Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Shared application/kernel submission and completion ring pairs, for
4 : * supporting fast/efficient IO.
5 : *
6 : * A note on the read/write ordering memory barriers that are matched between
7 : * the application and kernel side.
8 : *
9 : * After the application reads the CQ ring tail, it must use an
10 : * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 : * before writing the tail (using smp_load_acquire to read the tail will
12 : * do). It also needs a smp_mb() before updating CQ head (ordering the
13 : * entry load(s) with the head store), pairing with an implicit barrier
14 : * through a control-dependency in io_get_cqe (smp_store_release to
15 : * store head will do). Failure to do so could lead to reading invalid
16 : * CQ entries.
17 : *
18 : * Likewise, the application must use an appropriate smp_wmb() before
19 : * writing the SQ tail (ordering SQ entry stores with the tail store),
20 : * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 : * to store the tail will do). And it needs a barrier ordering the SQ
22 : * head load before writing new SQ entries (smp_load_acquire to read
23 : * head will do).
24 : *
25 : * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 : * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 : * updating the SQ tail; a full memory barrier smp_mb() is needed
28 : * between.
29 : *
30 : * Also see the examples in the liburing library:
31 : *
32 : * git://git.kernel.dk/liburing
33 : *
34 : * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 : * from data shared between the kernel and application. This is done both
36 : * for ordering purposes, but also to ensure that once a value is loaded from
37 : * data that the application could potentially modify, it remains stable.
38 : *
39 : * Copyright (C) 2018-2019 Jens Axboe
40 : * Copyright (c) 2018-2019 Christoph Hellwig
41 : */
42 : #include <linux/kernel.h>
43 : #include <linux/init.h>
44 : #include <linux/errno.h>
45 : #include <linux/syscalls.h>
46 : #include <net/compat.h>
47 : #include <linux/refcount.h>
48 : #include <linux/uio.h>
49 : #include <linux/bits.h>
50 :
51 : #include <linux/sched/signal.h>
52 : #include <linux/fs.h>
53 : #include <linux/file.h>
54 : #include <linux/fdtable.h>
55 : #include <linux/mm.h>
56 : #include <linux/mman.h>
57 : #include <linux/percpu.h>
58 : #include <linux/slab.h>
59 : #include <linux/bvec.h>
60 : #include <linux/net.h>
61 : #include <net/sock.h>
62 : #include <net/af_unix.h>
63 : #include <net/scm.h>
64 : #include <linux/anon_inodes.h>
65 : #include <linux/sched/mm.h>
66 : #include <linux/uaccess.h>
67 : #include <linux/nospec.h>
68 : #include <linux/highmem.h>
69 : #include <linux/fsnotify.h>
70 : #include <linux/fadvise.h>
71 : #include <linux/task_work.h>
72 : #include <linux/io_uring.h>
73 : #include <linux/audit.h>
74 : #include <linux/security.h>
75 : #include <asm/shmparam.h>
76 :
77 : #define CREATE_TRACE_POINTS
78 : #include <trace/events/io_uring.h>
79 :
80 : #include <uapi/linux/io_uring.h>
81 :
82 : #include "io-wq.h"
83 :
84 : #include "io_uring.h"
85 : #include "opdef.h"
86 : #include "refs.h"
87 : #include "tctx.h"
88 : #include "sqpoll.h"
89 : #include "fdinfo.h"
90 : #include "kbuf.h"
91 : #include "rsrc.h"
92 : #include "cancel.h"
93 : #include "net.h"
94 : #include "notif.h"
95 :
96 : #include "timeout.h"
97 : #include "poll.h"
98 : #include "alloc_cache.h"
99 :
100 : #define IORING_MAX_ENTRIES 32768
101 : #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102 :
103 : #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 : IORING_REGISTER_LAST + IORING_OP_LAST)
105 :
106 : #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 : IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 :
109 : #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 : IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 :
112 : #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 : REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 : REQ_F_ASYNC_DATA)
115 :
116 : #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 : IO_REQ_CLEAN_FLAGS)
118 :
119 : #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120 :
121 : #define IO_COMPL_BATCH 32
122 : #define IO_REQ_ALLOC_BATCH 8
123 :
124 : enum {
125 : IO_CHECK_CQ_OVERFLOW_BIT,
126 : IO_CHECK_CQ_DROPPED_BIT,
127 : };
128 :
129 : enum {
130 : IO_EVENTFD_OP_SIGNAL_BIT,
131 : IO_EVENTFD_OP_FREE_BIT,
132 : };
133 :
134 : struct io_defer_entry {
135 : struct list_head list;
136 : struct io_kiocb *req;
137 : u32 seq;
138 : };
139 :
140 : /* requests with any of those set should undergo io_disarm_next() */
141 : #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 : #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 :
144 : static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 : struct task_struct *task,
146 : bool cancel_all);
147 :
148 : static void io_dismantle_req(struct io_kiocb *req);
149 : static void io_clean_op(struct io_kiocb *req);
150 : static void io_queue_sqe(struct io_kiocb *req);
151 : static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
152 : static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
153 : static __cold void io_fallback_tw(struct io_uring_task *tctx);
154 :
155 : struct kmem_cache *req_cachep;
156 :
157 0 : struct sock *io_uring_get_socket(struct file *file)
158 : {
159 : #if defined(CONFIG_UNIX)
160 : if (io_is_uring_fops(file)) {
161 : struct io_ring_ctx *ctx = file->private_data;
162 :
163 : return ctx->ring_sock->sk;
164 : }
165 : #endif
166 0 : return NULL;
167 : }
168 : EXPORT_SYMBOL(io_uring_get_socket);
169 :
170 : static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
171 : {
172 0 : if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
173 0 : ctx->submit_state.cqes_count)
174 0 : __io_submit_flush_completions(ctx);
175 : }
176 :
177 : static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
178 : {
179 0 : return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
180 : }
181 :
182 : static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
183 : {
184 0 : return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
185 : }
186 :
187 : static bool io_match_linked(struct io_kiocb *head)
188 : {
189 : struct io_kiocb *req;
190 :
191 0 : io_for_each_link(req, head) {
192 0 : if (req->flags & REQ_F_INFLIGHT)
193 : return true;
194 : }
195 : return false;
196 : }
197 :
198 : /*
199 : * As io_match_task() but protected against racing with linked timeouts.
200 : * User must not hold timeout_lock.
201 : */
202 0 : bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
203 : bool cancel_all)
204 : {
205 : bool matched;
206 :
207 0 : if (task && head->task != task)
208 : return false;
209 0 : if (cancel_all)
210 : return true;
211 :
212 0 : if (head->flags & REQ_F_LINK_TIMEOUT) {
213 0 : struct io_ring_ctx *ctx = head->ctx;
214 :
215 : /* protect against races with linked timeouts */
216 0 : spin_lock_irq(&ctx->timeout_lock);
217 0 : matched = io_match_linked(head);
218 0 : spin_unlock_irq(&ctx->timeout_lock);
219 : } else {
220 : matched = io_match_linked(head);
221 : }
222 : return matched;
223 : }
224 :
225 : static inline void req_fail_link_node(struct io_kiocb *req, int res)
226 : {
227 0 : req_set_fail(req);
228 0 : io_req_set_res(req, res, 0);
229 : }
230 :
231 : static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
232 : {
233 0 : wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
234 0 : kasan_poison_object_data(req_cachep, req);
235 : }
236 :
237 0 : static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
238 : {
239 0 : struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
240 :
241 0 : complete(&ctx->ref_comp);
242 0 : }
243 :
244 0 : static __cold void io_fallback_req_func(struct work_struct *work)
245 : {
246 0 : struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
247 : fallback_work.work);
248 0 : struct llist_node *node = llist_del_all(&ctx->fallback_llist);
249 : struct io_kiocb *req, *tmp;
250 0 : struct io_tw_state ts = { .locked = true, };
251 :
252 0 : mutex_lock(&ctx->uring_lock);
253 0 : llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
254 0 : req->io_task_work.func(req, &ts);
255 0 : if (WARN_ON_ONCE(!ts.locked))
256 0 : return;
257 0 : io_submit_flush_completions(ctx);
258 0 : mutex_unlock(&ctx->uring_lock);
259 : }
260 :
261 0 : static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 : {
263 0 : unsigned hash_buckets = 1U << bits;
264 0 : size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
265 :
266 0 : table->hbs = kmalloc(hash_size, GFP_KERNEL);
267 0 : if (!table->hbs)
268 : return -ENOMEM;
269 :
270 0 : table->hash_bits = bits;
271 0 : init_hash_table(table, hash_buckets);
272 0 : return 0;
273 : }
274 :
275 0 : static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
276 : {
277 : struct io_ring_ctx *ctx;
278 : int hash_bits;
279 :
280 0 : ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281 0 : if (!ctx)
282 : return NULL;
283 :
284 0 : xa_init(&ctx->io_bl_xa);
285 :
286 : /*
287 : * Use 5 bits less than the max cq entries, that should give us around
288 : * 32 entries per hash list if totally full and uniformly spread, but
289 : * don't keep too many buckets to not overconsume memory.
290 : */
291 0 : hash_bits = ilog2(p->cq_entries) - 5;
292 0 : hash_bits = clamp(hash_bits, 1, 8);
293 0 : if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 : goto err;
295 0 : if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296 : goto err;
297 :
298 0 : ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 0 : if (!ctx->dummy_ubuf)
300 : goto err;
301 : /* set invalid range, so io_import_fixed() fails meeting it */
302 0 : ctx->dummy_ubuf->ubuf = -1UL;
303 :
304 0 : if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
305 : 0, GFP_KERNEL))
306 : goto err;
307 :
308 0 : ctx->flags = p->flags;
309 0 : init_waitqueue_head(&ctx->sqo_sq_wait);
310 0 : INIT_LIST_HEAD(&ctx->sqd_list);
311 0 : INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 0 : INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 0 : io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
314 : sizeof(struct io_rsrc_node));
315 0 : io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
316 : sizeof(struct async_poll));
317 0 : io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
318 : sizeof(struct io_async_msghdr));
319 0 : init_completion(&ctx->ref_comp);
320 0 : xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
321 0 : mutex_init(&ctx->uring_lock);
322 0 : init_waitqueue_head(&ctx->cq_wait);
323 0 : init_waitqueue_head(&ctx->poll_wq);
324 0 : init_waitqueue_head(&ctx->rsrc_quiesce_wq);
325 0 : spin_lock_init(&ctx->completion_lock);
326 0 : spin_lock_init(&ctx->timeout_lock);
327 0 : INIT_WQ_LIST(&ctx->iopoll_list);
328 0 : INIT_LIST_HEAD(&ctx->io_buffers_pages);
329 0 : INIT_LIST_HEAD(&ctx->io_buffers_comp);
330 0 : INIT_LIST_HEAD(&ctx->defer_list);
331 0 : INIT_LIST_HEAD(&ctx->timeout_list);
332 0 : INIT_LIST_HEAD(&ctx->ltimeout_list);
333 0 : INIT_LIST_HEAD(&ctx->rsrc_ref_list);
334 0 : init_llist_head(&ctx->work_llist);
335 0 : INIT_LIST_HEAD(&ctx->tctx_list);
336 0 : ctx->submit_state.free_list.next = NULL;
337 0 : INIT_WQ_LIST(&ctx->locked_free_list);
338 0 : INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
339 0 : INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
340 : return ctx;
341 : err:
342 0 : kfree(ctx->dummy_ubuf);
343 0 : kfree(ctx->cancel_table.hbs);
344 0 : kfree(ctx->cancel_table_locked.hbs);
345 0 : kfree(ctx->io_bl);
346 0 : xa_destroy(&ctx->io_bl_xa);
347 0 : kfree(ctx);
348 : return NULL;
349 : }
350 :
351 : static void io_account_cq_overflow(struct io_ring_ctx *ctx)
352 : {
353 0 : struct io_rings *r = ctx->rings;
354 :
355 0 : WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
356 0 : ctx->cq_extra--;
357 : }
358 :
359 : static bool req_need_defer(struct io_kiocb *req, u32 seq)
360 : {
361 0 : if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
362 0 : struct io_ring_ctx *ctx = req->ctx;
363 :
364 0 : return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
365 : }
366 :
367 : return false;
368 : }
369 :
370 : static inline void io_req_track_inflight(struct io_kiocb *req)
371 : {
372 0 : if (!(req->flags & REQ_F_INFLIGHT)) {
373 0 : req->flags |= REQ_F_INFLIGHT;
374 0 : atomic_inc(&req->task->io_uring->inflight_tracked);
375 : }
376 : }
377 :
378 0 : static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
379 : {
380 0 : if (WARN_ON_ONCE(!req->link))
381 : return NULL;
382 :
383 0 : req->flags &= ~REQ_F_ARM_LTIMEOUT;
384 0 : req->flags |= REQ_F_LINK_TIMEOUT;
385 :
386 : /* linked timeouts should have two refs once prep'ed */
387 0 : io_req_set_refcount(req);
388 0 : __io_req_set_refcount(req->link, 2);
389 0 : return req->link;
390 : }
391 :
392 : static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
393 : {
394 0 : if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
395 : return NULL;
396 0 : return __io_prep_linked_timeout(req);
397 : }
398 :
399 0 : static noinline void __io_arm_ltimeout(struct io_kiocb *req)
400 : {
401 0 : io_queue_linked_timeout(__io_prep_linked_timeout(req));
402 0 : }
403 :
404 : static inline void io_arm_ltimeout(struct io_kiocb *req)
405 : {
406 0 : if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
407 0 : __io_arm_ltimeout(req);
408 : }
409 :
410 0 : static void io_prep_async_work(struct io_kiocb *req)
411 : {
412 0 : const struct io_issue_def *def = &io_issue_defs[req->opcode];
413 0 : struct io_ring_ctx *ctx = req->ctx;
414 :
415 0 : if (!(req->flags & REQ_F_CREDS)) {
416 0 : req->flags |= REQ_F_CREDS;
417 0 : req->creds = get_current_cred();
418 : }
419 :
420 0 : req->work.list.next = NULL;
421 0 : req->work.flags = 0;
422 0 : req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
423 0 : if (req->flags & REQ_F_FORCE_ASYNC)
424 0 : req->work.flags |= IO_WQ_WORK_CONCURRENT;
425 :
426 0 : if (req->file && !io_req_ffs_set(req))
427 0 : req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
428 :
429 0 : if (req->file && (req->flags & REQ_F_ISREG)) {
430 0 : bool should_hash = def->hash_reg_file;
431 :
432 : /* don't serialize this request if the fs doesn't need it */
433 0 : if (should_hash && (req->file->f_flags & O_DIRECT) &&
434 : (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
435 0 : should_hash = false;
436 0 : if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
437 0 : io_wq_hash_work(&req->work, file_inode(req->file));
438 0 : } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
439 0 : if (def->unbound_nonreg_file)
440 0 : req->work.flags |= IO_WQ_WORK_UNBOUND;
441 : }
442 0 : }
443 :
444 0 : static void io_prep_async_link(struct io_kiocb *req)
445 : {
446 : struct io_kiocb *cur;
447 :
448 0 : if (req->flags & REQ_F_LINK_TIMEOUT) {
449 0 : struct io_ring_ctx *ctx = req->ctx;
450 :
451 0 : spin_lock_irq(&ctx->timeout_lock);
452 0 : io_for_each_link(cur, req)
453 0 : io_prep_async_work(cur);
454 0 : spin_unlock_irq(&ctx->timeout_lock);
455 : } else {
456 0 : io_for_each_link(cur, req)
457 0 : io_prep_async_work(cur);
458 : }
459 0 : }
460 :
461 0 : void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
462 : {
463 0 : struct io_kiocb *link = io_prep_linked_timeout(req);
464 0 : struct io_uring_task *tctx = req->task->io_uring;
465 :
466 0 : BUG_ON(!tctx);
467 0 : BUG_ON(!tctx->io_wq);
468 :
469 : /* init ->work of the whole link before punting */
470 0 : io_prep_async_link(req);
471 :
472 : /*
473 : * Not expected to happen, but if we do have a bug where this _can_
474 : * happen, catch it here and ensure the request is marked as
475 : * canceled. That will make io-wq go through the usual work cancel
476 : * procedure rather than attempt to run this request (or create a new
477 : * worker for it).
478 : */
479 0 : if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
480 0 : req->work.flags |= IO_WQ_WORK_CANCEL;
481 :
482 0 : trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
483 0 : io_wq_enqueue(tctx->io_wq, &req->work);
484 0 : if (link)
485 0 : io_queue_linked_timeout(link);
486 0 : }
487 :
488 0 : static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
489 : {
490 0 : while (!list_empty(&ctx->defer_list)) {
491 0 : struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
492 : struct io_defer_entry, list);
493 :
494 0 : if (req_need_defer(de->req, de->seq))
495 : break;
496 0 : list_del_init(&de->list);
497 0 : io_req_task_queue(de->req);
498 0 : kfree(de);
499 : }
500 0 : }
501 :
502 :
503 0 : static void io_eventfd_ops(struct rcu_head *rcu)
504 : {
505 0 : struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
506 0 : int ops = atomic_xchg(&ev_fd->ops, 0);
507 :
508 0 : if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
509 0 : eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
510 :
511 : /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
512 : * ordering in a race but if references are 0 we know we have to free
513 : * it regardless.
514 : */
515 0 : if (atomic_dec_and_test(&ev_fd->refs)) {
516 0 : eventfd_ctx_put(ev_fd->cq_ev_fd);
517 0 : kfree(ev_fd);
518 : }
519 0 : }
520 :
521 0 : static void io_eventfd_signal(struct io_ring_ctx *ctx)
522 : {
523 0 : struct io_ev_fd *ev_fd = NULL;
524 :
525 : rcu_read_lock();
526 : /*
527 : * rcu_dereference ctx->io_ev_fd once and use it for both for checking
528 : * and eventfd_signal
529 : */
530 0 : ev_fd = rcu_dereference(ctx->io_ev_fd);
531 :
532 : /*
533 : * Check again if ev_fd exists incase an io_eventfd_unregister call
534 : * completed between the NULL check of ctx->io_ev_fd at the start of
535 : * the function and rcu_read_lock.
536 : */
537 0 : if (unlikely(!ev_fd))
538 : goto out;
539 0 : if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
540 : goto out;
541 0 : if (ev_fd->eventfd_async && !io_wq_current_is_worker())
542 : goto out;
543 :
544 0 : if (likely(eventfd_signal_allowed())) {
545 0 : eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
546 : } else {
547 0 : atomic_inc(&ev_fd->refs);
548 0 : if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
549 0 : call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
550 : else
551 0 : atomic_dec(&ev_fd->refs);
552 : }
553 :
554 : out:
555 : rcu_read_unlock();
556 0 : }
557 :
558 : static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
559 : {
560 : bool skip;
561 :
562 0 : spin_lock(&ctx->completion_lock);
563 :
564 : /*
565 : * Eventfd should only get triggered when at least one event has been
566 : * posted. Some applications rely on the eventfd notification count
567 : * only changing IFF a new CQE has been added to the CQ ring. There's
568 : * no depedency on 1:1 relationship between how many times this
569 : * function is called (and hence the eventfd count) and number of CQEs
570 : * posted to the CQ ring.
