LCOV - code coverage report
Current view: top level - kernel/futex - core.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 24 241 10.0 %
Date: 2023-07-19 18:55:55 Functions: 3 24 12.5 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-or-later
       2             : /*
       3             :  *  Fast Userspace Mutexes (which I call "Futexes!").
       4             :  *  (C) Rusty Russell, IBM 2002
       5             :  *
       6             :  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
       7             :  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
       8             :  *
       9             :  *  Removed page pinning, fix privately mapped COW pages and other cleanups
      10             :  *  (C) Copyright 2003, 2004 Jamie Lokier
      11             :  *
      12             :  *  Robust futex support started by Ingo Molnar
      13             :  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
      14             :  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
      15             :  *
      16             :  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
      17             :  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
      18             :  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
      19             :  *
      20             :  *  PRIVATE futexes by Eric Dumazet
      21             :  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
      22             :  *
      23             :  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
      24             :  *  Copyright (C) IBM Corporation, 2009
      25             :  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
      26             :  *
      27             :  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
      28             :  *  enough at me, Linus for the original (flawed) idea, Matthew
      29             :  *  Kirkwood for proof-of-concept implementation.
      30             :  *
      31             :  *  "The futexes are also cursed."
      32             :  *  "But they come in a choice of three flavours!"
      33             :  */
      34             : #include <linux/compat.h>
      35             : #include <linux/jhash.h>
      36             : #include <linux/pagemap.h>
      37             : #include <linux/memblock.h>
      38             : #include <linux/fault-inject.h>
      39             : #include <linux/slab.h>
      40             : 
      41             : #include "futex.h"
      42             : #include "../locking/rtmutex_common.h"
      43             : 
      44             : /*
      45             :  * The base of the bucket array and its size are always used together
      46             :  * (after initialization only in futex_hash()), so ensure that they
      47             :  * reside in the same cacheline.
      48             :  */
      49             : static struct {
      50             :         struct futex_hash_bucket *queues;
      51             :         unsigned long            hashsize;
      52             : } __futex_data __read_mostly __aligned(2*sizeof(long));
      53             : #define futex_queues   (__futex_data.queues)
      54             : #define futex_hashsize (__futex_data.hashsize)
      55             : 
      56             : 
      57             : /*
      58             :  * Fault injections for futexes.
      59             :  */
      60             : #ifdef CONFIG_FAIL_FUTEX
      61             : 
      62             : static struct {
      63             :         struct fault_attr attr;
      64             : 
      65             :         bool ignore_private;
      66             : } fail_futex = {
      67             :         .attr = FAULT_ATTR_INITIALIZER,
      68             :         .ignore_private = false,
      69             : };
      70             : 
      71             : static int __init setup_fail_futex(char *str)
      72             : {
      73             :         return setup_fault_attr(&fail_futex.attr, str);
      74             : }
      75             : __setup("fail_futex=", setup_fail_futex);
      76             : 
      77             : bool should_fail_futex(bool fshared)
      78             : {
      79             :         if (fail_futex.ignore_private && !fshared)
      80             :                 return false;
      81             : 
      82             :         return should_fail(&fail_futex.attr, 1);
      83             : }
      84             : 
      85             : #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
      86             : 
      87             : static int __init fail_futex_debugfs(void)
      88             : {
      89             :         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
      90             :         struct dentry *dir;
      91             : 
      92             :         dir = fault_create_debugfs_attr("fail_futex", NULL,
      93             :                                         &fail_futex.attr);
      94             :         if (IS_ERR(dir))
      95             :                 return PTR_ERR(dir);
      96             : 
      97             :         debugfs_create_bool("ignore-private", mode, dir,
      98             :                             &fail_futex.ignore_private);
      99             :         return 0;
     100             : }
     101             : 
     102             : late_initcall(fail_futex_debugfs);
     103             : 
     104             : #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
     105             : 
     106             : #endif /* CONFIG_FAIL_FUTEX */
     107             : 
     108             : /**
     109             :  * futex_hash - Return the hash bucket in the global hash
     110             :  * @key:        Pointer to the futex key for which the hash is calculated
     111             :  *
     112             :  * We hash on the keys returned from get_futex_key (see below) and return the
     113             :  * corresponding hash bucket in the global hash.
     114             :  */
     115           0 : struct futex_hash_bucket *futex_hash(union futex_key *key)
     116             : {
     117           0 :         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
     118             :                           key->both.offset);
     119             : 
     120           0 :         return &futex_queues[hash & (futex_hashsize - 1)];
     121             : }
     122             : 
     123             : 
     124             : /**
     125             :  * futex_setup_timer - set up the sleeping hrtimer.
     126             :  * @time:       ptr to the given timeout value
     127             :  * @timeout:    the hrtimer_sleeper structure to be set up
     128             :  * @flags:      futex flags
     129             :  * @range_ns:   optional range in ns
     130             :  *
     131             :  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
     132             :  *         value given
     133             :  */
     134             : struct hrtimer_sleeper *
     135           0 : futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
     136             :                   int flags, u64 range_ns)
     137             : {
     138           0 :         if (!time)
     139             :                 return NULL;
     140             : 
     141           0 :         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
     142             :                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
     143             :                                       HRTIMER_MODE_ABS);
     144             :         /*
     145             :          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
     146             :          * effectively the same as calling hrtimer_set_expires().
     147             :          */
     148           0 :         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
     149             : 
     150           0 :         return timeout;
     151             : }
     152             : 
     153             : /*
     154             :  * Generate a machine wide unique identifier for this inode.
     155             :  *
     156             :  * This relies on u64 not wrapping in the life-time of the machine; which with
     157             :  * 1ns resolution means almost 585 years.
