Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Fast Userspace Mutexes (which I call "Futexes!").
4 : * (C) Rusty Russell, IBM 2002
5 : *
6 : * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 : * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 : *
9 : * Removed page pinning, fix privately mapped COW pages and other cleanups
10 : * (C) Copyright 2003, 2004 Jamie Lokier
11 : *
12 : * Robust futex support started by Ingo Molnar
13 : * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 : * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 : *
16 : * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 : * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 : * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 : *
20 : * PRIVATE futexes by Eric Dumazet
21 : * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 : *
23 : * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 : * Copyright (C) IBM Corporation, 2009
25 : * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 : *
27 : * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 : * enough at me, Linus for the original (flawed) idea, Matthew
29 : * Kirkwood for proof-of-concept implementation.
30 : *
31 : * "The futexes are also cursed."
32 : * "But they come in a choice of three flavours!"
33 : */
34 : #include <linux/compat.h>
35 : #include <linux/jhash.h>
36 : #include <linux/pagemap.h>
37 : #include <linux/memblock.h>
38 : #include <linux/fault-inject.h>
39 : #include <linux/slab.h>
40 :
41 : #include "futex.h"
42 : #include "../locking/rtmutex_common.h"
43 :
44 : /*
45 : * The base of the bucket array and its size are always used together
46 : * (after initialization only in futex_hash()), so ensure that they
47 : * reside in the same cacheline.
48 : */
49 : static struct {
50 : struct futex_hash_bucket *queues;
51 : unsigned long hashsize;
52 : } __futex_data __read_mostly __aligned(2*sizeof(long));
53 : #define futex_queues (__futex_data.queues)
54 : #define futex_hashsize (__futex_data.hashsize)
55 :
56 :
57 : /*
58 : * Fault injections for futexes.
59 : */
60 : #ifdef CONFIG_FAIL_FUTEX
61 :
62 : static struct {
63 : struct fault_attr attr;
64 :
65 : bool ignore_private;
66 : } fail_futex = {
67 : .attr = FAULT_ATTR_INITIALIZER,
68 : .ignore_private = false,
69 : };
70 :
71 : static int __init setup_fail_futex(char *str)
72 : {
73 : return setup_fault_attr(&fail_futex.attr, str);
74 : }
75 : __setup("fail_futex=", setup_fail_futex);
76 :
77 : bool should_fail_futex(bool fshared)
78 : {
79 : if (fail_futex.ignore_private && !fshared)
80 : return false;
81 :
82 : return should_fail(&fail_futex.attr, 1);
83 : }
84 :
85 : #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
86 :
87 : static int __init fail_futex_debugfs(void)
88 : {
89 : umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
90 : struct dentry *dir;
91 :
92 : dir = fault_create_debugfs_attr("fail_futex", NULL,
93 : &fail_futex.attr);
94 : if (IS_ERR(dir))
95 : return PTR_ERR(dir);
96 :
97 : debugfs_create_bool("ignore-private", mode, dir,
98 : &fail_futex.ignore_private);
99 : return 0;
100 : }
101 :
102 : late_initcall(fail_futex_debugfs);
103 :
104 : #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
105 :
106 : #endif /* CONFIG_FAIL_FUTEX */
107 :
108 : /**
109 : * futex_hash - Return the hash bucket in the global hash
110 : * @key: Pointer to the futex key for which the hash is calculated
111 : *
112 : * We hash on the keys returned from get_futex_key (see below) and return the
113 : * corresponding hash bucket in the global hash.
114 : */
115 0 : struct futex_hash_bucket *futex_hash(union futex_key *key)
116 : {
117 0 : u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
118 : key->both.offset);
119 :
120 0 : return &futex_queues[hash & (futex_hashsize - 1)];
121 : }
122 :
123 :
124 : /**
125 : * futex_setup_timer - set up the sleeping hrtimer.
126 : * @time: ptr to the given timeout value
127 : * @timeout: the hrtimer_sleeper structure to be set up
128 : * @flags: futex flags
129 : * @range_ns: optional range in ns
130 : *
131 : * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
132 : * value given
133 : */
134 : struct hrtimer_sleeper *
135 0 : futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
136 : int flags, u64 range_ns)
137 : {
138 0 : if (!time)
139 : return NULL;
140 :
141 0 : hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
142 : CLOCK_REALTIME : CLOCK_MONOTONIC,
143 : HRTIMER_MODE_ABS);
144 : /*
145 : * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
146 : * effectively the same as calling hrtimer_set_expires().
147 : */
148 0 : hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
149 :
150 0 : return timeout;
151 : }
152 :
153 : /*
154 : * Generate a machine wide unique identifier for this inode.
155 : *
156 : * This relies on u64 not wrapping in the life-time of the machine; which with
157 : * 1ns resolution means almost 585 years.
158 : *
159 : * This further relies on the fact that a well formed program will not unmap
160 : * the file while it has a (shared) futex waiting on it. This mapping will have
161 : * a file reference which pins the mount and inode.
