Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 :
3 : #include <linux/sched/signal.h>
4 :
5 : #include "futex.h"
6 : #include "../locking/rtmutex_common.h"
7 :
8 : /*
9 : * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
10 : * underlying rtmutex. The task which is about to be requeued could have
11 : * just woken up (timeout, signal). After the wake up the task has to
12 : * acquire hash bucket lock, which is held by the requeue code. As a task
13 : * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
14 : * and the hash bucket lock blocking would collide and corrupt state.
15 : *
16 : * On !PREEMPT_RT this is not a problem and everything could be serialized
17 : * on hash bucket lock, but aside of having the benefit of common code,
18 : * this allows to avoid doing the requeue when the task is already on the
19 : * way out and taking the hash bucket lock of the original uaddr1 when the
20 : * requeue has been completed.
21 : *
22 : * The following state transitions are valid:
23 : *
24 : * On the waiter side:
25 : * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
26 : * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
27 : *
28 : * On the requeue side:
29 : * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
30 : * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
31 : * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
32 : * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
33 : * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
34 : *
35 : * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
36 : * signals that the waiter is already on the way out. It also means that
37 : * the waiter is still on the 'wait' futex, i.e. uaddr1.
38 : *
39 : * The waiter side signals early wakeup to the requeue side either through
40 : * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
41 : * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
42 : * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
43 : * which means the wakeup is interleaving with a requeue in progress it has
44 : * to wait for the requeue side to change the state. Either to DONE/LOCKED
45 : * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
46 : * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
47 : * the requeue side when the requeue attempt failed via deadlock detection
48 : * and therefore the waiter q is still on the uaddr1 futex.
49 : */
50 : enum {
51 : Q_REQUEUE_PI_NONE = 0,
52 : Q_REQUEUE_PI_IGNORE,
53 : Q_REQUEUE_PI_IN_PROGRESS,
54 : Q_REQUEUE_PI_WAIT,
55 : Q_REQUEUE_PI_DONE,
56 : Q_REQUEUE_PI_LOCKED,
57 : };
58 :
59 : const struct futex_q futex_q_init = {
60 : /* list gets initialized in futex_queue()*/
61 : .key = FUTEX_KEY_INIT,
62 : .bitset = FUTEX_BITSET_MATCH_ANY,
63 : .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
64 : };
65 :
66 : /**
67 : * requeue_futex() - Requeue a futex_q from one hb to another
68 : * @q: the futex_q to requeue
69 : * @hb1: the source hash_bucket
70 : * @hb2: the target hash_bucket
71 : * @key2: the new key for the requeued futex_q
72 : */
73 : static inline
74 0 : void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
75 : struct futex_hash_bucket *hb2, union futex_key *key2)
76 : {
77 :
78 : /*
79 : * If key1 and key2 hash to the same bucket, no need to
80 : * requeue.
81 : */
82 0 : if (likely(&hb1->chain != &hb2->chain)) {
83 0 : plist_del(&q->list, &hb1->chain);
84 0 : futex_hb_waiters_dec(hb1);
85 0 : futex_hb_waiters_inc(hb2);
86 0 : plist_add(&q->list, &hb2->chain);
87 0 : q->lock_ptr = &hb2->lock;
88 : }
89 0 : q->key = *key2;
90 0 : }
91 :
92 : static inline bool futex_requeue_pi_prepare(struct futex_q *q,
93 : struct futex_pi_state *pi_state)
94 : {
95 : int old, new;
96 :
97 : /*
98 : * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
99 : * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
100 : * ignore the waiter.
101 : */
102 0 : old = atomic_read_acquire(&q->requeue_state);
103 : do {
104 0 : if (old == Q_REQUEUE_PI_IGNORE)
105 : return false;
106 :
107 : /*
108 : * futex_proxy_trylock_atomic() might have set it to
109 : * IN_PROGRESS and a interleaved early wake to WAIT.
110 : *
111 : * It was considered to have an extra state for that
112 : * trylock, but that would just add more conditionals
113 : * all over the place for a dubious value.