     158             :  *
     159             :  * This further relies on the fact that a well formed program will not unmap
     160             :  * the file while it has a (shared) futex waiting on it. This mapping will have
     161             :  * a file reference which pins the mount and inode.
     162             :  *
     163             :  * If for some reason an inode gets evicted and read back in again, it will get
     164             :  * a new sequence number and will _NOT_ match, even though it is the exact same
     165             :  * file.
     166             :  *
     167             :  * It is important that futex_match() will never have a false-positive, esp.
     168             :  * for PI futexes that can mess up the state. The above argues that false-negatives
     169             :  * are only possible for malformed programs.
     170             :  */
     171           0 : static u64 get_inode_sequence_number(struct inode *inode)
     172             : {
     173             :         static atomic64_t i_seq;
     174             :         u64 old;
     175             : 
     176             :         /* Does the inode already have a sequence number? */
     177           0 :         old = atomic64_read(&inode->i_sequence);
     178           0 :         if (likely(old))
     179             :                 return old;
     180             : 
     181           0 :         for (;;) {
     182           0 :                 u64 new = atomic64_add_return(1, &i_seq);
     183           0 :                 if (WARN_ON_ONCE(!new))
     184           0 :                         continue;
     185             : 
     186           0 :                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
     187           0 :                 if (old)
     188             :                         return old;
     189           0 :                 return new;
     190             :         }
     191             : }
     192             : 
     193             : /**
     194             :  * get_futex_key() - Get parameters which are the keys for a futex
     195             :  * @uaddr:      virtual address of the futex
     196             :  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
     197             :  * @key:        address where result is stored.
     198             :  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
     199             :  *              FUTEX_WRITE)
     200             :  *
     201             :  * Return: a negative error code or 0
     202             :  *
     203             :  * The key words are stored in @key on success.
     204             :  *
     205             :  * For shared mappings (when @fshared), the key is:
     206             :  *
     207             :  *   ( inode->i_sequence, page->index, offset_within_page )
     208             :  *
     209             :  * [ also see get_inode_sequence_number() ]
     210             :  *
     211             :  * For private mappings (or when !@fshared), the key is:
     212             :  *
     213             :  *   ( current->mm, address, 0 )
     214             :  *
     215             :  * This allows (cross process, where applicable) identification of the futex
     216             :  * without keeping the page pinned for the duration of the FUTEX_WAIT.
     217             :  *
     218             :  * lock_page() might sleep, the caller should not hold a spinlock.
     219             :  */
     220           0 : int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
     221             :                   enum futex_access rw)
     222             : {
     223           0 :         unsigned long address = (unsigned long)uaddr;
     224           0 :         struct mm_struct *mm = current->mm;
     225             :         struct page *page, *tail;
     226             :         struct address_space *mapping;
     227           0 :         int err, ro = 0;
     228             : 
     229             :         /*
     230             :          * The futex address must be "naturally" aligned.
     231             :          */
     232           0 :         key->both.offset = address % PAGE_SIZE;
     233           0 :         if (unlikely((address % sizeof(u32)) != 0))
     234             :                 return -EINVAL;
     235           0 :         address -= key->both.offset;
     236             : 
     237           0 :         if (unlikely(!access_ok(uaddr, sizeof(u32))))
     238             :                 return -EFAULT;
     239             : 
     240           0 :         if (unlikely(should_fail_futex(fshared)))
     241             :                 return -EFAULT;
     242             : 
     243             :         /*
     244             :          * PROCESS_PRIVATE futexes are fast.
     245             :          * As the mm cannot disappear under us and the 'key' only needs
     246             :          * virtual address, we dont even have to find the underlying vma.
     247             :          * Note : We do have to check 'uaddr' is a valid user address,
     248             :          *        but access_ok() should be faster than find_vma()
     249             :          */
     250           0 :         if (!fshared) {
     251           0 :                 key->private.mm = mm;
     252           0 :                 key->private.address = address;
     253           0 :                 return 0;
     254             :         }
     255             : 
     256             : again:
     257             :         /* Ignore any VERIFY_READ mapping (futex common case) */
     258           0 :         if (unlikely(should_fail_futex(true)))
     259             :                 return -EFAULT;
     260             : 
     261           0 :         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
     262             :         /*
     263             :          * If write access is not required (eg. FUTEX_WAIT), try
     264             :          * and get read-only access.
     265             :          */
     266           0 :         if (err == -EFAULT && rw == FUTEX_READ) {
     267           0 :                 err = get_user_pages_fast(address, 1, 0, &page);
     268           0 :                 ro = 1;
     269             :         }
     270           0 :         if (err < 0)
     271             :                 return err;
     272             :         else
     273           0 :                 err = 0;
     274             : 
     275             :         /*
     276             :          * The treatment of mapping from this point on is critical. The page
     277             :          * lock protects many things but in this context the page lock
     278             :          * stabilizes mapping, prevents inode freeing in the shared
     279             :          * file-backed region case and guards against movement to swap cache.
     280             :          *
     281             :          * Strictly speaking the page lock is not needed in all cases being
     282             :          * considered here and page lock forces unnecessarily serialization
     283             :          * From this point on, mapping will be re-verified if necessary and
     284             :          * page lock will be acquired only if it is unavoidable
     285             :          *
     286             :          * Mapping checks require the head page for any compound page so the
     287             :          * head page and mapping is looked up now. For anonymous pages, it
     288             :          * does not matter if the page splits in the future as the key is
     289             :          * based on the address. For filesystem-backed pages, the tail is
     290             :          * required as the index of the page determines the key. For
     291             :          * base pages, there is no tail page and tail == page.