162 : *
163 : * If for some reason an inode gets evicted and read back in again, it will get
164 : * a new sequence number and will _NOT_ match, even though it is the exact same
165 : * file.
166 : *
167 : * It is important that futex_match() will never have a false-positive, esp.
168 : * for PI futexes that can mess up the state. The above argues that false-negatives
169 : * are only possible for malformed programs.
170 : */
171 0 : static u64 get_inode_sequence_number(struct inode *inode)
172 : {
173 : static atomic64_t i_seq;
174 : u64 old;
175 :
176 : /* Does the inode already have a sequence number? */
177 0 : old = atomic64_read(&inode->i_sequence);
178 0 : if (likely(old))
179 : return old;
180 :
181 0 : for (;;) {
182 0 : u64 new = atomic64_add_return(1, &i_seq);
183 0 : if (WARN_ON_ONCE(!new))
184 0 : continue;
185 :
186 0 : old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
187 0 : if (old)
188 : return old;
189 0 : return new;
190 : }
191 : }
192 :
193 : /**
194 : * get_futex_key() - Get parameters which are the keys for a futex
195 : * @uaddr: virtual address of the futex
196 : * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
197 : * @key: address where result is stored.
198 : * @rw: mapping needs to be read/write (values: FUTEX_READ,
199 : * FUTEX_WRITE)
200 : *
201 : * Return: a negative error code or 0
202 : *
203 : * The key words are stored in @key on success.
204 : *
205 : * For shared mappings (when @fshared), the key is:
206 : *
207 : * ( inode->i_sequence, page->index, offset_within_page )
208 : *
209 : * [ also see get_inode_sequence_number() ]
210 : *
211 : * For private mappings (or when !@fshared), the key is:
212 : *
213 : * ( current->mm, address, 0 )
214 : *
215 : * This allows (cross process, where applicable) identification of the futex
216 : * without keeping the page pinned for the duration of the FUTEX_WAIT.
217 : *
218 : * lock_page() might sleep, the caller should not hold a spinlock.
219 : */
220 0 : int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
221 : enum futex_access rw)
222 : {
223 0 : unsigned long address = (unsigned long)uaddr;
224 0 : struct mm_struct *mm = current->mm;
225 : struct page *page, *tail;
226 : struct address_space *mapping;
227 0 : int err, ro = 0;
228 :
229 : /*
230 : * The futex address must be "naturally" aligned.
231 : */
232 0 : key->both.offset = address % PAGE_SIZE;
233 0 : if (unlikely((address % sizeof(u32)) != 0))
234 : return -EINVAL;
235 0 : address -= key->both.offset;
236 :
237 0 : if (unlikely(!access_ok(uaddr, sizeof(u32))))
238 : return -EFAULT;
239 :
240 0 : if (unlikely(should_fail_futex(fshared)))
241 : return -EFAULT;
242 :
243 : /*
244 : * PROCESS_PRIVATE futexes are fast.
245 : * As the mm cannot disappear under us and the 'key' only needs
246 : * virtual address, we dont even have to find the underlying vma.
247 : * Note : We do have to check 'uaddr' is a valid user address,
248 : * but access_ok() should be faster than find_vma()
249 : */
250 0 : if (!fshared) {
251 0 : key->private.mm = mm;
252 0 : key->private.address = address;
253 0 : return 0;
254 : }
255 :
256 : again:
257 : /* Ignore any VERIFY_READ mapping (futex common case) */
258 0 : if (unlikely(should_fail_futex(true)))
259 : return -EFAULT;
260 :
261 0 : err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
262 : /*
263 : * If write access is not required (eg. FUTEX_WAIT), try
264 : * and get read-only access.
265 : */
266 0 : if (err == -EFAULT && rw == FUTEX_READ) {
267 0 : err = get_user_pages_fast(address, 1, 0, &page);
268 0 : ro = 1;
269 : }
270 0 : if (err < 0)
271 : return err;
272 : else
273 0 : err = 0;
274 :
275 : /*
276 : * The treatment of mapping from this point on is critical. The page
277 : * lock protects many things but in this context the page lock
278 : * stabilizes mapping, prevents inode freeing in the shared
279 : * file-backed region case and guards against movement to swap cache.
280 : *
281 : * Strictly speaking the page lock is not needed in all cases being
282 : * considered here and page lock forces unnecessarily serialization
283 : * From this point on, mapping will be re-verified if necessary and
284 : * page lock will be acquired only if it is unavoidable
285 : *
286 : * Mapping checks require the head page for any compound page so the
287 : * head page and mapping is looked up now. For anonymous pages, it
288 : * does not matter if the page splits in the future as the key is
289 : * based on the address. For filesystem-backed pages, the tail is
290 : * required as the index of the page determines the key. For
291 : * base pages, there is no tail page and tail == page.