114 : */
115 0 : if (old != Q_REQUEUE_PI_NONE)
116 : break;
117 :
118 0 : new = Q_REQUEUE_PI_IN_PROGRESS;
119 0 : } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
120 :
121 0 : q->pi_state = pi_state;
122 : return true;
123 : }
124 :
125 0 : static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
126 : {
127 : int old, new;
128 :
129 0 : old = atomic_read_acquire(&q->requeue_state);
130 : do {
131 0 : if (old == Q_REQUEUE_PI_IGNORE)
132 : return;
133 :
134 0 : if (locked >= 0) {
135 : /* Requeue succeeded. Set DONE or LOCKED */
136 0 : WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
137 : old != Q_REQUEUE_PI_WAIT);
138 0 : new = Q_REQUEUE_PI_DONE + locked;
139 0 : } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
140 : /* Deadlock, no early wakeup interleave */
141 : new = Q_REQUEUE_PI_NONE;
142 : } else {
143 : /* Deadlock, early wakeup interleave. */
144 0 : WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
145 : new = Q_REQUEUE_PI_IGNORE;
146 : }
147 0 : } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
148 :
149 : #ifdef CONFIG_PREEMPT_RT
150 : /* If the waiter interleaved with the requeue let it know */
151 : if (unlikely(old == Q_REQUEUE_PI_WAIT))
152 : rcuwait_wake_up(&q->requeue_wait);
153 : #endif
154 : }
155 :
156 0 : static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
157 : {
158 : int old, new;
159 :
160 0 : old = atomic_read_acquire(&q->requeue_state);
161 : do {
162 : /* Is requeue done already? */
163 0 : if (old >= Q_REQUEUE_PI_DONE)
164 : return old;
165 :
166 : /*
167 : * If not done, then tell the requeue code to either ignore
168 : * the waiter or to wake it up once the requeue is done.
169 : */
170 0 : new = Q_REQUEUE_PI_WAIT;
171 0 : if (old == Q_REQUEUE_PI_NONE)
172 0 : new = Q_REQUEUE_PI_IGNORE;
173 0 : } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
174 :
175 : /* If the requeue was in progress, wait for it to complete */
176 0 : if (old == Q_REQUEUE_PI_IN_PROGRESS) {
177 : #ifdef CONFIG_PREEMPT_RT
178 : rcuwait_wait_event(&q->requeue_wait,
179 : atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
180 : TASK_UNINTERRUPTIBLE);
181 : #else
182 0 : (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
183 : #endif
184 : }
185 :
186 : /*
187 : * Requeue is now either prohibited or complete. Reread state
188 : * because during the wait above it might have changed. Nothing
189 : * will modify q->requeue_state after this point.
190 : */
191 0 : return atomic_read(&q->requeue_state);
192 : }
193 :
194 : /**
195 : * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
196 : * @q: the futex_q
197 : * @key: the key of the requeue target futex
198 : * @hb: the hash_bucket of the requeue target futex
199 : *
200 : * During futex_requeue, with requeue_pi=1, it is possible to acquire the
201 : * target futex if it is uncontended or via a lock steal.
202 : *
203 : * 1) Set @q::key to the requeue target futex key so the waiter can detect
204 : * the wakeup on the right futex.
205 : *
206 : * 2) Dequeue @q from the hash bucket.
207 : *
208 : * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
209 : * acquisition.
210 : *
211 : * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
212 : * the waiter has to fixup the pi state.
213 : *
214 : * 5) Complete the requeue state so the waiter can make progress. After
215 : * this point the waiter task can return from the syscall immediately in
216 : * case that the pi state does not have to be fixed up.
217 : *
218 : * 6) Wake the waiter task.
219 : *
220 : * Must be called with both q->lock_ptr and hb->lock held.
