Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 :
3 : #include <linux/sched/task.h>
4 : #include <linux/sched/signal.h>
5 : #include <linux/freezer.h>
6 :
7 : #include "futex.h"
8 :
9 : /*
10 : * READ this before attempting to hack on futexes!
11 : *
12 : * Basic futex operation and ordering guarantees
13 : * =============================================
14 : *
15 : * The waiter reads the futex value in user space and calls
16 : * futex_wait(). This function computes the hash bucket and acquires
17 : * the hash bucket lock. After that it reads the futex user space value
18 : * again and verifies that the data has not changed. If it has not changed
19 : * it enqueues itself into the hash bucket, releases the hash bucket lock
20 : * and schedules.
21 : *
22 : * The waker side modifies the user space value of the futex and calls
23 : * futex_wake(). This function computes the hash bucket and acquires the
24 : * hash bucket lock. Then it looks for waiters on that futex in the hash
25 : * bucket and wakes them.
26 : *
27 : * In futex wake up scenarios where no tasks are blocked on a futex, taking
28 : * the hb spinlock can be avoided and simply return. In order for this
29 : * optimization to work, ordering guarantees must exist so that the waiter
30 : * being added to the list is acknowledged when the list is concurrently being
31 : * checked by the waker, avoiding scenarios like the following:
32 : *
33 : * CPU 0 CPU 1
34 : * val = *futex;
35 : * sys_futex(WAIT, futex, val);
36 : * futex_wait(futex, val);
37 : * uval = *futex;
38 : * *futex = newval;
39 : * sys_futex(WAKE, futex);
40 : * futex_wake(futex);
41 : * if (queue_empty())
42 : * return;
43 : * if (uval == val)
44 : * lock(hash_bucket(futex));
45 : * queue();
46 : * unlock(hash_bucket(futex));
47 : * schedule();
48 : *
49 : * This would cause the waiter on CPU 0 to wait forever because it
50 : * missed the transition of the user space value from val to newval
51 : * and the waker did not find the waiter in the hash bucket queue.
52 : *
53 : * The correct serialization ensures that a waiter either observes
54 : * the changed user space value before blocking or is woken by a
55 : * concurrent waker:
56 : *
57 : * CPU 0 CPU 1
58 : * val = *futex;
59 : * sys_futex(WAIT, futex, val);
60 : * futex_wait(futex, val);
61 : *
62 : * waiters++; (a)
63 : * smp_mb(); (A) <-- paired with -.
64 : * |
65 : * lock(hash_bucket(futex)); |
66 : * |
67 : * uval = *futex; |
68 : * | *futex = newval;
69 : * | sys_futex(WAKE, futex);
70 : * | futex_wake(futex);
71 : * |
72 : * `--------> smp_mb(); (B)
73 : * if (uval == val)
74 : * queue();
75 : * unlock(hash_bucket(futex));
76 : * schedule(); if (waiters)
77 : * lock(hash_bucket(futex));
78 : * else wake_waiters(futex);
79 : * waiters--; (b) unlock(hash_bucket(futex));
80 : *
81 : * Where (A) orders the waiters increment and the futex value read through
82 : * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
83 : * to futex and the waiters read (see futex_hb_waiters_pending()).
84 : *
85 : * This yields the following case (where X:=waiters, Y:=futex):
86 : *
87 : * X = Y = 0
88 : *
89 : * w[X]=1 w[Y]=1
90 : * MB MB
91 : * r[Y]=y r[X]=x
92 : *
93 : * Which guarantees that x==0 && y==0 is impossible; which translates back into
94 : * the guarantee that we cannot both miss the futex variable change and the
95 : * enqueue.
96 : *
97 : * Note that a new waiter is accounted for in (a) even when it is possible that
98 : * the wait call can return error, in which case we backtrack from it in (b).
99 : * Refer to the comment in futex_q_lock().
