Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 :
3 : #include <linux/compat.h>
4 : #include <linux/syscalls.h>
5 : #include <linux/time_namespace.h>
6 :
7 : #include "futex.h"
8 :
9 : /*
10 : * Support for robust futexes: the kernel cleans up held futexes at
11 : * thread exit time.
12 : *
13 : * Implementation: user-space maintains a per-thread list of locks it
14 : * is holding. Upon do_exit(), the kernel carefully walks this list,
15 : * and marks all locks that are owned by this thread with the
16 : * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
17 : * always manipulated with the lock held, so the list is private and
18 : * per-thread. Userspace also maintains a per-thread 'list_op_pending'
19 : * field, to allow the kernel to clean up if the thread dies after
20 : * acquiring the lock, but just before it could have added itself to
21 : * the list. There can only be one such pending lock.
22 : */
23 :
24 : /**
25 : * sys_set_robust_list() - Set the robust-futex list head of a task
26 : * @head: pointer to the list-head
27 : * @len: length of the list-head, as userspace expects
28 : */
29 0 : SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
30 : size_t, len)
31 : {
32 : /*
33 : * The kernel knows only one size for now:
34 : */
35 0 : if (unlikely(len != sizeof(*head)))
36 : return -EINVAL;
37 :
38 0 : current->robust_list = head;
39 :
40 : return 0;
41 : }
42 :
43 : /**
44 : * sys_get_robust_list() - Get the robust-futex list head of a task
45 : * @pid: pid of the process [zero for current task]
46 : * @head_ptr: pointer to a list-head pointer, the kernel fills it in
47 : * @len_ptr: pointer to a length field, the kernel fills in the header size
48 : */
49 0 : SYSCALL_DEFINE3(get_robust_list, int, pid,
50 : struct robust_list_head __user * __user *, head_ptr,
51 : size_t __user *, len_ptr)
52 : {
53 : struct robust_list_head __user *head;
54 : unsigned long ret;
55 : struct task_struct *p;
56 :
57 : rcu_read_lock();
58 :
59 0 : ret = -ESRCH;
60 0 : if (!pid)
61 0 : p = current;
62 : else {
63 0 : p = find_task_by_vpid(pid);
64 0 : if (!p)
65 : goto err_unlock;
66 : }
67 :
68 0 : ret = -EPERM;
69 0 : if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
70 : goto err_unlock;
71 :
72 0 : head = p->robust_list;
73 : rcu_read_unlock();
74 :
75 0 : if (put_user(sizeof(*head), len_ptr))
76 : return -EFAULT;
77 0 : return put_user(head, head_ptr);
78 :
79 : err_unlock:
80 : rcu_read_unlock();
81 :
82 0 : return ret;
83 : }
84 :
85 0 : long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
86 : u32 __user *uaddr2, u32 val2, u32 val3)
87 : {
88 0 : int cmd = op & FUTEX_CMD_MASK;
89 0 : unsigned int flags = 0;
90 :
91 0 : if (!(op & FUTEX_PRIVATE_FLAG))
92 0 : flags |= FLAGS_SHARED;
93 :
94 0 : if (op & FUTEX_CLOCK_REALTIME) {
95 0 : flags |= FLAGS_CLOCKRT;
96 0 : if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
97 : cmd != FUTEX_LOCK_PI2)
98 : return -ENOSYS;
99 : }
100 :
101 0 : switch (cmd) {
102 : case FUTEX_WAIT:
103 0 : val3 = FUTEX_BITSET_MATCH_ANY;
104 : fallthrough;
105 : case FUTEX_WAIT_BITSET:
106 0 : return futex_wait(uaddr, flags, val, timeout, val3);
107 : case FUTEX_WAKE:
108 0 : val3 = FUTEX_BITSET_MATCH_ANY;
109 : fallthrough;
110 : case FUTEX_WAKE_BITSET:
111 0 : return futex_wake(uaddr, flags, val, val3);
112 : case FUTEX_REQUEUE:
113 0 : return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
114 : case FUTEX_CMP_REQUEUE:
115 0 : return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
116 : case FUTEX_WAKE_OP:
117 0 : return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
118 : case FUTEX_LOCK_PI:
119 0 : flags |= FLAGS_CLOCKRT;
120 : fallthrough;
121 : case FUTEX_LOCK_PI2:
122 0 : return futex_lock_pi(uaddr, flags, timeout, 0);
123 : case FUTEX_UNLOCK_PI:
124 0 : return futex_unlock_pi(uaddr, flags);
125 : case FUTEX_TRYLOCK_PI:
126 0 : return futex_lock_pi(uaddr, flags, NULL, 1);
127 : case FUTEX_WAIT_REQUEUE_PI:
128 0 : val3 = FUTEX_BITSET_MATCH_ANY;