     292             :          */
     293           0 :         tail = page;
     294           0 :         page = compound_head(page);
     295           0 :         mapping = READ_ONCE(page->mapping);
     296             : 
     297             :         /*
     298             :          * If page->mapping is NULL, then it cannot be a PageAnon
     299             :          * page; but it might be the ZERO_PAGE or in the gate area or
     300             :          * in a special mapping (all cases which we are happy to fail);
     301             :          * or it may have been a good file page when get_user_pages_fast
     302             :          * found it, but truncated or holepunched or subjected to
     303             :          * invalidate_complete_page2 before we got the page lock (also
     304             :          * cases which we are happy to fail).  And we hold a reference,
     305             :          * so refcount care in invalidate_inode_page's remove_mapping
     306             :          * prevents drop_caches from setting mapping to NULL beneath us.
     307             :          *
     308             :          * The case we do have to guard against is when memory pressure made
     309             :          * shmem_writepage move it from filecache to swapcache beneath us:
     310             :          * an unlikely race, but we do need to retry for page->mapping.
     311             :          */
     312           0 :         if (unlikely(!mapping)) {
     313             :                 int shmem_swizzled;
     314             : 
     315             :                 /*
     316             :                  * Page lock is required to identify which special case above
     317             :                  * applies. If this is really a shmem page then the page lock
     318             :                  * will prevent unexpected transitions.
     319             :                  */
     320           0 :                 lock_page(page);
     321           0 :                 shmem_swizzled = PageSwapCache(page) || page->mapping;
     322           0 :                 unlock_page(page);
     323           0 :                 put_page(page);
     324             : 
     325           0 :                 if (shmem_swizzled)
     326             :                         goto again;
     327             : 
     328             :                 return -EFAULT;
     329             :         }
     330             : 
     331             :         /*
     332             :          * Private mappings are handled in a simple way.
     333             :          *
     334             :          * If the futex key is stored on an anonymous page, then the associated
     335             :          * object is the mm which is implicitly pinned by the calling process.
     336             :          *
     337             :          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
     338             :          * it's a read-only handle, it's expected that futexes attach to
     339             :          * the object not the particular process.
     340             :          */
     341           0 :         if (PageAnon(page)) {
     342             :                 /*
     343             :                  * A RO anonymous page will never change and thus doesn't make
     344             :                  * sense for futex operations.
     345             :                  */
     346           0 :                 if (unlikely(should_fail_futex(true)) || ro) {
     347             :                         err = -EFAULT;
     348             :                         goto out;
     349             :                 }
     350             : 
     351           0 :                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
     352           0 :                 key->private.mm = mm;
     353           0 :                 key->private.address = address;
     354             : 
     355             :         } else {
     356             :                 struct inode *inode;
     357             : 
     358             :                 /*
     359             :                  * The associated futex object in this case is the inode and
     360             :                  * the page->mapping must be traversed. Ordinarily this should
     361             :                  * be stabilised under page lock but it's not strictly
     362             :                  * necessary in this case as we just want to pin the inode, not
     363             :                  * update the radix tree or anything like that.
     364             :                  *
     365             :                  * The RCU read lock is taken as the inode is finally freed
     366             :                  * under RCU. If the mapping still matches expectations then the
     367             :                  * mapping->host can be safely accessed as being a valid inode.
     368             :                  */
     369             :                 rcu_read_lock();
     370             : 
     371           0 :                 if (READ_ONCE(page->mapping) != mapping) {
     372             :                         rcu_read_unlock();
     373           0 :                         put_page(page);
     374             : 
     375           0 :                         goto again;
     376             :                 }
     377             : 
     378           0 :                 inode = READ_ONCE(mapping->host);
     379           0 :                 if (!inode) {
     380             :                         rcu_read_unlock();
     381           0 :                         put_page(page);
     382             : 
     383           0 :                         goto again;
     384             :                 }
     385             : 
     386           0 :                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
     387           0 :                 key->shared.i_seq = get_inode_sequence_number(inode);
     388           0 :                 key->shared.pgoff = page_to_pgoff(tail);
     389             :                 rcu_read_unlock();
     390             :         }
     391             : 
     392             : out:
     393           0 :         put_page(page);
     394           0 :         return err;
     395             : }
     396             : 
     397             : /**
     398             :  * fault_in_user_writeable() - Fault in user address and verify RW access
     399             :  * @uaddr:      pointer to faulting user space address
     400             :  *
     401             :  * Slow path to fixup the fault we just took in the atomic write
     402             :  * access to @uaddr.
     403             :  *
     404             :  * We have no generic implementation of a non-destructive write to the
     405             :  * user address. We know that we faulted in the atomic pagefault
     406             :  * disabled section so we can as well avoid the #PF overhead by
     407             :  * calling get_user_pages() right away.
     408             :  */
     409           0 : int fault_in_user_writeable(u32 __user *uaddr)
     410             : {
     411           0 :         struct mm_struct *mm = current->mm;
     412             :         int ret;
     413             : 
     414           0 :         mmap_read_lock(mm);
     415           0 :         ret = fixup_user_fault(mm, (unsigned long)uaddr,
     416             :                                FAULT_FLAG_WRITE, NULL);
     417           0 :         mmap_read_unlock(mm);
     418             : 
     419           0 :         return ret < 0 ? ret : 0;
     420             : }
     421             : 
     422             : /**
     423             :  * futex_top_waiter() - Return the highest priority waiter on a futex
     424             :  * @hb:         the hash bucket the futex_q's reside in
     425             :  * @key:        the futex key (to distinguish it from other futex futex_q's)
     426             :  *
     427             :  * Must be called with the hb lock held.