221 : */
222 : static inline
223 0 : void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
224 : struct futex_hash_bucket *hb)
225 : {
226 0 : q->key = *key;
227 :
228 0 : __futex_unqueue(q);
229 :
230 0 : WARN_ON(!q->rt_waiter);
231 0 : q->rt_waiter = NULL;
232 :
233 0 : q->lock_ptr = &hb->lock;
234 :
235 : /* Signal locked state to the waiter */
236 0 : futex_requeue_pi_complete(q, 1);
237 0 : wake_up_state(q->task, TASK_NORMAL);
238 0 : }
239 :
240 : /**
241 : * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
242 : * @pifutex: the user address of the to futex
243 : * @hb1: the from futex hash bucket, must be locked by the caller
244 : * @hb2: the to futex hash bucket, must be locked by the caller
245 : * @key1: the from futex key
246 : * @key2: the to futex key
247 : * @ps: address to store the pi_state pointer
248 : * @exiting: Pointer to store the task pointer of the owner task
249 : * which is in the middle of exiting
250 : * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
251 : *
252 : * Try and get the lock on behalf of the top waiter if we can do it atomically.
253 : * Wake the top waiter if we succeed. If the caller specified set_waiters,
254 : * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
255 : * hb1 and hb2 must be held by the caller.
256 : *
257 : * @exiting is only set when the return value is -EBUSY. If so, this holds
258 : * a refcount on the exiting task on return and the caller needs to drop it
259 : * after waiting for the exit to complete.
260 : *
261 : * Return:
262 : * - 0 - failed to acquire the lock atomically;
263 : * - >0 - acquired the lock, return value is vpid of the top_waiter
264 : * - <0 - error
265 : */
266 : static int
267 0 : futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
268 : struct futex_hash_bucket *hb2, union futex_key *key1,
269 : union futex_key *key2, struct futex_pi_state **ps,
270 : struct task_struct **exiting, int set_waiters)
271 : {
272 0 : struct futex_q *top_waiter = NULL;
273 : u32 curval;
274 : int ret;
275 :
276 0 : if (futex_get_value_locked(&curval, pifutex))
277 : return -EFAULT;
278 :
279 0 : if (unlikely(should_fail_futex(true)))
280 : return -EFAULT;
281 :
282 : /*
283 : * Find the top_waiter and determine if there are additional waiters.
284 : * If the caller intends to requeue more than 1 waiter to pifutex,
285 : * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
286 : * as we have means to handle the possible fault. If not, don't set
287 : * the bit unnecessarily as it will force the subsequent unlock to enter
288 : * the kernel.
289 : */
290 0 : top_waiter = futex_top_waiter(hb1, key1);
291 :
292 : /* There are no waiters, nothing for us to do. */
293 0 : if (!top_waiter)
294 : return 0;
295 :
296 : /*
297 : * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
298 : * and waiting on the 'waitqueue' futex which is always !PI.
299 : */
300 0 : if (!top_waiter->rt_waiter || top_waiter->pi_state)
301 : return -EINVAL;
302 :
303 : /* Ensure we requeue to the expected futex. */
304 0 : if (!futex_match(top_waiter->requeue_pi_key, key2))
305 : return -EINVAL;
306 :
307 : /* Ensure that this does not race against an early wakeup */
308 0 : if (!futex_requeue_pi_prepare(top_waiter, NULL))
309 : return -EAGAIN;
310 :
311 : /*
312 : * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
313 : * in the contended case or if @set_waiters is true.
314 : *
315 : * In the contended case PI state is attached to the lock owner. If
316 : * the user space lock can be acquired then PI state is attached to
317 : * the new owner (@top_waiter->task) when @set_waiters is true.
318 : */
319 0 : ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
320 : exiting, set_waiters);
321 0 : if (ret == 1) {
322 : /*
323 : * Lock was acquired in user space and PI state was
324 : * attached to @top_waiter->task. That means state is fully
325 : * consistent and the waiter can return to user space
326 : * immediately after the wakeup.
327 : */
328 0 : requeue_pi_wake_futex(top_waiter, key2, hb2);
329 0 : } else if (ret < 0) {
330 : /* Rewind top_waiter::requeue_state */
331 0 : futex_requeue_pi_complete(top_waiter, ret);
332 : } else {
333 : /*
334 : * futex_lock_pi_atomic() did not acquire the user space
335 : * futex, but managed to establish the proxy lock and pi
336 : * state. top_waiter::requeue_state cannot be fixed up here
337 : * because the waiter is not enqueued on the rtmutex
338 : * yet. This is handled at the callsite depending on the
339 : * result of rt_mutex_start_proxy_lock() which is
340 : * guaranteed to be reached with this function returning 0.