292 : */
293 0 : tail = page;
294 0 : page = compound_head(page);
295 0 : mapping = READ_ONCE(page->mapping);
296 :
297 : /*
298 : * If page->mapping is NULL, then it cannot be a PageAnon
299 : * page; but it might be the ZERO_PAGE or in the gate area or
300 : * in a special mapping (all cases which we are happy to fail);
301 : * or it may have been a good file page when get_user_pages_fast
302 : * found it, but truncated or holepunched or subjected to
303 : * invalidate_complete_page2 before we got the page lock (also
304 : * cases which we are happy to fail). And we hold a reference,
305 : * so refcount care in invalidate_inode_page's remove_mapping
306 : * prevents drop_caches from setting mapping to NULL beneath us.
307 : *
308 : * The case we do have to guard against is when memory pressure made
309 : * shmem_writepage move it from filecache to swapcache beneath us:
310 : * an unlikely race, but we do need to retry for page->mapping.
311 : */
312 0 : if (unlikely(!mapping)) {
313 : int shmem_swizzled;
314 :
315 : /*
316 : * Page lock is required to identify which special case above
317 : * applies. If this is really a shmem page then the page lock
318 : * will prevent unexpected transitions.
319 : */
320 0 : lock_page(page);
321 0 : shmem_swizzled = PageSwapCache(page) || page->mapping;
322 0 : unlock_page(page);
323 0 : put_page(page);
324 :
325 0 : if (shmem_swizzled)
326 : goto again;
327 :
328 : return -EFAULT;
329 : }
330 :
331 : /*
332 : * Private mappings are handled in a simple way.
333 : *
334 : * If the futex key is stored on an anonymous page, then the associated
335 : * object is the mm which is implicitly pinned by the calling process.
336 : *
337 : * NOTE: When userspace waits on a MAP_SHARED mapping, even if
338 : * it's a read-only handle, it's expected that futexes attach to
339 : * the object not the particular process.
340 : */
341 0 : if (PageAnon(page)) {
342 : /*
343 : * A RO anonymous page will never change and thus doesn't make
344 : * sense for futex operations.
345 : */
346 0 : if (unlikely(should_fail_futex(true)) || ro) {
347 : err = -EFAULT;
348 : goto out;
349 : }
350 :
351 0 : key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
352 0 : key->private.mm = mm;
353 0 : key->private.address = address;
354 :
355 : } else {
356 : struct inode *inode;
357 :
358 : /*
359 : * The associated futex object in this case is the inode and
360 : * the page->mapping must be traversed. Ordinarily this should
361 : * be stabilised under page lock but it's not strictly
362 : * necessary in this case as we just want to pin the inode, not
363 : * update the radix tree or anything like that.
364 : *
365 : * The RCU read lock is taken as the inode is finally freed
366 : * under RCU. If the mapping still matches expectations then the
367 : * mapping->host can be safely accessed as being a valid inode.
368 : */
369 : rcu_read_lock();
370 :
371 0 : if (READ_ONCE(page->mapping) != mapping) {
372 : rcu_read_unlock();
373 0 : put_page(page);
374 :
375 0 : goto again;
376 : }
377 :
378 0 : inode = READ_ONCE(mapping->host);
379 0 : if (!inode) {
380 : rcu_read_unlock();
381 0 : put_page(page);
382 :
383 0 : goto again;
384 : }
385 :
386 0 : key->both.offset |= FUT_OFF_INODE; /* inode-based key */
387 0 : key->shared.i_seq = get_inode_sequence_number(inode);
388 0 : key->shared.pgoff = page_to_pgoff(tail);
389 : rcu_read_unlock();
390 : }
391 :
392 : out:
393 0 : put_page(page);
394 0 : return err;
395 : }
396 :
397 : /**
398 : * fault_in_user_writeable() - Fault in user address and verify RW access
399 : * @uaddr: pointer to faulting user space address
400 : *
401 : * Slow path to fixup the fault we just took in the atomic write
402 : * access to @uaddr.
403 : *
404 : * We have no generic implementation of a non-destructive write to the
405 : * user address. We know that we faulted in the atomic pagefault
406 : * disabled section so we can as well avoid the #PF overhead by
407 : * calling get_user_pages() right away.
408 : */
409 0 : int fault_in_user_writeable(u32 __user *uaddr)
410 : {
411 0 : struct mm_struct *mm = current->mm;
412 : int ret;
413 :
414 0 : mmap_read_lock(mm);
415 0 : ret = fixup_user_fault(mm, (unsigned long)uaddr,
416 : FAULT_FLAG_WRITE, NULL);
417 0 : mmap_read_unlock(mm);
418 :
419 0 : return ret < 0 ? ret : 0;
420 : }
421 :
422 : /**
423 : * futex_top_waiter() - Return the highest priority waiter on a futex
424 : * @hb: the hash bucket the futex_q's reside in
425 : * @key: the futex key (to distinguish it from other futex futex_q's)
426 : *
427 : * Must be called with the hb lock held.
