Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : #include <linux/kernel.h>
3 : #include <linux/syscalls.h>
4 : #include <linux/fdtable.h>
5 : #include <linux/string.h>
6 : #include <linux/random.h>
7 : #include <linux/module.h>
8 : #include <linux/ptrace.h>
9 : #include <linux/init.h>
10 : #include <linux/errno.h>
11 : #include <linux/cache.h>
12 : #include <linux/bug.h>
13 : #include <linux/err.h>
14 : #include <linux/kcmp.h>
15 : #include <linux/capability.h>
16 : #include <linux/list.h>
17 : #include <linux/eventpoll.h>
18 : #include <linux/file.h>
19 :
20 : #include <asm/unistd.h>
21 :
22 : /*
23 : * We don't expose the real in-memory order of objects for security reasons.
24 : * But still the comparison results should be suitable for sorting. So we
25 : * obfuscate kernel pointers values and compare the production instead.
26 : *
27 : * The obfuscation is done in two steps. First we xor the kernel pointer with
28 : * a random value, which puts pointer into a new position in a reordered space.
29 : * Secondly we multiply the xor production with a large odd random number to
30 : * permute its bits even more (the odd multiplier guarantees that the product
31 : * is unique ever after the high bits are truncated, since any odd number is
32 : * relative prime to 2^n).
33 : *
34 : * Note also that the obfuscation itself is invisible to userspace and if needed
35 : * it can be changed to an alternate scheme.
36 : */
37 : static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
38 :
39 : static long kptr_obfuscate(long v, int type)
40 : {
41 0 : return (v ^ cookies[type][0]) * cookies[type][1];
42 : }
43 :
44 : /*
45 : * 0 - equal, i.e. v1 = v2
46 : * 1 - less than, i.e. v1 < v2
47 : * 2 - greater than, i.e. v1 > v2
48 : * 3 - not equal but ordering unavailable (reserved for future)
49 : */
50 : static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
51 : {
52 : long t1, t2;
53 :
54 0 : t1 = kptr_obfuscate((long)v1, type);
55 0 : t2 = kptr_obfuscate((long)v2, type);
56 :
57 0 : return (t1 < t2) | ((t1 > t2) << 1);
58 : }
59 :
60 : /* The caller must have pinned the task */
61 : static struct file *
62 : get_file_raw_ptr(struct task_struct *task, unsigned int idx)
63 : {
64 : struct file *file;
65 :
66 : rcu_read_lock();
67 0 : file = task_lookup_fd_rcu(task, idx);
68 : rcu_read_unlock();
69 :
70 : return file;
71 : }
72 :
73 : static void kcmp_unlock(struct rw_semaphore *l1, struct rw_semaphore *l2)
74 : {
75 0 : if (likely(l2 != l1))
76 0 : up_read(l2);
77 0 : up_read(l1);
78 : }
79 :
80 0 : static int kcmp_lock(struct rw_semaphore *l1, struct rw_semaphore *l2)
81 : {
82 : int err;
83 :
84 0 : if (l2 > l1)
85 0 : swap(l1, l2);
86 :
87 0 : err = down_read_killable(l1);
88 0 : if (!err && likely(l1 != l2)) {
89 0 : err = down_read_killable_nested(l2, SINGLE_DEPTH_NESTING);
90 0 : if (err)
91 0 : up_read(l1);
92 : }
93 :
94 0 : return err;
95 : }
96 :
97 : #ifdef CONFIG_EPOLL
98 0 : static int kcmp_epoll_target(struct task_struct *task1,
99 : struct task_struct *task2,
100 : unsigned long idx1,
101 : struct kcmp_epoll_slot __user *uslot)
102 : {
103 : struct file *filp, *filp_epoll, *filp_tgt;
104 : struct kcmp_epoll_slot slot;
105 :
106 0 : if (copy_from_user(&slot, uslot, sizeof(slot)))
107 : return -EFAULT;
108 :
109 0 : filp = get_file_raw_ptr(task1, idx1);
110 0 : if (!filp)
111 : return -EBADF;
112 :
113 0 : filp_epoll = fget_task(task2, slot.efd);
114 0 : if (!filp_epoll)
115 : return -EBADF;
116 :
117 0 : filp_tgt = get_epoll_tfile_raw_ptr(filp_epoll, slot.tfd, slot.toff);
118 0 : fput(filp_epoll);
119 :
120 0 : if (IS_ERR(filp_tgt))
121 0 : return PTR_ERR(filp_tgt);
122 :
123 0 : return kcmp_ptr(filp, filp_tgt, KCMP_FILE);
124 : }
125 : #else
126 : static int kcmp_epoll_target(struct task_struct *task1,
127 : struct task_struct *task2,
128 : unsigned long idx1,
129 : struct kcmp_epoll_slot __user *uslot)
130 : {
131 : return -EOPNOTSUPP;
132 : }
133 : #endif
134 :
135 0 : SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
136 : unsigned long, idx1, unsigned long, idx2)
137 : {
138 : struct task_struct *task1, *task2;
139 : int ret;
140 :
141 : rcu_read_lock();
142 :
143 : /*
144 : * Tasks are looked up in caller's PID namespace only.