341 : */
342 : }
343 : return ret;
344 : }
345 :
346 : /**
347 : * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
348 : * @uaddr1: source futex user address
349 : * @flags: futex flags (FLAGS_SHARED, etc.)
350 : * @uaddr2: target futex user address
351 : * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
352 : * @nr_requeue: number of waiters to requeue (0-INT_MAX)
353 : * @cmpval: @uaddr1 expected value (or %NULL)
354 : * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
355 : * pi futex (pi to pi requeue is not supported)
356 : *
357 : * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
358 : * uaddr2 atomically on behalf of the top waiter.
359 : *
360 : * Return:
361 : * - >=0 - on success, the number of tasks requeued or woken;
362 : * - <0 - on error
363 : */
364 0 : int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
365 : int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi)
366 : {
367 0 : union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
368 0 : int task_count = 0, ret;
369 0 : struct futex_pi_state *pi_state = NULL;
370 : struct futex_hash_bucket *hb1, *hb2;
371 : struct futex_q *this, *next;
372 0 : DEFINE_WAKE_Q(wake_q);
373 :
374 0 : if (nr_wake < 0 || nr_requeue < 0)
375 : return -EINVAL;
376 :
377 : /*
378 : * When PI not supported: return -ENOSYS if requeue_pi is true,
379 : * consequently the compiler knows requeue_pi is always false past
380 : * this point which will optimize away all the conditional code
381 : * further down.
382 : */
383 : if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
384 : return -ENOSYS;
385 :
386 0 : if (requeue_pi) {
387 : /*
388 : * Requeue PI only works on two distinct uaddrs. This
389 : * check is only valid for private futexes. See below.
390 : */
391 0 : if (uaddr1 == uaddr2)
392 : return -EINVAL;
393 :
394 : /*
395 : * futex_requeue() allows the caller to define the number
396 : * of waiters to wake up via the @nr_wake argument. With
397 : * REQUEUE_PI, waking up more than one waiter is creating
398 : * more problems than it solves. Waking up a waiter makes
399 : * only sense if the PI futex @uaddr2 is uncontended as
400 : * this allows the requeue code to acquire the futex
401 : * @uaddr2 before waking the waiter. The waiter can then
402 : * return to user space without further action. A secondary
403 : * wakeup would just make the futex_wait_requeue_pi()
404 : * handling more complex, because that code would have to
405 : * look up pi_state and do more or less all the handling
406 : * which the requeue code has to do for the to be requeued
407 : * waiters. So restrict the number of waiters to wake to
408 : * one, and only wake it up when the PI futex is
409 : * uncontended. Otherwise requeue it and let the unlock of
410 : * the PI futex handle the wakeup.
411 : *
412 : * All REQUEUE_PI users, e.g. pthread_cond_signal() and
413 : * pthread_cond_broadcast() must use nr_wake=1.
414 : */
415 0 : if (nr_wake != 1)
416 : return -EINVAL;
417 :
418 : /*
419 : * requeue_pi requires a pi_state, try to allocate it now
420 : * without any locks in case it fails.