571 : */
572 0 : skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
573 0 : ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
574 0 : spin_unlock(&ctx->completion_lock);
575 0 : if (skip)
576 : return;
577 :
578 0 : io_eventfd_signal(ctx);
579 : }
580 :
581 0 : void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
582 : {
583 0 : if (ctx->poll_activated)
584 : io_poll_wq_wake(ctx);
585 0 : if (ctx->off_timeout_used)
586 0 : io_flush_timeouts(ctx);
587 0 : if (ctx->drain_active) {
588 0 : spin_lock(&ctx->completion_lock);
589 0 : io_queue_deferred(ctx);
590 0 : spin_unlock(&ctx->completion_lock);
591 : }
592 0 : if (ctx->has_evfd)
593 : io_eventfd_flush_signal(ctx);
594 0 : }
595 :
596 : static inline void __io_cq_lock(struct io_ring_ctx *ctx)
597 : __acquires(ctx->completion_lock)
598 : {
599 0 : if (!ctx->task_complete)
600 0 : spin_lock(&ctx->completion_lock);
601 : }
602 :
603 : static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
604 : {
605 0 : if (!ctx->task_complete)
606 0 : spin_unlock(&ctx->completion_lock);
607 : }
608 :
609 : static inline void io_cq_lock(struct io_ring_ctx *ctx)
610 : __acquires(ctx->completion_lock)
611 : {
612 0 : spin_lock(&ctx->completion_lock);
613 : }
614 :
615 : static inline void io_cq_unlock(struct io_ring_ctx *ctx)
616 : __releases(ctx->completion_lock)
617 : {
618 0 : spin_unlock(&ctx->completion_lock);
619 : }
620 :
621 : /* keep it inlined for io_submit_flush_completions() */
622 0 : static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
623 : __releases(ctx->completion_lock)
624 : {
625 0 : io_commit_cqring(ctx);
626 0 : __io_cq_unlock(ctx);
627 0 : io_commit_cqring_flush(ctx);
628 0 : io_cqring_wake(ctx);
629 0 : }
630 :
631 0 : static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
632 : __releases(ctx->completion_lock)
633 : {
634 0 : io_commit_cqring(ctx);
635 :
636 0 : if (ctx->task_complete) {
637 : /*
638 : * ->task_complete implies that only current might be waiting
639 : * for CQEs, and obviously, we currently don't. No one is
640 : * waiting, wakeups are futile, skip them.
641 : */
642 : io_commit_cqring_flush(ctx);
643 : } else {
644 0 : __io_cq_unlock(ctx);
645 0 : io_commit_cqring_flush(ctx);
646 : io_cqring_wake(ctx);
647 : }
648 0 : }
649 :
650 0 : void io_cq_unlock_post(struct io_ring_ctx *ctx)
651 : __releases(ctx->completion_lock)
652 : {
653 0 : io_commit_cqring(ctx);
654 0 : spin_unlock(&ctx->completion_lock);
655 0 : io_commit_cqring_flush(ctx);
656 0 : io_cqring_wake(ctx);
657 0 : }
658 :
659 : /* Returns true if there are no backlogged entries after the flush */
660 0 : static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
661 : {
662 : struct io_overflow_cqe *ocqe;
663 0 : LIST_HEAD(list);
664 :
665 0 : io_cq_lock(ctx);
666 0 : list_splice_init(&ctx->cq_overflow_list, &list);
667 0 : clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
668 0 : io_cq_unlock(ctx);
669 :
670 0 : while (!list_empty(&list)) {
671 0 : ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
672 0 : list_del(&ocqe->list);
673 0 : kfree(ocqe);
674 : }
675 0 : }
676 :
677 0 : static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
678 : {
679 0 : size_t cqe_size = sizeof(struct io_uring_cqe);
680 :
681 0 : if (__io_cqring_events(ctx) == ctx->cq_entries)
682 : return;
683 :
684 0 : if (ctx->flags & IORING_SETUP_CQE32)
685 0 : cqe_size <<= 1;
686 :
687 0 : io_cq_lock(ctx);
688 0 : while (!list_empty(&ctx->cq_overflow_list)) {
689 0 : struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
690 : struct io_overflow_cqe *ocqe;
691 :
692 0 : if (!cqe)
693 : break;
694 0 : ocqe = list_first_entry(&ctx->cq_overflow_list,
695 : struct io_overflow_cqe, list);
696 0 : memcpy(cqe, &ocqe->cqe, cqe_size);
697 0 : list_del(&ocqe->list);
698 0 : kfree(ocqe);
699 : }
700 :
701 0 : if (list_empty(&ctx->cq_overflow_list)) {
702 0 : clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
703 0 : atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
704 : }
705 0 : io_cq_unlock_post(ctx);
706 : }
707 :
708 0 : static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
709 : {
710 : /* iopoll syncs against uring_lock, not completion_lock */
711 0 : if (ctx->flags & IORING_SETUP_IOPOLL)
712 0 : mutex_lock(&ctx->uring_lock);
713 0 : __io_cqring_overflow_flush(ctx);
714 0 : if (ctx->flags & IORING_SETUP_IOPOLL)
715 0 : mutex_unlock(&ctx->uring_lock);
716 0 : }
717 :
718 0 : static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
719 : {
720 0 : if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
721 0 : io_cqring_do_overflow_flush(ctx);
722 0 : }
723 :
724 : /* can be called by any task */
725 0 : static void io_put_task_remote(struct task_struct *task, int nr)
726 : {
727 0 : struct io_uring_task *tctx = task->io_uring;
728 :
729 0 : percpu_counter_sub(&tctx->inflight, nr);
730 0 : if (unlikely(atomic_read(&tctx->in_cancel)))
731 0 : wake_up(&tctx->wait);
732 0 : put_task_struct_many(task, nr);
733 0 : }
734 :
735 : /* used by a task to put its own references */
736 : static void io_put_task_local(struct task_struct *task, int nr)
737 : {
738 0 : task->io_uring->cached_refs += nr;
739 : }
740 :
741 : /* must to be called somewhat shortly after putting a request */
742 0 : static inline void io_put_task(struct task_struct *task, int nr)
743 : {
744 0 : if (likely(task == current))
745 0 : io_put_task_local(task, nr);
746 : else
747 0 : io_put_task_remote(task, nr);
748 0 : }
749 :
750 0 : void io_task_refs_refill(struct io_uring_task *tctx)
751 : {
752 0 : unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
753 :
754 0 : percpu_counter_add(&tctx->inflight, refill);
755 0 : refcount_add(refill, ¤t->usage);
756 0 : tctx->cached_refs += refill;
757 0 : }
758 :
759 0 : static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
760 : {
761 0 : struct io_uring_task *tctx = task->io_uring;
762 0 : unsigned int refs = tctx->cached_refs;
763 :
764 0 : if (refs) {
765 0 : tctx->cached_refs = 0;
766 0 : percpu_counter_sub(&tctx->inflight, refs);
767 0 : put_task_struct_many(task, refs);
768 : }
769 0 : }
770 :
771 0 : static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
772 : s32 res, u32 cflags, u64 extra1, u64 extra2)
773 : {
774 : struct io_overflow_cqe *ocqe;
775 0 : size_t ocq_size = sizeof(struct io_overflow_cqe);
776 0 : bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
777 :
778 : lockdep_assert_held(&ctx->completion_lock);
779 :
780 0 : if (is_cqe32)
781 0 : ocq_size += sizeof(struct io_uring_cqe);
782 :
783 0 : ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
784 0 : trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
785 0 : if (!ocqe) {
786 : /*
787 : * If we're in ring overflow flush mode, or in task cancel mode,
788 : * or cannot allocate an overflow entry, then we need to drop it
789 : * on the floor.
790 : */
791 0 : io_account_cq_overflow(ctx);
792 0 : set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
793 0 : return false;
794 : }
795 0 : if (list_empty(&ctx->cq_overflow_list)) {
796 0 : set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
797 0 : atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
798 :
799 : }
800 0 : ocqe->cqe.user_data = user_data;
801 0 : ocqe->cqe.res = res;
802 0 : ocqe->cqe.flags = cflags;
803 0 : if (is_cqe32) {
804 0 : ocqe->cqe.big_cqe[0] = extra1;
805 0 : ocqe->cqe.big_cqe[1] = extra2;
806 : }
807 0 : list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
808 0 : return true;
809 : }
810 :
811 0 : bool io_req_cqe_overflow(struct io_kiocb *req)
812 : {
813 0 : if (!(req->flags & REQ_F_CQE32_INIT)) {
814 0 : req->extra1 = 0;
815 0 : req->extra2 = 0;
816 : }
817 0 : return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
818 : req->cqe.res, req->cqe.flags,
819 : req->extra1, req->extra2);
820 : }
821 :
822 : /*
823 : * writes to the cq entry need to come after reading head; the
824 : * control dependency is enough as we're using WRITE_ONCE to
825 : * fill the cq entry
826 : */
827 0 : struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
828 : {
829 0 : struct io_rings *rings = ctx->rings;
830 0 : unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
831 : unsigned int free, queued, len;
832 :
833 : /*
834 : * Posting into the CQ when there are pending overflowed CQEs may break
835 : * ordering guarantees, which will affect links, F_MORE users and more.
836 : * Force overflow the completion.
837 : */
838 0 : if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
839 : return NULL;
840 :
841 : /* userspace may cheat modifying the tail, be safe and do min */
842 0 : queued = min(__io_cqring_events(ctx), ctx->cq_entries);
843 0 : free = ctx->cq_entries - queued;
844 : /* we need a contiguous range, limit based on the current array offset */
845 0 : len = min(free, ctx->cq_entries - off);
846 0 : if (!len)
847 : return NULL;
848 :
849 0 : if (ctx->flags & IORING_SETUP_CQE32) {
850 0 : off <<= 1;
851 0 : len <<= 1;
852 : }
853 :
854 0 : ctx->cqe_cached = &rings->cqes[off];
855 0 : ctx->cqe_sentinel = ctx->cqe_cached + len;
856 :
857 0 : ctx->cached_cq_tail++;
858 0 : ctx->cqe_cached++;
859 0 : if (ctx->flags & IORING_SETUP_CQE32)
860 0 : ctx->cqe_cached++;
861 : return &rings->cqes[off];
862 : }
863 :
864 0 : static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
865 : u32 cflags)
866 : {
867 : struct io_uring_cqe *cqe;
868 :
869 0 : ctx->cq_extra++;
870 :
871 : /*
872 : * If we can't get a cq entry, userspace overflowed the
873 : * submission (by quite a lot). Increment the overflow count in
874 : * the ring.
875 : */
876 0 : cqe = io_get_cqe(ctx);
877 0 : if (likely(cqe)) {
878 0 : trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
879 :
880 0 : WRITE_ONCE(cqe->user_data, user_data);
881 0 : WRITE_ONCE(cqe->res, res);
882 0 : WRITE_ONCE(cqe->flags, cflags);
883 :
884 0 : if (ctx->flags & IORING_SETUP_CQE32) {
885 0 : WRITE_ONCE(cqe->big_cqe[0], 0);
886 0 : WRITE_ONCE(cqe->big_cqe[1], 0);
887 : }
888 : return true;
889 : }
890 : return false;
891 : }
892 :
893 0 : static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
894 : __must_hold(&ctx->uring_lock)
895 : {
896 0 : struct io_submit_state *state = &ctx->submit_state;
897 : unsigned int i;
898 :
899 : lockdep_assert_held(&ctx->uring_lock);
900 0 : for (i = 0; i < state->cqes_count; i++) {
901 0 : struct io_uring_cqe *cqe = &state->cqes[i];
902 :
903 0 : if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
904 0 : if (ctx->task_complete) {
905 0 : spin_lock(&ctx->completion_lock);
906 0 : io_cqring_event_overflow(ctx, cqe->user_data,
907 : cqe->res, cqe->flags, 0, 0);
908 0 : spin_unlock(&ctx->completion_lock);
909 : } else {
910 0 : io_cqring_event_overflow(ctx, cqe->user_data,
911 : cqe->res, cqe->flags, 0, 0);
912 : }
913 : }
914 : }
915 0 : state->cqes_count = 0;
916 0 : }
917 :
918 0 : static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
919 : bool allow_overflow)
920 : {
921 : bool filled;
922 :
923 0 : io_cq_lock(ctx);
924 0 : filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
925 0 : if (!filled && allow_overflow)
926 0 : filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
927 :
928 0 : io_cq_unlock_post(ctx);
929 0 : return filled;
930 : }
931 :
932 0 : bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
933 : {
934 0 : return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
935 : }
936 :
937 0 : bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
938 : bool allow_overflow)
939 : {
940 : struct io_uring_cqe *cqe;
941 : unsigned int length;
942 :
943 0 : if (!defer)
944 0 : return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
945 :
946 0 : length = ARRAY_SIZE(ctx->submit_state.cqes);
947 :
948 : lockdep_assert_held(&ctx->uring_lock);
949 :
950 0 : if (ctx->submit_state.cqes_count == length) {
951 0 : __io_cq_lock(ctx);
952 0 : __io_flush_post_cqes(ctx);
953 : /* no need to flush - flush is deferred */
954 0 : __io_cq_unlock_post(ctx);
955 : }
956 :
957 : /* For defered completions this is not as strict as it is otherwise,
958 : * however it's main job is to prevent unbounded posted completions,
959 : * and in that it works just as well.
960 : */
961 0 : if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
962 : return false;
963 :
964 0 : cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
965 0 : cqe->user_data = user_data;
966 0 : cqe->res = res;
967 0 : cqe->flags = cflags;
968 0 : return true;
969 : }
970 :
971 0 : static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
972 : {
973 0 : struct io_ring_ctx *ctx = req->ctx;
974 0 : struct io_rsrc_node *rsrc_node = NULL;
975 :
976 0 : io_cq_lock(ctx);
977 0 : if (!(req->flags & REQ_F_CQE_SKIP))
978 0 : io_fill_cqe_req(ctx, req);
979 :
980 : /*
981 : * If we're the last reference to this request, add to our locked
982 : * free_list cache.
983 : */
984 0 : if (req_ref_put_and_test(req)) {
985 0 : if (req->flags & IO_REQ_LINK_FLAGS) {
986 0 : if (req->flags & IO_DISARM_MASK)
987 0 : io_disarm_next(req);
988 0 : if (req->link) {
989 0 : io_req_task_queue(req->link);
990 0 : req->link = NULL;
991 : }
992 : }
993 0 : io_put_kbuf_comp(req);
994 0 : io_dismantle_req(req);
995 0 : rsrc_node = req->rsrc_node;
996 : /*
997 : * Selected buffer deallocation in io_clean_op() assumes that
998 : * we don't hold ->completion_lock. Clean them here to avoid
999 : * deadlocks.
1000 : */
1001 0 : io_put_task_remote(req->task, 1);
1002 0 : wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1003 0 : ctx->locked_free_nr++;
1004 : }
1005 0 : io_cq_unlock_post(ctx);
1006 :
1007 0 : if (rsrc_node) {
1008 0 : io_ring_submit_lock(ctx, issue_flags);
1009 0 : io_put_rsrc_node(ctx, rsrc_node);
1010 : io_ring_submit_unlock(ctx, issue_flags);
1011 : }
1012 0 : }
1013 :
1014 0 : void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1015 : {
1016 0 : if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1017 0 : req->io_task_work.func = io_req_task_complete;
1018 : io_req_task_work_add(req);
1019 0 : } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1020 0 : !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1021 0 : __io_req_complete_post(req, issue_flags);
1022 : } else {
1023 0 : struct io_ring_ctx *ctx = req->ctx;
1024 :
1025 0 : mutex_lock(&ctx->uring_lock);
1026 0 : __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1027 0 : mutex_unlock(&ctx->uring_lock);
1028 : }
1029 0 : }
1030 :
1031 0 : void io_req_defer_failed(struct io_kiocb *req, s32 res)
1032 : __must_hold(&ctx->uring_lock)
1033 : {
1034 0 : const struct io_cold_def *def = &io_cold_defs[req->opcode];
1035 :
1036 : lockdep_assert_held(&req->ctx->uring_lock);
1037 :
1038 0 : req_set_fail(req);
1039 0 : io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1040 0 : if (def->fail)
1041 0 : def->fail(req);
1042 0 : io_req_complete_defer(req);
1043 0 : }
1044 :
1045 : /*
1046 : * Don't initialise the fields below on every allocation, but do that in
1047 : * advance and keep them valid across allocations.
1048 : */
1049 : static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1050 : {
1051 0 : req->ctx = ctx;
1052 0 : req->link = NULL;
1053 0 : req->async_data = NULL;
1054 : /* not necessary, but safer to zero */
1055 0 : req->cqe.res = 0;
1056 : }
1057 :
1058 : static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1059 : struct io_submit_state *state)
1060 : {
1061 0 : spin_lock(&ctx->completion_lock);
1062 0 : wq_list_splice(&ctx->locked_free_list, &state->free_list);
1063 0 : ctx->locked_free_nr = 0;
1064 0 : spin_unlock(&ctx->completion_lock);
1065 : }
1066 :
1067 : /*
1068 : * A request might get retired back into the request caches even before opcode
1069 : * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1070 : * Because of that, io_alloc_req() should be called only under ->uring_lock
1071 : * and with extra caution to not get a request that is still worked on.
1072 : */
1073 0 : __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1074 : __must_hold(&ctx->uring_lock)
1075 : {
1076 0 : gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1077 : void *reqs[IO_REQ_ALLOC_BATCH];
1078 : int ret, i;
1079 :
1080 : /*
1081 : * If we have more than a batch's worth of requests in our IRQ side
1082 : * locked cache, grab the lock and move them over to our submission
1083 : * side cache.
1084 : */
1085 0 : if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1086 0 : io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1087 0 : if (!io_req_cache_empty(ctx))
1088 : return true;
1089 : }
1090 :
1091 0 : ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1092 :
1093 : /*
1094 : * Bulk alloc is all-or-nothing. If we fail to get a batch,
1095 : * retry single alloc to be on the safe side.
1096 : */
1097 0 : if (unlikely(ret <= 0)) {
1098 0 : reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1099 0 : if (!reqs[0])
1100 : return false;
1101 : ret = 1;
1102 : }
1103 :
1104 0 : percpu_ref_get_many(&ctx->refs, ret);
1105 0 : for (i = 0; i < ret; i++) {
1106 0 : struct io_kiocb *req = reqs[i];
1107 :
1108 0 : io_preinit_req(req, ctx);
1109 0 : io_req_add_to_cache(req, ctx);
1110 : }
1111 : return true;
1112 : }
1113 :
1114 0 : static inline void io_dismantle_req(struct io_kiocb *req)
1115 : {
1116 0 : unsigned int flags = req->flags;
1117 :
1118 0 : if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1119 0 : io_clean_op(req);
1120 0 : if (!(flags & REQ_F_FIXED_FILE))
1121 0 : io_put_file(req->file);
1122 0 : }
1123 :
1124 0 : static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts)
1125 : {
1126 0 : struct io_ring_ctx *ctx = req->ctx;
1127 :
1128 0 : if (req->rsrc_node) {
1129 0 : io_tw_lock(ctx, ts);
1130 0 : io_put_rsrc_node(ctx, req->rsrc_node);
1131 : }
1132 0 : io_dismantle_req(req);
1133 0 : io_put_task_remote(req->task, 1);
1134 :
1135 0 : spin_lock(&ctx->completion_lock);
1136 0 : wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1137 0 : ctx->locked_free_nr++;
1138 0 : spin_unlock(&ctx->completion_lock);
1139 0 : }
1140 :
1141 0 : __cold void io_free_req(struct io_kiocb *req)
1142 : {
1143 0 : req->io_task_work.func = io_free_req_tw;
1144 0 : io_req_task_work_add(req);
1145 0 : }
1146 :
1147 : static void __io_req_find_next_prep(struct io_kiocb *req)
1148 : {
1149 0 : struct io_ring_ctx *ctx = req->ctx;
1150 :
1151 0 : spin_lock(&ctx->completion_lock);
1152 0 : io_disarm_next(req);
1153 0 : spin_unlock(&ctx->completion_lock);
1154 : }
1155 :
1156 : static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1157 : {
1158 : struct io_kiocb *nxt;
1159 :
1160 : /*
1161 : * If LINK is set, we have dependent requests in this chain. If we
1162 : * didn't fail this request, queue the first one up, moving any other
1163 : * dependencies to the next request. In case of failure, fail the rest
1164 : * of the chain.