100 : *
101 : * Similarly, in order to account for waiters being requeued on another
102 : * address we always increment the waiters for the destination bucket before
103 : * acquiring the lock. It then decrements them again after releasing it -
104 : * the code that actually moves the futex(es) between hash buckets (requeue_futex)
105 : * will do the additional required waiter count housekeeping. This is done for
106 : * double_lock_hb() and double_unlock_hb(), respectively.
107 : */
108 :
109 : /*
110 : * The hash bucket lock must be held when this is called.
111 : * Afterwards, the futex_q must not be accessed. Callers
112 : * must ensure to later call wake_up_q() for the actual
113 : * wakeups to occur.
114 : */
115 0 : void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
116 : {
117 0 : struct task_struct *p = q->task;
118 :
119 0 : if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
120 : return;
121 :
122 0 : get_task_struct(p);
123 0 : __futex_unqueue(q);
124 : /*
125 : * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
126 : * is written, without taking any locks. This is possible in the event
127 : * of a spurious wakeup, for example. A memory barrier is required here
128 : * to prevent the following store to lock_ptr from getting ahead of the
129 : * plist_del in __futex_unqueue().
130 : */
131 0 : smp_store_release(&q->lock_ptr, NULL);
132 :
133 : /*
134 : * Queue the task for later wakeup for after we've released
135 : * the hb->lock.
136 : */
137 0 : wake_q_add_safe(wake_q, p);
138 : }
139 :
140 : /*
141 : * Wake up waiters matching bitset queued on this futex (uaddr).
142 : */
143 0 : int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
144 : {
145 : struct futex_hash_bucket *hb;
146 : struct futex_q *this, *next;
147 0 : union futex_key key = FUTEX_KEY_INIT;
148 : int ret;
149 0 : DEFINE_WAKE_Q(wake_q);
150 :
151 0 : if (!bitset)
152 : return -EINVAL;
153 :
154 0 : ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
155 0 : if (unlikely(ret != 0))
156 : return ret;
157 :
158 0 : hb = futex_hash(&key);
159 :
160 : /* Make sure we really have tasks to wakeup */
161 0 : if (!futex_hb_waiters_pending(hb))
162 : return ret;
163 :
164 0 : spin_lock(&hb->lock);
165 :
166 0 : plist_for_each_entry_safe(this, next, &hb->chain, list) {
167 0 : if (futex_match (&this->key, &key)) {
168 0 : if (this->pi_state || this->rt_waiter) {
169 : ret = -EINVAL;
170 : break;
171 : }
172 :
173 : /* Check if one of the bits is set in both bitsets */
174 0 : if (!(this->bitset & bitset))
175 0 : continue;
176 :
177 0 : futex_wake_mark(&wake_q, this);
178 0 : if (++ret >= nr_wake)
179 : break;
180 : }
181 : }
182 :
183 0 : spin_unlock(&hb->lock);
184 0 : wake_up_q(&wake_q);
185 0 : return ret;
186 : }
187 :
188 0 : static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
189 : {
190 0 : unsigned int op = (encoded_op & 0x70000000) >> 28;
191 0 : unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
192 0 : int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
193 0 : int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
194 : int oldval, ret;
195 :
196 0 : if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
197 0 : if (oparg < 0 || oparg > 31) {
198 : char comm[sizeof(current->comm)];
199 : /*
200 : * kill this print and return -EINVAL when userspace
201 : * is sane again
202 : */
203 0 : pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
204 : get_task_comm(comm, current), oparg);
205 0 : oparg &= 31;
206 : }
207 0 : oparg = 1 << oparg;
208 : }
209 :
210 0 : pagefault_disable();
211 0 : ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
212 0 : pagefault_enable();
213 0 : if (ret)
214 : return ret;
215 :
216 0 : switch (cmp) {
217 : case FUTEX_OP_CMP_EQ:
218 0 : return oldval == cmparg;
