Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * rtmutex API
4 : */
5 : #include <linux/spinlock.h>
6 : #include <linux/export.h>
7 :
8 : #define RT_MUTEX_BUILD_MUTEX
9 : #include "rtmutex.c"
10 :
11 : /*
12 : * Max number of times we'll walk the boosting chain:
13 : */
14 : int max_lock_depth = 1024;
15 :
16 : /*
17 : * Debug aware fast / slowpath lock,trylock,unlock
18 : *
19 : * The atomic acquire/release ops are compiled away, when either the
20 : * architecture does not support cmpxchg or when debugging is enabled.
21 : */
22 : static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23 : unsigned int state,
24 : struct lockdep_map *nest_lock,
25 : unsigned int subclass)
26 : {
27 : int ret;
28 :
29 : might_sleep();
30 : mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
31 0 : ret = __rt_mutex_lock(&lock->rtmutex, state);
32 : if (ret)
33 : mutex_release(&lock->dep_map, _RET_IP_);
34 : return ret;
35 : }
36 :
37 0 : void rt_mutex_base_init(struct rt_mutex_base *rtb)
38 : {
39 0 : __rt_mutex_base_init(rtb);
40 0 : }
41 : EXPORT_SYMBOL(rt_mutex_base_init);
42 :
43 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 : /**
45 : * rt_mutex_lock_nested - lock a rt_mutex
46 : *
47 : * @lock: the rt_mutex to be locked
48 : * @subclass: the lockdep subclass
49 : */
50 : void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
51 : {
52 : __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
53 : }
54 : EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
55 :
56 : void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
57 : {
58 : __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
59 : }
60 : EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
61 :
62 : #else /* !CONFIG_DEBUG_LOCK_ALLOC */
63 :
64 : /**
65 : * rt_mutex_lock - lock a rt_mutex
66 : *
67 : * @lock: the rt_mutex to be locked
68 : */
69 0 : void __sched rt_mutex_lock(struct rt_mutex *lock)
70 : {
71 0 : __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
72 0 : }
73 : EXPORT_SYMBOL_GPL(rt_mutex_lock);
74 : #endif
75 :
76 : /**
77 : * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
78 : *
79 : * @lock: the rt_mutex to be locked
80 : *
81 : * Returns:
82 : * 0 on success
83 : * -EINTR when interrupted by a signal
84 : */
85 0 : int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
86 : {
87 0 : return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
88 : }
89 : EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
90 :
91 : /**
92 : * rt_mutex_lock_killable - lock a rt_mutex killable
93 : *
94 : * @lock: the rt_mutex to be locked
95 : *
96 : * Returns:
97 : * 0 on success
98 : * -EINTR when interrupted by a signal
99 : */
100 0 : int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
101 : {
102 0 : return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
103 : }
104 : EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
105 :
106 : /**
107 : * rt_mutex_trylock - try to lock a rt_mutex
108 : *
109 : * @lock: the rt_mutex to be locked
110 : *
111 : * This function can only be called in thread context. It's safe to call it
112 : * from atomic regions, but not from hard or soft interrupt context.
113 : *
114 : * Returns:
115 : * 1 on success
116 : * 0 on contention
117 : */
118 0 : int __sched rt_mutex_trylock(struct rt_mutex *lock)
119 : {
120 : int ret;
121 :
122 : if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
123 : return 0;
124 :
125 0 : ret = __rt_mutex_trylock(&lock->rtmutex);
126 : if (ret)
127 : mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
128 :
129 : return ret;
130 : }
131 : EXPORT_SYMBOL_GPL(rt_mutex_trylock);
132 :
133 : /**
134 : * rt_mutex_unlock - unlock a rt_mutex
135 : *
136 : * @lock: the rt_mutex to be unlocked
137 : */
138 0 : void __sched rt_mutex_unlock(struct rt_mutex *lock)
139 : {
140 : mutex_release(&lock->dep_map, _RET_IP_);
141 0 : __rt_mutex_unlock(&lock->rtmutex);
142 0 : }
143 : EXPORT_SYMBOL_GPL(rt_mutex_unlock);
144 :
145 : /*
146 : * Futex variants, must not use fastpath.
147 : */
148 0 : int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
149 : {
150 0 : return rt_mutex_slowtrylock(lock);
151 : }
152 :
153 0 : int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
154 : {
155 0 : return __rt_mutex_slowtrylock(lock);
156 : }
157 :
158 : /**
159 : * __rt_mutex_futex_unlock - Futex variant, that since futex variants
160 : * do not use the fast-path, can be simple and will not need to retry.
161 : *
162 : * @lock: The rt_mutex to be unlocked
163 : * @wqh: The wake queue head from which to get the next lock waiter
164 : */
165 0 : bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
166 : struct rt_wake_q_head *wqh)
167 : {
168 : lockdep_assert_held(&lock->wait_lock);
169 :
170 0 : debug_rt_mutex_unlock(lock);
171 :
172 0 : if (!rt_mutex_has_waiters(lock)) {
173 0 : lock->owner = NULL;
174 0 : return false; /* done */
175 : }
176 :
177 : /*
178 : * We've already deboosted, mark_wakeup_next_waiter() will
179 : * retain preempt_disabled when we drop the wait_lock, to
180 : * avoid inversion prior to the wakeup. preempt_disable()
181 : * therein pairs with rt_mutex_postunlock().