     428             :  */
     429           0 : struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
     430             : {
     431             :         struct futex_q *this;
     432             : 
     433           0 :         plist_for_each_entry(this, &hb->chain, list) {
     434           0 :                 if (futex_match(&this->key, key))
     435             :                         return this;
     436             :         }
     437             :         return NULL;
     438             : }
     439             : 
     440           0 : int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
     441             : {
     442             :         int ret;
     443             : 
     444           0 :         pagefault_disable();
     445           0 :         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
     446           0 :         pagefault_enable();
     447             : 
     448           0 :         return ret;
     449             : }
     450             : 
     451           0 : int futex_get_value_locked(u32 *dest, u32 __user *from)
     452             : {
     453             :         int ret;
     454             : 
     455           0 :         pagefault_disable();
     456           0 :         ret = __get_user(*dest, from);
     457           0 :         pagefault_enable();
     458             : 
     459           0 :         return ret ? -EFAULT : 0;
     460             : }
     461             : 
     462             : /**
     463             :  * wait_for_owner_exiting - Block until the owner has exited
     464             :  * @ret: owner's current futex lock status
     465             :  * @exiting:    Pointer to the exiting task
     466             :  *
     467             :  * Caller must hold a refcount on @exiting.
     468             :  */
     469           0 : void wait_for_owner_exiting(int ret, struct task_struct *exiting)
     470             : {
     471           0 :         if (ret != -EBUSY) {
     472           0 :                 WARN_ON_ONCE(exiting);
     473             :                 return;
     474             :         }
     475             : 
     476           0 :         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
     477             :                 return;
     478             : 
     479           0 :         mutex_lock(&exiting->futex_exit_mutex);
     480             :         /*
     481             :          * No point in doing state checking here. If the waiter got here
     482             :          * while the task was in exec()->exec_futex_release() then it can
     483             :          * have any FUTEX_STATE_* value when the waiter has acquired the
     484             :          * mutex. OK, if running, EXITING or DEAD if it reached exit()
     485             :          * already. Highly unlikely and not a problem. Just one more round
     486             :          * through the futex maze.
     487             :          */
     488           0 :         mutex_unlock(&exiting->futex_exit_mutex);
     489             : 
     490           0 :         put_task_struct(exiting);
     491             : }
     492             : 
     493             : /**
     494             :  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
     495             :  * @q:  The futex_q to unqueue
     496             :  *
     497             :  * The q->lock_ptr must not be NULL and must be held by the caller.
     498             :  */
     499           0 : void __futex_unqueue(struct futex_q *q)
     500             : {
     501             :         struct futex_hash_bucket *hb;
     502             : 
     503           0 :         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
     504             :                 return;
     505             :         lockdep_assert_held(q->lock_ptr);
     506             : 
     507           0 :         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
     508           0 :         plist_del(&q->list, &hb->chain);
     509           0 :         futex_hb_waiters_dec(hb);
     510             : }
     511             : 
     512             : /* The key must be already stored in q->key. */
     513           0 : struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
     514             :         __acquires(&hb->lock)
     515             : {
     516             :         struct futex_hash_bucket *hb;
     517             : 
     518           0 :         hb = futex_hash(&q->key);
     519             : 
     520             :         /*
     521             :          * Increment the counter before taking the lock so that
     522             :          * a potential waker won't miss a to-be-slept task that is
     523             :          * waiting for the spinlock. This is safe as all futex_q_lock()
     524             :          * users end up calling futex_queue(). Similarly, for housekeeping,
     525             :          * decrement the counter at futex_q_unlock() when some error has
     526             :          * occurred and we don't end up adding the task to the list.
     527             :          */
     528           0 :         futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
     529             : 
     530           0 :         q->lock_ptr = &hb->lock;
     531             : 
     532           0 :         spin_lock(&hb->lock);
     533           0 :         return hb;
     534             : }
     535             : 
     536           0 : void futex_q_unlock(struct futex_hash_bucket *hb)
     537             :         __releases(&hb->lock)
     538             : {
     539           0 :         spin_unlock(&hb->lock);
     540           0 :         futex_hb_waiters_dec(hb);
     541           0 : }
     542             : 
     543           0 : void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
     544             : {
     545             :         int prio;
     546             : 
     547             :         /*
     548             :          * The priority used to register this element is
     549             :          * - either the real thread-priority for the real-time threads
     550             :          * (i.e. threads with a priority lower than MAX_RT_PRIO)
     551             :          * - or MAX_RT_PRIO for non-RT threads.
     552             :          * Thus, all RT-threads are woken first in priority order, and
     553             :          * the others are woken last, in FIFO order.
     554             :          */
     555           0 :         prio = min(current->normal_prio, MAX_RT_PRIO);
     556             : 
     557           0 :         plist_node_init(&q->list, prio);
     558           0 :         plist_add(&q->list, &hb->chain);
     559           0 :         q->task = current;
     560           0 : }
     561             : 
     562             : /**
     563             :  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
     564             :  * @q:  The futex_q to unqueue
     565             :  *
     566             :  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
     567             :  * be paired with exactly one earlier call to futex_queue().
     568             :  *
     569             :  * Return:
     570             :  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
     571             :  *  - 0 - if the futex_q was already removed by the waking thread
     572             :  */
     573           0 : int futex_unqueue(struct futex_q *q)
     574             : {
     575             :         spinlock_t *lock_ptr;
     576           0 :         int ret = 0;
     577             : 
     578             :         /* In the common case we don't take the spinlock, which is nice. */
     579             : retry:
     580             :         /*
     581             :          * q->lock_ptr can change between this read and the following spin_lock.
     582             :          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
     583             :          * optimizing lock_ptr out of the logic below.
     584             :          */
     585           0 :         lock_ptr = READ_ONCE(q->lock_ptr);
     586           0 :         if (lock_ptr != NULL) {
     587           0 :                 spin_lock(lock_ptr);
     588             :                 /*
     589             :                  * q->lock_ptr can change between reading it and
     590             :                  * spin_lock(), causing us to take the wrong lock.  This
     591             :                  * corrects the race condition.