421 : */
422 0 : if (refill_pi_state_cache())
423 : return -ENOMEM;
424 : }
425 :
426 : retry:
427 0 : ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
428 0 : if (unlikely(ret != 0))
429 : return ret;
430 0 : ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
431 : requeue_pi ? FUTEX_WRITE : FUTEX_READ);
432 0 : if (unlikely(ret != 0))
433 : return ret;
434 :
435 : /*
436 : * The check above which compares uaddrs is not sufficient for
437 : * shared futexes. We need to compare the keys:
438 : */
439 0 : if (requeue_pi && futex_match(&key1, &key2))
440 : return -EINVAL;
441 :
442 0 : hb1 = futex_hash(&key1);
443 0 : hb2 = futex_hash(&key2);
444 :
445 : retry_private:
446 0 : futex_hb_waiters_inc(hb2);
447 0 : double_lock_hb(hb1, hb2);
448 :
449 0 : if (likely(cmpval != NULL)) {
450 : u32 curval;
451 :
452 0 : ret = futex_get_value_locked(&curval, uaddr1);
453 :
454 0 : if (unlikely(ret)) {
455 0 : double_unlock_hb(hb1, hb2);
456 0 : futex_hb_waiters_dec(hb2);
457 :
458 0 : ret = get_user(curval, uaddr1);
459 0 : if (ret)
460 0 : return ret;
461 :
462 0 : if (!(flags & FLAGS_SHARED))
463 : goto retry_private;
464 :
465 0 : goto retry;
466 : }
467 0 : if (curval != *cmpval) {
468 0 : ret = -EAGAIN;
469 0 : goto out_unlock;
470 : }
471 : }
472 :
473 0 : if (requeue_pi) {
474 0 : struct task_struct *exiting = NULL;
475 :
476 : /*
477 : * Attempt to acquire uaddr2 and wake the top waiter. If we
478 : * intend to requeue waiters, force setting the FUTEX_WAITERS
479 : * bit. We force this here where we are able to easily handle
480 : * faults rather in the requeue loop below.
481 : *
482 : * Updates topwaiter::requeue_state if a top waiter exists.
483 : */
484 0 : ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
485 : &key2, &pi_state,
486 : &exiting, nr_requeue);
487 :
488 : /*
489 : * At this point the top_waiter has either taken uaddr2 or
490 : * is waiting on it. In both cases pi_state has been
491 : * established and an initial refcount on it. In case of an
492 : * error there's nothing.
493 : *
494 : * The top waiter's requeue_state is up to date:
495 : *
496 : * - If the lock was acquired atomically (ret == 1), then
497 : * the state is Q_REQUEUE_PI_LOCKED.
498 : *
499 : * The top waiter has been dequeued and woken up and can
500 : * return to user space immediately. The kernel/user
501 : * space state is consistent. In case that there must be
502 : * more waiters requeued the WAITERS bit in the user
503 : * space futex is set so the top waiter task has to go
504 : * into the syscall slowpath to unlock the futex. This
505 : * will block until this requeue operation has been
506 : * completed and the hash bucket locks have been
507 : * dropped.
508 : *
509 : * - If the trylock failed with an error (ret < 0) then
510 : * the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
511 : * happened", or Q_REQUEUE_PI_IGNORE when there was an
512 : * interleaved early wakeup.
513 : *
514 : * - If the trylock did not succeed (ret == 0) then the
515 : * state is either Q_REQUEUE_PI_IN_PROGRESS or
516 : * Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
517 : * This will be cleaned up in the loop below, which
518 : * cannot fail because futex_proxy_trylock_atomic() did
519 : * the same sanity checks for requeue_pi as the loop
520 : * below does.
521 : */
522 0 : switch (ret) {
523 : case 0:
524 : /* We hold a reference on the pi state. */
525 : break;
526 :
527 : case 1:
528 : /*
529 : * futex_proxy_trylock_atomic() acquired the user space
530 : * futex. Adjust task_count.
531 : */
532 0 : task_count++;
533 0 : ret = 0;
534 0 : break;
535 :
536 : /*
537 : * If the above failed, then pi_state is NULL and
538 : * waiter::requeue_state is correct.
539 : */
540 : case -EFAULT:
541 0 : double_unlock_hb(hb1, hb2);
542 0 : futex_hb_waiters_dec(hb2);
543 0 : ret = fault_in_user_writeable(uaddr2);
544 0 : if (!ret)
545 : goto retry;
546 0 : return ret;
547 : case -EBUSY:
548 : case -EAGAIN:
549 : /*
550 : * Two reasons for this:
551 : * - EBUSY: Owner is exiting and we just wait for the
552 : * exit to complete.
553 : * - EAGAIN: The user space value changed.