219 : case FUTEX_OP_CMP_NE:
220 0 : return oldval != cmparg;
221 : case FUTEX_OP_CMP_LT:
222 0 : return oldval < cmparg;
223 : case FUTEX_OP_CMP_GE:
224 0 : return oldval >= cmparg;
225 : case FUTEX_OP_CMP_LE:
226 0 : return oldval <= cmparg;
227 : case FUTEX_OP_CMP_GT:
228 0 : return oldval > cmparg;
229 : default:
230 : return -ENOSYS;
231 : }
232 : }
233 :
234 : /*
235 : * Wake up all waiters hashed on the physical page that is mapped
236 : * to this virtual address:
237 : */
238 0 : int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
239 : int nr_wake, int nr_wake2, int op)
240 : {
241 0 : union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
242 : struct futex_hash_bucket *hb1, *hb2;
243 : struct futex_q *this, *next;
244 : int ret, op_ret;
245 0 : DEFINE_WAKE_Q(wake_q);
246 :
247 : retry:
248 0 : ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
249 0 : if (unlikely(ret != 0))
250 : return ret;
251 0 : ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
252 0 : if (unlikely(ret != 0))
253 : return ret;
254 :
255 0 : hb1 = futex_hash(&key1);
256 0 : hb2 = futex_hash(&key2);
257 :
258 : retry_private:
259 0 : double_lock_hb(hb1, hb2);
260 0 : op_ret = futex_atomic_op_inuser(op, uaddr2);
261 0 : if (unlikely(op_ret < 0)) {
262 0 : double_unlock_hb(hb1, hb2);
263 :
264 0 : if (!IS_ENABLED(CONFIG_MMU) ||
265 0 : unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
266 : /*
267 : * we don't get EFAULT from MMU faults if we don't have
268 : * an MMU, but we might get them from range checking
269 : */
270 : ret = op_ret;
271 : return ret;
272 : }
273 :
274 0 : if (op_ret == -EFAULT) {
275 0 : ret = fault_in_user_writeable(uaddr2);
276 0 : if (ret)
277 : return ret;
278 : }
279 :
280 0 : cond_resched();
281 0 : if (!(flags & FLAGS_SHARED))
282 : goto retry_private;
283 : goto retry;
284 : }
285 :
286 0 : plist_for_each_entry_safe(this, next, &hb1->chain, list) {
287 0 : if (futex_match (&this->key, &key1)) {
288 0 : if (this->pi_state || this->rt_waiter) {
289 : ret = -EINVAL;
290 : goto out_unlock;
291 : }
292 0 : futex_wake_mark(&wake_q, this);
293 0 : if (++ret >= nr_wake)
294 : break;
295 : }
296 : }
297 :
298 0 : if (op_ret > 0) {
299 0 : op_ret = 0;
300 0 : plist_for_each_entry_safe(this, next, &hb2->chain, list) {
301 0 : if (futex_match (&this->key, &key2)) {
302 0 : if (this->pi_state || this->rt_waiter) {
303 : ret = -EINVAL;
304 : goto out_unlock;
305 : }
306 0 : futex_wake_mark(&wake_q, this);
307 0 : if (++op_ret >= nr_wake2)
308 : break;
309 : }
310 : }
311 0 : ret += op_ret;
312 : }
313 :
314 : out_unlock:
315 0 : double_unlock_hb(hb1, hb2);
316 0 : wake_up_q(&wake_q);
317 0 : return ret;
318 : }
319 :
320 : static long futex_wait_restart(struct restart_block *restart);
321 :
322 : /**
323 : * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
324 : * @hb: the futex hash bucket, must be locked by the caller
325 : * @q: the futex_q to queue up on
326 : * @timeout: the prepared hrtimer_sleeper, or null for no timeout
327 : */
328 0 : void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
329 : struct hrtimer_sleeper *timeout)
330 : {
331 : /*
332 : * The task state is guaranteed to be set before another task can
333 : * wake it. set_current_state() is implemented using smp_store_mb() and
334 : * futex_queue() calls spin_unlock() upon completion, both serializing
335 : * access to the hash list and forcing another memory barrier.
336 : */
337 0 : set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
338 0 : futex_queue(q, hb);
339 :
340 : /* Arm the timer */
341 0 : if (timeout)
342 0 : hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
343 :
344 : /*
345 : * If we have been removed from the hash list, then another task
346 : * has tried to wake us, and we can skip the call to schedule().