428 : */
429 0 : struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
430 : {
431 : struct futex_q *this;
432 :
433 0 : plist_for_each_entry(this, &hb->chain, list) {
434 0 : if (futex_match(&this->key, key))
435 : return this;
436 : }
437 : return NULL;
438 : }
439 :
440 0 : int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
441 : {
442 : int ret;
443 :
444 0 : pagefault_disable();
445 0 : ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
446 0 : pagefault_enable();
447 :
448 0 : return ret;
449 : }
450 :
451 0 : int futex_get_value_locked(u32 *dest, u32 __user *from)
452 : {
453 : int ret;
454 :
455 0 : pagefault_disable();
456 0 : ret = __get_user(*dest, from);
457 0 : pagefault_enable();
458 :
459 0 : return ret ? -EFAULT : 0;
460 : }
461 :
462 : /**
463 : * wait_for_owner_exiting - Block until the owner has exited
464 : * @ret: owner's current futex lock status
465 : * @exiting: Pointer to the exiting task
466 : *
467 : * Caller must hold a refcount on @exiting.
468 : */
469 0 : void wait_for_owner_exiting(int ret, struct task_struct *exiting)
470 : {
471 0 : if (ret != -EBUSY) {
472 0 : WARN_ON_ONCE(exiting);
473 : return;
474 : }
475 :
476 0 : if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
477 : return;
478 :
479 0 : mutex_lock(&exiting->futex_exit_mutex);
480 : /*
481 : * No point in doing state checking here. If the waiter got here
482 : * while the task was in exec()->exec_futex_release() then it can
483 : * have any FUTEX_STATE_* value when the waiter has acquired the
484 : * mutex. OK, if running, EXITING or DEAD if it reached exit()
485 : * already. Highly unlikely and not a problem. Just one more round
486 : * through the futex maze.
487 : */
488 0 : mutex_unlock(&exiting->futex_exit_mutex);
489 :
490 0 : put_task_struct(exiting);
491 : }
492 :
493 : /**
494 : * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
495 : * @q: The futex_q to unqueue
496 : *
497 : * The q->lock_ptr must not be NULL and must be held by the caller.
498 : */
499 0 : void __futex_unqueue(struct futex_q *q)
500 : {
501 : struct futex_hash_bucket *hb;
502 :
503 0 : if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
504 : return;
505 : lockdep_assert_held(q->lock_ptr);
506 :
507 0 : hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
508 0 : plist_del(&q->list, &hb->chain);
509 0 : futex_hb_waiters_dec(hb);
510 : }
511 :
512 : /* The key must be already stored in q->key. */
513 0 : struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
514 : __acquires(&hb->lock)
515 : {
516 : struct futex_hash_bucket *hb;
517 :
518 0 : hb = futex_hash(&q->key);
519 :
520 : /*
521 : * Increment the counter before taking the lock so that
522 : * a potential waker won't miss a to-be-slept task that is
523 : * waiting for the spinlock. This is safe as all futex_q_lock()
524 : * users end up calling futex_queue(). Similarly, for housekeeping,
525 : * decrement the counter at futex_q_unlock() when some error has
526 : * occurred and we don't end up adding the task to the list.
527 : */
528 0 : futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
529 :
530 0 : q->lock_ptr = &hb->lock;
531 :
532 0 : spin_lock(&hb->lock);
533 0 : return hb;
534 : }
535 :
536 0 : void futex_q_unlock(struct futex_hash_bucket *hb)
537 : __releases(&hb->lock)
538 : {
539 0 : spin_unlock(&hb->lock);
540 0 : futex_hb_waiters_dec(hb);
541 0 : }
542 :
543 0 : void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
544 : {
545 : int prio;
546 :
547 : /*
548 : * The priority used to register this element is
549 : * - either the real thread-priority for the real-time threads
550 : * (i.e. threads with a priority lower than MAX_RT_PRIO)
551 : * - or MAX_RT_PRIO for non-RT threads.
552 : * Thus, all RT-threads are woken first in priority order, and
553 : * the others are woken last, in FIFO order.
554 : */
555 0 : prio = min(current->normal_prio, MAX_RT_PRIO);
556 :
557 0 : plist_node_init(&q->list, prio);
558 0 : plist_add(&q->list, &hb->chain);
559 0 : q->task = current;
560 0 : }
561 :
562 : /**
563 : * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
564 : * @q: The futex_q to unqueue
565 : *
566 : * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
567 : * be paired with exactly one earlier call to futex_queue().
568 : *
569 : * Return:
570 : * - 1 - if the futex_q was still queued (and we removed unqueued it);
571 : * - 0 - if the futex_q was already removed by the waking thread
572 : */
573 0 : int futex_unqueue(struct futex_q *q)
574 : {
575 : spinlock_t *lock_ptr;
576 0 : int ret = 0;
577 :
578 : /* In the common case we don't take the spinlock, which is nice. */
579 : retry:
580 : /*
581 : * q->lock_ptr can change between this read and the following spin_lock.
582 : * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
583 : * optimizing lock_ptr out of the logic below.
584 : */
585 0 : lock_ptr = READ_ONCE(q->lock_ptr);
586 0 : if (lock_ptr != NULL) {
587 0 : spin_lock(lock_ptr);
588 : /*
589 : * q->lock_ptr can change between reading it and
590 : * spin_lock(), causing us to take the wrong lock. This
591 : * corrects the race condition.