1165 : */
1166 0 : if (unlikely(req->flags & IO_DISARM_MASK))
1167 : __io_req_find_next_prep(req);
1168 0 : nxt = req->link;
1169 0 : req->link = NULL;
1170 : return nxt;
1171 : }
1172 :
1173 0 : static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1174 : {
1175 0 : if (!ctx)
1176 : return;
1177 0 : if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1178 0 : atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1179 0 : if (ts->locked) {
1180 0 : io_submit_flush_completions(ctx);
1181 0 : mutex_unlock(&ctx->uring_lock);
1182 0 : ts->locked = false;
1183 : }
1184 0 : percpu_ref_put(&ctx->refs);
1185 : }
1186 :
1187 0 : static unsigned int handle_tw_list(struct llist_node *node,
1188 : struct io_ring_ctx **ctx,
1189 : struct io_tw_state *ts,
1190 : struct llist_node *last)
1191 : {
1192 0 : unsigned int count = 0;
1193 :
1194 0 : while (node && node != last) {
1195 0 : struct llist_node *next = node->next;
1196 0 : struct io_kiocb *req = container_of(node, struct io_kiocb,
1197 : io_task_work.node);
1198 :
1199 0 : prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 :
1201 0 : if (req->ctx != *ctx) {
1202 0 : ctx_flush_and_put(*ctx, ts);
1203 0 : *ctx = req->ctx;
1204 : /* if not contended, grab and improve batching */
1205 0 : ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1206 0 : percpu_ref_get(&(*ctx)->refs);
1207 : }
1208 0 : req->io_task_work.func(req, ts);
1209 0 : node = next;
1210 0 : count++;
1211 0 : if (unlikely(need_resched())) {
1212 0 : ctx_flush_and_put(*ctx, ts);
1213 0 : *ctx = NULL;
1214 0 : cond_resched();
1215 : }
1216 : }
1217 :
1218 0 : return count;
1219 : }
1220 :
1221 : /**
1222 : * io_llist_xchg - swap all entries in a lock-less list
1223 : * @head: the head of lock-less list to delete all entries
1224 : * @new: new entry as the head of the list
1225 : *
1226 : * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1227 : * The order of entries returned is from the newest to the oldest added one.
1228 : */
1229 : static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1230 : struct llist_node *new)
1231 : {
1232 0 : return xchg(&head->first, new);
1233 : }
1234 :
1235 : /**
1236 : * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1237 : * @head: the head of lock-less list to delete all entries
1238 : * @old: expected old value of the first entry of the list
1239 : * @new: new entry as the head of the list
1240 : *
1241 : * perform a cmpxchg on the first entry of the list.
1242 : */
1243 :
1244 : static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1245 : struct llist_node *old,
1246 : struct llist_node *new)
1247 : {
1248 0 : return cmpxchg(&head->first, old, new);
1249 : }
1250 :
1251 0 : void tctx_task_work(struct callback_head *cb)
1252 : {
1253 0 : struct io_tw_state ts = {};
1254 0 : struct io_ring_ctx *ctx = NULL;
1255 0 : struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1256 : task_work);
1257 0 : struct llist_node fake = {};
1258 : struct llist_node *node;
1259 0 : unsigned int loops = 0;
1260 0 : unsigned int count = 0;
1261 :
1262 0 : if (unlikely(current->flags & PF_EXITING)) {
1263 0 : io_fallback_tw(tctx);
1264 0 : return;
1265 : }
1266 :
1267 : do {
1268 0 : loops++;
1269 0 : node = io_llist_xchg(&tctx->task_list, &fake);
1270 0 : count += handle_tw_list(node, &ctx, &ts, &fake);
1271 :
1272 : /* skip expensive cmpxchg if there are items in the list */
1273 0 : if (READ_ONCE(tctx->task_list.first) != &fake)
1274 0 : continue;
1275 0 : if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1276 0 : io_submit_flush_completions(ctx);
1277 0 : if (READ_ONCE(tctx->task_list.first) != &fake)
1278 0 : continue;
1279 : }
1280 0 : node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1281 0 : } while (node != &fake);
1282 :
1283 0 : ctx_flush_and_put(ctx, &ts);
1284 :
1285 : /* relaxed read is enough as only the task itself sets ->in_cancel */
1286 0 : if (unlikely(atomic_read(&tctx->in_cancel)))
1287 0 : io_uring_drop_tctx_refs(current);
1288 :
1289 0 : trace_io_uring_task_work_run(tctx, count, loops);
1290 : }
1291 :
1292 0 : static __cold void io_fallback_tw(struct io_uring_task *tctx)
1293 : {
1294 0 : struct llist_node *node = llist_del_all(&tctx->task_list);
1295 : struct io_kiocb *req;
1296 :
1297 0 : while (node) {
1298 0 : req = container_of(node, struct io_kiocb, io_task_work.node);
1299 0 : node = node->next;
1300 0 : if (llist_add(&req->io_task_work.node,
1301 0 : &req->ctx->fallback_llist))
1302 0 : schedule_delayed_work(&req->ctx->fallback_work, 1);
1303 : }
1304 0 : }
1305 :
1306 0 : static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1307 : {
1308 0 : struct io_ring_ctx *ctx = req->ctx;
1309 : unsigned nr_wait, nr_tw, nr_tw_prev;
1310 : struct llist_node *first;
1311 :
1312 0 : if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1313 0 : flags &= ~IOU_F_TWQ_LAZY_WAKE;
1314 :
1315 0 : first = READ_ONCE(ctx->work_llist.first);
1316 : do {
1317 0 : nr_tw_prev = 0;
1318 0 : if (first) {
1319 0 : struct io_kiocb *first_req = container_of(first,
1320 : struct io_kiocb,
1321 : io_task_work.node);
1322 : /*
1323 : * Might be executed at any moment, rely on
1324 : * SLAB_TYPESAFE_BY_RCU to keep it alive.
1325 : */
1326 0 : nr_tw_prev = READ_ONCE(first_req->nr_tw);
1327 : }
1328 0 : nr_tw = nr_tw_prev + 1;
1329 : /* Large enough to fail the nr_wait comparison below */
1330 0 : if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1331 0 : nr_tw = -1U;
1332 :
1333 0 : req->nr_tw = nr_tw;
1334 0 : req->io_task_work.node.next = first;
1335 0 : } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1336 : &req->io_task_work.node));
1337 :
1338 0 : if (!first) {
1339 0 : if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1340 0 : atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1341 0 : if (ctx->has_evfd)
1342 0 : io_eventfd_signal(ctx);
1343 : }
1344 :
1345 0 : nr_wait = atomic_read(&ctx->cq_wait_nr);
1346 : /* no one is waiting */
1347 0 : if (!nr_wait)
1348 : return;
1349 : /* either not enough or the previous add has already woken it up */
1350 0 : if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1351 : return;
1352 : /* pairs with set_current_state() in io_cqring_wait() */
1353 0 : smp_mb__after_atomic();
1354 0 : wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1355 : }
1356 :
1357 0 : void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1358 : {
1359 0 : struct io_uring_task *tctx = req->task->io_uring;
1360 0 : struct io_ring_ctx *ctx = req->ctx;
1361 :
1362 0 : if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1363 0 : (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1364 : rcu_read_lock();
1365 0 : io_req_local_work_add(req, flags);
1366 : rcu_read_unlock();
1367 : return;
1368 : }
1369 :
1370 : /* task_work already pending, we're done */
1371 0 : if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1372 : return;
1373 :
1374 0 : if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 0 : atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1376 :
1377 0 : if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1378 : return;
1379 :
1380 0 : io_fallback_tw(tctx);
1381 : }
1382 :
1383 0 : static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1384 : {
1385 : struct llist_node *node;
1386 :
1387 0 : node = llist_del_all(&ctx->work_llist);
1388 0 : while (node) {
1389 0 : struct io_kiocb *req = container_of(node, struct io_kiocb,
1390 : io_task_work.node);
1391 :
1392 0 : node = node->next;
1393 0 : __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1394 : }
1395 0 : }
1396 :
1397 0 : static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1398 : {
1399 : struct llist_node *node;
1400 0 : unsigned int loops = 0;
1401 0 : int ret = 0;
1402 :
1403 0 : if (WARN_ON_ONCE(ctx->submitter_task != current))
1404 : return -EEXIST;
1405 0 : if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1406 0 : atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1407 : again:
1408 0 : node = io_llist_xchg(&ctx->work_llist, NULL);
1409 0 : while (node) {
1410 0 : struct llist_node *next = node->next;
1411 0 : struct io_kiocb *req = container_of(node, struct io_kiocb,
1412 : io_task_work.node);
1413 0 : prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1414 0 : req->io_task_work.func(req, ts);
1415 0 : ret++;
1416 0 : node = next;
1417 : }
1418 0 : loops++;
1419 :
1420 0 : if (!llist_empty(&ctx->work_llist))
1421 : goto again;
1422 0 : if (ts->locked) {
1423 0 : io_submit_flush_completions(ctx);
1424 0 : if (!llist_empty(&ctx->work_llist))
1425 : goto again;
1426 : }
1427 : trace_io_uring_local_work_run(ctx, ret, loops);
1428 : return ret;
1429 : }
1430 :
1431 0 : static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1432 : {
1433 0 : struct io_tw_state ts = { .locked = true, };
1434 : int ret;
1435 :
1436 0 : if (llist_empty(&ctx->work_llist))
1437 : return 0;
1438 :
1439 0 : ret = __io_run_local_work(ctx, &ts);
1440 : /* shouldn't happen! */
1441 0 : if (WARN_ON_ONCE(!ts.locked))
1442 0 : mutex_lock(&ctx->uring_lock);
1443 : return ret;
1444 : }
1445 :
1446 0 : static int io_run_local_work(struct io_ring_ctx *ctx)
1447 : {
1448 0 : struct io_tw_state ts = {};
1449 : int ret;
1450 :
1451 0 : ts.locked = mutex_trylock(&ctx->uring_lock);
1452 0 : ret = __io_run_local_work(ctx, &ts);
1453 0 : if (ts.locked)
1454 0 : mutex_unlock(&ctx->uring_lock);
1455 :
1456 0 : return ret;
1457 : }
1458 :
1459 0 : static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1460 : {
1461 0 : io_tw_lock(req->ctx, ts);
1462 0 : io_req_defer_failed(req, req->cqe.res);
1463 0 : }
1464 :
1465 0 : void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1466 : {
1467 0 : io_tw_lock(req->ctx, ts);
1468 : /* req->task == current here, checking PF_EXITING is safe */
1469 0 : if (unlikely(req->task->flags & PF_EXITING))
1470 0 : io_req_defer_failed(req, -EFAULT);
1471 0 : else if (req->flags & REQ_F_FORCE_ASYNC)
1472 0 : io_queue_iowq(req, ts);
1473 : else
1474 0 : io_queue_sqe(req);
1475 0 : }
1476 :
1477 0 : void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1478 : {
1479 0 : io_req_set_res(req, ret, 0);
1480 0 : req->io_task_work.func = io_req_task_cancel;
1481 0 : io_req_task_work_add(req);
1482 0 : }
1483 :
1484 0 : void io_req_task_queue(struct io_kiocb *req)
1485 : {
1486 0 : req->io_task_work.func = io_req_task_submit;
1487 0 : io_req_task_work_add(req);
1488 0 : }
1489 :
1490 0 : void io_queue_next(struct io_kiocb *req)
1491 : {
1492 0 : struct io_kiocb *nxt = io_req_find_next(req);
1493 :
1494 0 : if (nxt)
1495 : io_req_task_queue(nxt);
1496 0 : }
1497 :
1498 0 : void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1499 : __must_hold(&ctx->uring_lock)
1500 : {
1501 0 : struct task_struct *task = NULL;
1502 0 : int task_refs = 0;
1503 :
1504 : do {
1505 0 : struct io_kiocb *req = container_of(node, struct io_kiocb,
1506 : comp_list);
1507 :
1508 0 : if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1509 0 : if (req->flags & REQ_F_REFCOUNT) {
1510 0 : node = req->comp_list.next;
1511 0 : if (!req_ref_put_and_test(req))
1512 0 : continue;
1513 : }
1514 0 : if ((req->flags & REQ_F_POLLED) && req->apoll) {
1515 0 : struct async_poll *apoll = req->apoll;
1516 :
1517 0 : if (apoll->double_poll)
1518 0 : kfree(apoll->double_poll);
1519 0 : if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1520 0 : kfree(apoll);
1521 0 : req->flags &= ~REQ_F_POLLED;
1522 : }
1523 0 : if (req->flags & IO_REQ_LINK_FLAGS)
1524 0 : io_queue_next(req);
1525 0 : if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1526 0 : io_clean_op(req);
1527 : }
1528 0 : if (!(req->flags & REQ_F_FIXED_FILE))
1529 0 : io_put_file(req->file);
1530 :
1531 0 : io_req_put_rsrc_locked(req, ctx);
1532 :
1533 0 : if (req->task != task) {
1534 0 : if (task)
1535 0 : io_put_task(task, task_refs);
1536 0 : task = req->task;
1537 0 : task_refs = 0;
1538 : }
1539 0 : task_refs++;
1540 0 : node = req->comp_list.next;
1541 : io_req_add_to_cache(req, ctx);
1542 0 : } while (node);
1543 :
1544 0 : if (task)
1545 0 : io_put_task(task, task_refs);
1546 0 : }
1547 :
1548 0 : static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1549 : __must_hold(&ctx->uring_lock)
1550 : {
1551 0 : struct io_submit_state *state = &ctx->submit_state;
1552 : struct io_wq_work_node *node;
1553 :
1554 0 : __io_cq_lock(ctx);
1555 : /* must come first to preserve CQE ordering in failure cases */
1556 0 : if (state->cqes_count)
1557 0 : __io_flush_post_cqes(ctx);
1558 0 : __wq_list_for_each(node, &state->compl_reqs) {
1559 0 : struct io_kiocb *req = container_of(node, struct io_kiocb,
1560 : comp_list);
1561 :
1562 0 : if (!(req->flags & REQ_F_CQE_SKIP) &&
1563 0 : unlikely(!__io_fill_cqe_req(ctx, req))) {
1564 0 : if (ctx->task_complete) {
1565 0 : spin_lock(&ctx->completion_lock);
1566 0 : io_req_cqe_overflow(req);
1567 0 : spin_unlock(&ctx->completion_lock);
1568 : } else {
1569 0 : io_req_cqe_overflow(req);
1570 : }
1571 : }
1572 : }
1573 0 : __io_cq_unlock_post_flush(ctx);
1574 :
1575 0 : if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1576 0 : io_free_batch_list(ctx, state->compl_reqs.first);
1577 0 : INIT_WQ_LIST(&state->compl_reqs);
1578 : }
1579 0 : }
1580 :
1581 : /*
1582 : * Drop reference to request, return next in chain (if there is one) if this
1583 : * was the last reference to this request.
1584 : */
1585 0 : static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1586 : {
1587 0 : struct io_kiocb *nxt = NULL;
1588 :
1589 0 : if (req_ref_put_and_test(req)) {
1590 0 : if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1591 0 : nxt = io_req_find_next(req);
1592 0 : io_free_req(req);
1593 : }
1594 0 : return nxt;
1595 : }
1596 :
1597 : static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1598 : {
1599 : /* See comment at the top of this file */
1600 0 : smp_rmb();
1601 0 : return __io_cqring_events(ctx);
1602 : }
1603 :
1604 : /*
1605 : * We can't just wait for polled events to come to us, we have to actively
1606 : * find and complete them.
1607 : */
1608 0 : static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1609 : {
1610 0 : if (!(ctx->flags & IORING_SETUP_IOPOLL))
1611 : return;
1612 :
1613 0 : mutex_lock(&ctx->uring_lock);
1614 0 : while (!wq_list_empty(&ctx->iopoll_list)) {
1615 : /* let it sleep and repeat later if can't complete a request */
1616 0 : if (io_do_iopoll(ctx, true) == 0)
1617 : break;
1618 : /*
1619 : * Ensure we allow local-to-the-cpu processing to take place,
1620 : * in this case we need to ensure that we reap all events.
1621 : * Also let task_work, etc. to progress by releasing the mutex
1622 : */
1623 0 : if (need_resched()) {
1624 0 : mutex_unlock(&ctx->uring_lock);
1625 0 : cond_resched();
1626 0 : mutex_lock(&ctx->uring_lock);
1627 : }
1628 : }
1629 0 : mutex_unlock(&ctx->uring_lock);
1630 : }
1631 :
1632 0 : static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1633 : {
1634 0 : unsigned int nr_events = 0;
1635 0 : int ret = 0;
1636 : unsigned long check_cq;
1637 :
1638 0 : if (!io_allowed_run_tw(ctx))
1639 : return -EEXIST;
1640 :
1641 0 : check_cq = READ_ONCE(ctx->check_cq);
1642 0 : if (unlikely(check_cq)) {
1643 0 : if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1644 0 : __io_cqring_overflow_flush(ctx);
1645 : /*
1646 : * Similarly do not spin if we have not informed the user of any
1647 : * dropped CQE.
1648 : */
1649 0 : if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1650 : return -EBADR;
1651 : }
1652 : /*
1653 : * Don't enter poll loop if we already have events pending.
1654 : * If we do, we can potentially be spinning for commands that
1655 : * already triggered a CQE (eg in error).
1656 : */
1657 0 : if (io_cqring_events(ctx))
1658 : return 0;
1659 :
1660 : do {
1661 : /*
1662 : * If a submit got punted to a workqueue, we can have the
1663 : * application entering polling for a command before it gets
1664 : * issued. That app will hold the uring_lock for the duration
1665 : * of the poll right here, so we need to take a breather every
1666 : * now and then to ensure that the issue has a chance to add
1667 : * the poll to the issued list. Otherwise we can spin here
1668 : * forever, while the workqueue is stuck trying to acquire the
1669 : * very same mutex.
1670 : */
1671 0 : if (wq_list_empty(&ctx->iopoll_list) ||
1672 0 : io_task_work_pending(ctx)) {
1673 0 : u32 tail = ctx->cached_cq_tail;
1674 :
1675 0 : (void) io_run_local_work_locked(ctx);
1676 :
1677 0 : if (task_work_pending(current) ||
1678 0 : wq_list_empty(&ctx->iopoll_list)) {
1679 0 : mutex_unlock(&ctx->uring_lock);
1680 0 : io_run_task_work();
1681 0 : mutex_lock(&ctx->uring_lock);
1682 : }
1683 : /* some requests don't go through iopoll_list */
1684 0 : if (tail != ctx->cached_cq_tail ||
1685 0 : wq_list_empty(&ctx->iopoll_list))
1686 : break;
1687 : }
1688 0 : ret = io_do_iopoll(ctx, !min);
1689 0 : if (ret < 0)
1690 : break;
1691 0 : nr_events += ret;
1692 0 : ret = 0;
1693 0 : } while (nr_events < min && !need_resched());
1694 :
1695 : return ret;
1696 : }
1697 :
1698 0 : void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1699 : {
1700 0 : if (ts->locked)
1701 : io_req_complete_defer(req);
1702 : else
1703 0 : io_req_complete_post(req, IO_URING_F_UNLOCKED);
1704 0 : }
1705 :
1706 : /*
1707 : * After the iocb has been issued, it's safe to be found on the poll list.
1708 : * Adding the kiocb to the list AFTER submission ensures that we don't
1709 : * find it from a io_do_iopoll() thread before the issuer is done
1710 : * accessing the kiocb cookie.
1711 : */
1712 0 : static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1713 : {
1714 0 : struct io_ring_ctx *ctx = req->ctx;
1715 0 : const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1716 :
1717 : /* workqueue context doesn't hold uring_lock, grab it now */
1718 0 : if (unlikely(needs_lock))
1719 0 : mutex_lock(&ctx->uring_lock);
1720 :
1721 : /*
1722 : * Track whether we have multiple files in our lists. This will impact
1723 : * how we do polling eventually, not spinning if we're on potentially
1724 : * different devices.