     592             :                  *
     593             :                  * Reasoning goes like this: if we have the wrong lock,
     594             :                  * q->lock_ptr must have changed (maybe several times)
     595             :                  * between reading it and the spin_lock().  It can
     596             :                  * change again after the spin_lock() but only if it was
     597             :                  * already changed before the spin_lock().  It cannot,
     598             :                  * however, change back to the original value.  Therefore
     599             :                  * we can detect whether we acquired the correct lock.
     600             :                  */
     601           0 :                 if (unlikely(lock_ptr != q->lock_ptr)) {
     602             :                         spin_unlock(lock_ptr);
     603             :                         goto retry;
     604             :                 }
     605           0 :                 __futex_unqueue(q);
     606             : 
     607           0 :                 BUG_ON(q->pi_state);
     608             : 
     609           0 :                 spin_unlock(lock_ptr);
     610           0 :                 ret = 1;
     611             :         }
     612             : 
     613           0 :         return ret;
     614             : }
     615             : 
     616             : /*
     617             :  * PI futexes can not be requeued and must remove themselves from the
     618             :  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
     619             :  */
     620           0 : void futex_unqueue_pi(struct futex_q *q)
     621             : {
     622           0 :         __futex_unqueue(q);
     623             : 
     624           0 :         BUG_ON(!q->pi_state);
     625           0 :         put_pi_state(q->pi_state);
     626           0 :         q->pi_state = NULL;
     627           0 : }
     628             : 
     629             : /* Constants for the pending_op argument of handle_futex_death */
     630             : #define HANDLE_DEATH_PENDING    true
     631             : #define HANDLE_DEATH_LIST       false
     632             : 
     633             : /*
     634             :  * Process a futex-list entry, check whether it's owned by the
     635             :  * dying task, and do notification if so:
     636             :  */
     637           0 : static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
     638             :                               bool pi, bool pending_op)
     639             : {
     640             :         u32 uval, nval, mval;
     641             :         pid_t owner;
     642             :         int err;
     643             : 
     644             :         /* Futex address must be 32bit aligned */
     645           0 :         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
     646             :                 return -1;
     647             : 
     648             : retry:
     649           0 :         if (get_user(uval, uaddr))
     650             :                 return -1;
     651             : 
     652             :         /*
     653             :          * Special case for regular (non PI) futexes. The unlock path in
     654             :          * user space has two race scenarios:
     655             :          *
     656             :          * 1. The unlock path releases the user space futex value and
     657             :          *    before it can execute the futex() syscall to wake up
     658             :          *    waiters it is killed.
     659             :          *
     660             :          * 2. A woken up waiter is killed before it can acquire the
     661             :          *    futex in user space.
     662             :          *
     663             :          * In the second case, the wake up notification could be generated
     664             :          * by the unlock path in user space after setting the futex value
     665             :          * to zero or by the kernel after setting the OWNER_DIED bit below.
     666             :          *
     667             :          * In both cases the TID validation below prevents a wakeup of
     668             :          * potential waiters which can cause these waiters to block
     669             :          * forever.
     670             :          *
     671             :          * In both cases the following conditions are met:
     672             :          *
     673             :          *      1) task->robust_list->list_op_pending != NULL
     674             :          *         @pending_op == true
     675             :          *      2) The owner part of user space futex value == 0
     676             :          *      3) Regular futex: @pi == false
     677             :          *
     678             :          * If these conditions are met, it is safe to attempt waking up a
     679             :          * potential waiter without touching the user space futex value and
     680             :          * trying to set the OWNER_DIED bit. If the futex value is zero,
     681             :          * the rest of the user space mutex state is consistent, so a woken
     682             :          * waiter will just take over the uncontended futex. Setting the
     683             :          * OWNER_DIED bit would create inconsistent state and malfunction
     684             :          * of the user space owner died handling. Otherwise, the OWNER_DIED
     685             :          * bit is already set, and the woken waiter is expected to deal with
     686             :          * this.
     687             :          */
     688           0 :         owner = uval & FUTEX_TID_MASK;
     689             : 
     690           0 :         if (pending_op && !pi && !owner) {
     691           0 :                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
     692           0 :                 return 0;
     693             :         }
     694             : 
     695           0 :         if (owner != task_pid_vnr(curr))
     696             :                 return 0;
     697             : 
     698             :         /*
     699             :          * Ok, this dying thread is truly holding a futex
     700             :          * of interest. Set the OWNER_DIED bit atomically
     701             :          * via cmpxchg, and if the value had FUTEX_WAITERS
     702             :          * set, wake up a waiter (if any). (We have to do a
     703             :          * futex_wake() even if OWNER_DIED is already set -
     704             :          * to handle the rare but possible case of recursive
     705             :          * thread-death.) The rest of the cleanup is done in
     706             :          * userspace.
     707             :          */
     708           0 :         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
     709             : 
     710             :         /*
     711             :          * We are not holding a lock here, but we want to have
     712             :          * the pagefault_disable/enable() protection because
     713             :          * we want to handle the fault gracefully. If the
     714             :          * access fails we try to fault in the futex with R/W
     715             :          * verification via get_user_pages. get_user() above
     716             :          * does not guarantee R/W access. If that fails we
     717             :          * give up and leave the futex locked.