554 : */
555 0 : double_unlock_hb(hb1, hb2);
556 0 : futex_hb_waiters_dec(hb2);
557 : /*
558 : * Handle the case where the owner is in the middle of
559 : * exiting. Wait for the exit to complete otherwise
560 : * this task might loop forever, aka. live lock.
561 : */
562 0 : wait_for_owner_exiting(ret, exiting);
563 0 : cond_resched();
564 0 : goto retry;
565 : default:
566 0 : goto out_unlock;
567 : }
568 : }
569 :
570 0 : plist_for_each_entry_safe(this, next, &hb1->chain, list) {
571 0 : if (task_count - nr_wake >= nr_requeue)
572 : break;
573 :
574 0 : if (!futex_match(&this->key, &key1))
575 0 : continue;
576 :
577 : /*
578 : * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
579 : * be paired with each other and no other futex ops.
580 : *
581 : * We should never be requeueing a futex_q with a pi_state,
582 : * which is awaiting a futex_unlock_pi().
583 : */
584 0 : if ((requeue_pi && !this->rt_waiter) ||
585 0 : (!requeue_pi && this->rt_waiter) ||
586 0 : this->pi_state) {
587 : ret = -EINVAL;
588 : break;
589 : }
590 :
591 : /* Plain futexes just wake or requeue and are done */
592 0 : if (!requeue_pi) {
593 0 : if (++task_count <= nr_wake)
594 0 : futex_wake_mark(&wake_q, this);
595 : else
596 0 : requeue_futex(this, hb1, hb2, &key2);
597 0 : continue;
598 : }
599 :
600 : /* Ensure we requeue to the expected futex for requeue_pi. */
601 0 : if (!futex_match(this->requeue_pi_key, &key2)) {
602 : ret = -EINVAL;
603 : break;
604 : }
605 :
606 : /*
607 : * Requeue nr_requeue waiters and possibly one more in the case
608 : * of requeue_pi if we couldn't acquire the lock atomically.
609 : *
610 : * Prepare the waiter to take the rt_mutex. Take a refcount
611 : * on the pi_state and store the pointer in the futex_q
612 : * object of the waiter.
613 : */
614 0 : get_pi_state(pi_state);
615 :
616 : /* Don't requeue when the waiter is already on the way out. */
617 0 : if (!futex_requeue_pi_prepare(this, pi_state)) {
618 : /*
619 : * Early woken waiter signaled that it is on the
620 : * way out. Drop the pi_state reference and try the
621 : * next waiter. @this->pi_state is still NULL.
622 : */
623 0 : put_pi_state(pi_state);
624 0 : continue;
625 : }
626 :
627 0 : ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
628 : this->rt_waiter,
629 : this->task);
630 :
631 0 : if (ret == 1) {
632 : /*
633 : * We got the lock. We do neither drop the refcount
634 : * on pi_state nor clear this->pi_state because the
635 : * waiter needs the pi_state for cleaning up the
636 : * user space value. It will drop the refcount
637 : * after doing so. this::requeue_state is updated
638 : * in the wakeup as well.
639 : */
640 0 : requeue_pi_wake_futex(this, &key2, hb2);
641 0 : task_count++;
642 0 : } else if (!ret) {
643 : /* Waiter is queued, move it to hb2 */
644 0 : requeue_futex(this, hb1, hb2, &key2);
645 0 : futex_requeue_pi_complete(this, 0);
646 0 : task_count++;
647 : } else {
648 : /*
649 : * rt_mutex_start_proxy_lock() detected a potential
650 : * deadlock when we tried to queue that waiter.
651 : * Drop the pi_state reference which we took above
652 : * and remove the pointer to the state from the
653 : * waiters futex_q object.
654 : */
655 0 : this->pi_state = NULL;
656 0 : put_pi_state(pi_state);
657 0 : futex_requeue_pi_complete(this, ret);
658 : /*
659 : * We stop queueing more waiters and let user space
660 : * deal with the mess.
661 : */
662 0 : break;
663 : }
664 : }
665 :
666 : /*
667 : * We took an extra initial reference to the pi_state in
668 : * futex_proxy_trylock_atomic(). We need to drop it here again.