1725 : */
1726 0 : if (wq_list_empty(&ctx->iopoll_list)) {
1727 0 : ctx->poll_multi_queue = false;
1728 0 : } else if (!ctx->poll_multi_queue) {
1729 : struct io_kiocb *list_req;
1730 :
1731 0 : list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1732 : comp_list);
1733 0 : if (list_req->file != req->file)
1734 0 : ctx->poll_multi_queue = true;
1735 : }
1736 :
1737 : /*
1738 : * For fast devices, IO may have already completed. If it has, add
1739 : * it to the front so we find it first.
1740 : */
1741 0 : if (READ_ONCE(req->iopoll_completed))
1742 0 : wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1743 : else
1744 0 : wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1745 :
1746 0 : if (unlikely(needs_lock)) {
1747 : /*
1748 : * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1749 : * in sq thread task context or in io worker task context. If
1750 : * current task context is sq thread, we don't need to check
1751 : * whether should wake up sq thread.
1752 : */
1753 0 : if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1754 0 : wq_has_sleeper(&ctx->sq_data->wait))
1755 0 : wake_up(&ctx->sq_data->wait);
1756 :
1757 0 : mutex_unlock(&ctx->uring_lock);
1758 : }
1759 0 : }
1760 :
1761 : static bool io_bdev_nowait(struct block_device *bdev)
1762 : {
1763 0 : return !bdev || bdev_nowait(bdev);
1764 : }
1765 :
1766 : /*
1767 : * If we tracked the file through the SCM inflight mechanism, we could support
1768 : * any file. For now, just ensure that anything potentially problematic is done
1769 : * inline.
1770 : */
1771 0 : static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1772 : {
1773 0 : if (S_ISBLK(mode)) {
1774 0 : if (IS_ENABLED(CONFIG_BLOCK) &&
1775 0 : io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1776 : return true;
1777 0 : return false;
1778 : }
1779 0 : if (S_ISSOCK(mode))
1780 : return true;
1781 0 : if (S_ISREG(mode)) {
1782 0 : if (IS_ENABLED(CONFIG_BLOCK) &&
1783 0 : io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1784 0 : !io_is_uring_fops(file))
1785 : return true;
1786 : return false;
1787 : }
1788 :
1789 : /* any ->read/write should understand O_NONBLOCK */
1790 0 : if (file->f_flags & O_NONBLOCK)
1791 : return true;
1792 0 : return file->f_mode & FMODE_NOWAIT;
1793 : }
1794 :
1795 : /*
1796 : * If we tracked the file through the SCM inflight mechanism, we could support
1797 : * any file. For now, just ensure that anything potentially problematic is done
1798 : * inline.
1799 : */
1800 0 : unsigned int io_file_get_flags(struct file *file)
1801 : {
1802 0 : umode_t mode = file_inode(file)->i_mode;
1803 0 : unsigned int res = 0;
1804 :
1805 0 : if (S_ISREG(mode))
1806 0 : res |= FFS_ISREG;
1807 0 : if (__io_file_supports_nowait(file, mode))
1808 0 : res |= FFS_NOWAIT;
1809 0 : return res;
1810 : }
1811 :
1812 0 : bool io_alloc_async_data(struct io_kiocb *req)
1813 : {
1814 0 : WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1815 0 : req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1816 0 : if (req->async_data) {
1817 0 : req->flags |= REQ_F_ASYNC_DATA;
1818 0 : return false;
1819 : }
1820 : return true;
1821 : }
1822 :
1823 0 : int io_req_prep_async(struct io_kiocb *req)
1824 : {
1825 0 : const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1826 0 : const struct io_issue_def *def = &io_issue_defs[req->opcode];
1827 :
1828 : /* assign early for deferred execution for non-fixed file */
1829 0 : if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1830 0 : req->file = io_file_get_normal(req, req->cqe.fd);
1831 0 : if (!cdef->prep_async)
1832 : return 0;
1833 0 : if (WARN_ON_ONCE(req_has_async_data(req)))
1834 : return -EFAULT;
1835 0 : if (!def->manual_alloc) {
1836 0 : if (io_alloc_async_data(req))
1837 : return -EAGAIN;
1838 : }
1839 0 : return cdef->prep_async(req);
1840 : }
1841 :
1842 : static u32 io_get_sequence(struct io_kiocb *req)
1843 : {
1844 0 : u32 seq = req->ctx->cached_sq_head;
1845 : struct io_kiocb *cur;
1846 :
1847 : /* need original cached_sq_head, but it was increased for each req */
1848 0 : io_for_each_link(cur, req)
1849 0 : seq--;
1850 : return seq;
1851 : }
1852 :
1853 0 : static __cold void io_drain_req(struct io_kiocb *req)
1854 : __must_hold(&ctx->uring_lock)
1855 : {
1856 0 : struct io_ring_ctx *ctx = req->ctx;
1857 : struct io_defer_entry *de;
1858 : int ret;
1859 0 : u32 seq = io_get_sequence(req);
1860 :
1861 : /* Still need defer if there is pending req in defer list. */
1862 0 : spin_lock(&ctx->completion_lock);
1863 0 : if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1864 0 : spin_unlock(&ctx->completion_lock);
1865 : queue:
1866 0 : ctx->drain_active = false;
1867 : io_req_task_queue(req);
1868 : return;
1869 : }
1870 0 : spin_unlock(&ctx->completion_lock);
1871 :
1872 0 : io_prep_async_link(req);
1873 0 : de = kmalloc(sizeof(*de), GFP_KERNEL);
1874 0 : if (!de) {
1875 0 : ret = -ENOMEM;
1876 0 : io_req_defer_failed(req, ret);
1877 0 : return;
1878 : }
1879 :
1880 0 : spin_lock(&ctx->completion_lock);
1881 0 : if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1882 0 : spin_unlock(&ctx->completion_lock);
1883 0 : kfree(de);
1884 0 : goto queue;
1885 : }
1886 :
1887 0 : trace_io_uring_defer(req);
1888 0 : de->req = req;
1889 0 : de->seq = seq;
1890 0 : list_add_tail(&de->list, &ctx->defer_list);
1891 0 : spin_unlock(&ctx->completion_lock);
1892 : }
1893 :
1894 0 : static void io_clean_op(struct io_kiocb *req)
1895 : {
1896 0 : if (req->flags & REQ_F_BUFFER_SELECTED) {
1897 0 : spin_lock(&req->ctx->completion_lock);
1898 0 : io_put_kbuf_comp(req);
1899 0 : spin_unlock(&req->ctx->completion_lock);
1900 : }
1901 :
1902 0 : if (req->flags & REQ_F_NEED_CLEANUP) {
1903 0 : const struct io_cold_def *def = &io_cold_defs[req->opcode];
1904 :
1905 0 : if (def->cleanup)
1906 0 : def->cleanup(req);
1907 : }
1908 0 : if ((req->flags & REQ_F_POLLED) && req->apoll) {
1909 0 : kfree(req->apoll->double_poll);
1910 0 : kfree(req->apoll);
1911 0 : req->apoll = NULL;
1912 : }
1913 0 : if (req->flags & REQ_F_INFLIGHT) {
1914 0 : struct io_uring_task *tctx = req->task->io_uring;
1915 :
1916 0 : atomic_dec(&tctx->inflight_tracked);
1917 : }
1918 0 : if (req->flags & REQ_F_CREDS)
1919 0 : put_cred(req->creds);
1920 0 : if (req->flags & REQ_F_ASYNC_DATA) {
1921 0 : kfree(req->async_data);
1922 0 : req->async_data = NULL;
1923 : }
1924 0 : req->flags &= ~IO_REQ_CLEAN_FLAGS;
1925 0 : }
1926 :
1927 0 : static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1928 : unsigned int issue_flags)
1929 : {
1930 0 : if (req->file || !def->needs_file)
1931 : return true;
1932 :
1933 0 : if (req->flags & REQ_F_FIXED_FILE)
1934 0 : req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1935 : else
1936 0 : req->file = io_file_get_normal(req, req->cqe.fd);
1937 :
1938 0 : return !!req->file;
1939 : }
1940 :
1941 0 : static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1942 : {
1943 0 : const struct io_issue_def *def = &io_issue_defs[req->opcode];
1944 0 : const struct cred *creds = NULL;
1945 : int ret;
1946 :
1947 0 : if (unlikely(!io_assign_file(req, def, issue_flags)))
1948 : return -EBADF;
1949 :
1950 0 : if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1951 0 : creds = override_creds(req->creds);
1952 :
1953 0 : if (!def->audit_skip)
1954 : audit_uring_entry(req->opcode);
1955 :
1956 0 : ret = def->issue(req, issue_flags);
1957 :
1958 : if (!def->audit_skip)
1959 : audit_uring_exit(!ret, ret);
1960 :
1961 0 : if (creds)
1962 0 : revert_creds(creds);
1963 :
1964 0 : if (ret == IOU_OK) {
1965 0 : if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1966 : io_req_complete_defer(req);
1967 : else
1968 0 : io_req_complete_post(req, issue_flags);
1969 0 : } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1970 : return ret;
1971 :
1972 : /* If the op doesn't have a file, we're not polling for it */
1973 0 : if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1974 0 : io_iopoll_req_issued(req, issue_flags);
1975 :
1976 : return 0;
1977 : }
1978 :
1979 0 : int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1980 : {
1981 0 : io_tw_lock(req->ctx, ts);
1982 0 : return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1983 : IO_URING_F_COMPLETE_DEFER);
1984 : }
1985 :
1986 0 : struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1987 : {
1988 0 : struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1989 :
1990 0 : req = io_put_req_find_next(req);
1991 0 : return req ? &req->work : NULL;
1992 : }
1993 :
1994 0 : void io_wq_submit_work(struct io_wq_work *work)
1995 : {
1996 0 : struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1997 0 : const struct io_issue_def *def = &io_issue_defs[req->opcode];
1998 0 : unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1999 0 : bool needs_poll = false;
2000 0 : int ret = 0, err = -ECANCELED;
2001 :
2002 : /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
2003 0 : if (!(req->flags & REQ_F_REFCOUNT))
2004 : __io_req_set_refcount(req, 2);
2005 : else
2006 0 : req_ref_get(req);
2007 :
2008 0 : io_arm_ltimeout(req);
2009 :
2010 : /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
2011 0 : if (work->flags & IO_WQ_WORK_CANCEL) {
2012 : fail:
2013 : io_req_task_queue_fail(req, err);
2014 : return;
2015 : }
2016 0 : if (!io_assign_file(req, def, issue_flags)) {
2017 0 : err = -EBADF;
2018 0 : work->flags |= IO_WQ_WORK_CANCEL;
2019 0 : goto fail;
2020 : }
2021 :
2022 0 : if (req->flags & REQ_F_FORCE_ASYNC) {
2023 0 : bool opcode_poll = def->pollin || def->pollout;
2024 :
2025 0 : if (opcode_poll && file_can_poll(req->file)) {
2026 0 : needs_poll = true;
2027 0 : issue_flags |= IO_URING_F_NONBLOCK;
2028 : }
2029 : }
2030 :
2031 : do {
2032 0 : ret = io_issue_sqe(req, issue_flags);
2033 0 : if (ret != -EAGAIN)
2034 : break;
2035 : /*
2036 : * We can get EAGAIN for iopolled IO even though we're
2037 : * forcing a sync submission from here, since we can't
2038 : * wait for request slots on the block side.
2039 : */
2040 0 : if (!needs_poll) {
2041 0 : if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
2042 : break;
2043 0 : cond_resched();
2044 0 : continue;
2045 : }
2046 :
2047 0 : if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2048 : return;
2049 : /* aborted or ready, in either case retry blocking */
2050 : needs_poll = false;
2051 : issue_flags &= ~IO_URING_F_NONBLOCK;
2052 : } while (1);
2053 :
2054 : /* avoid locking problems by failing it from a clean context */
2055 0 : if (ret < 0)
2056 : io_req_task_queue_fail(req, ret);
2057 : }
2058 :
2059 0 : inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2060 : unsigned int issue_flags)
2061 : {
2062 0 : struct io_ring_ctx *ctx = req->ctx;
2063 0 : struct file *file = NULL;
2064 : unsigned long file_ptr;
2065 :
2066 0 : io_ring_submit_lock(ctx, issue_flags);
2067 :
2068 0 : if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2069 : goto out;
2070 0 : fd = array_index_nospec(fd, ctx->nr_user_files);
2071 0 : file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
2072 0 : file = (struct file *) (file_ptr & FFS_MASK);
2073 0 : file_ptr &= ~FFS_MASK;
2074 : /* mask in overlapping REQ_F and FFS bits */
2075 0 : req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
2076 0 : io_req_set_rsrc_node(req, ctx, 0);
2077 : out:
2078 0 : io_ring_submit_unlock(ctx, issue_flags);
2079 0 : return file;
2080 : }
2081 :
2082 0 : struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2083 : {
2084 0 : struct file *file = fget(fd);
2085 :
2086 0 : trace_io_uring_file_get(req, fd);
2087 :
2088 : /* we don't allow fixed io_uring files */
2089 0 : if (file && io_is_uring_fops(file))
2090 0 : io_req_track_inflight(req);
2091 0 : return file;
2092 : }
2093 :
2094 0 : static void io_queue_async(struct io_kiocb *req, int ret)
2095 : __must_hold(&req->ctx->uring_lock)
2096 : {
2097 : struct io_kiocb *linked_timeout;
2098 :
2099 0 : if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2100 0 : io_req_defer_failed(req, ret);
2101 0 : return;
2102 : }
2103 :
2104 0 : linked_timeout = io_prep_linked_timeout(req);
2105 :
2106 0 : switch (io_arm_poll_handler(req, 0)) {
2107 : case IO_APOLL_READY:
2108 0 : io_kbuf_recycle(req, 0);
2109 : io_req_task_queue(req);
2110 : break;
2111 : case IO_APOLL_ABORTED:
2112 0 : io_kbuf_recycle(req, 0);
2113 0 : io_queue_iowq(req, NULL);
2114 0 : break;
2115 : case IO_APOLL_OK:
2116 : break;
2117 : }
2118 :
2119 0 : if (linked_timeout)
2120 0 : io_queue_linked_timeout(linked_timeout);
2121 : }
2122 :
2123 0 : static inline void io_queue_sqe(struct io_kiocb *req)
2124 : __must_hold(&req->ctx->uring_lock)
2125 : {
2126 : int ret;
2127 :
2128 0 : ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2129 :
2130 : /*
2131 : * We async punt it if the file wasn't marked NOWAIT, or if the file
2132 : * doesn't support non-blocking read/write attempts
2133 : */
2134 0 : if (likely(!ret))
2135 : io_arm_ltimeout(req);
2136 : else
2137 0 : io_queue_async(req, ret);
2138 0 : }
2139 :
2140 0 : static void io_queue_sqe_fallback(struct io_kiocb *req)
2141 : __must_hold(&req->ctx->uring_lock)
2142 : {
2143 0 : if (unlikely(req->flags & REQ_F_FAIL)) {
2144 : /*
2145 : * We don't submit, fail them all, for that replace hardlinks
2146 : * with normal links. Extra REQ_F_LINK is tolerated.
2147 : */
2148 0 : req->flags &= ~REQ_F_HARDLINK;
2149 0 : req->flags |= REQ_F_LINK;
2150 0 : io_req_defer_failed(req, req->cqe.res);
2151 : } else {
2152 0 : int ret = io_req_prep_async(req);
2153 :
2154 0 : if (unlikely(ret)) {
2155 0 : io_req_defer_failed(req, ret);
2156 0 : return;
2157 : }
2158 :
2159 0 : if (unlikely(req->ctx->drain_active))
2160 0 : io_drain_req(req);
2161 : else
2162 0 : io_queue_iowq(req, NULL);
2163 : }
2164 : }
2165 :
2166 : /*
2167 : * Check SQE restrictions (opcode and flags).
2168 : *
2169 : * Returns 'true' if SQE is allowed, 'false' otherwise.
2170 : */
2171 0 : static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2172 : struct io_kiocb *req,
2173 : unsigned int sqe_flags)
2174 : {
2175 0 : if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2176 : return false;
2177 :
2178 0 : if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2179 : ctx->restrictions.sqe_flags_required)
2180 : return false;
2181 :
2182 0 : if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2183 : ctx->restrictions.sqe_flags_required))
2184 : return false;
2185 :
2186 : return true;
2187 : }
2188 :
2189 : static void io_init_req_drain(struct io_kiocb *req)
2190 : {
2191 0 : struct io_ring_ctx *ctx = req->ctx;
2192 0 : struct io_kiocb *head = ctx->submit_state.link.head;
2193 :
2194 0 : ctx->drain_active = true;
2195 0 : if (head) {
2196 : /*
2197 : * If we need to drain a request in the middle of a link, drain
2198 : * the head request and the next request/link after the current
2199 : * link. Considering sequential execution of links,
2200 : * REQ_F_IO_DRAIN will be maintained for every request of our
2201 : * link.
2202 : */
2203 0 : head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2204 0 : ctx->drain_next = true;
2205 : }
2206 : }
2207 :
2208 0 : static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2209 : const struct io_uring_sqe *sqe)
2210 : __must_hold(&ctx->uring_lock)
2211 : {
2212 : const struct io_issue_def *def;
2213 : unsigned int sqe_flags;
2214 : int personality;
2215 : u8 opcode;
2216 :
2217 : /* req is partially pre-initialised, see io_preinit_req() */
2218 0 : req->opcode = opcode = READ_ONCE(sqe->opcode);
2219 : /* same numerical values with corresponding REQ_F_*, safe to copy */
2220 0 : req->flags = sqe_flags = READ_ONCE(sqe->flags);
2221 0 : req->cqe.user_data = READ_ONCE(sqe->user_data);
2222 0 : req->file = NULL;
2223 0 : req->rsrc_node = NULL;
2224 0 : req->task = current;
2225 :
2226 0 : if (unlikely(opcode >= IORING_OP_LAST)) {
2227 0 : req->opcode = 0;
2228 0 : return -EINVAL;
2229 : }
2230 0 : def = &io_issue_defs[opcode];
2231 0 : if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2232 : /* enforce forwards compatibility on users */
2233 0 : if (sqe_flags & ~SQE_VALID_FLAGS)
2234 : return -EINVAL;
2235 0 : if (sqe_flags & IOSQE_BUFFER_SELECT) {
2236 0 : if (!def->buffer_select)
2237 : return -EOPNOTSUPP;
2238 0 : req->buf_index = READ_ONCE(sqe->buf_group);
2239 : }
2240 0 : if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2241 0 : ctx->drain_disabled = true;
2242 0 : if (sqe_flags & IOSQE_IO_DRAIN) {
2243 0 : if (ctx->drain_disabled)
2244 : return -EOPNOTSUPP;
2245 0 : io_init_req_drain(req);
2246 : }
2247 : }
2248 0 : if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2249 0 : if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2250 : return -EACCES;
2251 : /* knock it to the slow queue path, will be drained there */
2252 0 : if (ctx->drain_active)
2253 0 : req->flags |= REQ_F_FORCE_ASYNC;
2254 : /* if there is no link, we're at "next" request and need to drain */
2255 0 : if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2256 0 : ctx->drain_next = false;
2257 0 : ctx->drain_active = true;
2258 0 : req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2259 : }
2260 : }
2261 :
2262 0 : if (!def->ioprio && sqe->ioprio)
2263 : return -EINVAL;
2264 0 : if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2265 : return -EINVAL;
2266 :
2267 0 : if (def->needs_file) {
2268 0 : struct io_submit_state *state = &ctx->submit_state;
2269 :
2270 0 : req->cqe.fd = READ_ONCE(sqe->fd);
2271 :
2272 : /*
2273 : * Plug now if we have more than 2 IO left after this, and the
2274 : * target is potentially a read/write to block based storage.