129 0 : return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
130 : uaddr2);
131 : case FUTEX_CMP_REQUEUE_PI:
132 0 : return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
133 : }
134 : return -ENOSYS;
135 : }
136 :
137 : static __always_inline bool futex_cmd_has_timeout(u32 cmd)
138 : {
139 : switch (cmd) {
140 : case FUTEX_WAIT:
141 : case FUTEX_LOCK_PI:
142 : case FUTEX_LOCK_PI2:
143 : case FUTEX_WAIT_BITSET:
144 : case FUTEX_WAIT_REQUEUE_PI:
145 : return true;
146 : }
147 : return false;
148 : }
149 :
150 : static __always_inline int
151 : futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
152 : {
153 0 : if (!timespec64_valid(ts))
154 : return -EINVAL;
155 :
156 0 : *t = timespec64_to_ktime(*ts);
157 0 : if (cmd == FUTEX_WAIT)
158 0 : *t = ktime_add_safe(ktime_get(), *t);
159 : else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
160 : *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
161 : return 0;
162 : }
163 :
164 0 : SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
165 : const struct __kernel_timespec __user *, utime,
166 : u32 __user *, uaddr2, u32, val3)
167 : {
168 0 : int ret, cmd = op & FUTEX_CMD_MASK;
169 0 : ktime_t t, *tp = NULL;
170 : struct timespec64 ts;
171 :
172 0 : if (utime && futex_cmd_has_timeout(cmd)) {
173 0 : if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
174 : return -EFAULT;
175 0 : if (get_timespec64(&ts, utime))
176 : return -EFAULT;
177 0 : ret = futex_init_timeout(cmd, op, &ts, &t);
178 0 : if (ret)
179 0 : return ret;
180 : tp = &t;
181 : }
182 :
183 0 : return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
184 : }
185 :
186 : /* Mask of available flags for each futex in futex_waitv list */
187 : #define FUTEXV_WAITER_MASK (FUTEX_32 | FUTEX_PRIVATE_FLAG)
188 :
189 : /**
190 : * futex_parse_waitv - Parse a waitv array from userspace
191 : * @futexv: Kernel side list of waiters to be filled
192 : * @uwaitv: Userspace list to be parsed
193 : * @nr_futexes: Length of futexv
194 : *
195 : * Return: Error code on failure, 0 on success
196 : */
197 0 : static int futex_parse_waitv(struct futex_vector *futexv,
198 : struct futex_waitv __user *uwaitv,
199 : unsigned int nr_futexes)
200 : {
201 : struct futex_waitv aux;
202 : unsigned int i;
203 :
204 0 : for (i = 0; i < nr_futexes; i++) {
205 0 : if (copy_from_user(&aux, &uwaitv[i], sizeof(aux)))
206 : return -EFAULT;
207 :
208 0 : if ((aux.flags & ~FUTEXV_WAITER_MASK) || aux.__reserved)
209 : return -EINVAL;
210 :
211 0 : if (!(aux.flags & FUTEX_32))
212 : return -EINVAL;
213 :
214 0 : futexv[i].w.flags = aux.flags;
215 0 : futexv[i].w.val = aux.val;
216 0 : futexv[i].w.uaddr = aux.uaddr;
217 0 : futexv[i].q = futex_q_init;
218 : }
219 :
220 : return 0;
221 : }
222 :
223 : /**
224 : * sys_futex_waitv - Wait on a list of futexes
225 : * @waiters: List of futexes to wait on
226 : * @nr_futexes: Length of futexv
227 : * @flags: Flag for timeout (monotonic/realtime)
228 : * @timeout: Optional absolute timeout.
229 : * @clockid: Clock to be used for the timeout, realtime or monotonic.
230 : *
231 : * Given an array of `struct futex_waitv`, wait on each uaddr. The thread wakes
232 : * if a futex_wake() is performed at any uaddr. The syscall returns immediately
233 : * if any waiter has *uaddr != val. *timeout is an optional timeout value for
234 : * the operation. Each waiter has individual flags. The `flags` argument for
235 : * the syscall should be used solely for specifying the timeout as realtime, if
236 : * needed. Flags for private futexes, sizes, etc. should be used on the
237 : * individual flags of each waiter.
238 : *
239 : * Returns the array index of one of the woken futexes. No further information
240 : * is provided: any number of other futexes may also have been woken by the
241 : * same event, and if more than one futex was woken, the retrned index may
242 : * refer to any one of them. (It is not necessaryily the futex with the
243 : * smallest index, nor the one most recently woken, nor...)