347 : */
348 0 : if (likely(!plist_node_empty(&q->list))) {
349 : /*
350 : * If the timer has already expired, current will already be
351 : * flagged for rescheduling. Only call schedule if there
352 : * is no timeout, or if it has yet to expire.
353 : */
354 0 : if (!timeout || timeout->task)
355 0 : schedule();
356 : }
357 0 : __set_current_state(TASK_RUNNING);
358 0 : }
359 :
360 : /**
361 : * unqueue_multiple - Remove various futexes from their hash bucket
362 : * @v: The list of futexes to unqueue
363 : * @count: Number of futexes in the list
364 : *
365 : * Helper to unqueue a list of futexes. This can't fail.
366 : *
367 : * Return:
368 : * - >=0 - Index of the last futex that was awoken;
369 : * - -1 - No futex was awoken
370 : */
371 : static int unqueue_multiple(struct futex_vector *v, int count)
372 : {
373 : int ret = -1, i;
374 :
375 0 : for (i = 0; i < count; i++) {
376 0 : if (!futex_unqueue(&v[i].q))
377 0 : ret = i;
378 : }
379 :
380 : return ret;
381 : }
382 :
383 : /**
384 : * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
385 : * @vs: The futex list to wait on
386 : * @count: The size of the list
387 : * @woken: Index of the last woken futex, if any. Used to notify the
388 : * caller that it can return this index to userspace (return parameter)
389 : *
390 : * Prepare multiple futexes in a single step and enqueue them. This may fail if
391 : * the futex list is invalid or if any futex was already awoken. On success the
392 : * task is ready to interruptible sleep.
393 : *
394 : * Return:
395 : * - 1 - One of the futexes was woken by another thread
396 : * - 0 - Success
397 : * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
398 : */
399 0 : static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
400 : {
401 : struct futex_hash_bucket *hb;
402 0 : bool retry = false;
403 : int ret, i;
404 : u32 uval;
405 :
406 : /*
407 : * Enqueuing multiple futexes is tricky, because we need to enqueue
408 : * each futex on the list before dealing with the next one to avoid
409 : * deadlocking on the hash bucket. But, before enqueuing, we need to
410 : * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
411 : * lose any wake events, which cannot be done before the get_futex_key
412 : * of the next key, because it calls get_user_pages, which can sleep.
413 : * Thus, we fetch the list of futexes keys in two steps, by first
414 : * pinning all the memory keys in the futex key, and only then we read
415 : * each key and queue the corresponding futex.
416 : *
417 : * Private futexes doesn't need to recalculate hash in retry, so skip
418 : * get_futex_key() when retrying.
419 : */
420 : retry:
421 0 : for (i = 0; i < count; i++) {
422 0 : if ((vs[i].w.flags & FUTEX_PRIVATE_FLAG) && retry)
423 0 : continue;
424 :
425 0 : ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
426 : !(vs[i].w.flags & FUTEX_PRIVATE_FLAG),
427 : &vs[i].q.key, FUTEX_READ);
428 :
429 0 : if (unlikely(ret))
430 : return ret;
431 : }
432 :
433 0 : set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
434 :
435 0 : for (i = 0; i < count; i++) {
436 0 : u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
437 0 : struct futex_q *q = &vs[i].q;
438 0 : u32 val = (u32)vs[i].w.val;
439 :
440 0 : hb = futex_q_lock(q);
441 0 : ret = futex_get_value_locked(&uval, uaddr);
442 :
443 0 : if (!ret && uval == val) {
444 : /*
445 : * The bucket lock can't be held while dealing with the
446 : * next futex. Queue each futex at this moment so hb can
447 : * be unlocked.