2275 : */
2276 0 : if (state->need_plug && def->plug) {
2277 0 : state->plug_started = true;
2278 0 : state->need_plug = false;
2279 0 : blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2280 : }
2281 : }
2282 :
2283 0 : personality = READ_ONCE(sqe->personality);
2284 0 : if (personality) {
2285 : int ret;
2286 :
2287 0 : req->creds = xa_load(&ctx->personalities, personality);
2288 0 : if (!req->creds)
2289 : return -EINVAL;
2290 0 : get_cred(req->creds);
2291 0 : ret = security_uring_override_creds(req->creds);
2292 : if (ret) {
2293 : put_cred(req->creds);
2294 : return ret;
2295 : }
2296 0 : req->flags |= REQ_F_CREDS;
2297 : }
2298 :
2299 0 : return def->prep(req, sqe);
2300 : }
2301 :
2302 0 : static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2303 : struct io_kiocb *req, int ret)
2304 : {
2305 0 : struct io_ring_ctx *ctx = req->ctx;
2306 0 : struct io_submit_link *link = &ctx->submit_state.link;
2307 0 : struct io_kiocb *head = link->head;
2308 :
2309 0 : trace_io_uring_req_failed(sqe, req, ret);
2310 :
2311 : /*
2312 : * Avoid breaking links in the middle as it renders links with SQPOLL
2313 : * unusable. Instead of failing eagerly, continue assembling the link if
2314 : * applicable and mark the head with REQ_F_FAIL. The link flushing code
2315 : * should find the flag and handle the rest.
2316 : */
2317 0 : req_fail_link_node(req, ret);
2318 0 : if (head && !(head->flags & REQ_F_FAIL))
2319 : req_fail_link_node(head, -ECANCELED);
2320 :
2321 0 : if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2322 0 : if (head) {
2323 0 : link->last->link = req;
2324 0 : link->head = NULL;
2325 0 : req = head;
2326 : }
2327 0 : io_queue_sqe_fallback(req);
2328 : return ret;
2329 : }
2330 :
2331 0 : if (head)
2332 0 : link->last->link = req;
2333 : else
2334 0 : link->head = req;
2335 0 : link->last = req;
2336 : return 0;
2337 : }
2338 :
2339 0 : static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2340 : const struct io_uring_sqe *sqe)
2341 : __must_hold(&ctx->uring_lock)
2342 : {
2343 0 : struct io_submit_link *link = &ctx->submit_state.link;
2344 : int ret;
2345 :
2346 0 : ret = io_init_req(ctx, req, sqe);
2347 0 : if (unlikely(ret))
2348 0 : return io_submit_fail_init(sqe, req, ret);
2349 :
2350 0 : trace_io_uring_submit_req(req);
2351 :
2352 : /*
2353 : * If we already have a head request, queue this one for async
2354 : * submittal once the head completes. If we don't have a head but
2355 : * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2356 : * submitted sync once the chain is complete. If none of those
2357 : * conditions are true (normal request), then just queue it.
2358 : */
2359 0 : if (unlikely(link->head)) {
2360 0 : ret = io_req_prep_async(req);
2361 0 : if (unlikely(ret))
2362 0 : return io_submit_fail_init(sqe, req, ret);
2363 :
2364 0 : trace_io_uring_link(req, link->head);
2365 0 : link->last->link = req;
2366 0 : link->last = req;
2367 :
2368 0 : if (req->flags & IO_REQ_LINK_FLAGS)
2369 : return 0;
2370 : /* last request of the link, flush it */
2371 0 : req = link->head;
2372 0 : link->head = NULL;
2373 0 : if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2374 : goto fallback;
2375 :
2376 0 : } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2377 : REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2378 0 : if (req->flags & IO_REQ_LINK_FLAGS) {
2379 0 : link->head = req;
2380 0 : link->last = req;
2381 : } else {
2382 : fallback:
2383 0 : io_queue_sqe_fallback(req);
2384 : }
2385 : return 0;
2386 : }
2387 :
2388 0 : io_queue_sqe(req);
2389 0 : return 0;
2390 : }
2391 :
2392 : /*
2393 : * Batched submission is done, ensure local IO is flushed out.
2394 : */
2395 0 : static void io_submit_state_end(struct io_ring_ctx *ctx)
2396 : {
2397 0 : struct io_submit_state *state = &ctx->submit_state;
2398 :
2399 0 : if (unlikely(state->link.head))
2400 0 : io_queue_sqe_fallback(state->link.head);
2401 : /* flush only after queuing links as they can generate completions */
2402 0 : io_submit_flush_completions(ctx);
2403 0 : if (state->plug_started)
2404 0 : blk_finish_plug(&state->plug);
2405 0 : }
2406 :
2407 : /*
2408 : * Start submission side cache.
2409 : */
2410 : static void io_submit_state_start(struct io_submit_state *state,
2411 : unsigned int max_ios)
2412 : {
2413 0 : state->plug_started = false;
2414 0 : state->need_plug = max_ios > 2;
2415 0 : state->submit_nr = max_ios;
2416 : /* set only head, no need to init link_last in advance */
2417 0 : state->link.head = NULL;
2418 : }
2419 :
2420 : static void io_commit_sqring(struct io_ring_ctx *ctx)
2421 : {
2422 0 : struct io_rings *rings = ctx->rings;
2423 :
2424 : /*
2425 : * Ensure any loads from the SQEs are done at this point,
2426 : * since once we write the new head, the application could
2427 : * write new data to them.
2428 : */
2429 0 : smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2430 : }
2431 :
2432 : /*
2433 : * Fetch an sqe, if one is available. Note this returns a pointer to memory
2434 : * that is mapped by userspace. This means that care needs to be taken to
2435 : * ensure that reads are stable, as we cannot rely on userspace always
2436 : * being a good citizen. If members of the sqe are validated and then later
2437 : * used, it's important that those reads are done through READ_ONCE() to
2438 : * prevent a re-load down the line.
2439 : */
2440 0 : static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2441 : {
2442 0 : unsigned head, mask = ctx->sq_entries - 1;
2443 0 : unsigned sq_idx = ctx->cached_sq_head++ & mask;
2444 :
2445 : /*
2446 : * The cached sq head (or cq tail) serves two purposes:
2447 : *
2448 : * 1) allows us to batch the cost of updating the user visible
2449 : * head updates.
2450 : * 2) allows the kernel side to track the head on its own, even
2451 : * though the application is the one updating it.
2452 : */
2453 0 : head = READ_ONCE(ctx->sq_array[sq_idx]);
2454 0 : if (likely(head < ctx->sq_entries)) {
2455 : /* double index for 128-byte SQEs, twice as long */
2456 0 : if (ctx->flags & IORING_SETUP_SQE128)
2457 0 : head <<= 1;
2458 0 : *sqe = &ctx->sq_sqes[head];
2459 0 : return true;
2460 : }
2461 :
2462 : /* drop invalid entries */
2463 0 : ctx->cq_extra--;
2464 0 : WRITE_ONCE(ctx->rings->sq_dropped,
2465 : READ_ONCE(ctx->rings->sq_dropped) + 1);
2466 0 : return false;
2467 : }
2468 :
2469 0 : int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2470 : __must_hold(&ctx->uring_lock)
2471 : {
2472 0 : unsigned int entries = io_sqring_entries(ctx);
2473 : unsigned int left;
2474 : int ret;
2475 :
2476 0 : if (unlikely(!entries))
2477 : return 0;
2478 : /* make sure SQ entry isn't read before tail */
2479 0 : ret = left = min(nr, entries);
2480 0 : io_get_task_refs(left);
2481 0 : io_submit_state_start(&ctx->submit_state, left);
2482 :
2483 : do {
2484 : const struct io_uring_sqe *sqe;
2485 : struct io_kiocb *req;
2486 :
2487 0 : if (unlikely(!io_alloc_req(ctx, &req)))
2488 : break;
2489 0 : if (unlikely(!io_get_sqe(ctx, &sqe))) {
2490 0 : io_req_add_to_cache(req, ctx);
2491 : break;
2492 : }
2493 :
2494 : /*
2495 : * Continue submitting even for sqe failure if the
2496 : * ring was setup with IORING_SETUP_SUBMIT_ALL
2497 : */
2498 0 : if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2499 0 : !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2500 0 : left--;
2501 0 : break;
2502 : }
2503 0 : } while (--left);
2504 :
2505 0 : if (unlikely(left)) {
2506 0 : ret -= left;
2507 : /* try again if it submitted nothing and can't allocate a req */
2508 0 : if (!ret && io_req_cache_empty(ctx))
2509 0 : ret = -EAGAIN;
2510 0 : current->io_uring->cached_refs += left;
2511 : }
2512 :
2513 0 : io_submit_state_end(ctx);
2514 : /* Commit SQ ring head once we've consumed and submitted all SQEs */
2515 0 : io_commit_sqring(ctx);
2516 0 : return ret;
2517 : }
2518 :
2519 : struct io_wait_queue {
2520 : struct wait_queue_entry wq;
2521 : struct io_ring_ctx *ctx;
2522 : unsigned cq_tail;
2523 : unsigned nr_timeouts;
2524 : ktime_t timeout;
2525 : };
2526 :
2527 : static inline bool io_has_work(struct io_ring_ctx *ctx)
2528 : {
2529 0 : return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2530 0 : !llist_empty(&ctx->work_llist);
2531 : }
2532 :
2533 : static inline bool io_should_wake(struct io_wait_queue *iowq)
2534 : {
2535 0 : struct io_ring_ctx *ctx = iowq->ctx;
2536 0 : int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2537 :
2538 : /*
2539 : * Wake up if we have enough events, or if a timeout occurred since we
2540 : * started waiting. For timeouts, we always want to return to userspace,
2541 : * regardless of event count.
2542 : */
2543 0 : return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2544 : }
2545 :
2546 0 : static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2547 : int wake_flags, void *key)
2548 : {
2549 0 : struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2550 :
2551 : /*
2552 : * Cannot safely flush overflowed CQEs from here, ensure we wake up
2553 : * the task, and the next invocation will do it.
2554 : */
2555 0 : if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2556 0 : return autoremove_wake_function(curr, mode, wake_flags, key);
2557 : return -1;
2558 : }
2559 :
2560 0 : int io_run_task_work_sig(struct io_ring_ctx *ctx)
2561 : {
2562 0 : if (!llist_empty(&ctx->work_llist)) {
2563 0 : __set_current_state(TASK_RUNNING);
2564 0 : if (io_run_local_work(ctx) > 0)
2565 : return 1;
2566 : }
2567 0 : if (io_run_task_work() > 0)
2568 : return 1;
2569 0 : if (task_sigpending(current))
2570 : return -EINTR;
2571 0 : return 0;
2572 : }
2573 :
2574 : /* when returns >0, the caller should retry */
2575 0 : static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2576 : struct io_wait_queue *iowq)
2577 : {
2578 0 : if (unlikely(READ_ONCE(ctx->check_cq)))
2579 : return 1;
2580 0 : if (unlikely(!llist_empty(&ctx->work_llist)))
2581 : return 1;
2582 0 : if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2583 : return 1;
2584 0 : if (unlikely(task_sigpending(current)))
2585 : return -EINTR;
2586 0 : if (unlikely(io_should_wake(iowq)))
2587 : return 0;
2588 0 : if (iowq->timeout == KTIME_MAX)
2589 0 : schedule();
2590 0 : else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2591 : return -ETIME;
2592 : return 0;
2593 : }
2594 :
2595 : /*
2596 : * Wait until events become available, if we don't already have some. The
2597 : * application must reap them itself, as they reside on the shared cq ring.
2598 : */
2599 0 : static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2600 : const sigset_t __user *sig, size_t sigsz,
2601 : struct __kernel_timespec __user *uts)
2602 : {
2603 : struct io_wait_queue iowq;
2604 0 : struct io_rings *rings = ctx->rings;
2605 : int ret;
2606 :
2607 0 : if (!io_allowed_run_tw(ctx))
2608 : return -EEXIST;
2609 0 : if (!llist_empty(&ctx->work_llist))
2610 0 : io_run_local_work(ctx);
2611 0 : io_run_task_work();
2612 0 : io_cqring_overflow_flush(ctx);
2613 : /* if user messes with these they will just get an early return */
2614 0 : if (__io_cqring_events_user(ctx) >= min_events)
2615 : return 0;
2616 :
2617 0 : if (sig) {
2618 : #ifdef CONFIG_COMPAT
2619 : if (in_compat_syscall())
2620 : ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2621 : sigsz);
2622 : else
2623 : #endif
2624 0 : ret = set_user_sigmask(sig, sigsz);
2625 :
2626 0 : if (ret)
2627 : return ret;
2628 : }
2629 :
2630 0 : init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2631 0 : iowq.wq.private = current;
2632 0 : INIT_LIST_HEAD(&iowq.wq.entry);
2633 0 : iowq.ctx = ctx;
2634 0 : iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2635 0 : iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2636 0 : iowq.timeout = KTIME_MAX;
2637 :
2638 0 : if (uts) {
2639 : struct timespec64 ts;
2640 :
2641 0 : if (get_timespec64(&ts, uts))
2642 0 : return -EFAULT;
2643 0 : iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2644 : }
2645 :
2646 : trace_io_uring_cqring_wait(ctx, min_events);
2647 0 : do {
2648 : unsigned long check_cq;
2649 :
2650 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2651 0 : int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2652 :
2653 0 : atomic_set(&ctx->cq_wait_nr, nr_wait);
2654 0 : set_current_state(TASK_INTERRUPTIBLE);
2655 : } else {
2656 0 : prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2657 : TASK_INTERRUPTIBLE);
2658 : }
2659 :
2660 0 : ret = io_cqring_wait_schedule(ctx, &iowq);
2661 0 : __set_current_state(TASK_RUNNING);
2662 0 : atomic_set(&ctx->cq_wait_nr, 0);
2663 :
2664 0 : if (ret < 0)
2665 : break;
2666 : /*
2667 : * Run task_work after scheduling and before io_should_wake().
2668 : * If we got woken because of task_work being processed, run it
2669 : * now rather than let the caller do another wait loop.
2670 : */
2671 0 : io_run_task_work();
2672 0 : if (!llist_empty(&ctx->work_llist))
2673 0 : io_run_local_work(ctx);
2674 :
2675 0 : check_cq = READ_ONCE(ctx->check_cq);
2676 0 : if (unlikely(check_cq)) {
2677 : /* let the caller flush overflows, retry */
2678 0 : if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2679 0 : io_cqring_do_overflow_flush(ctx);
2680 0 : if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2681 : ret = -EBADR;
2682 : break;
2683 : }
2684 : }
2685 :
2686 0 : if (io_should_wake(&iowq)) {
2687 : ret = 0;
2688 : break;
2689 : }
2690 0 : cond_resched();
2691 : } while (1);
2692 :
2693 0 : if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2694 0 : finish_wait(&ctx->cq_wait, &iowq.wq);
2695 0 : restore_saved_sigmask_unless(ret == -EINTR);
2696 :
2697 0 : return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2698 : }
2699 :
2700 0 : static void io_mem_free(void *ptr)
2701 : {
2702 : struct page *page;
2703 :
2704 0 : if (!ptr)
2705 : return;
2706 :
2707 0 : page = virt_to_head_page(ptr);
2708 0 : if (put_page_testzero(page))
2709 0 : free_compound_page(page);
2710 : }
2711 :
2712 0 : static void *io_mem_alloc(size_t size)
2713 : {
2714 0 : gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2715 :
2716 0 : return (void *) __get_free_pages(gfp, get_order(size));
2717 : }
2718 :
2719 0 : static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2720 : unsigned int cq_entries, size_t *sq_offset)
2721 : {
2722 : struct io_rings *rings;
2723 : size_t off, sq_array_size;
2724 :
2725 0 : off = struct_size(rings, cqes, cq_entries);
2726 0 : if (off == SIZE_MAX)
2727 : return SIZE_MAX;
2728 0 : if (ctx->flags & IORING_SETUP_CQE32) {
2729 0 : if (check_shl_overflow(off, 1, &off))
2730 : return SIZE_MAX;
2731 : }
2732 :
2733 : #ifdef CONFIG_SMP
2734 : off = ALIGN(off, SMP_CACHE_BYTES);
2735 : if (off == 0)
2736 : return SIZE_MAX;
2737 : #endif
2738 :
2739 0 : if (sq_offset)
2740 0 : *sq_offset = off;
2741 :
2742 0 : sq_array_size = array_size(sizeof(u32), sq_entries);
2743 0 : if (sq_array_size == SIZE_MAX)
2744 : return SIZE_MAX;
2745 :
2746 0 : if (check_add_overflow(off, sq_array_size, &off))
2747 : return SIZE_MAX;
2748 :
2749 0 : return off;
2750 : }
2751 :
2752 0 : static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2753 : unsigned int eventfd_async)
2754 : {
2755 : struct io_ev_fd *ev_fd;
2756 0 : __s32 __user *fds = arg;
2757 : int fd;
2758 :
2759 0 : ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2760 : lockdep_is_held(&ctx->uring_lock));
2761 0 : if (ev_fd)
2762 : return -EBUSY;
2763 :
2764 0 : if (copy_from_user(&fd, fds, sizeof(*fds)))
2765 : return -EFAULT;
2766 :
2767 0 : ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2768 0 : if (!ev_fd)
2769 : return -ENOMEM;
2770 :
2771 0 : ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2772 0 : if (IS_ERR(ev_fd->cq_ev_fd)) {
2773 0 : int ret = PTR_ERR(ev_fd->cq_ev_fd);
2774 0 : kfree(ev_fd);
2775 0 : return ret;
2776 : }
2777 :
2778 0 : spin_lock(&ctx->completion_lock);
2779 0 : ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2780 0 : spin_unlock(&ctx->completion_lock);
2781 :
2782 0 : ev_fd->eventfd_async = eventfd_async;
2783 0 : ctx->has_evfd = true;
2784 0 : rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2785 0 : atomic_set(&ev_fd->refs, 1);
2786 0 : atomic_set(&ev_fd->ops, 0);
2787 0 : return 0;
2788 : }
2789 :
2790 0 : static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2791 : {
2792 : struct io_ev_fd *ev_fd;
2793 :
2794 0 : ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2795 : lockdep_is_held(&ctx->uring_lock));
2796 0 : if (ev_fd) {
2797 0 : ctx->has_evfd = false;
2798 0 : rcu_assign_pointer(ctx->io_ev_fd, NULL);
2799 0 : if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2800 0 : call_rcu(&ev_fd->rcu, io_eventfd_ops);
2801 : return 0;
2802 : }
2803 :
2804 : return -ENXIO;
2805 : }
2806 :
2807 0 : static void io_req_caches_free(struct io_ring_ctx *ctx)
2808 : {
2809 : struct io_kiocb *req;
2810 0 : int nr = 0;
2811 :
2812 0 : mutex_lock(&ctx->uring_lock);
2813 0 : io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2814 :
2815 0 : while (!io_req_cache_empty(ctx)) {
2816 0 : req = io_extract_req(ctx);
2817 0 : kmem_cache_free(req_cachep, req);
2818 0 : nr++;
2819 : }
2820 0 : if (nr)
2821 0 : percpu_ref_put_many(&ctx->refs, nr);
2822 0 : mutex_unlock(&ctx->uring_lock);
2823 0 : }
2824 :
2825 0 : static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2826 : {
2827 0 : kfree(container_of(entry, struct io_rsrc_node, cache));
2828 0 : }
2829 :
2830 0 : static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2831 : {
2832 0 : io_sq_thread_finish(ctx);
2833 : /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2834 0 : if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2835 : return;
2836 :
2837 0 : mutex_lock(&ctx->uring_lock);
2838 0 : if (ctx->buf_data)
2839 0 : __io_sqe_buffers_unregister(ctx);
2840 0 : if (ctx->file_data)
2841 0 : __io_sqe_files_unregister(ctx);
2842 0 : io_cqring_overflow_kill(ctx);
2843 0 : io_eventfd_unregister(ctx);
2844 0 : io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2845 0 : io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2846 0 : io_destroy_buffers(ctx);
2847 0 : mutex_unlock(&ctx->uring_lock);
2848 0 : if (ctx->sq_creds)
2849 0 : put_cred(ctx->sq_creds);
2850 0 : if (ctx->submitter_task)
2851 0 : put_task_struct(ctx->submitter_task);
2852 :
2853 : /* there are no registered resources left, nobody uses it */
2854 0 : if (ctx->rsrc_node)
2855 0 : io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2856 :
2857 0 : WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2858 :
2859 : #if defined(CONFIG_UNIX)
2860 : if (ctx->ring_sock) {
2861 : ctx->ring_sock->file = NULL; /* so that iput() is called */
2862 : sock_release(ctx->ring_sock);
2863 : }
2864 : #endif
2865 0 : WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2866 :
2867 0 : io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2868 0 : if (ctx->mm_account) {
2869 0 : mmdrop(ctx->mm_account);
2870 0 : ctx->mm_account = NULL;
2871 : }
2872 0 : io_mem_free(ctx->rings);
2873 0 : io_mem_free(ctx->sq_sqes);
2874 :
2875 0 : percpu_ref_exit(&ctx->refs);
2876 0 : free_uid(ctx->user);
2877 0 : io_req_caches_free(ctx);
2878 0 : if (ctx->hash_map)
2879 0 : io_wq_put_hash(ctx->hash_map);
2880 0 : kfree(ctx->cancel_table.hbs);
2881 0 : kfree(ctx->cancel_table_locked.hbs);
2882 0 : kfree(ctx->dummy_ubuf);
2883 0 : kfree(ctx->io_bl);
2884 0 : xa_destroy(&ctx->io_bl_xa);
2885 0 : kfree(ctx);
2886 : }
2887 :
2888 0 : static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2889 : {
2890 0 : struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2891 : poll_wq_task_work);
2892 :
2893 0 : mutex_lock(&ctx->uring_lock);
2894 0 : ctx->poll_activated = true;
2895 0 : mutex_unlock(&ctx->uring_lock);
2896 :
2897 : /*
2898 : * Wake ups for some events between start of polling and activation
2899 : * might've been lost due to loose synchronisation.