244 : */
245 :
246 0 : SYSCALL_DEFINE5(futex_waitv, struct futex_waitv __user *, waiters,
247 : unsigned int, nr_futexes, unsigned int, flags,
248 : struct __kernel_timespec __user *, timeout, clockid_t, clockid)
249 : {
250 : struct hrtimer_sleeper to;
251 : struct futex_vector *futexv;
252 : struct timespec64 ts;
253 : ktime_t time;
254 : int ret;
255 :
256 : /* This syscall supports no flags for now */
257 0 : if (flags)
258 : return -EINVAL;
259 :
260 0 : if (!nr_futexes || nr_futexes > FUTEX_WAITV_MAX || !waiters)
261 : return -EINVAL;
262 :
263 0 : if (timeout) {
264 0 : int flag_clkid = 0, flag_init = 0;
265 :
266 0 : if (clockid == CLOCK_REALTIME) {
267 0 : flag_clkid = FLAGS_CLOCKRT;
268 0 : flag_init = FUTEX_CLOCK_REALTIME;
269 : }
270 :
271 0 : if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
272 : return -EINVAL;
273 :
274 0 : if (get_timespec64(&ts, timeout))
275 : return -EFAULT;
276 :
277 : /*
278 : * Since there's no opcode for futex_waitv, use
279 : * FUTEX_WAIT_BITSET that uses absolute timeout as well
280 : */
281 0 : ret = futex_init_timeout(FUTEX_WAIT_BITSET, flag_init, &ts, &time);
282 0 : if (ret)
283 0 : return ret;
284 :
285 0 : futex_setup_timer(&time, &to, flag_clkid, 0);
286 : }
287 :
288 0 : futexv = kcalloc(nr_futexes, sizeof(*futexv), GFP_KERNEL);
289 0 : if (!futexv) {
290 : ret = -ENOMEM;
291 : goto destroy_timer;
292 : }
293 :
294 0 : ret = futex_parse_waitv(futexv, waiters, nr_futexes);
295 0 : if (!ret)
296 0 : ret = futex_wait_multiple(futexv, nr_futexes, timeout ? &to : NULL);
297 :
298 0 : kfree(futexv);
299 :
300 : destroy_timer:
301 0 : if (timeout) {
302 0 : hrtimer_cancel(&to.timer);
303 0 : destroy_hrtimer_on_stack(&to.timer);
304 : }
305 0 : return ret;
306 : }
307 :
308 : #ifdef CONFIG_COMPAT
309 : COMPAT_SYSCALL_DEFINE2(set_robust_list,
310 : struct compat_robust_list_head __user *, head,
311 : compat_size_t, len)
312 : {
313 : if (unlikely(len != sizeof(*head)))
314 : return -EINVAL;
315 :
316 : current->compat_robust_list = head;
317 :
318 : return 0;
319 : }
320 :
321 : COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
322 : compat_uptr_t __user *, head_ptr,
323 : compat_size_t __user *, len_ptr)
324 : {
325 : struct compat_robust_list_head __user *head;
326 : unsigned long ret;
327 : struct task_struct *p;
328 :
329 : rcu_read_lock();
330 :
331 : ret = -ESRCH;
332 : if (!pid)
333 : p = current;
334 : else {
335 : p = find_task_by_vpid(pid);
336 : if (!p)
337 : goto err_unlock;
338 : }
339 :
340 : ret = -EPERM;
341 : if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
342 : goto err_unlock;
343 :
344 : head = p->compat_robust_list;
345 : rcu_read_unlock();
346 :
347 : if (put_user(sizeof(*head), len_ptr))
348 : return -EFAULT;
349 : return put_user(ptr_to_compat(head), head_ptr);
350 :
351 : err_unlock:
352 : rcu_read_unlock();
353 :
354 : return ret;
355 : }
356 : #endif /* CONFIG_COMPAT */
357 :
358 : #ifdef CONFIG_COMPAT_32BIT_TIME
359 : SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
360 : const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
361 : u32, val3)
362 : {
363 : int ret, cmd = op & FUTEX_CMD_MASK;
364 : ktime_t t, *tp = NULL;
365 : struct timespec64 ts;
366 :
367 : if (utime && futex_cmd_has_timeout(cmd)) {
368 : if (get_old_timespec32(&ts, utime))
369 : return -EFAULT;
370 : ret = futex_init_timeout(cmd, op, &ts, &t);
371 : if (ret)
372 : return ret;
373 : tp = &t;
374 : }
375 :
376 : return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
377 : }
378 : #endif /* CONFIG_COMPAT_32BIT_TIME */
379 :
|