LCOV - code coverage report
Current view: top level - init - calibrate.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 53 64 82.8 %
Date: 2023-07-19 18:55:55 Functions: 4 5 80.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /* calibrate.c: default delay calibration
       3             :  *
       4             :  * Excised from init/main.c
       5             :  *  Copyright (C) 1991, 1992  Linus Torvalds
       6             :  */
       7             : 
       8             : #include <linux/jiffies.h>
       9             : #include <linux/delay.h>
      10             : #include <linux/init.h>
      11             : #include <linux/timex.h>
      12             : #include <linux/smp.h>
      13             : #include <linux/percpu.h>
      14             : 
      15             : unsigned long lpj_fine;
      16             : unsigned long preset_lpj;
      17           0 : static int __init lpj_setup(char *str)
      18             : {
      19           0 :         preset_lpj = simple_strtoul(str,NULL,0);
      20           0 :         return 1;
      21             : }
      22             : 
      23             : __setup("lpj=", lpj_setup);
      24             : 
      25             : #ifdef ARCH_HAS_READ_CURRENT_TIMER
      26             : 
      27             : /* This routine uses the read_current_timer() routine and gets the
      28             :  * loops per jiffy directly, instead of guessing it using delay().
      29             :  * Also, this code tries to handle non-maskable asynchronous events
      30             :  * (like SMIs)
      31             :  */
      32             : #define DELAY_CALIBRATION_TICKS                 ((HZ < 100) ? 1 : (HZ/100))
      33             : #define MAX_DIRECT_CALIBRATION_RETRIES          5
      34             : 
      35             : static unsigned long calibrate_delay_direct(void)
      36             : {
      37             :         unsigned long pre_start, start, post_start;
      38             :         unsigned long pre_end, end, post_end;
      39             :         unsigned long start_jiffies;
      40             :         unsigned long timer_rate_min, timer_rate_max;
      41             :         unsigned long good_timer_sum = 0;
      42             :         unsigned long good_timer_count = 0;
      43             :         unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
      44             :         int max = -1; /* index of measured_times with max/min values or not set */
      45             :         int min = -1;
      46             :         int i;
      47             : 
      48             :         if (read_current_timer(&pre_start) < 0 )
      49             :                 return 0;
      50             : 
      51             :         /*
      52             :          * A simple loop like
      53             :          *      while ( jiffies < start_jiffies+1)
      54             :          *              start = read_current_timer();
      55             :          * will not do. As we don't really know whether jiffy switch
      56             :          * happened first or timer_value was read first. And some asynchronous
      57             :          * event can happen between these two events introducing errors in lpj.
      58             :          *
      59             :          * So, we do
      60             :          * 1. pre_start <- When we are sure that jiffy switch hasn't happened
      61             :          * 2. check jiffy switch
      62             :          * 3. start <- timer value before or after jiffy switch
      63             :          * 4. post_start <- When we are sure that jiffy switch has happened
      64             :          *
      65             :          * Note, we don't know anything about order of 2 and 3.
      66             :          * Now, by looking at post_start and pre_start difference, we can
      67             :          * check whether any asynchronous event happened or not
      68             :          */
      69             : 
      70             :         for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
      71             :                 pre_start = 0;
      72             :                 read_current_timer(&start);
      73             :                 start_jiffies = jiffies;
      74             :                 while (time_before_eq(jiffies, start_jiffies + 1)) {
      75             :                         pre_start = start;
      76             :                         read_current_timer(&start);
      77             :                 }
      78             :                 read_current_timer(&post_start);
      79             : 
      80             :                 pre_end = 0;
      81             :                 end = post_start;
      82             :                 while (time_before_eq(jiffies, start_jiffies + 1 +
      83             :                                                DELAY_CALIBRATION_TICKS)) {
      84             :                         pre_end = end;
      85             :                         read_current_timer(&end);
      86             :                 }
      87             :                 read_current_timer(&post_end);
      88             : 
      89             :                 timer_rate_max = (post_end - pre_start) /
      90             :                                         DELAY_CALIBRATION_TICKS;
      91             :                 timer_rate_min = (pre_end - post_start) /
      92             :                                         DELAY_CALIBRATION_TICKS;
      93             : 
      94             :                 /*
      95             :                  * If the upper limit and lower limit of the timer_rate is
      96             :                  * >= 12.5% apart, redo calibration.