2900 : */
2901 0 : wake_up_all(&ctx->poll_wq);
2902 0 : percpu_ref_put(&ctx->refs);
2903 0 : }
2904 :
2905 0 : static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2906 : {
2907 0 : spin_lock(&ctx->completion_lock);
2908 : /* already activated or in progress */
2909 0 : if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2910 : goto out;
2911 0 : if (WARN_ON_ONCE(!ctx->task_complete))
2912 : goto out;
2913 0 : if (!ctx->submitter_task)
2914 : goto out;
2915 : /*
2916 : * with ->submitter_task only the submitter task completes requests, we
2917 : * only need to sync with it, which is done by injecting a tw
2918 : */
2919 0 : init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2920 0 : percpu_ref_get(&ctx->refs);
2921 0 : if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2922 0 : percpu_ref_put(&ctx->refs);
2923 : out:
2924 0 : spin_unlock(&ctx->completion_lock);
2925 0 : }
2926 :
2927 0 : static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2928 : {
2929 0 : struct io_ring_ctx *ctx = file->private_data;
2930 0 : __poll_t mask = 0;
2931 :
2932 0 : if (unlikely(!ctx->poll_activated))
2933 0 : io_activate_pollwq(ctx);
2934 :
2935 0 : poll_wait(file, &ctx->poll_wq, wait);
2936 : /*
2937 : * synchronizes with barrier from wq_has_sleeper call in
2938 : * io_commit_cqring
2939 : */
2940 0 : smp_rmb();
2941 0 : if (!io_sqring_full(ctx))
2942 0 : mask |= EPOLLOUT | EPOLLWRNORM;
2943 :
2944 : /*
2945 : * Don't flush cqring overflow list here, just do a simple check.
2946 : * Otherwise there could possible be ABBA deadlock:
2947 : * CPU0 CPU1
2948 : * ---- ----
2949 : * lock(&ctx->uring_lock);
2950 : * lock(&ep->mtx);
2951 : * lock(&ctx->uring_lock);
2952 : * lock(&ep->mtx);
2953 : *
2954 : * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2955 : * pushes them to do the flush.
2956 : */
2957 :
2958 0 : if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2959 0 : mask |= EPOLLIN | EPOLLRDNORM;
2960 :
2961 0 : return mask;
2962 : }
2963 :
2964 0 : static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2965 : {
2966 : const struct cred *creds;
2967 :
2968 0 : creds = xa_erase(&ctx->personalities, id);
2969 0 : if (creds) {
2970 : put_cred(creds);
2971 : return 0;
2972 : }
2973 :
2974 : return -EINVAL;
2975 : }
2976 :
2977 : struct io_tctx_exit {
2978 : struct callback_head task_work;
2979 : struct completion completion;
2980 : struct io_ring_ctx *ctx;
2981 : };
2982 :
2983 0 : static __cold void io_tctx_exit_cb(struct callback_head *cb)
2984 : {
2985 0 : struct io_uring_task *tctx = current->io_uring;
2986 : struct io_tctx_exit *work;
2987 :
2988 0 : work = container_of(cb, struct io_tctx_exit, task_work);
2989 : /*
2990 : * When @in_cancel, we're in cancellation and it's racy to remove the
2991 : * node. It'll be removed by the end of cancellation, just ignore it.
2992 : * tctx can be NULL if the queueing of this task_work raced with
2993 : * work cancelation off the exec path.
2994 : */
2995 0 : if (tctx && !atomic_read(&tctx->in_cancel))
2996 0 : io_uring_del_tctx_node((unsigned long)work->ctx);
2997 0 : complete(&work->completion);
2998 0 : }
2999 :
3000 0 : static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3001 : {
3002 0 : struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3003 :
3004 0 : return req->ctx == data;
3005 : }
3006 :
3007 0 : static __cold void io_ring_exit_work(struct work_struct *work)
3008 : {
3009 0 : struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3010 0 : unsigned long timeout = jiffies + HZ * 60 * 5;
3011 0 : unsigned long interval = HZ / 20;
3012 : struct io_tctx_exit exit;
3013 : struct io_tctx_node *node;
3014 : int ret;
3015 :
3016 : /*
3017 : * If we're doing polled IO and end up having requests being
3018 : * submitted async (out-of-line), then completions can come in while
3019 : * we're waiting for refs to drop. We need to reap these manually,
3020 : * as nobody else will be looking for them.
3021 : */
3022 : do {
3023 0 : if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3024 0 : mutex_lock(&ctx->uring_lock);
3025 0 : io_cqring_overflow_kill(ctx);
3026 0 : mutex_unlock(&ctx->uring_lock);
3027 : }
3028 :
3029 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3030 0 : io_move_task_work_from_local(ctx);
3031 :
3032 0 : while (io_uring_try_cancel_requests(ctx, NULL, true))
3033 0 : cond_resched();
3034 :
3035 0 : if (ctx->sq_data) {
3036 0 : struct io_sq_data *sqd = ctx->sq_data;
3037 : struct task_struct *tsk;
3038 :
3039 0 : io_sq_thread_park(sqd);
3040 0 : tsk = sqd->thread;
3041 0 : if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3042 0 : io_wq_cancel_cb(tsk->io_uring->io_wq,
3043 : io_cancel_ctx_cb, ctx, true);
3044 0 : io_sq_thread_unpark(sqd);
3045 : }
3046 :
3047 0 : io_req_caches_free(ctx);
3048 :
3049 0 : if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3050 : /* there is little hope left, don't run it too often */
3051 0 : interval = HZ * 60;
3052 : }
3053 0 : } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
3054 :
3055 0 : init_completion(&exit.completion);
3056 0 : init_task_work(&exit.task_work, io_tctx_exit_cb);
3057 0 : exit.ctx = ctx;
3058 : /*
3059 : * Some may use context even when all refs and requests have been put,
3060 : * and they are free to do so while still holding uring_lock or
3061 : * completion_lock, see io_req_task_submit(). Apart from other work,
3062 : * this lock/unlock section also waits them to finish.
3063 : */
3064 0 : mutex_lock(&ctx->uring_lock);
3065 0 : while (!list_empty(&ctx->tctx_list)) {
3066 0 : WARN_ON_ONCE(time_after(jiffies, timeout));
3067 :
3068 0 : node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3069 : ctx_node);
3070 : /* don't spin on a single task if cancellation failed */
3071 0 : list_rotate_left(&ctx->tctx_list);
3072 0 : ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3073 0 : if (WARN_ON_ONCE(ret))
3074 0 : continue;
3075 :
3076 0 : mutex_unlock(&ctx->uring_lock);
3077 0 : wait_for_completion(&exit.completion);
3078 0 : mutex_lock(&ctx->uring_lock);
3079 : }
3080 0 : mutex_unlock(&ctx->uring_lock);
3081 0 : spin_lock(&ctx->completion_lock);
3082 0 : spin_unlock(&ctx->completion_lock);
3083 :
3084 : /* pairs with RCU read section in io_req_local_work_add() */
3085 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3086 0 : synchronize_rcu();
3087 :
3088 0 : io_ring_ctx_free(ctx);
3089 0 : }
3090 :
3091 0 : static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3092 : {
3093 : unsigned long index;
3094 : struct creds *creds;
3095 :
3096 0 : mutex_lock(&ctx->uring_lock);
3097 0 : percpu_ref_kill(&ctx->refs);
3098 0 : xa_for_each(&ctx->personalities, index, creds)
3099 0 : io_unregister_personality(ctx, index);
3100 0 : if (ctx->rings)
3101 0 : io_poll_remove_all(ctx, NULL, true);
3102 0 : mutex_unlock(&ctx->uring_lock);
3103 :
3104 : /*
3105 : * If we failed setting up the ctx, we might not have any rings
3106 : * and therefore did not submit any requests
3107 : */
3108 0 : if (ctx->rings)
3109 0 : io_kill_timeouts(ctx, NULL, true);
3110 :
3111 0 : INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3112 : /*
3113 : * Use system_unbound_wq to avoid spawning tons of event kworkers
3114 : * if we're exiting a ton of rings at the same time. It just adds
3115 : * noise and overhead, there's no discernable change in runtime
3116 : * over using system_wq.
3117 : */
3118 0 : queue_work(system_unbound_wq, &ctx->exit_work);
3119 0 : }
3120 :
3121 0 : static int io_uring_release(struct inode *inode, struct file *file)
3122 : {
3123 0 : struct io_ring_ctx *ctx = file->private_data;
3124 :
3125 0 : file->private_data = NULL;
3126 0 : io_ring_ctx_wait_and_kill(ctx);
3127 0 : return 0;
3128 : }
3129 :
3130 : struct io_task_cancel {
3131 : struct task_struct *task;
3132 : bool all;
3133 : };
3134 :
3135 0 : static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3136 : {
3137 0 : struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3138 0 : struct io_task_cancel *cancel = data;
3139 :
3140 0 : return io_match_task_safe(req, cancel->task, cancel->all);
3141 : }
3142 :
3143 0 : static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3144 : struct task_struct *task,
3145 : bool cancel_all)
3146 : {
3147 : struct io_defer_entry *de;
3148 0 : LIST_HEAD(list);
3149 :
3150 0 : spin_lock(&ctx->completion_lock);
3151 0 : list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3152 0 : if (io_match_task_safe(de->req, task, cancel_all)) {
3153 0 : list_cut_position(&list, &ctx->defer_list, &de->list);
3154 0 : break;
3155 : }
3156 : }
3157 0 : spin_unlock(&ctx->completion_lock);
3158 0 : if (list_empty(&list))
3159 : return false;
3160 :
3161 0 : while (!list_empty(&list)) {
3162 0 : de = list_first_entry(&list, struct io_defer_entry, list);
3163 0 : list_del_init(&de->list);
3164 0 : io_req_task_queue_fail(de->req, -ECANCELED);
3165 0 : kfree(de);
3166 : }
3167 : return true;
3168 : }
3169 :
3170 0 : static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3171 : {
3172 : struct io_tctx_node *node;
3173 : enum io_wq_cancel cret;
3174 0 : bool ret = false;
3175 :
3176 0 : mutex_lock(&ctx->uring_lock);
3177 0 : list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3178 0 : struct io_uring_task *tctx = node->task->io_uring;
3179 :
3180 : /*
3181 : * io_wq will stay alive while we hold uring_lock, because it's
3182 : * killed after ctx nodes, which requires to take the lock.
3183 : */
3184 0 : if (!tctx || !tctx->io_wq)
3185 0 : continue;
3186 0 : cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3187 0 : ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3188 : }
3189 0 : mutex_unlock(&ctx->uring_lock);
3190 :
3191 0 : return ret;
3192 : }
3193 :
3194 0 : static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3195 : struct task_struct *task,
3196 : bool cancel_all)
3197 : {
3198 0 : struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3199 0 : struct io_uring_task *tctx = task ? task->io_uring : NULL;
3200 : enum io_wq_cancel cret;
3201 0 : bool ret = false;
3202 :
3203 : /* set it so io_req_local_work_add() would wake us up */
3204 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3205 0 : atomic_set(&ctx->cq_wait_nr, 1);
3206 0 : smp_mb();
3207 : }
3208 :
3209 : /* failed during ring init, it couldn't have issued any requests */
3210 0 : if (!ctx->rings)
3211 : return false;
3212 :
3213 0 : if (!task) {
3214 0 : ret |= io_uring_try_cancel_iowq(ctx);
3215 0 : } else if (tctx && tctx->io_wq) {
3216 : /*
3217 : * Cancels requests of all rings, not only @ctx, but
3218 : * it's fine as the task is in exit/exec.
3219 : */
3220 0 : cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3221 : &cancel, true);
3222 0 : ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3223 : }
3224 :
3225 : /* SQPOLL thread does its own polling */
3226 0 : if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3227 0 : (ctx->sq_data && ctx->sq_data->thread == current)) {
3228 0 : while (!wq_list_empty(&ctx->iopoll_list)) {
3229 0 : io_iopoll_try_reap_events(ctx);
3230 0 : ret = true;
3231 0 : cond_resched();
3232 : }
3233 : }
3234 :
3235 0 : if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3236 0 : io_allowed_defer_tw_run(ctx))
3237 0 : ret |= io_run_local_work(ctx) > 0;
3238 0 : ret |= io_cancel_defer_files(ctx, task, cancel_all);
3239 0 : mutex_lock(&ctx->uring_lock);
3240 0 : ret |= io_poll_remove_all(ctx, task, cancel_all);
3241 0 : mutex_unlock(&ctx->uring_lock);
3242 0 : ret |= io_kill_timeouts(ctx, task, cancel_all);
3243 0 : if (task)
3244 0 : ret |= io_run_task_work() > 0;
3245 : return ret;
3246 : }
3247 :
3248 : static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3249 : {
3250 0 : if (tracked)
3251 0 : return atomic_read(&tctx->inflight_tracked);
3252 0 : return percpu_counter_sum(&tctx->inflight);
3253 : }
3254 :
3255 : /*
3256 : * Find any io_uring ctx that this task has registered or done IO on, and cancel
3257 : * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3258 : */
3259 0 : __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3260 : {
3261 0 : struct io_uring_task *tctx = current->io_uring;
3262 : struct io_ring_ctx *ctx;
3263 : struct io_tctx_node *node;
3264 : unsigned long index;
3265 : s64 inflight;
3266 0 : DEFINE_WAIT(wait);
3267 :
3268 0 : WARN_ON_ONCE(sqd && sqd->thread != current);
3269 :
3270 0 : if (!current->io_uring)
3271 0 : return;
3272 0 : if (tctx->io_wq)
3273 0 : io_wq_exit_start(tctx->io_wq);
3274 :
3275 0 : atomic_inc(&tctx->in_cancel);
3276 : do {
3277 0 : bool loop = false;
3278 :
3279 0 : io_uring_drop_tctx_refs(current);
3280 : /* read completions before cancelations */
3281 0 : inflight = tctx_inflight(tctx, !cancel_all);
3282 0 : if (!inflight)
3283 : break;
3284 :
3285 0 : if (!sqd) {
3286 0 : xa_for_each(&tctx->xa, index, node) {
3287 : /* sqpoll task will cancel all its requests */
3288 0 : if (node->ctx->sq_data)
3289 0 : continue;
3290 0 : loop |= io_uring_try_cancel_requests(node->ctx,
3291 0 : current, cancel_all);
3292 : }
3293 : } else {
3294 0 : list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3295 0 : loop |= io_uring_try_cancel_requests(ctx,
3296 0 : current,
3297 : cancel_all);
3298 : }
3299 :
3300 0 : if (loop) {
3301 0 : cond_resched();
3302 0 : continue;
3303 : }
3304 :
3305 0 : prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3306 0 : io_run_task_work();
3307 0 : io_uring_drop_tctx_refs(current);
3308 0 : xa_for_each(&tctx->xa, index, node) {
3309 0 : if (!llist_empty(&node->ctx->work_llist)) {
3310 0 : WARN_ON_ONCE(node->ctx->submitter_task &&
3311 : node->ctx->submitter_task != current);
3312 : goto end_wait;
3313 : }
3314 : }
3315 : /*
3316 : * If we've seen completions, retry without waiting. This
3317 : * avoids a race where a completion comes in before we did
3318 : * prepare_to_wait().
3319 : */
3320 0 : if (inflight == tctx_inflight(tctx, !cancel_all))
3321 0 : schedule();
3322 : end_wait:
3323 0 : finish_wait(&tctx->wait, &wait);
3324 : } while (1);
3325 :
3326 0 : io_uring_clean_tctx(tctx);
3327 0 : if (cancel_all) {
3328 : /*
3329 : * We shouldn't run task_works after cancel, so just leave
3330 : * ->in_cancel set for normal exit.
3331 : */
3332 0 : atomic_dec(&tctx->in_cancel);
3333 : /* for exec all current's requests should be gone, kill tctx */
3334 0 : __io_uring_free(current);
3335 : }
3336 : }
3337 :
3338 0 : void __io_uring_cancel(bool cancel_all)
3339 : {
3340 0 : io_uring_cancel_generic(cancel_all, NULL);
3341 0 : }
3342 :
3343 0 : static void *io_uring_validate_mmap_request(struct file *file,
3344 : loff_t pgoff, size_t sz)
3345 : {
3346 0 : struct io_ring_ctx *ctx = file->private_data;
3347 0 : loff_t offset = pgoff << PAGE_SHIFT;
3348 : struct page *page;
3349 : void *ptr;
3350 :
3351 0 : switch (offset & IORING_OFF_MMAP_MASK) {
3352 : case IORING_OFF_SQ_RING:
3353 : case IORING_OFF_CQ_RING:
3354 0 : ptr = ctx->rings;
3355 : break;
3356 : case IORING_OFF_SQES:
3357 0 : ptr = ctx->sq_sqes;
3358 : break;
3359 : case IORING_OFF_PBUF_RING: {
3360 : unsigned int bgid;
3361 :
3362 0 : bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3363 0 : mutex_lock(&ctx->uring_lock);
3364 0 : ptr = io_pbuf_get_address(ctx, bgid);
3365 0 : mutex_unlock(&ctx->uring_lock);
3366 0 : if (!ptr)
3367 : return ERR_PTR(-EINVAL);
3368 : break;
3369 : }
3370 : default:
3371 : return ERR_PTR(-EINVAL);
3372 : }
3373 :
3374 0 : page = virt_to_head_page(ptr);
3375 0 : if (sz > page_size(page))
3376 : return ERR_PTR(-EINVAL);
3377 :
3378 : return ptr;
3379 : }
3380 :
3381 : #ifdef CONFIG_MMU
3382 :
3383 0 : static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3384 : {
3385 0 : size_t sz = vma->vm_end - vma->vm_start;
3386 : unsigned long pfn;
3387 : void *ptr;
3388 :
3389 0 : ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3390 0 : if (IS_ERR(ptr))
3391 0 : return PTR_ERR(ptr);
3392 :
3393 0 : pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3394 0 : return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3395 : }
3396 :
3397 0 : static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3398 : unsigned long addr, unsigned long len,
3399 : unsigned long pgoff, unsigned long flags)
3400 : {
3401 0 : const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3402 : struct vm_unmapped_area_info info;
3403 : void *ptr;
3404 :
3405 : /*
3406 : * Do not allow to map to user-provided address to avoid breaking the
3407 : * aliasing rules. Userspace is not able to guess the offset address of
3408 : * kernel kmalloc()ed memory area.
