Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */ 2 : #ifndef _LINUX_SLUB_DEF_H 3 : #define _LINUX_SLUB_DEF_H 4 : 5 : /* 6 : * SLUB : A Slab allocator without object queues. 7 : * 8 : * (C) 2007 SGI, Christoph Lameter 9 : */ 10 : #include <linux/kfence.h> 11 : #include <linux/kobject.h> 12 : #include <linux/reciprocal_div.h> 13 : #include <linux/local_lock.h> 14 : 15 : enum stat_item { 16 : ALLOC_FASTPATH, /* Allocation from cpu slab */ 17 : ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 18 : FREE_FASTPATH, /* Free to cpu slab */ 19 : FREE_SLOWPATH, /* Freeing not to cpu slab */ 20 : FREE_FROZEN, /* Freeing to frozen slab */ 21 : FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 22 : FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 23 : ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 24 : ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 25 : ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 26 : ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 27 : FREE_SLAB, /* Slab freed to the page allocator */ 28 : CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 29 : DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 30 : DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 31 : DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 32 : DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 33 : DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 34 : DEACTIVATE_BYPASS, /* Implicit deactivation */ 35 : ORDER_FALLBACK, /* Number of times fallback was necessary */ 36 : CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 37 : CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 38 : CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 39 : CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 40 : CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 41 : CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 42 : NR_SLUB_STAT_ITEMS }; 43 : 44 : #ifndef CONFIG_SLUB_TINY 45 : /* 46 : * When changing the layout, make sure freelist and tid are still compatible 47 : * with this_cpu_cmpxchg_double() alignment requirements. 48 : */ 49 : struct kmem_cache_cpu { 50 : void **freelist; /* Pointer to next available object */ 51 : unsigned long tid; /* Globally unique transaction id */ 52 : struct slab *slab; /* The slab from which we are allocating */ 53 : #ifdef CONFIG_SLUB_CPU_PARTIAL 54 : struct slab *partial; /* Partially allocated frozen slabs */ 55 : #endif 56 : local_lock_t lock; /* Protects the fields above */ 57 : #ifdef CONFIG_SLUB_STATS 58 : unsigned stat[NR_SLUB_STAT_ITEMS]; 59 : #endif 60 : }; 61 : #endif /* CONFIG_SLUB_TINY */ 62 : 63 : #ifdef CONFIG_SLUB_CPU_PARTIAL 64 : #define slub_percpu_partial(c) ((c)->partial) 65 : 66 : #define slub_set_percpu_partial(c, p) \ 67 : ({ \ 68 : slub_percpu_partial(c) = (p)->next; \ 69 : }) 70 : 71 : #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) 72 : #else 73 : #define slub_percpu_partial(c) NULL 74 : 75 : #define slub_set_percpu_partial(c, p) 76 : 77 : #define slub_percpu_partial_read_once(c) NULL 78 : #endif // CONFIG_SLUB_CPU_PARTIAL 79 : 80 : /* 81 : * Word size structure that can be atomically updated or read and that 82 : * contains both the order and the number of objects that a slab of the 83 : * given order would contain. 84 : */ 85 : struct kmem_cache_order_objects { 86 : unsigned int x; 87 : }; 88 : 89 : /* 90 : * Slab cache management. 91 : */ 92 : struct kmem_cache { 93 : #ifndef CONFIG_SLUB_TINY 94 : struct kmem_cache_cpu __percpu *cpu_slab; 95 : #endif 96 : /* Used for retrieving partial slabs, etc. */ 97 : slab_flags_t flags; 98 : unsigned long min_partial; 99 : unsigned int size; /* The size of an object including metadata */ 100 : unsigned int object_size;/* The size of an object without metadata */ 101 : struct reciprocal_value reciprocal_size; 102 : unsigned int offset; /* Free pointer offset */ 103 : #ifdef CONFIG_SLUB_CPU_PARTIAL 104 : /* Number of per cpu partial objects to keep around */ 105 : unsigned int cpu_partial; 106 : /* Number of per cpu partial slabs to keep around */ 107 : unsigned int cpu_partial_slabs; 108 : #endif 109 : struct kmem_cache_order_objects oo; 110 : 111 : /* Allocation and freeing of slabs */ 112 : struct kmem_cache_order_objects min; 113 : gfp_t allocflags; /* gfp flags to use on each alloc */ 114 : int refcount; /* Refcount for slab cache destroy */ 115 : void (*ctor)(void *); 116 : unsigned int inuse; /* Offset to metadata */ 117 : unsigned int align; /* Alignment */ 118 : unsigned int red_left_pad; /* Left redzone padding size */ 119 : const char *name; /* Name (only for display!) */ 120 : struct list_head list; /* List of slab caches */ 121 : #ifdef CONFIG_SYSFS 122 : struct kobject kobj; /* For sysfs */ 123 : #endif 124 : #ifdef CONFIG_SLAB_FREELIST_HARDENED 125 : unsigned long random; 126 : #endif 127 : 128 : #ifdef CONFIG_NUMA 129 : /* 130 : * Defragmentation by allocating from a remote node. 131 : */ 132 : unsigned int remote_node_defrag_ratio; 133 : #endif 134 : 135 : #ifdef CONFIG_SLAB_FREELIST_RANDOM 136 : unsigned int *random_seq; 137 : #endif 138 : 139 : #ifdef CONFIG_KASAN_GENERIC 140 : struct kasan_cache kasan_info; 141 : #endif 142 : 143 : #ifdef CONFIG_HARDENED_USERCOPY 144 : unsigned int useroffset; /* Usercopy region offset */ 145 : unsigned int usersize; /* Usercopy region size */ 146 : #endif 147 : 148 : struct kmem_cache_node *node[MAX_NUMNODES]; 149 : }; 150 : 151 : #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) 152 : #define SLAB_SUPPORTS_SYSFS 153 : void sysfs_slab_unlink(struct kmem_cache *); 154 : void sysfs_slab_release(struct kmem_cache *); 155 : #else 156 : static inline void sysfs_slab_unlink(struct kmem_cache *s) 157 : { 158 : } 159 : static inline void sysfs_slab_release(struct kmem_cache *s) 160 : { 161 : } 162 : #endif 163 : 164 : void *fixup_red_left(struct kmem_cache *s, void *p); 165 : 166 : static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab, 167 : void *x) { 168 : void *object = x - (x - slab_address(slab)) % cache->size; 169 : void *last_object = slab_address(slab) + 170 : (slab->objects - 1) * cache->size; 171 : void *result = (unlikely(object > last_object)) ? last_object : object; 172 : 173 : result = fixup_red_left(cache, result); 174 : return result; 175 : } 176 : 177 : /* Determine object index from a given position */ 178 : static inline unsigned int __obj_to_index(const struct kmem_cache *cache, 179 : void *addr, void *obj) 180 : { 181 0 : return reciprocal_divide(kasan_reset_tag(obj) - addr, 182 : cache->reciprocal_size); 183 : } 184 : 185 : static inline unsigned int obj_to_index(const struct kmem_cache *cache, 186 : const struct slab *slab, void *obj) 187 : { 188 : if (is_kfence_address(obj)) 189 : return 0; 190 0 : return __obj_to_index(cache, slab_address(slab), obj); 191 : } 192 : 193 : static inline int objs_per_slab(const struct kmem_cache *cache, 194 : const struct slab *slab) 195 : { 196 : return slab->objects; 197 : } 198 : #endif /* _LINUX_SLUB_DEF_H */