     718             :          */
     719           0 :         if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
     720           0 :                 switch (err) {
     721             :                 case -EFAULT:
     722           0 :                         if (fault_in_user_writeable(uaddr))
     723             :                                 return -1;
     724             :                         goto retry;
     725             : 
     726             :                 case -EAGAIN:
     727           0 :                         cond_resched();
     728           0 :                         goto retry;
     729             : 
     730             :                 default:
     731           0 :                         WARN_ON_ONCE(1);
     732             :                         return err;
     733             :                 }
     734             :         }
     735             : 
     736           0 :         if (nval != uval)
     737             :                 goto retry;
     738             : 
     739             :         /*
     740             :          * Wake robust non-PI futexes here. The wakeup of
     741             :          * PI futexes happens in exit_pi_state():
     742             :          */
     743           0 :         if (!pi && (uval & FUTEX_WAITERS))
     744           0 :                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
     745             : 
     746             :         return 0;
     747             : }
     748             : 
     749             : /*
     750             :  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
     751             :  */
     752           0 : static inline int fetch_robust_entry(struct robust_list __user **entry,
     753             :                                      struct robust_list __user * __user *head,
     754             :                                      unsigned int *pi)
     755             : {
     756             :         unsigned long uentry;
     757             : 
     758           0 :         if (get_user(uentry, (unsigned long __user *)head))
     759             :                 return -EFAULT;
     760             : 
     761           0 :         *entry = (void __user *)(uentry & ~1UL);
     762           0 :         *pi = uentry & 1;
     763             : 
     764           0 :         return 0;
     765             : }
     766             : 
     767             : /*
     768             :  * Walk curr->robust_list (very carefully, it's a userspace list!)
     769             :  * and mark any locks found there dead, and notify any waiters.
     770             :  *
     771             :  * We silently return on any sign of list-walking problem.
     772             :  */
     773           0 : static void exit_robust_list(struct task_struct *curr)
     774             : {
     775           0 :         struct robust_list_head __user *head = curr->robust_list;
     776             :         struct robust_list __user *entry, *next_entry, *pending;
     777           0 :         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
     778             :         unsigned int next_pi;
     779             :         unsigned long futex_offset;
     780             :         int rc;
     781             : 
     782             :         /*
     783             :          * Fetch the list head (which was registered earlier, via
     784             :          * sys_set_robust_list()):
     785             :          */
     786           0 :         if (fetch_robust_entry(&entry, &head->list.next, &pi))
     787           0 :                 return;
     788             :         /*
     789             :          * Fetch the relative futex offset:
     790             :          */
     791           0 :         if (get_user(futex_offset, &head->futex_offset))
     792             :                 return;
     793             :         /*
     794             :          * Fetch any possibly pending lock-add first, and handle it
     795             :          * if it exists:
     796             :          */
     797           0 :         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
     798             :                 return;
     799             : 
     800           0 :         next_entry = NULL;      /* avoid warning with gcc */
     801           0 :         while (entry != &head->list) {
     802             :                 /*
     803             :                  * Fetch the next entry in the list before calling
     804             :                  * handle_futex_death:
     805             :                  */
     806           0 :                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
     807             :                 /*
     808             :                  * A pending lock might already be on the list, so
     809             :                  * don't process it twice:
     810             :                  */
     811           0 :                 if (entry != pending) {
     812           0 :                         if (handle_futex_death((void __user *)entry + futex_offset,
     813             :                                                 curr, pi, HANDLE_DEATH_LIST))
     814             :                                 return;
     815             :                 }
     816           0 :                 if (rc)
     817             :                         return;
     818           0 :                 entry = next_entry;
     819           0 :                 pi = next_pi;
     820             :                 /*
     821             :                  * Avoid excessively long or circular lists:
     822             :                  */
     823           0 :                 if (!--limit)
     824             :                         break;
     825             : 
     826           0 :                 cond_resched();
     827             :         }
     828             : 
     829           0 :         if (pending) {
     830           0 :                 handle_futex_death((void __user *)pending + futex_offset,
     831             :                                    curr, pip, HANDLE_DEATH_PENDING);
     832             :         }
     833             : }
     834             : 
     835             : #ifdef CONFIG_COMPAT
     836             : static void __user *futex_uaddr(struct robust_list __user *entry,
     837             :                                 compat_long_t futex_offset)
     838             : {
     839             :         compat_uptr_t base = ptr_to_compat(entry);
     840             :         void __user *uaddr = compat_ptr(base + futex_offset);
     841             : 
     842             :         return uaddr;
     843             : }
     844             : 
     845             : /*
     846             :  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
     847             :  */
     848             : static inline int
     849             : compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
     850             :                    compat_uptr_t __user *head, unsigned int *pi)
     851             : {
     852             :         if (get_user(*uentry, head))
     853             :                 return -EFAULT;
     854             : 
     855             :         *entry = compat_ptr((*uentry) & ~1);
     856             :         *pi = (unsigned int)(*uentry) & 1;
     857             : 
     858             :         return 0;
     859             : }
     860             : 
     861             : /*
     862             :  * Walk curr->robust_list (very carefully, it's a userspace list!)
     863             :  * and mark any locks found there dead, and notify any waiters.
     864             :  *
     865             :  * We silently return on any sign of list-walking problem.