3409 : */
3410 0 : if (addr)
3411 : return -EINVAL;
3412 :
3413 0 : ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3414 0 : if (IS_ERR(ptr))
3415 : return -ENOMEM;
3416 :
3417 0 : info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3418 0 : info.length = len;
3419 0 : info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3420 0 : info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3421 : #ifdef SHM_COLOUR
3422 : info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3423 : #else
3424 0 : info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3425 : #endif
3426 0 : info.align_offset = (unsigned long) ptr;
3427 :
3428 : /*
3429 : * A failed mmap() very likely causes application failure,
3430 : * so fall back to the bottom-up function here. This scenario
3431 : * can happen with large stack limits and large mmap()
3432 : * allocations.
3433 : */
3434 0 : addr = vm_unmapped_area(&info);
3435 0 : if (offset_in_page(addr)) {
3436 0 : info.flags = 0;
3437 0 : info.low_limit = TASK_UNMAPPED_BASE;
3438 0 : info.high_limit = mmap_end;
3439 0 : addr = vm_unmapped_area(&info);
3440 : }
3441 :
3442 : return addr;
3443 : }
3444 :
3445 : #else /* !CONFIG_MMU */
3446 :
3447 : static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3448 : {
3449 : return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3450 : }
3451 :
3452 : static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3453 : {
3454 : return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3455 : }
3456 :
3457 : static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3458 : unsigned long addr, unsigned long len,
3459 : unsigned long pgoff, unsigned long flags)
3460 : {
3461 : void *ptr;
3462 :
3463 : ptr = io_uring_validate_mmap_request(file, pgoff, len);
3464 : if (IS_ERR(ptr))
3465 : return PTR_ERR(ptr);
3466 :
3467 : return (unsigned long) ptr;
3468 : }
3469 :
3470 : #endif /* !CONFIG_MMU */
3471 :
3472 : static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3473 : {
3474 0 : if (flags & IORING_ENTER_EXT_ARG) {
3475 : struct io_uring_getevents_arg arg;
3476 :
3477 0 : if (argsz != sizeof(arg))
3478 0 : return -EINVAL;
3479 0 : if (copy_from_user(&arg, argp, sizeof(arg)))
3480 : return -EFAULT;
3481 : }
3482 : return 0;
3483 : }
3484 :
3485 0 : static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3486 : struct __kernel_timespec __user **ts,
3487 : const sigset_t __user **sig)
3488 : {
3489 : struct io_uring_getevents_arg arg;
3490 :
3491 : /*
3492 : * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3493 : * is just a pointer to the sigset_t.
3494 : */
3495 0 : if (!(flags & IORING_ENTER_EXT_ARG)) {
3496 0 : *sig = (const sigset_t __user *) argp;
3497 0 : *ts = NULL;
3498 0 : return 0;
3499 : }
3500 :
3501 : /*
3502 : * EXT_ARG is set - ensure we agree on the size of it and copy in our
3503 : * timespec and sigset_t pointers if good.
3504 : */
3505 0 : if (*argsz != sizeof(arg))
3506 : return -EINVAL;
3507 0 : if (copy_from_user(&arg, argp, sizeof(arg)))
3508 : return -EFAULT;
3509 0 : if (arg.pad)
3510 : return -EINVAL;
3511 0 : *sig = u64_to_user_ptr(arg.sigmask);
3512 0 : *argsz = arg.sigmask_sz;
3513 0 : *ts = u64_to_user_ptr(arg.ts);
3514 0 : return 0;
3515 : }
3516 :
3517 0 : SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3518 : u32, min_complete, u32, flags, const void __user *, argp,
3519 : size_t, argsz)
3520 : {
3521 : struct io_ring_ctx *ctx;
3522 : struct fd f;
3523 : long ret;
3524 :
3525 0 : if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3526 : IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3527 : IORING_ENTER_REGISTERED_RING)))
3528 : return -EINVAL;
3529 :
3530 : /*
3531 : * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3532 : * need only dereference our task private array to find it.
3533 : */
3534 0 : if (flags & IORING_ENTER_REGISTERED_RING) {
3535 0 : struct io_uring_task *tctx = current->io_uring;
3536 :
3537 0 : if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3538 : return -EINVAL;
3539 0 : fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3540 0 : f.file = tctx->registered_rings[fd];
3541 0 : f.flags = 0;
3542 0 : if (unlikely(!f.file))
3543 : return -EBADF;
3544 : } else {
3545 0 : f = fdget(fd);
3546 0 : if (unlikely(!f.file))
3547 : return -EBADF;
3548 0 : ret = -EOPNOTSUPP;
3549 0 : if (unlikely(!io_is_uring_fops(f.file)))
3550 : goto out;
3551 : }
3552 :
3553 0 : ctx = f.file->private_data;
3554 0 : ret = -EBADFD;
3555 0 : if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3556 : goto out;
3557 :
3558 : /*
3559 : * For SQ polling, the thread will do all submissions and completions.
3560 : * Just return the requested submit count, and wake the thread if
3561 : * we were asked to.
3562 : */
3563 0 : ret = 0;
3564 0 : if (ctx->flags & IORING_SETUP_SQPOLL) {
3565 0 : io_cqring_overflow_flush(ctx);
3566 :
3567 0 : if (unlikely(ctx->sq_data->thread == NULL)) {
3568 : ret = -EOWNERDEAD;
3569 : goto out;
3570 : }
3571 0 : if (flags & IORING_ENTER_SQ_WAKEUP)
3572 0 : wake_up(&ctx->sq_data->wait);
3573 0 : if (flags & IORING_ENTER_SQ_WAIT)
3574 0 : io_sqpoll_wait_sq(ctx);
3575 :
3576 0 : ret = to_submit;
3577 0 : } else if (to_submit) {
3578 0 : ret = io_uring_add_tctx_node(ctx);
3579 0 : if (unlikely(ret))
3580 : goto out;
3581 :
3582 0 : mutex_lock(&ctx->uring_lock);
3583 0 : ret = io_submit_sqes(ctx, to_submit);
3584 0 : if (ret != to_submit) {
3585 0 : mutex_unlock(&ctx->uring_lock);
3586 0 : goto out;
3587 : }
3588 0 : if (flags & IORING_ENTER_GETEVENTS) {
3589 0 : if (ctx->syscall_iopoll)
3590 : goto iopoll_locked;
3591 : /*
3592 : * Ignore errors, we'll soon call io_cqring_wait() and
3593 : * it should handle ownership problems if any.
3594 : */
3595 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3596 0 : (void)io_run_local_work_locked(ctx);
3597 : }
3598 0 : mutex_unlock(&ctx->uring_lock);
3599 : }
3600 :
3601 0 : if (flags & IORING_ENTER_GETEVENTS) {
3602 : int ret2;
3603 :
3604 0 : if (ctx->syscall_iopoll) {
3605 : /*
3606 : * We disallow the app entering submit/complete with
3607 : * polling, but we still need to lock the ring to
3608 : * prevent racing with polled issue that got punted to
3609 : * a workqueue.
3610 : */
3611 0 : mutex_lock(&ctx->uring_lock);
3612 : iopoll_locked:
3613 0 : ret2 = io_validate_ext_arg(flags, argp, argsz);
3614 0 : if (likely(!ret2)) {
3615 0 : min_complete = min(min_complete,
3616 : ctx->cq_entries);
3617 0 : ret2 = io_iopoll_check(ctx, min_complete);
3618 : }
3619 0 : mutex_unlock(&ctx->uring_lock);
3620 : } else {
3621 : const sigset_t __user *sig;
3622 : struct __kernel_timespec __user *ts;
3623 :
3624 0 : ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3625 0 : if (likely(!ret2)) {
3626 0 : min_complete = min(min_complete,
3627 : ctx->cq_entries);
3628 0 : ret2 = io_cqring_wait(ctx, min_complete, sig,
3629 : argsz, ts);
3630 : }
3631 : }
3632 :
3633 0 : if (!ret) {
3634 0 : ret = ret2;
3635 :
3636 : /*
3637 : * EBADR indicates that one or more CQE were dropped.
3638 : * Once the user has been informed we can clear the bit
3639 : * as they are obviously ok with those drops.
3640 : */
3641 0 : if (unlikely(ret2 == -EBADR))
3642 : clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3643 0 : &ctx->check_cq);
3644 : }
3645 : }
3646 : out:
3647 0 : fdput(f);
3648 : return ret;
3649 : }
3650 :
3651 : static const struct file_operations io_uring_fops = {
3652 : .release = io_uring_release,
3653 : .mmap = io_uring_mmap,
3654 : #ifndef CONFIG_MMU
3655 : .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3656 : .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3657 : #else
3658 : .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3659 : #endif
3660 : .poll = io_uring_poll,
3661 : #ifdef CONFIG_PROC_FS
3662 : .show_fdinfo = io_uring_show_fdinfo,
3663 : #endif
3664 : };
3665 :
3666 0 : bool io_is_uring_fops(struct file *file)
3667 : {
3668 0 : return file->f_op == &io_uring_fops;
3669 : }
3670 :
3671 0 : static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3672 : struct io_uring_params *p)
3673 : {
3674 : struct io_rings *rings;
3675 : size_t size, sq_array_offset;
3676 :
3677 : /* make sure these are sane, as we already accounted them */
3678 0 : ctx->sq_entries = p->sq_entries;
3679 0 : ctx->cq_entries = p->cq_entries;
3680 :
3681 0 : size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3682 0 : if (size == SIZE_MAX)
3683 : return -EOVERFLOW;
3684 :
3685 0 : rings = io_mem_alloc(size);
3686 0 : if (!rings)
3687 : return -ENOMEM;
3688 :
3689 0 : ctx->rings = rings;
3690 0 : ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3691 0 : rings->sq_ring_mask = p->sq_entries - 1;
3692 0 : rings->cq_ring_mask = p->cq_entries - 1;
3693 0 : rings->sq_ring_entries = p->sq_entries;
3694 0 : rings->cq_ring_entries = p->cq_entries;
3695 :
3696 0 : if (p->flags & IORING_SETUP_SQE128)
3697 0 : size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3698 : else
3699 0 : size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3700 0 : if (size == SIZE_MAX) {
3701 0 : io_mem_free(ctx->rings);
3702 0 : ctx->rings = NULL;
3703 0 : return -EOVERFLOW;
3704 : }
3705 :
3706 0 : ctx->sq_sqes = io_mem_alloc(size);
3707 0 : if (!ctx->sq_sqes) {
3708 0 : io_mem_free(ctx->rings);
3709 0 : ctx->rings = NULL;
3710 0 : return -ENOMEM;
3711 : }
3712 :
3713 : return 0;
3714 : }
3715 :
3716 0 : static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3717 : {
3718 : int ret, fd;
3719 :
3720 0 : fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3721 0 : if (fd < 0)
3722 : return fd;
3723 :
3724 0 : ret = __io_uring_add_tctx_node(ctx);
3725 0 : if (ret) {
3726 0 : put_unused_fd(fd);
3727 0 : return ret;
3728 : }
3729 0 : fd_install(fd, file);
3730 0 : return fd;
3731 : }
3732 :
3733 : /*
3734 : * Allocate an anonymous fd, this is what constitutes the application
3735 : * visible backing of an io_uring instance. The application mmaps this
3736 : * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3737 : * we have to tie this fd to a socket for file garbage collection purposes.
3738 : */
3739 : static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3740 : {
3741 : struct file *file;
3742 : #if defined(CONFIG_UNIX)
3743 : int ret;
3744 :
3745 : ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3746 : &ctx->ring_sock);
3747 : if (ret)
3748 : return ERR_PTR(ret);
3749 : #endif
3750 :
3751 0 : file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3752 : O_RDWR | O_CLOEXEC, NULL);
3753 : #if defined(CONFIG_UNIX)
3754 : if (IS_ERR(file)) {
3755 : sock_release(ctx->ring_sock);
3756 : ctx->ring_sock = NULL;
3757 : } else {
3758 : ctx->ring_sock->file = file;
3759 : }
3760 : #endif
3761 : return file;
3762 : }
3763 :
3764 0 : static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3765 : struct io_uring_params __user *params)
3766 : {
3767 : struct io_ring_ctx *ctx;
3768 : struct file *file;
3769 : int ret;
3770 :
3771 0 : if (!entries)
3772 : return -EINVAL;
3773 0 : if (entries > IORING_MAX_ENTRIES) {
3774 0 : if (!(p->flags & IORING_SETUP_CLAMP))
3775 : return -EINVAL;
3776 : entries = IORING_MAX_ENTRIES;
3777 : }
3778 :
3779 : /*
3780 : * Use twice as many entries for the CQ ring. It's possible for the
3781 : * application to drive a higher depth than the size of the SQ ring,
3782 : * since the sqes are only used at submission time. This allows for
3783 : * some flexibility in overcommitting a bit. If the application has
3784 : * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3785 : * of CQ ring entries manually.
3786 : */
3787 0 : p->sq_entries = roundup_pow_of_two(entries);
3788 0 : if (p->flags & IORING_SETUP_CQSIZE) {
3789 : /*
3790 : * If IORING_SETUP_CQSIZE is set, we do the same roundup
3791 : * to a power-of-two, if it isn't already. We do NOT impose
3792 : * any cq vs sq ring sizing.
3793 : */
3794 0 : if (!p->cq_entries)
3795 : return -EINVAL;
3796 0 : if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3797 0 : if (!(p->flags & IORING_SETUP_CLAMP))
3798 : return -EINVAL;
3799 0 : p->cq_entries = IORING_MAX_CQ_ENTRIES;
3800 : }
3801 0 : p->cq_entries = roundup_pow_of_two(p->cq_entries);
3802 0 : if (p->cq_entries < p->sq_entries)
3803 : return -EINVAL;
3804 : } else {
3805 0 : p->cq_entries = 2 * p->sq_entries;
3806 : }
3807 :
3808 0 : ctx = io_ring_ctx_alloc(p);
3809 0 : if (!ctx)
3810 : return -ENOMEM;
3811 :
3812 0 : if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3813 0 : !(ctx->flags & IORING_SETUP_IOPOLL) &&
3814 : !(ctx->flags & IORING_SETUP_SQPOLL))
3815 0 : ctx->task_complete = true;
3816 :
3817 : /*
3818 : * lazy poll_wq activation relies on ->task_complete for synchronisation
3819 : * purposes, see io_activate_pollwq()
3820 : */
3821 0 : if (!ctx->task_complete)
3822 0 : ctx->poll_activated = true;
3823 :
3824 : /*
3825 : * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3826 : * space applications don't need to do io completion events
3827 : * polling again, they can rely on io_sq_thread to do polling
3828 : * work, which can reduce cpu usage and uring_lock contention.
3829 : */
3830 0 : if (ctx->flags & IORING_SETUP_IOPOLL &&
3831 : !(ctx->flags & IORING_SETUP_SQPOLL))
3832 0 : ctx->syscall_iopoll = 1;
3833 :
3834 0 : ctx->compat = in_compat_syscall();
3835 0 : if (!capable(CAP_IPC_LOCK))
3836 0 : ctx->user = get_uid(current_user());
3837 :
3838 : /*
3839 : * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3840 : * COOP_TASKRUN is set, then IPIs are never needed by the app.
3841 : */
3842 0 : ret = -EINVAL;
3843 0 : if (ctx->flags & IORING_SETUP_SQPOLL) {
3844 : /* IPI related flags don't make sense with SQPOLL */
3845 0 : if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3846 : IORING_SETUP_TASKRUN_FLAG |
3847 : IORING_SETUP_DEFER_TASKRUN))
3848 : goto err;
3849 0 : ctx->notify_method = TWA_SIGNAL_NO_IPI;
3850 0 : } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3851 0 : ctx->notify_method = TWA_SIGNAL_NO_IPI;
3852 : } else {
3853 0 : if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3854 : !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3855 : goto err;
3856 0 : ctx->notify_method = TWA_SIGNAL;
3857 : }
3858 :
3859 : /*
3860 : * For DEFER_TASKRUN we require the completion task to be the same as the
3861 : * submission task. This implies that there is only one submitter, so enforce
3862 : * that.
3863 : */
3864 0 : if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3865 : !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3866 : goto err;
3867 : }
3868 :
3869 : /*
3870 : * This is just grabbed for accounting purposes. When a process exits,
3871 : * the mm is exited and dropped before the files, hence we need to hang
3872 : * on to this mm purely for the purposes of being able to unaccount
3873 : * memory (locked/pinned vm). It's not used for anything else.
3874 : */
3875 0 : mmgrab(current->mm);
3876 0 : ctx->mm_account = current->mm;
3877 :
3878 0 : ret = io_allocate_scq_urings(ctx, p);
3879 0 : if (ret)
3880 : goto err;
3881 :
3882 0 : ret = io_sq_offload_create(ctx, p);
3883 0 : if (ret)
3884 : goto err;
3885 :
3886 0 : ret = io_rsrc_init(ctx);
3887 0 : if (ret)
3888 : goto err;
3889 :
3890 0 : memset(&p->sq_off, 0, sizeof(p->sq_off));
3891 0 : p->sq_off.head = offsetof(struct io_rings, sq.head);
3892 0 : p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3893 0 : p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3894 0 : p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3895 0 : p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3896 0 : p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3897 0 : p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3898 :
3899 0 : memset(&p->cq_off, 0, sizeof(p->cq_off));
3900 0 : p->cq_off.head = offsetof(struct io_rings, cq.head);
3901 0 : p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3902 0 : p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3903 0 : p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3904 0 : p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3905 0 : p->cq_off.cqes = offsetof(struct io_rings, cqes);
3906 0 : p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3907 :
3908 0 : p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3909 : IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3910 : IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3911 : IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3912 : IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3913 : IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3914 : IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3915 :
3916 0 : if (copy_to_user(params, p, sizeof(*p))) {
3917 : ret = -EFAULT;
3918 : goto err;
3919 : }
3920 :
3921 0 : if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3922 0 : && !(ctx->flags & IORING_SETUP_R_DISABLED))
3923 0 : WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3924 :
3925 0 : file = io_uring_get_file(ctx);
3926 0 : if (IS_ERR(file)) {
3927 0 : ret = PTR_ERR(file);
3928 0 : goto err;
3929 : }
3930 :
3931 : /*
3932 : * Install ring fd as the very last thing, so we don't risk someone
3933 : * having closed it before we finish setup
3934 : */
3935 0 : ret = io_uring_install_fd(ctx, file);
3936 0 : if (ret < 0) {
3937 : /* fput will clean it up */
3938 0 : fput(file);
3939 0 : return ret;
3940 : }
3941 :
3942 : trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3943 : return ret;
3944 : err:
3945 0 : io_ring_ctx_wait_and_kill(ctx);
3946 0 : return ret;
3947 : }
3948 :
3949 : /*
3950 : * Sets up an aio uring context, and returns the fd. Applications asks for a
3951 : * ring size, we return the actual sq/cq ring sizes (among other things) in the
3952 : * params structure passed in.