669 : */
670 0 : put_pi_state(pi_state);
671 :
672 : out_unlock:
673 0 : double_unlock_hb(hb1, hb2);
674 0 : wake_up_q(&wake_q);
675 0 : futex_hb_waiters_dec(hb2);
676 0 : return ret ? ret : task_count;
677 : }
678 :
679 : /**
680 : * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
681 : * @hb: the hash_bucket futex_q was original enqueued on
682 : * @q: the futex_q woken while waiting to be requeued
683 : * @timeout: the timeout associated with the wait (NULL if none)
684 : *
685 : * Determine the cause for the early wakeup.
686 : *
687 : * Return:
688 : * -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
689 : */
690 : static inline
691 0 : int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
692 : struct futex_q *q,
693 : struct hrtimer_sleeper *timeout)
694 : {
695 : int ret;
696 :
697 : /*
698 : * With the hb lock held, we avoid races while we process the wakeup.
699 : * We only need to hold hb (and not hb2) to ensure atomicity as the
700 : * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
701 : * It can't be requeued from uaddr2 to something else since we don't
702 : * support a PI aware source futex for requeue.
703 : */
704 0 : WARN_ON_ONCE(&hb->lock != q->lock_ptr);
705 :
706 : /*
707 : * We were woken prior to requeue by a timeout or a signal.
708 : * Unqueue the futex_q and determine which it was.
709 : */
710 0 : plist_del(&q->list, &hb->chain);
711 0 : futex_hb_waiters_dec(hb);
712 :
713 : /* Handle spurious wakeups gracefully */
714 0 : ret = -EWOULDBLOCK;
715 0 : if (timeout && !timeout->task)
716 : ret = -ETIMEDOUT;
717 0 : else if (signal_pending(current))
718 0 : ret = -ERESTARTNOINTR;
719 0 : return ret;
720 : }
721 :
722 : /**
723 : * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
724 : * @uaddr: the futex we initially wait on (non-pi)
725 : * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
726 : * the same type, no requeueing from private to shared, etc.
727 : * @val: the expected value of uaddr
728 : * @abs_time: absolute timeout
729 : * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
730 : * @uaddr2: the pi futex we will take prior to returning to user-space
731 : *
732 : * The caller will wait on uaddr and will be requeued by futex_requeue() to
733 : * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
734 : * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
735 : * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
736 : * without one, the pi logic would not know which task to boost/deboost, if
737 : * there was a need to.
738 : *
739 : * We call schedule in futex_wait_queue() when we enqueue and return there
740 : * via the following--
741 : * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
742 : * 2) wakeup on uaddr2 after a requeue
743 : * 3) signal
744 : * 4) timeout
745 : *
746 : * If 3, cleanup and return -ERESTARTNOINTR.
747 : *
748 : * If 2, we may then block on trying to take the rt_mutex and return via:
749 : * 5) successful lock
750 : * 6) signal
751 : * 7) timeout
752 : * 8) other lock acquisition failure
753 : *
754 : * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
755 : *
756 : * If 4 or 7, we cleanup and return with -ETIMEDOUT.
757 : *
758 : * Return:
759 : * - 0 - On success;
760 : * - <0 - On error
761 : */
762 0 : int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
763 : u32 val, ktime_t *abs_time, u32 bitset,
764 : u32 __user *uaddr2)
765 : {
766 : struct hrtimer_sleeper timeout, *to;
767 : struct rt_mutex_waiter rt_waiter;
768 : struct futex_hash_bucket *hb;
769 0 : union futex_key key2 = FUTEX_KEY_INIT;
770 0 : struct futex_q q = futex_q_init;
771 : struct rt_mutex_base *pi_mutex;
772 : int res, ret;
773 :
774 : if (!IS_ENABLED(CONFIG_FUTEX_PI))
775 : return -ENOSYS;
776 :
777 0 : if (uaddr == uaddr2)
778 : return -EINVAL;
779 :
780 0 : if (!bitset)
781 : return -EINVAL;
782 :
783 0 : to = futex_setup_timer(abs_time, &timeout, flags,
784 0 : current->timer_slack_ns);
785 :
786 : /*
787 : * The waiter is allocated on our stack, manipulated by the requeue
788 : * code while we sleep on uaddr.