592 : *
593 : * Reasoning goes like this: if we have the wrong lock,
594 : * q->lock_ptr must have changed (maybe several times)
595 : * between reading it and the spin_lock(). It can
596 : * change again after the spin_lock() but only if it was
597 : * already changed before the spin_lock(). It cannot,
598 : * however, change back to the original value. Therefore
599 : * we can detect whether we acquired the correct lock.
600 : */
601 0 : if (unlikely(lock_ptr != q->lock_ptr)) {
602 : spin_unlock(lock_ptr);
603 : goto retry;
604 : }
605 0 : __futex_unqueue(q);
606 :
607 0 : BUG_ON(q->pi_state);
608 :
609 0 : spin_unlock(lock_ptr);
610 0 : ret = 1;
611 : }
612 :
613 0 : return ret;
614 : }
615 :
616 : /*
617 : * PI futexes can not be requeued and must remove themselves from the
618 : * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
619 : */
620 0 : void futex_unqueue_pi(struct futex_q *q)
621 : {
622 0 : __futex_unqueue(q);
623 :
624 0 : BUG_ON(!q->pi_state);
625 0 : put_pi_state(q->pi_state);
626 0 : q->pi_state = NULL;
627 0 : }
628 :
629 : /* Constants for the pending_op argument of handle_futex_death */
630 : #define HANDLE_DEATH_PENDING true
631 : #define HANDLE_DEATH_LIST false
632 :
633 : /*
634 : * Process a futex-list entry, check whether it's owned by the
635 : * dying task, and do notification if so:
636 : */
637 0 : static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
638 : bool pi, bool pending_op)
639 : {
640 : u32 uval, nval, mval;
641 : pid_t owner;
642 : int err;
643 :
644 : /* Futex address must be 32bit aligned */
645 0 : if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
646 : return -1;
647 :
648 : retry:
649 0 : if (get_user(uval, uaddr))
650 : return -1;
651 :
652 : /*
653 : * Special case for regular (non PI) futexes. The unlock path in
654 : * user space has two race scenarios:
655 : *
656 : * 1. The unlock path releases the user space futex value and
657 : * before it can execute the futex() syscall to wake up
658 : * waiters it is killed.
659 : *
660 : * 2. A woken up waiter is killed before it can acquire the
661 : * futex in user space.
662 : *
663 : * In the second case, the wake up notification could be generated
664 : * by the unlock path in user space after setting the futex value
665 : * to zero or by the kernel after setting the OWNER_DIED bit below.
666 : *
667 : * In both cases the TID validation below prevents a wakeup of
668 : * potential waiters which can cause these waiters to block
669 : * forever.
670 : *
671 : * In both cases the following conditions are met:
672 : *
673 : * 1) task->robust_list->list_op_pending != NULL
674 : * @pending_op == true
675 : * 2) The owner part of user space futex value == 0
676 : * 3) Regular futex: @pi == false
677 : *
678 : * If these conditions are met, it is safe to attempt waking up a
679 : * potential waiter without touching the user space futex value and
680 : * trying to set the OWNER_DIED bit. If the futex value is zero,
681 : * the rest of the user space mutex state is consistent, so a woken
682 : * waiter will just take over the uncontended futex. Setting the
683 : * OWNER_DIED bit would create inconsistent state and malfunction
684 : * of the user space owner died handling. Otherwise, the OWNER_DIED
685 : * bit is already set, and the woken waiter is expected to deal with
686 : * this.
687 : */
688 0 : owner = uval & FUTEX_TID_MASK;
689 :
690 0 : if (pending_op && !pi && !owner) {
691 0 : futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
692 0 : return 0;
693 : }
694 :
695 0 : if (owner != task_pid_vnr(curr))
696 : return 0;
697 :
698 : /*
699 : * Ok, this dying thread is truly holding a futex
700 : * of interest. Set the OWNER_DIED bit atomically
701 : * via cmpxchg, and if the value had FUTEX_WAITERS
702 : * set, wake up a waiter (if any). (We have to do a
703 : * futex_wake() even if OWNER_DIED is already set -
704 : * to handle the rare but possible case of recursive
705 : * thread-death.) The rest of the cleanup is done in
706 : * userspace.
707 : */
708 0 : mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
709 :
710 : /*
711 : * We are not holding a lock here, but we want to have
712 : * the pagefault_disable/enable() protection because
713 : * we want to handle the fault gracefully. If the
714 : * access fails we try to fault in the futex with R/W
715 : * verification via get_user_pages. get_user() above
716 : * does not guarantee R/W access. If that fails we
717 : * give up and leave the futex locked.
