435             : 
     436             :         if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
     437             :                 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
     438             :         else
     439             :                 BUG();
     440             : 
     441             :         /* Will never be reached. Needed because the compiler may complain */
     442             :         return -1;
     443             : }
     444             : static_assert(PAGE_SHIFT <= 20);
     445             : #define kmalloc_index(s) __kmalloc_index(s, true)
     446             : 
     447             : void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
     448             : 
     449             : /**
     450             :  * kmem_cache_alloc - Allocate an object
     451             :  * @cachep: The cache to allocate from.
     452             :  * @flags: See kmalloc().
     453             :  *
     454             :  * Allocate an object from this cache.
     455             :  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
     456             :  *
     457             :  * Return: pointer to the new object or %NULL in case of error
     458             :  */
     459             : void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
     460             : void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
     461             :                            gfp_t gfpflags) __assume_slab_alignment __malloc;
     462             : void kmem_cache_free(struct kmem_cache *s, void *objp);
     463             : 
     464             : /*
     465             :  * Bulk allocation and freeing operations. These are accelerated in an
     466             :  * allocator specific way to avoid taking locks repeatedly or building
     467             :  * metadata structures unnecessarily.
     468             :  *
     469             :  * Note that interrupts must be enabled when calling these functions.
     470             :  */
     471             : void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
     472             : int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
     473             : 
     474             : static __always_inline void kfree_bulk(size_t size, void **p)
     475             : {
     476             :         kmem_cache_free_bulk(NULL, size, p);
     477             : }
     478             : 
     479             : void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
     480             :                                                          __alloc_size(1);
     481             : void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
     482             :                                                                          __malloc;
     483             : 
     484             : void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
     485             :                     __assume_kmalloc_alignment __alloc_size(3);
     486             : 
     487             : void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
     488             :                          int node, size_t size) __assume_kmalloc_alignment
     489             :                                                 __alloc_size(4);
     490             : void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
     491             :                                               __alloc_size(1);
     492             : 
     493             : void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
     494             :                                                              __alloc_size(1);
     495             : 
     496             : /**
     497             :  * kmalloc - allocate kernel memory
     498             :  * @size: how many bytes of memory are required.
     499             :  * @flags: describe the allocation context
     500             :  *
     501             :  * kmalloc is the normal method of allocating memory
     502             :  * for objects smaller than page size in the kernel.
     503             :  *
     504             :  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
     505             :  * bytes. For @size of power of two bytes, the alignment is also guaranteed
     506             :  * to be at least to the size.
     507             :  *
     508             :  * The @flags argument may be one of the GFP flags defined at
     509             :  * include/linux/gfp_types.h and described at
     510             :  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
     511             :  *
     512             :  * The recommended usage of the @flags is described at
     513             :  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
     514             :  *
     515             :  * Below is a brief outline of the most useful GFP flags
     516             :  *
     517             :  * %GFP_KERNEL
     518             :  *      Allocate normal kernel ram. May sleep.
     519             :  *
     520             :  * %GFP_NOWAIT
     521             :  *      Allocation will not sleep.
     522             :  *
     523             :  * %GFP_ATOMIC
     524             :  *      Allocation will not sleep.  May use emergency pools.
     525             :  *
     526             :  * Also it is possible to set different flags by OR'ing
     527             :  * in one or more of the following additional @flags:
     528             :  *
     529             :  * %__GFP_ZERO
     530             :  *      Zero the allocated memory before returning. Also see kzalloc().
     531             :  *
     532             :  * %__GFP_HIGH
     533             :  *      This allocation has high priority and may use emergency pools.
     534             :  *
     535             :  * %__GFP_NOFAIL
     536             :  *      Indicate that this allocation is in no way allowed to fail
     537             :  *      (think twice before using).
     538             :  *
     539             :  * %__GFP_NORETRY
     540             :  *      If memory is not immediately available,
     541             :  *      then give up at once.
     542             :  *
     543             :  * %__GFP_NOWARN
     544             :  *      If allocation fails, don't issue any warnings.