448 : */
449 0 : futex_queue(q, hb);
450 0 : continue;
451 : }
452 :
453 0 : futex_q_unlock(hb);
454 0 : __set_current_state(TASK_RUNNING);
455 :
456 : /*
457 : * Even if something went wrong, if we find out that a futex
458 : * was woken, we don't return error and return this index to
459 : * userspace
460 : */
461 0 : *woken = unqueue_multiple(vs, i);
462 0 : if (*woken >= 0)
463 : return 1;
464 :
465 0 : if (ret) {
466 : /*
467 : * If we need to handle a page fault, we need to do so
468 : * without any lock and any enqueued futex (otherwise
469 : * we could lose some wakeup). So we do it here, after
470 : * undoing all the work done so far. In success, we
471 : * retry all the work.
472 : */
473 0 : if (get_user(uval, uaddr))
474 : return -EFAULT;
475 :
476 : retry = true;
477 : goto retry;
478 : }
479 :
480 0 : if (uval != val)
481 : return -EWOULDBLOCK;
482 : }
483 :
484 : return 0;
485 : }
486 :
487 : /**
488 : * futex_sleep_multiple - Check sleeping conditions and sleep
489 : * @vs: List of futexes to wait for
490 : * @count: Length of vs
491 : * @to: Timeout
492 : *
493 : * Sleep if and only if the timeout hasn't expired and no futex on the list has
494 : * been woken up.
495 : */
496 0 : static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
497 : struct hrtimer_sleeper *to)
498 : {
499 0 : if (to && !to->task)
500 : return;
501 :
502 0 : for (; count; count--, vs++) {
503 0 : if (!READ_ONCE(vs->q.lock_ptr))
504 : return;
505 : }
506 :
507 0 : schedule();
508 : }
509 :
510 : /**
511 : * futex_wait_multiple - Prepare to wait on and enqueue several futexes
512 : * @vs: The list of futexes to wait on
513 : * @count: The number of objects
514 : * @to: Timeout before giving up and returning to userspace
515 : *
516 : * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
517 : * sleeps on a group of futexes and returns on the first futex that is
518 : * wake, or after the timeout has elapsed.
519 : *
520 : * Return:
521 : * - >=0 - Hint to the futex that was awoken
522 : * - <0 - On error
523 : */
524 0 : int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
525 : struct hrtimer_sleeper *to)
526 : {
527 0 : int ret, hint = 0;
528 :
529 0 : if (to)
530 0 : hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
531 :
532 : while (1) {
533 0 : ret = futex_wait_multiple_setup(vs, count, &hint);
534 0 : if (ret) {
535 0 : if (ret > 0) {
536 : /* A futex was woken during setup */
537 0 : ret = hint;
538 : }
539 : return ret;
540 : }
541 :
542 0 : futex_sleep_multiple(vs, count, to);
543 :
544 0 : __set_current_state(TASK_RUNNING);
545 :
546 0 : ret = unqueue_multiple(vs, count);
547 0 : if (ret >= 0)
548 : return ret;
549 :
550 0 : if (to && !to->task)
551 : return -ETIMEDOUT;
552 0 : else if (signal_pending(current))
553 : return -ERESTARTSYS;
554 : /*
555 : * The final case is a spurious wakeup, for
556 : * which just retry.
557 : */
558 : }
559 : }
560 :
561 : /**
562 : * futex_wait_setup() - Prepare to wait on a futex
563 : * @uaddr: the futex userspace address
564 : * @val: the expected value
565 : * @flags: futex flags (FLAGS_SHARED, etc.)
566 : * @q: the associated futex_q
567 : * @hb: storage for hash_bucket pointer to be returned to caller
568 : *
569 : * Setup the futex_q and locate the hash_bucket. Get the futex value and
570 : * compare it with the expected value. Handle atomic faults internally.
571 : * Return with the hb lock held on success, and unlocked on failure.
572 : *
573 : * Return:
574 : * - 0 - uaddr contains val and hb has been locked;
575 : * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
576 : */
577 0 : int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
578 : struct futex_q *q, struct futex_hash_bucket **hb)
579 : {
580 : u32 uval;
581 : int ret;
582 :
583 : /*
584 : * Access the page AFTER the hash-bucket is locked.