      97             :                  */
      98             :                 if (start >= post_end)
      99             :                         printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
     100             :                                         "timer_rate as we had a TSC wrap around"
     101             :                                         " start=%lu >=post_end=%lu\n",
     102             :                                 start, post_end);
     103             :                 if (start < post_end && pre_start != 0 && pre_end != 0 &&
     104             :                     (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
     105             :                         good_timer_count++;
     106             :                         good_timer_sum += timer_rate_max;
     107             :                         measured_times[i] = timer_rate_max;
     108             :                         if (max < 0 || timer_rate_max > measured_times[max])
     109             :                                 max = i;
     110             :                         if (min < 0 || timer_rate_max < measured_times[min])
     111             :                                 min = i;
     112             :                 } else
     113             :                         measured_times[i] = 0;
     114             : 
     115             :         }
     116             : 
     117             :         /*
     118             :          * Find the maximum & minimum - if they differ too much throw out the
     119             :          * one with the largest difference from the mean and try again...
     120             :          */
     121             :         while (good_timer_count > 1) {
     122             :                 unsigned long estimate;
     123             :                 unsigned long maxdiff;
     124             : 
     125             :                 /* compute the estimate */
     126             :                 estimate = (good_timer_sum/good_timer_count);
     127             :                 maxdiff = estimate >> 3;
     128             : 
     129             :                 /* if range is within 12% let's take it */
     130             :                 if ((measured_times[max] - measured_times[min]) < maxdiff)
     131             :                         return estimate;
     132             : 
     133             :                 /* ok - drop the worse value and try again... */
     134             :                 good_timer_sum = 0;
     135             :                 good_timer_count = 0;
     136             :                 if ((measured_times[max] - estimate) <
     137             :                                 (estimate - measured_times[min])) {
     138             :                         printk(KERN_NOTICE "calibrate_delay_direct() dropping "
     139             :                                         "min bogoMips estimate %d = %lu\n",
     140             :                                 min, measured_times[min]);
     141             :                         measured_times[min] = 0;
     142             :                         min = max;
     143             :                 } else {
     144             :                         printk(KERN_NOTICE "calibrate_delay_direct() dropping "
     145             :                                         "max bogoMips estimate %d = %lu\n",
     146             :                                 max, measured_times[max]);
     147             :                         measured_times[max] = 0;
     148             :                         max = min;
     149             :                 }
     150             : 
     151             :                 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
     152             :                         if (measured_times[i] == 0)
     153             :                                 continue;
     154             :                         good_timer_count++;
     155             :                         good_timer_sum += measured_times[i];
     156             :                         if (measured_times[i] < measured_times[min])
     157             :                                 min = i;
     158             :                         if (measured_times[i] > measured_times[max])
     159             :                                 max = i;
     160             :                 }
     161             : 
     162             :         }
     163             : 
     164             :         printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
     165             :                "estimate for loops_per_jiffy.\nProbably due to long platform "
     166             :                 "interrupts. Consider using \"lpj=\" boot option.\n");
     167             :         return 0;
     168             : }
     169             : #else
     170             : static unsigned long calibrate_delay_direct(void)
     171             : {
     172             :         return 0;
     173             : }
     174             : #endif
     175             : 
     176             : /*
     177             :  * This is the number of bits of precision for the loops_per_jiffy.  Each
     178             :  * time we refine our estimate after the first takes 1.5/HZ seconds, so try
     179             :  * to start with a good estimate.
     180             :  * For the boot cpu we can skip the delay calibration and assign it a value
     181             :  * calculated based on the timer frequency.
     182             :  * For the rest of the CPUs we cannot assume that the timer frequency is same as
     183             :  * the cpu frequency, hence do the calibration for those.
     184             :  */
     185             : #define LPS_PREC 8
     186             : 
     187           1 : static unsigned long calibrate_delay_converge(void)
     188             : {
     189             :         /* First stage - slowly accelerate to find initial bounds */
     190             :         unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
     191           1 :         int trials = 0, band = 0, trial_in_band = 0;
     192             : 
     193           1 :         lpj = (1<<12);
     194             : 
     195             :         /* wait for "start of" clock tick */
     196           1 :         ticks = jiffies;
     197           1 :         while (ticks == jiffies)
     198             :                 ; /* nothing */
     199             :         /* Go .. */
     200           1 :         ticks = jiffies;
     201             :         do {
     202        1038 :                 if (++trial_in_band == (1<<band)) {
     203          10 :                         ++band;
     204          10 :                         trial_in_band = 0;
     205             :                 }
     206        1038 :                 __delay(lpj * band);
     207        1038 :                 trials += band;
     208        1038 :         } while (ticks == jiffies);
     209             :         /*
     210             :          * We overshot, so retreat to a clear underestimate. Then estimate
     211             :          * the largest likely undershoot. This defines our chop bounds.