     545             :  *
     546             :  * %__GFP_RETRY_MAYFAIL
     547             :  *      Try really hard to succeed the allocation but fail
     548             :  *      eventually.
     549             :  */
     550             : static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
     551             : {
     552        2735 :         if (__builtin_constant_p(size) && size) {
     553             :                 unsigned int index;
     554             : 
     555        1809 :                 if (size > KMALLOC_MAX_CACHE_SIZE)
     556           0 :                         return kmalloc_large(size, flags);
     557             : 
     558       41669 :                 index = kmalloc_index(size);
     559       41669 :                 return kmalloc_trace(
     560       41669 :                                 kmalloc_caches[kmalloc_type(flags)][index],
     561             :                                 flags, size);
     562             :         }
     563         926 :         return __kmalloc(size, flags);
     564             : }
     565             : 
     566             : static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
     567             : {
     568         548 :         if (__builtin_constant_p(size) && size) {
     569             :                 unsigned int index;
     570             : 
     571         275 :                 if (size > KMALLOC_MAX_CACHE_SIZE)
     572           0 :                         return kmalloc_large_node(size, flags, node);
     573             : 
     574         285 :                 index = kmalloc_index(size);
     575         285 :                 return kmalloc_node_trace(
     576         285 :                                 kmalloc_caches[kmalloc_type(flags)][index],
     577             :                                 flags, node, size);
     578             :         }
     579         273 :         return __kmalloc_node(size, flags, node);
     580             : }
     581             : 
     582             : /**
     583             :  * kmalloc_array - allocate memory for an array.
     584             :  * @n: number of elements.
     585             :  * @size: element size.
     586             :  * @flags: the type of memory to allocate (see kmalloc).
     587             :  */
     588        1143 : static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
     589             : {
     590             :         size_t bytes;
     591             : 
     592        2286 :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     593             :                 return NULL;
     594        1143 :         if (__builtin_constant_p(n) && __builtin_constant_p(size))
     595          66 :                 return kmalloc(bytes, flags);
     596        1077 :         return __kmalloc(bytes, flags);
     597             : }
     598             : 
     599             : /**
     600             :  * krealloc_array - reallocate memory for an array.
     601             :  * @p: pointer to the memory chunk to reallocate
     602             :  * @new_n: new number of elements to alloc
     603             :  * @new_size: new size of a single member of the array
     604             :  * @flags: the type of memory to allocate (see kmalloc)
     605             :  */
     606             : static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
     607             :                                                                       size_t new_n,
     608             :                                                                       size_t new_size,
     609             :                                                                       gfp_t flags)
     610             : {
     611             :         size_t bytes;
     612             : 
     613           0 :         if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
     614             :                 return NULL;
     615             : 
     616           0 :         return krealloc(p, bytes, flags);
     617             : }
     618             : 
     619             : /**
     620             :  * kcalloc - allocate memory for an array. The memory is set to zero.
     621             :  * @n: number of elements.
     622             :  * @size: element size.
     623             :  * @flags: the type of memory to allocate (see kmalloc).
     624             :  */
     625             : static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
     626             : {
     627         608 :         return kmalloc_array(n, size, flags | __GFP_ZERO);
     628             : }
     629             : 
     630             : void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
     631             :                                   unsigned long caller) __alloc_size(1);
     632             : #define kmalloc_node_track_caller(size, flags, node) \
     633             :         __kmalloc_node_track_caller(size, flags, node, \
     634             :                                     _RET_IP_)
     635             : 
     636             : /*
     637             :  * kmalloc_track_caller is a special version of kmalloc that records the
     638             :  * calling function of the routine calling it for slab leak tracking instead
     639             :  * of just the calling function (confusing, eh?).
     640             :  * It's useful when the call to kmalloc comes from a widely-used standard
     641             :  * allocator where we care about the real place the memory allocation
     642             :  * request comes from.