789 : */
790 0 : rt_mutex_init_waiter(&rt_waiter);
791 :
792 0 : ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
793 0 : if (unlikely(ret != 0))
794 : goto out;
795 :
796 0 : q.bitset = bitset;
797 0 : q.rt_waiter = &rt_waiter;
798 0 : q.requeue_pi_key = &key2;
799 :
800 : /*
801 : * Prepare to wait on uaddr. On success, it holds hb->lock and q
802 : * is initialized.
803 : */
804 0 : ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
805 0 : if (ret)
806 : goto out;
807 :
808 : /*
809 : * The check above which compares uaddrs is not sufficient for
810 : * shared futexes. We need to compare the keys:
811 : */
812 0 : if (futex_match(&q.key, &key2)) {
813 0 : futex_q_unlock(hb);
814 0 : ret = -EINVAL;
815 0 : goto out;
816 : }
817 :
818 : /* Queue the futex_q, drop the hb lock, wait for wakeup. */
819 0 : futex_wait_queue(hb, &q, to);
820 :
821 0 : switch (futex_requeue_pi_wakeup_sync(&q)) {
822 : case Q_REQUEUE_PI_IGNORE:
823 : /* The waiter is still on uaddr1 */
824 0 : spin_lock(&hb->lock);
825 0 : ret = handle_early_requeue_pi_wakeup(hb, &q, to);
826 0 : spin_unlock(&hb->lock);
827 : break;
828 :
829 : case Q_REQUEUE_PI_LOCKED:
830 : /* The requeue acquired the lock */
831 0 : if (q.pi_state && (q.pi_state->owner != current)) {
832 0 : spin_lock(q.lock_ptr);
833 0 : ret = fixup_pi_owner(uaddr2, &q, true);
834 : /*
835 : * Drop the reference to the pi state which the
836 : * requeue_pi() code acquired for us.
837 : */
838 0 : put_pi_state(q.pi_state);
839 0 : spin_unlock(q.lock_ptr);
840 : /*
841 : * Adjust the return value. It's either -EFAULT or
842 : * success (1) but the caller expects 0 for success.
843 : */
844 0 : ret = ret < 0 ? ret : 0;
845 : }
846 : break;
847 :
848 : case Q_REQUEUE_PI_DONE:
849 : /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
850 0 : pi_mutex = &q.pi_state->pi_mutex;
851 0 : ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
852 :
853 : /* Current is not longer pi_blocked_on */
854 0 : spin_lock(q.lock_ptr);
855 0 : if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
856 0 : ret = 0;
857 :
858 0 : debug_rt_mutex_free_waiter(&rt_waiter);
859 : /*
860 : * Fixup the pi_state owner and possibly acquire the lock if we
861 : * haven't already.
862 : */
863 0 : res = fixup_pi_owner(uaddr2, &q, !ret);
864 : /*
865 : * If fixup_pi_owner() returned an error, propagate that. If it
866 : * acquired the lock, clear -ETIMEDOUT or -EINTR.
867 : */
868 0 : if (res)
869 0 : ret = (res < 0) ? res : 0;
870 :
871 0 : futex_unqueue_pi(&q);
872 0 : spin_unlock(q.lock_ptr);
873 :
874 0 : if (ret == -EINTR) {
875 : /*
876 : * We've already been requeued, but cannot restart
877 : * by calling futex_lock_pi() directly. We could
878 : * restart this syscall, but it would detect that
879 : * the user space "val" changed and return
880 : * -EWOULDBLOCK. Save the overhead of the restart
881 : * and return -EWOULDBLOCK directly.
882 : */
883 0 : ret = -EWOULDBLOCK;
884 : }
885 : break;
886 : default:
887 0 : BUG();
888 : }
889 :
890 : out:
891 0 : if (to) {
892 0 : hrtimer_cancel(&to->timer);
893 0 : destroy_hrtimer_on_stack(&to->timer);
894 : }
895 : return ret;
896 : }
897 :
|