3953 : */
3954 0 : static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3955 : {
3956 : struct io_uring_params p;
3957 : int i;
3958 :
3959 0 : if (copy_from_user(&p, params, sizeof(p)))
3960 : return -EFAULT;
3961 0 : for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3962 0 : if (p.resv[i])
3963 : return -EINVAL;
3964 : }
3965 :
3966 0 : if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3967 : IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3968 : IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3969 : IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3970 : IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3971 : IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3972 : IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3973 : return -EINVAL;
3974 :
3975 0 : return io_uring_create(entries, &p, params);
3976 : }
3977 :
3978 0 : SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3979 : struct io_uring_params __user *, params)
3980 : {
3981 0 : return io_uring_setup(entries, params);
3982 : }
3983 :
3984 0 : static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3985 : unsigned nr_args)
3986 : {
3987 : struct io_uring_probe *p;
3988 : size_t size;
3989 : int i, ret;
3990 :
3991 0 : size = struct_size(p, ops, nr_args);
3992 0 : if (size == SIZE_MAX)
3993 : return -EOVERFLOW;
3994 0 : p = kzalloc(size, GFP_KERNEL);
3995 0 : if (!p)
3996 : return -ENOMEM;
3997 :
3998 0 : ret = -EFAULT;
3999 0 : if (copy_from_user(p, arg, size))
4000 : goto out;
4001 0 : ret = -EINVAL;
4002 0 : if (memchr_inv(p, 0, size))
4003 : goto out;
4004 :
4005 0 : p->last_op = IORING_OP_LAST - 1;
4006 0 : if (nr_args > IORING_OP_LAST)
4007 0 : nr_args = IORING_OP_LAST;
4008 :
4009 0 : for (i = 0; i < nr_args; i++) {
4010 0 : p->ops[i].op = i;
4011 0 : if (!io_issue_defs[i].not_supported)
4012 0 : p->ops[i].flags = IO_URING_OP_SUPPORTED;
4013 : }
4014 0 : p->ops_len = i;
4015 :
4016 0 : ret = 0;
4017 0 : if (copy_to_user(arg, p, size))
4018 0 : ret = -EFAULT;
4019 : out:
4020 0 : kfree(p);
4021 : return ret;
4022 : }
4023 :
4024 0 : static int io_register_personality(struct io_ring_ctx *ctx)
4025 : {
4026 : const struct cred *creds;
4027 : u32 id;
4028 : int ret;
4029 :
4030 0 : creds = get_current_cred();
4031 :
4032 0 : ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4033 0 : XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4034 0 : if (ret < 0) {
4035 : put_cred(creds);
4036 : return ret;
4037 : }
4038 0 : return id;
4039 : }
4040 :
4041 0 : static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4042 : void __user *arg, unsigned int nr_args)
4043 : {
4044 : struct io_uring_restriction *res;
4045 : size_t size;
4046 : int i, ret;
4047 :
4048 : /* Restrictions allowed only if rings started disabled */
4049 0 : if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4050 : return -EBADFD;
4051 :
4052 : /* We allow only a single restrictions registration */
4053 0 : if (ctx->restrictions.registered)
4054 : return -EBUSY;
4055 :
4056 0 : if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4057 : return -EINVAL;
4058 :
4059 0 : size = array_size(nr_args, sizeof(*res));
4060 0 : if (size == SIZE_MAX)
4061 : return -EOVERFLOW;
4062 :
4063 0 : res = memdup_user(arg, size);
4064 0 : if (IS_ERR(res))
4065 0 : return PTR_ERR(res);
4066 :
4067 : ret = 0;
4068 :
4069 0 : for (i = 0; i < nr_args; i++) {
4070 0 : switch (res[i].opcode) {
4071 : case IORING_RESTRICTION_REGISTER_OP:
4072 0 : if (res[i].register_op >= IORING_REGISTER_LAST) {
4073 : ret = -EINVAL;
4074 : goto out;
4075 : }
4076 :
4077 0 : __set_bit(res[i].register_op,
4078 : ctx->restrictions.register_op);
4079 : break;
4080 : case IORING_RESTRICTION_SQE_OP:
4081 0 : if (res[i].sqe_op >= IORING_OP_LAST) {
4082 : ret = -EINVAL;
4083 : goto out;
4084 : }
4085 :
4086 0 : __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4087 : break;
4088 : case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4089 0 : ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4090 0 : break;
4091 : case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4092 0 : ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4093 0 : break;
4094 : default:
4095 : ret = -EINVAL;
4096 : goto out;
4097 : }
4098 : }
4099 :
4100 : out:
4101 : /* Reset all restrictions if an error happened */
4102 0 : if (ret != 0)
4103 0 : memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4104 : else
4105 0 : ctx->restrictions.registered = true;
4106 :
4107 0 : kfree(res);
4108 0 : return ret;
4109 : }
4110 :
4111 0 : static int io_register_enable_rings(struct io_ring_ctx *ctx)
4112 : {
4113 0 : if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4114 : return -EBADFD;
4115 :
4116 0 : if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4117 0 : WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4118 : /*
4119 : * Lazy activation attempts would fail if it was polled before
4120 : * submitter_task is set.
4121 : */
4122 0 : if (wq_has_sleeper(&ctx->poll_wq))
4123 0 : io_activate_pollwq(ctx);
4124 : }
4125 :
4126 0 : if (ctx->restrictions.registered)
4127 0 : ctx->restricted = 1;
4128 :
4129 0 : ctx->flags &= ~IORING_SETUP_R_DISABLED;
4130 0 : if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4131 0 : wake_up(&ctx->sq_data->wait);
4132 : return 0;
4133 : }
4134 :
4135 0 : static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4136 : void __user *arg, unsigned len)
4137 : {
4138 0 : struct io_uring_task *tctx = current->io_uring;
4139 : cpumask_var_t new_mask;
4140 : int ret;
4141 :
4142 0 : if (!tctx || !tctx->io_wq)
4143 : return -EINVAL;
4144 :
4145 0 : if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4146 : return -ENOMEM;
4147 :
4148 0 : cpumask_clear(new_mask);
4149 0 : if (len > cpumask_size())
4150 0 : len = cpumask_size();
4151 :
4152 : if (in_compat_syscall()) {
4153 : ret = compat_get_bitmap(cpumask_bits(new_mask),
4154 : (const compat_ulong_t __user *)arg,
4155 : len * 8 /* CHAR_BIT */);
4156 : } else {
4157 0 : ret = copy_from_user(new_mask, arg, len);
4158 : }
4159 :
4160 0 : if (ret) {
4161 : free_cpumask_var(new_mask);
4162 : return -EFAULT;
4163 : }
4164 :
4165 0 : ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4166 0 : free_cpumask_var(new_mask);
4167 : return ret;
4168 : }
4169 :
4170 0 : static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4171 : {
4172 0 : struct io_uring_task *tctx = current->io_uring;
4173 :
4174 0 : if (!tctx || !tctx->io_wq)
4175 : return -EINVAL;
4176 :
4177 0 : return io_wq_cpu_affinity(tctx->io_wq, NULL);
4178 : }
4179 :
4180 0 : static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4181 : void __user *arg)
4182 : __must_hold(&ctx->uring_lock)
4183 : {
4184 : struct io_tctx_node *node;
4185 0 : struct io_uring_task *tctx = NULL;
4186 0 : struct io_sq_data *sqd = NULL;
4187 : __u32 new_count[2];
4188 : int i, ret;
4189 :
4190 0 : if (copy_from_user(new_count, arg, sizeof(new_count)))
4191 : return -EFAULT;
4192 0 : for (i = 0; i < ARRAY_SIZE(new_count); i++)
4193 0 : if (new_count[i] > INT_MAX)
4194 : return -EINVAL;
4195 :
4196 0 : if (ctx->flags & IORING_SETUP_SQPOLL) {
4197 0 : sqd = ctx->sq_data;
4198 0 : if (sqd) {
4199 : /*
4200 : * Observe the correct sqd->lock -> ctx->uring_lock
4201 : * ordering. Fine to drop uring_lock here, we hold
4202 : * a ref to the ctx.
4203 : */
4204 0 : refcount_inc(&sqd->refs);
4205 0 : mutex_unlock(&ctx->uring_lock);
4206 0 : mutex_lock(&sqd->lock);
4207 0 : mutex_lock(&ctx->uring_lock);
4208 0 : if (sqd->thread)
4209 0 : tctx = sqd->thread->io_uring;
4210 : }
4211 : } else {
4212 0 : tctx = current->io_uring;
4213 : }
4214 :
4215 : BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4216 :
4217 0 : for (i = 0; i < ARRAY_SIZE(new_count); i++)
4218 0 : if (new_count[i])
4219 0 : ctx->iowq_limits[i] = new_count[i];
4220 0 : ctx->iowq_limits_set = true;
4221 :
4222 0 : if (tctx && tctx->io_wq) {
4223 0 : ret = io_wq_max_workers(tctx->io_wq, new_count);
4224 0 : if (ret)
4225 : goto err;
4226 : } else {
4227 0 : memset(new_count, 0, sizeof(new_count));
4228 : }
4229 :
4230 0 : if (sqd) {
4231 0 : mutex_unlock(&sqd->lock);
4232 0 : io_put_sq_data(sqd);
4233 : }
4234 :
4235 0 : if (copy_to_user(arg, new_count, sizeof(new_count)))
4236 : return -EFAULT;
4237 :
4238 : /* that's it for SQPOLL, only the SQPOLL task creates requests */
4239 0 : if (sqd)
4240 : return 0;
4241 :
4242 : /* now propagate the restriction to all registered users */
4243 0 : list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4244 0 : struct io_uring_task *tctx = node->task->io_uring;
4245 :
4246 0 : if (WARN_ON_ONCE(!tctx->io_wq))
4247 0 : continue;
4248 :
4249 0 : for (i = 0; i < ARRAY_SIZE(new_count); i++)
4250 0 : new_count[i] = ctx->iowq_limits[i];
4251 : /* ignore errors, it always returns zero anyway */
4252 0 : (void)io_wq_max_workers(tctx->io_wq, new_count);
4253 : }
4254 : return 0;
4255 : err:
4256 0 : if (sqd) {
4257 0 : mutex_unlock(&sqd->lock);
4258 0 : io_put_sq_data(sqd);
4259 : }
4260 : return ret;
4261 : }
4262 :
4263 0 : static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4264 : void __user *arg, unsigned nr_args)
4265 : __releases(ctx->uring_lock)
4266 : __acquires(ctx->uring_lock)
4267 : {
4268 : int ret;
4269 :
4270 : /*
4271 : * We don't quiesce the refs for register anymore and so it can't be
4272 : * dying as we're holding a file ref here.
4273 : */
4274 0 : if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4275 : return -ENXIO;
4276 :
4277 0 : if (ctx->submitter_task && ctx->submitter_task != current)
4278 : return -EEXIST;
4279 :
4280 0 : if (ctx->restricted) {
4281 0 : opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4282 0 : if (!test_bit(opcode, ctx->restrictions.register_op))
4283 : return -EACCES;
4284 : }
4285 :
4286 0 : switch (opcode) {
4287 : case IORING_REGISTER_BUFFERS:
4288 0 : ret = -EFAULT;
4289 0 : if (!arg)
4290 : break;
4291 0 : ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4292 0 : break;
4293 : case IORING_UNREGISTER_BUFFERS:
4294 0 : ret = -EINVAL;
4295 0 : if (arg || nr_args)
4296 : break;
4297 0 : ret = io_sqe_buffers_unregister(ctx);
4298 0 : break;
4299 : case IORING_REGISTER_FILES:
4300 0 : ret = -EFAULT;
4301 0 : if (!arg)
4302 : break;
4303 0 : ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4304 0 : break;
4305 : case IORING_UNREGISTER_FILES:
4306 0 : ret = -EINVAL;
4307 0 : if (arg || nr_args)
4308 : break;
4309 0 : ret = io_sqe_files_unregister(ctx);
4310 0 : break;
4311 : case IORING_REGISTER_FILES_UPDATE:
4312 0 : ret = io_register_files_update(ctx, arg, nr_args);
4313 0 : break;
4314 : case IORING_REGISTER_EVENTFD:
4315 0 : ret = -EINVAL;
4316 0 : if (nr_args != 1)
4317 : break;
4318 0 : ret = io_eventfd_register(ctx, arg, 0);
4319 0 : break;
4320 : case IORING_REGISTER_EVENTFD_ASYNC:
4321 0 : ret = -EINVAL;
4322 0 : if (nr_args != 1)
4323 : break;
4324 0 : ret = io_eventfd_register(ctx, arg, 1);
4325 0 : break;
4326 : case IORING_UNREGISTER_EVENTFD:
4327 0 : ret = -EINVAL;
4328 0 : if (arg || nr_args)
4329 : break;
4330 0 : ret = io_eventfd_unregister(ctx);
4331 0 : break;
4332 : case IORING_REGISTER_PROBE:
4333 0 : ret = -EINVAL;
4334 0 : if (!arg || nr_args > 256)
4335 : break;
4336 0 : ret = io_probe(ctx, arg, nr_args);
4337 0 : break;
4338 : case IORING_REGISTER_PERSONALITY:
4339 0 : ret = -EINVAL;
4340 0 : if (arg || nr_args)
4341 : break;
4342 0 : ret = io_register_personality(ctx);
4343 0 : break;
4344 : case IORING_UNREGISTER_PERSONALITY:
4345 0 : ret = -EINVAL;
4346 0 : if (arg)
4347 : break;
4348 0 : ret = io_unregister_personality(ctx, nr_args);
4349 0 : break;
4350 : case IORING_REGISTER_ENABLE_RINGS:
4351 0 : ret = -EINVAL;
4352 0 : if (arg || nr_args)
4353 : break;
4354 0 : ret = io_register_enable_rings(ctx);
4355 0 : break;
4356 : case IORING_REGISTER_RESTRICTIONS:
4357 0 : ret = io_register_restrictions(ctx, arg, nr_args);
4358 0 : break;
4359 : case IORING_REGISTER_FILES2:
4360 0 : ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4361 0 : break;
4362 : case IORING_REGISTER_FILES_UPDATE2:
4363 0 : ret = io_register_rsrc_update(ctx, arg, nr_args,
4364 : IORING_RSRC_FILE);
4365 0 : break;
4366 : case IORING_REGISTER_BUFFERS2:
4367 0 : ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4368 0 : break;
4369 : case IORING_REGISTER_BUFFERS_UPDATE:
4370 0 : ret = io_register_rsrc_update(ctx, arg, nr_args,
4371 : IORING_RSRC_BUFFER);
4372 0 : break;
4373 : case IORING_REGISTER_IOWQ_AFF:
4374 0 : ret = -EINVAL;
4375 0 : if (!arg || !nr_args)
4376 : break;
4377 0 : ret = io_register_iowq_aff(ctx, arg, nr_args);
4378 0 : break;
4379 : case IORING_UNREGISTER_IOWQ_AFF:
4380 0 : ret = -EINVAL;
4381 0 : if (arg || nr_args)
4382 : break;
4383 0 : ret = io_unregister_iowq_aff(ctx);
4384 0 : break;
4385 : case IORING_REGISTER_IOWQ_MAX_WORKERS:
4386 0 : ret = -EINVAL;
4387 0 : if (!arg || nr_args != 2)
4388 : break;
4389 0 : ret = io_register_iowq_max_workers(ctx, arg);
4390 0 : break;
4391 : case IORING_REGISTER_RING_FDS:
4392 0 : ret = io_ringfd_register(ctx, arg, nr_args);
4393 0 : break;
4394 : case IORING_UNREGISTER_RING_FDS:
4395 0 : ret = io_ringfd_unregister(ctx, arg, nr_args);
4396 0 : break;
4397 : case IORING_REGISTER_PBUF_RING:
4398 0 : ret = -EINVAL;
4399 0 : if (!arg || nr_args != 1)
4400 : break;
4401 0 : ret = io_register_pbuf_ring(ctx, arg);
4402 0 : break;
4403 : case IORING_UNREGISTER_PBUF_RING:
4404 0 : ret = -EINVAL;
4405 0 : if (!arg || nr_args != 1)
4406 : break;
4407 0 : ret = io_unregister_pbuf_ring(ctx, arg);
4408 0 : break;
4409 : case IORING_REGISTER_SYNC_CANCEL:
4410 0 : ret = -EINVAL;
4411 0 : if (!arg || nr_args != 1)
4412 : break;
4413 0 : ret = io_sync_cancel(ctx, arg);
4414 0 : break;
4415 : case IORING_REGISTER_FILE_ALLOC_RANGE:
4416 0 : ret = -EINVAL;
4417 0 : if (!arg || nr_args)
4418 : break;
4419 0 : ret = io_register_file_alloc_range(ctx, arg);
4420 0 : break;
4421 : default:
4422 : ret = -EINVAL;
4423 : break;
4424 : }
4425 :
4426 : return ret;
4427 : }
4428 :
4429 0 : SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4430 : void __user *, arg, unsigned int, nr_args)
4431 : {
4432 : struct io_ring_ctx *ctx;
4433 0 : long ret = -EBADF;
4434 : struct fd f;
4435 : bool use_registered_ring;
4436 :
4437 0 : use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4438 0 : opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4439 :
4440 0 : if (opcode >= IORING_REGISTER_LAST)
4441 : return -EINVAL;
4442 :
4443 0 : if (use_registered_ring) {
4444 : /*
4445 : * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4446 : * need only dereference our task private array to find it.
4447 : */
4448 0 : struct io_uring_task *tctx = current->io_uring;
4449 :
4450 0 : if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4451 : return -EINVAL;
4452 0 : fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4453 0 : f.file = tctx->registered_rings[fd];
4454 0 : f.flags = 0;
4455 0 : if (unlikely(!f.file))
4456 : return -EBADF;
4457 : } else {
4458 0 : f = fdget(fd);
4459 0 : if (unlikely(!f.file))
4460 : return -EBADF;
4461 0 : ret = -EOPNOTSUPP;
4462 0 : if (!io_is_uring_fops(f.file))
4463 : goto out_fput;
4464 : }
4465 :
4466 0 : ctx = f.file->private_data;
4467 :
4468 0 : mutex_lock(&ctx->uring_lock);
4469 0 : ret = __io_uring_register(ctx, opcode, arg, nr_args);
4470 0 : mutex_unlock(&ctx->uring_lock);
4471 0 : trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4472 : out_fput:
4473 0 : fdput(f);
4474 : return ret;
4475 : }
4476 :
4477 1 : static int __init io_uring_init(void)
4478 : {
4479 : #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4480 : BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4481 : BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4482 : } while (0)
4483 :
4484 : #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4485 : __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4486 : #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4487 : __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4488 : BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4489 : BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4490 : BUILD_BUG_SQE_ELEM(1, __u8, flags);
4491 : BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4492 : BUILD_BUG_SQE_ELEM(4, __s32, fd);
4493 : BUILD_BUG_SQE_ELEM(8, __u64, off);
4494 : BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4495 : BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4496 : BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4497 : BUILD_BUG_SQE_ELEM(16, __u64, addr);
4498 : BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4499 : BUILD_BUG_SQE_ELEM(24, __u32, len);
4500 : BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4501 : BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4502 : BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4503 : BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4504 : BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4505 : BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4506 : BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4507 : BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4508 : BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4509 : BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4510 : BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4511 : BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4512 : BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4513 : BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4514 : BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4515 : BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4516 : BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4517 : BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4518 : BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4519 : BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4520 : BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4521 : BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4522 : BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4523 : BUILD_BUG_SQE_ELEM(42, __u16, personality);
4524 : BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4525 : BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4526 : BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4527 : BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4528 : BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4529 : BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4530 : BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4531 :
4532 : BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4533 : sizeof(struct io_uring_rsrc_update));
4534 : BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4535 : sizeof(struct io_uring_rsrc_update2));
4536 :
4537 : /* ->buf_index is u16 */
4538 : BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4539 : BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4540 : offsetof(struct io_uring_buf_ring, tail));
4541 :
4542 : /* should fit into one byte */
4543 : BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4544 : BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4545 : BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4546 :
4547 : BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4548 :
4549 : BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4550 :
4551 1 : io_uring_optable_init();
4552 :
4553 1 : req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4554 : SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4555 1 : return 0;
4556 : };
4557 : __initcall(io_uring_init);
|