718 : */
719 0 : if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
720 0 : switch (err) {
721 : case -EFAULT:
722 0 : if (fault_in_user_writeable(uaddr))
723 : return -1;
724 : goto retry;
725 :
726 : case -EAGAIN:
727 0 : cond_resched();
728 0 : goto retry;
729 :
730 : default:
731 0 : WARN_ON_ONCE(1);
732 : return err;
733 : }
734 : }
735 :
736 0 : if (nval != uval)
737 : goto retry;
738 :
739 : /*
740 : * Wake robust non-PI futexes here. The wakeup of
741 : * PI futexes happens in exit_pi_state():
742 : */
743 0 : if (!pi && (uval & FUTEX_WAITERS))
744 0 : futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
745 :
746 : return 0;
747 : }
748 :
749 : /*
750 : * Fetch a robust-list pointer. Bit 0 signals PI futexes:
751 : */
752 0 : static inline int fetch_robust_entry(struct robust_list __user **entry,
753 : struct robust_list __user * __user *head,
754 : unsigned int *pi)
755 : {
756 : unsigned long uentry;
757 :
758 0 : if (get_user(uentry, (unsigned long __user *)head))
759 : return -EFAULT;
760 :
761 0 : *entry = (void __user *)(uentry & ~1UL);
762 0 : *pi = uentry & 1;
763 :
764 0 : return 0;
765 : }
766 :
767 : /*
768 : * Walk curr->robust_list (very carefully, it's a userspace list!)
769 : * and mark any locks found there dead, and notify any waiters.
770 : *
771 : * We silently return on any sign of list-walking problem.
772 : */
773 0 : static void exit_robust_list(struct task_struct *curr)
774 : {
775 0 : struct robust_list_head __user *head = curr->robust_list;
776 : struct robust_list __user *entry, *next_entry, *pending;
777 0 : unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
778 : unsigned int next_pi;
779 : unsigned long futex_offset;
780 : int rc;
781 :
782 : /*
783 : * Fetch the list head (which was registered earlier, via
784 : * sys_set_robust_list()):
785 : */
786 0 : if (fetch_robust_entry(&entry, &head->list.next, &pi))
787 0 : return;
788 : /*
789 : * Fetch the relative futex offset:
790 : */
791 0 : if (get_user(futex_offset, &head->futex_offset))
792 : return;
793 : /*
794 : * Fetch any possibly pending lock-add first, and handle it
795 : * if it exists:
796 : */
797 0 : if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
798 : return;
799 :
800 0 : next_entry = NULL; /* avoid warning with gcc */
801 0 : while (entry != &head->list) {
802 : /*
803 : * Fetch the next entry in the list before calling
804 : * handle_futex_death:
805 : */
806 0 : rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
807 : /*
808 : * A pending lock might already be on the list, so
809 : * don't process it twice:
810 : */
811 0 : if (entry != pending) {
812 0 : if (handle_futex_death((void __user *)entry + futex_offset,
813 : curr, pi, HANDLE_DEATH_LIST))
814 : return;
815 : }
816 0 : if (rc)
817 : return;
818 0 : entry = next_entry;
819 0 : pi = next_pi;
820 : /*
821 : * Avoid excessively long or circular lists:
822 : */
823 0 : if (!--limit)
824 : break;
825 :
826 0 : cond_resched();
827 : }
828 :
829 0 : if (pending) {
830 0 : handle_futex_death((void __user *)pending + futex_offset,
831 : curr, pip, HANDLE_DEATH_PENDING);
832 : }
833 : }
834 :
835 : #ifdef CONFIG_COMPAT
836 : static void __user *futex_uaddr(struct robust_list __user *entry,
837 : compat_long_t futex_offset)
838 : {
839 : compat_uptr_t base = ptr_to_compat(entry);
840 : void __user *uaddr = compat_ptr(base + futex_offset);
841 :
842 : return uaddr;
843 : }
844 :
845 : /*
846 : * Fetch a robust-list pointer. Bit 0 signals PI futexes:
847 : */
848 : static inline int
849 : compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
850 : compat_uptr_t __user *head, unsigned int *pi)
851 : {
852 : if (get_user(*uentry, head))
853 : return -EFAULT;
854 :
855 : *entry = compat_ptr((*uentry) & ~1);
856 : *pi = (unsigned int)(*uentry) & 1;
857 :
858 : return 0;
859 : }
860 :
861 : /*
862 : * Walk curr->robust_list (very carefully, it's a userspace list!)
863 : * and mark any locks found there dead, and notify any waiters.
864 : *
865 : * We silently return on any sign of list-walking problem.