     866             :  */
     867             : static void compat_exit_robust_list(struct task_struct *curr)
     868             : {
     869             :         struct compat_robust_list_head __user *head = curr->compat_robust_list;
     870             :         struct robust_list __user *entry, *next_entry, *pending;
     871             :         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
     872             :         unsigned int next_pi;
     873             :         compat_uptr_t uentry, next_uentry, upending;
     874             :         compat_long_t futex_offset;
     875             :         int rc;
     876             : 
     877             :         /*
     878             :          * Fetch the list head (which was registered earlier, via
     879             :          * sys_set_robust_list()):
     880             :          */
     881             :         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
     882             :                 return;
     883             :         /*
     884             :          * Fetch the relative futex offset:
     885             :          */
     886             :         if (get_user(futex_offset, &head->futex_offset))
     887             :                 return;
     888             :         /*
     889             :          * Fetch any possibly pending lock-add first, and handle it
     890             :          * if it exists:
     891             :          */
     892             :         if (compat_fetch_robust_entry(&upending, &pending,
     893             :                                &head->list_op_pending, &pip))
     894             :                 return;
     895             : 
     896             :         next_entry = NULL;      /* avoid warning with gcc */
     897             :         while (entry != (struct robust_list __user *) &head->list) {
     898             :                 /*
     899             :                  * Fetch the next entry in the list before calling
     900             :                  * handle_futex_death:
     901             :                  */
     902             :                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
     903             :                         (compat_uptr_t __user *)&entry->next, &next_pi);
     904             :                 /*
     905             :                  * A pending lock might already be on the list, so
     906             :                  * dont process it twice:
     907             :                  */
     908             :                 if (entry != pending) {
     909             :                         void __user *uaddr = futex_uaddr(entry, futex_offset);
     910             : 
     911             :                         if (handle_futex_death(uaddr, curr, pi,
     912             :                                                HANDLE_DEATH_LIST))
     913             :                                 return;
     914             :                 }
     915             :                 if (rc)
     916             :                         return;
     917             :                 uentry = next_uentry;
     918             :                 entry = next_entry;
     919             :                 pi = next_pi;
     920             :                 /*
     921             :                  * Avoid excessively long or circular lists:
     922             :                  */
     923             :                 if (!--limit)
     924             :                         break;
     925             : 
     926             :                 cond_resched();
     927             :         }
     928             :         if (pending) {
     929             :                 void __user *uaddr = futex_uaddr(pending, futex_offset);
     930             : 
     931             :                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
     932             :         }
     933             : }
     934             : #endif
     935             : 
     936             : #ifdef CONFIG_FUTEX_PI
     937             : 
     938             : /*
     939             :  * This task is holding PI mutexes at exit time => bad.
     940             :  * Kernel cleans up PI-state, but userspace is likely hosed.
     941             :  * (Robust-futex cleanup is separate and might save the day for userspace.)
     942             :  */
     943           0 : static void exit_pi_state_list(struct task_struct *curr)
     944             : {
     945           0 :         struct list_head *next, *head = &curr->pi_state_list;
     946             :         struct futex_pi_state *pi_state;
     947             :         struct futex_hash_bucket *hb;
     948           0 :         union futex_key key = FUTEX_KEY_INIT;
     949             : 
     950             :         /*
     951             :          * We are a ZOMBIE and nobody can enqueue itself on
     952             :          * pi_state_list anymore, but we have to be careful
     953             :          * versus waiters unqueueing themselves:
     954             :          */
     955           0 :         raw_spin_lock_irq(&curr->pi_lock);
     956           0 :         while (!list_empty(head)) {
     957           0 :                 next = head->next;
     958           0 :                 pi_state = list_entry(next, struct futex_pi_state, list);
     959           0 :                 key = pi_state->key;
     960           0 :                 hb = futex_hash(&key);
     961             : 
     962             :                 /*
     963             :                  * We can race against put_pi_state() removing itself from the
     964             :                  * list (a waiter going away). put_pi_state() will first
     965             :                  * decrement the reference count and then modify the list, so
     966             :                  * its possible to see the list entry but fail this reference
     967             :                  * acquire.
     968             :                  *
     969             :                  * In that case; drop the locks to let put_pi_state() make
     970             :                  * progress and retry the loop.
     971             :                  */
     972           0 :                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
     973           0 :                         raw_spin_unlock_irq(&curr->pi_lock);
     974             :                         cpu_relax();
     975           0 :                         raw_spin_lock_irq(&curr->pi_lock);
     976           0 :                         continue;
     977             :                 }
     978           0 :                 raw_spin_unlock_irq(&curr->pi_lock);
     979             : 
     980           0 :                 spin_lock(&hb->lock);
     981           0 :                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
     982           0 :                 raw_spin_lock(&curr->pi_lock);
     983             :                 /*
     984             :                  * We dropped the pi-lock, so re-check whether this
     985             :                  * task still owns the PI-state:
     986             :                  */
     987           0 :                 if (head->next != next) {
     988             :                         /* retain curr->pi_lock for the loop invariant */
     989           0 :                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
     990           0 :                         spin_unlock(&hb->lock);
     991           0 :                         put_pi_state(pi_state);
     992           0 :                         continue;
     993             :                 }
     994             : 
     995           0 :                 WARN_ON(pi_state->owner != curr);
     996           0 :                 WARN_ON(list_empty(&pi_state->list));
     997           0 :                 list_del_init(&pi_state->list);
     998           0 :                 pi_state->owner = NULL;
     999             : 
    1000           0 :                 raw_spin_unlock(&curr->pi_lock);
    1001           0 :                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
    1002           0 :                 spin_unlock(&hb->lock);
    1003             : 
    1004           0 :                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
    1005           0 :                 put_pi_state(pi_state);
    1006             : 
    1007           0 :                 raw_spin_lock_irq(&curr->pi_lock);
    1008             :         }
    1009           0 :         raw_spin_unlock_irq(&curr->pi_lock);
    1010           0 : }
    1011             : #else
    1012             : static inline void exit_pi_state_list(struct task_struct *curr) { }
    1013             : #endif
    1014             : 
    1015         367 : static void futex_cleanup(struct task_struct *tsk)
    1016             : {
    1017         367 :         if (unlikely(tsk->robust_list)) {
    1018           0 :                 exit_robust_list(tsk);
    1019           0 :                 tsk->robust_list = NULL;
    1020             :         }
    1021             : 
    1022             : #ifdef CONFIG_COMPAT
    1023             :         if (unlikely(tsk->compat_robust_list)) {
    1024             :                 compat_exit_robust_list(tsk);
    1025             :                 tsk->compat_robust_list = NULL;
    1026             :         }
    1027             : #endif
    1028             : 
    1029         734 :         if (unlikely(!list_empty(&tsk->pi_state_list)))
    1030           0 :                 exit_pi_state_list(tsk);
    1031         367 : }
    1032             : 
    1033             : /**
    1034             :  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
    1035             :  * @tsk:        task to set the state on
    1036             :  *
    1037             :  * Set the futex exit state of the task lockless. The futex waiter code
    1038             :  * observes that state when a task is exiting and loops until the task has
    1039             :  * actually finished the futex cleanup. The worst case for this is that the
    1040             :  * waiter runs through the wait loop until the state becomes visible.