585 : * Order is important:
586 : *
587 : * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
588 : * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
589 : *
590 : * The basic logical guarantee of a futex is that it blocks ONLY
591 : * if cond(var) is known to be true at the time of blocking, for
592 : * any cond. If we locked the hash-bucket after testing *uaddr, that
593 : * would open a race condition where we could block indefinitely with
594 : * cond(var) false, which would violate the guarantee.
595 : *
596 : * On the other hand, we insert q and release the hash-bucket only
597 : * after testing *uaddr. This guarantees that futex_wait() will NOT
598 : * absorb a wakeup if *uaddr does not match the desired values
599 : * while the syscall executes.
600 : */
601 : retry:
602 0 : ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
603 0 : if (unlikely(ret != 0))
604 : return ret;
605 :
606 : retry_private:
607 0 : *hb = futex_q_lock(q);
608 :
609 0 : ret = futex_get_value_locked(&uval, uaddr);
610 :
611 0 : if (ret) {
612 0 : futex_q_unlock(*hb);
613 :
614 0 : ret = get_user(uval, uaddr);
615 0 : if (ret)
616 : return ret;
617 :
618 0 : if (!(flags & FLAGS_SHARED))
619 : goto retry_private;
620 :
621 : goto retry;
622 : }
623 :
624 0 : if (uval != val) {
625 0 : futex_q_unlock(*hb);
626 0 : ret = -EWOULDBLOCK;
627 : }
628 :
629 : return ret;
630 : }
631 :
632 0 : int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
633 : {
634 : struct hrtimer_sleeper timeout, *to;
635 : struct restart_block *restart;
636 : struct futex_hash_bucket *hb;
637 0 : struct futex_q q = futex_q_init;
638 : int ret;
639 :
640 0 : if (!bitset)
641 : return -EINVAL;
642 0 : q.bitset = bitset;
643 :
644 0 : to = futex_setup_timer(abs_time, &timeout, flags,
645 0 : current->timer_slack_ns);
646 : retry:
647 : /*
648 : * Prepare to wait on uaddr. On success, it holds hb->lock and q
649 : * is initialized.
650 : */
651 0 : ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
652 0 : if (ret)
653 : goto out;
654 :
655 : /* futex_queue and wait for wakeup, timeout, or a signal. */
656 0 : futex_wait_queue(hb, &q, to);
657 :
658 : /* If we were woken (and unqueued), we succeeded, whatever. */
659 0 : ret = 0;
660 0 : if (!futex_unqueue(&q))
661 : goto out;
662 0 : ret = -ETIMEDOUT;
663 0 : if (to && !to->task)
664 : goto out;
665 :
666 : /*
667 : * We expect signal_pending(current), but we might be the
668 : * victim of a spurious wakeup as well.
669 : */
670 0 : if (!signal_pending(current))
671 : goto retry;
672 :
673 0 : ret = -ERESTARTSYS;
674 0 : if (!abs_time)
675 : goto out;
676 :
677 0 : restart = ¤t->restart_block;
678 0 : restart->futex.uaddr = uaddr;
679 0 : restart->futex.val = val;
680 0 : restart->futex.time = *abs_time;
681 0 : restart->futex.bitset = bitset;
682 0 : restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
683 :
684 0 : ret = set_restart_fn(restart, futex_wait_restart);
685 :
686 : out:
687 0 : if (to) {
688 0 : hrtimer_cancel(&to->timer);
689 0 : destroy_hrtimer_on_stack(&to->timer);
690 : }
691 : return ret;
692 : }
693 :
694 0 : static long futex_wait_restart(struct restart_block *restart)
695 : {
696 0 : u32 __user *uaddr = restart->futex.uaddr;
697 0 : ktime_t t, *tp = NULL;
698 :
699 0 : if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
700 0 : t = restart->futex.time;
701 0 : tp = &t;
702 : }
703 0 : restart->fn = do_no_restart_syscall;
704 :
705 0 : return (long)futex_wait(uaddr, restart->futex.flags,
706 : restart->futex.val, tp, restart->futex.bitset);
707 : }
708 :
|