866 : */
867 : static void compat_exit_robust_list(struct task_struct *curr)
868 : {
869 : struct compat_robust_list_head __user *head = curr->compat_robust_list;
870 : struct robust_list __user *entry, *next_entry, *pending;
871 : unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
872 : unsigned int next_pi;
873 : compat_uptr_t uentry, next_uentry, upending;
874 : compat_long_t futex_offset;
875 : int rc;
876 :
877 : /*
878 : * Fetch the list head (which was registered earlier, via
879 : * sys_set_robust_list()):
880 : */
881 : if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
882 : return;
883 : /*
884 : * Fetch the relative futex offset:
885 : */
886 : if (get_user(futex_offset, &head->futex_offset))
887 : return;
888 : /*
889 : * Fetch any possibly pending lock-add first, and handle it
890 : * if it exists:
891 : */
892 : if (compat_fetch_robust_entry(&upending, &pending,
893 : &head->list_op_pending, &pip))
894 : return;
895 :
896 : next_entry = NULL; /* avoid warning with gcc */
897 : while (entry != (struct robust_list __user *) &head->list) {
898 : /*
899 : * Fetch the next entry in the list before calling
900 : * handle_futex_death:
901 : */
902 : rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
903 : (compat_uptr_t __user *)&entry->next, &next_pi);
904 : /*
905 : * A pending lock might already be on the list, so
906 : * dont process it twice:
907 : */
908 : if (entry != pending) {
909 : void __user *uaddr = futex_uaddr(entry, futex_offset);
910 :
911 : if (handle_futex_death(uaddr, curr, pi,
912 : HANDLE_DEATH_LIST))
913 : return;
914 : }
915 : if (rc)
916 : return;
917 : uentry = next_uentry;
918 : entry = next_entry;
919 : pi = next_pi;
920 : /*
921 : * Avoid excessively long or circular lists:
922 : */
923 : if (!--limit)
924 : break;
925 :
926 : cond_resched();
927 : }
928 : if (pending) {
929 : void __user *uaddr = futex_uaddr(pending, futex_offset);
930 :
931 : handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
932 : }
933 : }
934 : #endif
935 :
936 : #ifdef CONFIG_FUTEX_PI
937 :
938 : /*
939 : * This task is holding PI mutexes at exit time => bad.
940 : * Kernel cleans up PI-state, but userspace is likely hosed.
941 : * (Robust-futex cleanup is separate and might save the day for userspace.)
942 : */
943 0 : static void exit_pi_state_list(struct task_struct *curr)
944 : {
945 0 : struct list_head *next, *head = &curr->pi_state_list;
946 : struct futex_pi_state *pi_state;
947 : struct futex_hash_bucket *hb;
948 0 : union futex_key key = FUTEX_KEY_INIT;
949 :
950 : /*
951 : * We are a ZOMBIE and nobody can enqueue itself on
952 : * pi_state_list anymore, but we have to be careful
953 : * versus waiters unqueueing themselves:
954 : */
955 0 : raw_spin_lock_irq(&curr->pi_lock);
956 0 : while (!list_empty(head)) {
957 0 : next = head->next;
958 0 : pi_state = list_entry(next, struct futex_pi_state, list);
959 0 : key = pi_state->key;
960 0 : hb = futex_hash(&key);
961 :
962 : /*
963 : * We can race against put_pi_state() removing itself from the
964 : * list (a waiter going away). put_pi_state() will first
965 : * decrement the reference count and then modify the list, so
966 : * its possible to see the list entry but fail this reference
967 : * acquire.
968 : *
969 : * In that case; drop the locks to let put_pi_state() make
970 : * progress and retry the loop.
971 : */
972 0 : if (!refcount_inc_not_zero(&pi_state->refcount)) {
973 0 : raw_spin_unlock_irq(&curr->pi_lock);
974 : cpu_relax();
975 0 : raw_spin_lock_irq(&curr->pi_lock);
976 0 : continue;
977 : }
978 0 : raw_spin_unlock_irq(&curr->pi_lock);
979 :
980 0 : spin_lock(&hb->lock);
981 0 : raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
982 0 : raw_spin_lock(&curr->pi_lock);
983 : /*
984 : * We dropped the pi-lock, so re-check whether this
985 : * task still owns the PI-state:
986 : */
987 0 : if (head->next != next) {
988 : /* retain curr->pi_lock for the loop invariant */
989 0 : raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
990 0 : spin_unlock(&hb->lock);
991 0 : put_pi_state(pi_state);
992 0 : continue;
993 : }
994 :
995 0 : WARN_ON(pi_state->owner != curr);
996 0 : WARN_ON(list_empty(&pi_state->list));
997 0 : list_del_init(&pi_state->list);
998 0 : pi_state->owner = NULL;
999 :
1000 0 : raw_spin_unlock(&curr->pi_lock);
1001 0 : raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1002 0 : spin_unlock(&hb->lock);
1003 :
1004 0 : rt_mutex_futex_unlock(&pi_state->pi_mutex);
1005 0 : put_pi_state(pi_state);
1006 :
1007 0 : raw_spin_lock_irq(&curr->pi_lock);
1008 : }
1009 0 : raw_spin_unlock_irq(&curr->pi_lock);
1010 0 : }
1011 : #else
1012 : static inline void exit_pi_state_list(struct task_struct *curr) { }
1013 : #endif
1014 :
1015 367 : static void futex_cleanup(struct task_struct *tsk)
1016 : {
1017 367 : if (unlikely(tsk->robust_list)) {
1018 0 : exit_robust_list(tsk);
1019 0 : tsk->robust_list = NULL;
1020 : }
1021 :
1022 : #ifdef CONFIG_COMPAT
1023 : if (unlikely(tsk->compat_robust_list)) {
1024 : compat_exit_robust_list(tsk);
1025 : tsk->compat_robust_list = NULL;
1026 : }
1027 : #endif
1028 :
1029 734 : if (unlikely(!list_empty(&tsk->pi_state_list)))
1030 0 : exit_pi_state_list(tsk);
1031 367 : }
1032 :
1033 : /**
1034 : * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1035 : * @tsk: task to set the state on
1036 : *
1037 : * Set the futex exit state of the task lockless. The futex waiter code
1038 : * observes that state when a task is exiting and loops until the task has
1039 : * actually finished the futex cleanup. The worst case for this is that the
1040 : * waiter runs through the wait loop until the state becomes visible.