145 : */
146 0 : task1 = find_task_by_vpid(pid1);
147 0 : task2 = find_task_by_vpid(pid2);
148 0 : if (!task1 || !task2)
149 : goto err_no_task;
150 :
151 0 : get_task_struct(task1);
152 0 : get_task_struct(task2);
153 :
154 : rcu_read_unlock();
155 :
156 : /*
157 : * One should have enough rights to inspect task details.
158 : */
159 0 : ret = kcmp_lock(&task1->signal->exec_update_lock,
160 0 : &task2->signal->exec_update_lock);
161 0 : if (ret)
162 : goto err;
163 0 : if (!ptrace_may_access(task1, PTRACE_MODE_READ_REALCREDS) ||
164 0 : !ptrace_may_access(task2, PTRACE_MODE_READ_REALCREDS)) {
165 : ret = -EPERM;
166 : goto err_unlock;
167 : }
168 :
169 0 : switch (type) {
170 : case KCMP_FILE: {
171 : struct file *filp1, *filp2;
172 :
173 0 : filp1 = get_file_raw_ptr(task1, idx1);
174 0 : filp2 = get_file_raw_ptr(task2, idx2);
175 :
176 0 : if (filp1 && filp2)
177 0 : ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
178 : else
179 : ret = -EBADF;
180 : break;
181 : }
182 : case KCMP_VM:
183 0 : ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
184 0 : break;
185 : case KCMP_FILES:
186 0 : ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
187 0 : break;
188 : case KCMP_FS:
189 0 : ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
190 0 : break;
191 : case KCMP_SIGHAND:
192 0 : ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
193 0 : break;
194 : case KCMP_IO:
195 0 : ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
196 0 : break;
197 : case KCMP_SYSVSEM:
198 : #ifdef CONFIG_SYSVIPC
199 : ret = kcmp_ptr(task1->sysvsem.undo_list,
200 : task2->sysvsem.undo_list,
201 : KCMP_SYSVSEM);
202 : #else
203 : ret = -EOPNOTSUPP;
204 : #endif
205 : break;
206 : case KCMP_EPOLL_TFD:
207 0 : ret = kcmp_epoll_target(task1, task2, idx1, (void *)idx2);
208 0 : break;
209 : default:
210 0 : ret = -EINVAL;
211 0 : break;
212 : }
213 :
214 : err_unlock:
215 0 : kcmp_unlock(&task1->signal->exec_update_lock,
216 0 : &task2->signal->exec_update_lock);
217 : err:
218 0 : put_task_struct(task1);
219 0 : put_task_struct(task2);
220 :
221 0 : return ret;
222 :
223 : err_no_task:
224 : rcu_read_unlock();
225 0 : return -ESRCH;
226 : }
227 :
228 1 : static __init int kcmp_cookies_init(void)
229 : {
230 : int i;
231 :
232 1 : get_random_bytes(cookies, sizeof(cookies));
233 :
234 9 : for (i = 0; i < KCMP_TYPES; i++)
235 8 : cookies[i][1] |= (~(~0UL >> 1) | 1);
236 :
237 1 : return 0;
238 : }
239 : arch_initcall(kcmp_cookies_init);
|