    1041             :  *
    1042             :  * This is called from the recursive fault handling path in make_task_dead().
    1043             :  *
    1044             :  * This is best effort. Either the futex exit code has run already or
    1045             :  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
    1046             :  * take it over. If not, the problem is pushed back to user space. If the
    1047             :  * futex exit code did not run yet, then an already queued waiter might
    1048             :  * block forever, but there is nothing which can be done about that.
    1049             :  */
    1050           0 : void futex_exit_recursive(struct task_struct *tsk)
    1051             : {
    1052             :         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
    1053           0 :         if (tsk->futex_state == FUTEX_STATE_EXITING)
    1054           0 :                 mutex_unlock(&tsk->futex_exit_mutex);
    1055           0 :         tsk->futex_state = FUTEX_STATE_DEAD;
    1056           0 : }
    1057             : 
    1058             : static void futex_cleanup_begin(struct task_struct *tsk)
    1059             : {
    1060             :         /*
    1061             :          * Prevent various race issues against a concurrent incoming waiter
    1062             :          * including live locks by forcing the waiter to block on
    1063             :          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
    1064             :          * attach_to_pi_owner().
    1065             :          */
    1066         367 :         mutex_lock(&tsk->futex_exit_mutex);
    1067             : 
    1068             :         /*
    1069             :          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
    1070             :          *
    1071             :          * This ensures that all subsequent checks of tsk->futex_state in
    1072             :          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
    1073             :          * tsk->pi_lock held.
    1074             :          *
    1075             :          * It guarantees also that a pi_state which was queued right before
    1076             :          * the state change under tsk->pi_lock by a concurrent waiter must
    1077             :          * be observed in exit_pi_state_list().
    1078             :          */
    1079         367 :         raw_spin_lock_irq(&tsk->pi_lock);
    1080         367 :         tsk->futex_state = FUTEX_STATE_EXITING;
    1081         367 :         raw_spin_unlock_irq(&tsk->pi_lock);
    1082             : }
    1083             : 
    1084             : static void futex_cleanup_end(struct task_struct *tsk, int state)
    1085             : {
    1086             :         /*
    1087             :          * Lockless store. The only side effect is that an observer might
    1088             :          * take another loop until it becomes visible.
    1089             :          */
    1090         367 :         tsk->futex_state = state;
    1091             :         /*
    1092             :          * Drop the exit protection. This unblocks waiters which observed
    1093             :          * FUTEX_STATE_EXITING to reevaluate the state.
    1094             :          */
    1095         367 :         mutex_unlock(&tsk->futex_exit_mutex);
    1096             : }
    1097             : 
    1098           0 : void futex_exec_release(struct task_struct *tsk)
    1099             : {
    1100             :         /*
    1101             :          * The state handling is done for consistency, but in the case of
    1102             :          * exec() there is no way to prevent further damage as the PID stays
    1103             :          * the same. But for the unlikely and arguably buggy case that a
    1104             :          * futex is held on exec(), this provides at least as much state
    1105             :          * consistency protection which is possible.
    1106             :          */
    1107           0 :         futex_cleanup_begin(tsk);
    1108           0 :         futex_cleanup(tsk);
    1109             :         /*
    1110             :          * Reset the state to FUTEX_STATE_OK. The task is alive and about
    1111             :          * exec a new binary.
    1112             :          */
    1113           0 :         futex_cleanup_end(tsk, FUTEX_STATE_OK);
    1114           0 : }
    1115             : 
    1116         367 : void futex_exit_release(struct task_struct *tsk)
    1117             : {
    1118         367 :         futex_cleanup_begin(tsk);
    1119         367 :         futex_cleanup(tsk);
    1120         367 :         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
    1121         367 : }
    1122             : 
    1123           1 : static int __init futex_init(void)
    1124             : {
    1125             :         unsigned int futex_shift;
    1126             :         unsigned long i;
    1127             : 
    1128             : #if CONFIG_BASE_SMALL
    1129             :         futex_hashsize = 16;
    1130             : #else
    1131           1 :         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
    1132             : #endif
    1133             : 
    1134           1 :         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
    1135             :                                                futex_hashsize, 0,
    1136             :                                                futex_hashsize < 256 ? HASH_SMALL : 0,
    1137             :                                                &futex_shift, NULL,
    1138             :                                                futex_hashsize, futex_hashsize);
    1139           1 :         futex_hashsize = 1UL << futex_shift;
    1140             : 
    1141         257 :         for (i = 0; i < futex_hashsize; i++) {
    1142         512 :                 atomic_set(&futex_queues[i].waiters, 0);
    1143         512 :                 plist_head_init(&futex_queues[i].chain);
    1144         256 :                 spin_lock_init(&futex_queues[i].lock);
    1145             :         }
    1146             : 
    1147           1 :         return 0;
    1148             : }
    1149             : core_initcall(futex_init);

Generated by: LCOV version 1.14