1041 : *
1042 : * This is called from the recursive fault handling path in make_task_dead().
1043 : *
1044 : * This is best effort. Either the futex exit code has run already or
1045 : * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1046 : * take it over. If not, the problem is pushed back to user space. If the
1047 : * futex exit code did not run yet, then an already queued waiter might
1048 : * block forever, but there is nothing which can be done about that.
1049 : */
1050 0 : void futex_exit_recursive(struct task_struct *tsk)
1051 : {
1052 : /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1053 0 : if (tsk->futex_state == FUTEX_STATE_EXITING)
1054 0 : mutex_unlock(&tsk->futex_exit_mutex);
1055 0 : tsk->futex_state = FUTEX_STATE_DEAD;
1056 0 : }
1057 :
1058 : static void futex_cleanup_begin(struct task_struct *tsk)
1059 : {
1060 : /*
1061 : * Prevent various race issues against a concurrent incoming waiter
1062 : * including live locks by forcing the waiter to block on
1063 : * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1064 : * attach_to_pi_owner().
1065 : */
1066 367 : mutex_lock(&tsk->futex_exit_mutex);
1067 :
1068 : /*
1069 : * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1070 : *
1071 : * This ensures that all subsequent checks of tsk->futex_state in
1072 : * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1073 : * tsk->pi_lock held.
1074 : *
1075 : * It guarantees also that a pi_state which was queued right before
1076 : * the state change under tsk->pi_lock by a concurrent waiter must
1077 : * be observed in exit_pi_state_list().
1078 : */
1079 367 : raw_spin_lock_irq(&tsk->pi_lock);
1080 367 : tsk->futex_state = FUTEX_STATE_EXITING;
1081 367 : raw_spin_unlock_irq(&tsk->pi_lock);
1082 : }
1083 :
1084 : static void futex_cleanup_end(struct task_struct *tsk, int state)
1085 : {
1086 : /*
1087 : * Lockless store. The only side effect is that an observer might
1088 : * take another loop until it becomes visible.
1089 : */
1090 367 : tsk->futex_state = state;
1091 : /*
1092 : * Drop the exit protection. This unblocks waiters which observed
1093 : * FUTEX_STATE_EXITING to reevaluate the state.
1094 : */
1095 367 : mutex_unlock(&tsk->futex_exit_mutex);
1096 : }
1097 :
1098 0 : void futex_exec_release(struct task_struct *tsk)
1099 : {
1100 : /*
1101 : * The state handling is done for consistency, but in the case of
1102 : * exec() there is no way to prevent further damage as the PID stays
1103 : * the same. But for the unlikely and arguably buggy case that a
1104 : * futex is held on exec(), this provides at least as much state
1105 : * consistency protection which is possible.
1106 : */
1107 0 : futex_cleanup_begin(tsk);
1108 0 : futex_cleanup(tsk);
1109 : /*
1110 : * Reset the state to FUTEX_STATE_OK. The task is alive and about
1111 : * exec a new binary.
1112 : */
1113 0 : futex_cleanup_end(tsk, FUTEX_STATE_OK);
1114 0 : }
1115 :
1116 367 : void futex_exit_release(struct task_struct *tsk)
1117 : {
1118 367 : futex_cleanup_begin(tsk);
1119 367 : futex_cleanup(tsk);
1120 367 : futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1121 367 : }
1122 :
1123 1 : static int __init futex_init(void)
1124 : {
1125 : unsigned int futex_shift;
1126 : unsigned long i;
1127 :
1128 : #if CONFIG_BASE_SMALL
1129 : futex_hashsize = 16;
1130 : #else
1131 1 : futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1132 : #endif
1133 :
1134 1 : futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1135 : futex_hashsize, 0,
1136 : futex_hashsize < 256 ? HASH_SMALL : 0,
1137 : &futex_shift, NULL,
1138 : futex_hashsize, futex_hashsize);
1139 1 : futex_hashsize = 1UL << futex_shift;
1140 :
1141 257 : for (i = 0; i < futex_hashsize; i++) {
1142 512 : atomic_set(&futex_queues[i].waiters, 0);
1143 512 : plist_head_init(&futex_queues[i].chain);
1144 256 : spin_lock_init(&futex_queues[i].lock);
1145 : }
1146 :
1147 1 : return 0;
1148 : }
1149 : core_initcall(futex_init);
|