     643             :  */
     644             : #define kmalloc_track_caller(size, flags) \
     645             :         __kmalloc_node_track_caller(size, flags, \
     646             :                                     NUMA_NO_NODE, _RET_IP_)
     647             : 
     648           4 : static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
     649             :                                                           int node)
     650             : {
     651             :         size_t bytes;
     652             : 
     653           8 :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     654             :                 return NULL;
     655           4 :         if (__builtin_constant_p(n) && __builtin_constant_p(size))
     656           0 :                 return kmalloc_node(bytes, flags, node);
     657           4 :         return __kmalloc_node(bytes, flags, node);
     658             : }
     659             : 
     660             : static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
     661             : {
     662           0 :         return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
     663             : }
     664             : 
     665             : /*
     666             :  * Shortcuts
     667             :  */
     668             : static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
     669             : {
     670       11548 :         return kmem_cache_alloc(k, flags | __GFP_ZERO);
     671             : }
     672             : 
     673             : /**
     674             :  * kzalloc - allocate memory. The memory is set to zero.
     675             :  * @size: how many bytes of memory are required.
     676             :  * @flags: the type of memory to allocate (see kmalloc).
     677             :  */
     678        2606 : static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
     679             : {
     680       83982 :         return kmalloc(size, flags | __GFP_ZERO);
     681             : }
     682             : 
     683             : /**
     684             :  * kzalloc_node - allocate zeroed memory from a particular memory node.
     685             :  * @size: how many bytes of memory are required.
     686             :  * @flags: the type of memory to allocate (see kmalloc).
     687             :  * @node: memory node from which to allocate
     688             :  */
     689         275 : static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
     690             : {
     691         570 :         return kmalloc_node(size, flags | __GFP_ZERO, node);
     692             : }
     693             : 
     694             : extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
     695             : static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
     696             : {
     697           0 :         return kvmalloc_node(size, flags, NUMA_NO_NODE);
     698             : }
     699             : static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
     700             : {
     701           0 :         return kvmalloc_node(size, flags | __GFP_ZERO, node);
     702             : }
     703             : static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
     704             : {
     705           0 :         return kvmalloc(size, flags | __GFP_ZERO);
     706             : }
     707             : 
     708             : static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
     709             : {
     710             :         size_t bytes;
     711             : 
     712           0 :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     713             :                 return NULL;
     714             : 
     715           0 :         return kvmalloc(bytes, flags);
     716             : }
     717             : 
     718             : static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
     719             : {
     720           0 :         return kvmalloc_array(n, size, flags | __GFP_ZERO);
     721             : }
     722             : 
     723             : extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
     724             :                       __realloc_size(3);
     725             : extern void kvfree(const void *addr);
     726             : extern void kvfree_sensitive(const void *addr, size_t len);
     727             : 
     728             : unsigned int kmem_cache_size(struct kmem_cache *s);
     729             : 
     730             : /**
     731             :  * kmalloc_size_roundup - Report allocation bucket size for the given size
     732             :  *
     733             :  * @size: Number of bytes to round up from.
     734             :  *
     735             :  * This returns the number of bytes that would be available in a kmalloc()
     736             :  * allocation of @size bytes. For example, a 126 byte request would be
     737             :  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
     738             :  * for the general-purpose kmalloc()-based allocations, and is not for the
     739             :  * pre-sized kmem_cache_alloc()-based allocations.)
     740             :  *
     741             :  * Use this to kmalloc() the full bucket size ahead of time instead of using
     742             :  * ksize() to query the size after an allocation.
     743             :  */
     744             : size_t kmalloc_size_roundup(size_t size);
     745             : 
     746             : void __init kmem_cache_init_late(void);
     747             : 
     748             : #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
     749             : int slab_prepare_cpu(unsigned int cpu);
     750             : int slab_dead_cpu(unsigned int cpu);
     751             : #else
     752             : #define slab_prepare_cpu        NULL
     753             : #define slab_dead_cpu           NULL
     754             : #endif
     755             : 
     756             : #endif  /* _LINUX_SLAB_H */

Generated by: LCOV version 1.14