     212             :          */
     213           1 :         trials -= band;
     214           1 :         loopadd_base = lpj * band;
     215           1 :         lpj_base = lpj * trials;
     216             : 
     217             : recalibrate:
     218           4 :         lpj = lpj_base;
     219           4 :         loopadd = loopadd_base;
     220             : 
     221             :         /*
     222             :          * Do a binary approximation to get lpj set to
     223             :          * equal one clock (up to LPS_PREC bits)
     224             :          */
     225           4 :         chop_limit = lpj >> LPS_PREC;
     226          17 :         while (loopadd > chop_limit) {
     227           9 :                 lpj += loopadd;
     228           9 :                 ticks = jiffies;
     229           9 :                 while (ticks == jiffies)
     230             :                         ; /* nothing */
     231           9 :                 ticks = jiffies;
     232           9 :                 __delay(lpj);
     233           9 :                 if (jiffies != ticks)   /* longer than 1 tick */
     234           2 :                         lpj -= loopadd;
     235           9 :                 loopadd >>= 1;
     236             :         }
     237             :         /*
     238             :          * If we incremented every single time possible, presume we've
     239             :          * massively underestimated initially, and retry with a higher
     240             :          * start, and larger range. (Only seen on x86_64, due to SMIs)
     241             :          */
     242           4 :         if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
     243           3 :                 lpj_base = lpj;
     244           3 :                 loopadd_base <<= 2;
     245           3 :                 goto recalibrate;
     246             :         }
     247             : 
     248           1 :         return lpj;
     249             : }
     250             : 
     251             : static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
     252             : 
     253             : /*
     254             :  * Check if cpu calibration delay is already known. For example,
     255             :  * some processors with multi-core sockets may have all cores
     256             :  * with the same calibration delay.
     257             :  *
     258             :  * Architectures should override this function if a faster calibration
     259             :  * method is available.
     260             :  */
     261           1 : unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
     262             : {
     263           1 :         return 0;
     264             : }
     265             : 
     266             : /*
     267             :  * Indicate the cpu delay calibration is done. This can be used by
     268             :  * architectures to stop accepting delay timer registrations after this point.
     269             :  */
     270             : 
     271           1 : void __attribute__((weak)) calibration_delay_done(void)
     272             : {
     273           1 : }
     274             : 
     275           1 : void calibrate_delay(void)
     276             : {
     277             :         unsigned long lpj;
     278             :         static bool printed;
     279           1 :         int this_cpu = smp_processor_id();
     280             : 
     281           1 :         if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
     282           0 :                 lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
     283           0 :                 if (!printed)
     284           0 :                         pr_info("Calibrating delay loop (skipped) "
     285             :                                 "already calibrated this CPU");
     286           1 :         } else if (preset_lpj) {
     287           0 :                 lpj = preset_lpj;
     288           0 :                 if (!printed)
     289           0 :                         pr_info("Calibrating delay loop (skipped) "
     290             :                                 "preset value.. ");
     291           1 :         } else if ((!printed) && lpj_fine) {
     292           0 :                 lpj = lpj_fine;
     293           0 :                 pr_info("Calibrating delay loop (skipped), "
     294             :                         "value calculated using timer frequency.. ");
     295           1 :         } else if ((lpj = calibrate_delay_is_known())) {
     296             :                 ;
     297           1 :         } else if ((lpj = calibrate_delay_direct()) != 0) {
     298             :                 if (!printed)
     299             :                         pr_info("Calibrating delay using timer "
     300             :                                 "specific routine.. ");
     301             :         } else {
     302           1 :                 if (!printed)
     303           1 :                         pr_info("Calibrating delay loop... ");
     304           1 :                 lpj = calibrate_delay_converge();
     305             :         }
     306           1 :         per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
     307           1 :         if (!printed)
     308           1 :                 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
     309             :                         lpj/(500000/HZ),
     310             :                         (lpj/(5000/HZ)) % 100, lpj);
     311             : 
     312           1 :         loops_per_jiffy = lpj;
     313           1 :         printed = true;
     314             : 
     315           1 :         calibration_delay_done();
     316           1 : }

Generated by: LCOV version 1.14