182 : */
183 0 : mark_wakeup_next_waiter(wqh, lock);
184 :
185 0 : return true; /* call postunlock() */
186 : }
187 :
188 0 : void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
189 : {
190 0 : DEFINE_RT_WAKE_Q(wqh);
191 : unsigned long flags;
192 : bool postunlock;
193 :
194 0 : raw_spin_lock_irqsave(&lock->wait_lock, flags);
195 0 : postunlock = __rt_mutex_futex_unlock(lock, &wqh);
196 0 : raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
197 :
198 0 : if (postunlock)
199 : rt_mutex_postunlock(&wqh);
200 0 : }
201 :
202 : /**
203 : * __rt_mutex_init - initialize the rt_mutex
204 : *
205 : * @lock: The rt_mutex to be initialized
206 : * @name: The lock name used for debugging
207 : * @key: The lock class key used for debugging
208 : *
209 : * Initialize the rt_mutex to unlocked state.
210 : *
211 : * Initializing of a locked rt_mutex is not allowed
212 : */
213 0 : void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
214 : struct lock_class_key *key)
215 : {
216 0 : debug_check_no_locks_freed((void *)lock, sizeof(*lock));
217 0 : __rt_mutex_base_init(&lock->rtmutex);
218 : lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
219 0 : }
220 : EXPORT_SYMBOL_GPL(__rt_mutex_init);
221 :
222 : /**
223 : * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
224 : * proxy owner
225 : *
226 : * @lock: the rt_mutex to be locked
227 : * @proxy_owner:the task to set as owner
228 : *
229 : * No locking. Caller has to do serializing itself
230 : *
231 : * Special API call for PI-futex support. This initializes the rtmutex and
232 : * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
233 : * possible at this point because the pi_state which contains the rtmutex
234 : * is not yet visible to other tasks.
235 : */
236 0 : void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
237 : struct task_struct *proxy_owner)
238 : {
239 : static struct lock_class_key pi_futex_key;
240 :
241 0 : __rt_mutex_base_init(lock);
242 : /*
243 : * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
244 : * and rtmutex based. That causes a lockdep false positive, because
245 : * some of the futex functions invoke spin_unlock(&hb->lock) with
246 : * the wait_lock of the rtmutex associated to the pi_futex held.
247 : * spin_unlock() in turn takes wait_lock of the rtmutex on which
248 : * the spinlock is based, which makes lockdep notice a lock
249 : * recursion. Give the futex/rtmutex wait_lock a separate key.
250 : */
251 : lockdep_set_class(&lock->wait_lock, &pi_futex_key);
252 0 : rt_mutex_set_owner(lock, proxy_owner);
253 0 : }
254 :
255 : /**
256 : * rt_mutex_proxy_unlock - release a lock on behalf of owner
257 : *
258 : * @lock: the rt_mutex to be locked
259 : *
260 : * No locking. Caller has to do serializing itself
261 : *
262 : * Special API call for PI-futex support. This just cleans up the rtmutex
263 : * (debugging) state. Concurrent operations on this rt_mutex are not
264 : * possible because it belongs to the pi_state which is about to be freed
265 : * and it is not longer visible to other tasks.
266 : */
267 0 : void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
268 : {
269 0 : debug_rt_mutex_proxy_unlock(lock);
270 0 : rt_mutex_clear_owner(lock);
271 0 : }
272 :
273 : /**
274 : * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
275 : * @lock: the rt_mutex to take
276 : * @waiter: the pre-initialized rt_mutex_waiter
277 : * @task: the task to prepare
278 : *
279 : * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
280 : * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
281 : *
282 : * NOTE: does _NOT_ remove the @waiter on failure; must either call
283 : * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
284 : *
285 : * Returns:
286 : * 0 - task blocked on lock
287 : * 1 - acquired the lock for task, caller should wake it up
288 : * <0 - error
289 : *
290 : * Special API call for PI-futex support.
291 : */
292 0 : int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
293 : struct rt_mutex_waiter *waiter,
294 : struct task_struct *task)
295 : {
296 : int ret;
297 :
298 : lockdep_assert_held(&lock->wait_lock);
299 :
300 0 : if (try_to_take_rt_mutex(lock, task, NULL))
301 : return 1;
302 :
303 : /* We enforce deadlock detection for futexes */
304 0 : ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
305 : RT_MUTEX_FULL_CHAINWALK);
306 :
307 0 : if (ret && !rt_mutex_owner(lock)) {
308 : /*
309 : * Reset the return value. We might have
310 : * returned with -EDEADLK and the owner
311 : * released the lock while we were walking the
312 : * pi chain. Let the waiter sort it out.
313 : */
314 0 : ret = 0;
315 : }
316 :
317 : return ret;
318 : }
319 :
320 : /**
321 : * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
322 : * @lock: the rt_mutex to take
323 : * @waiter: the pre-initialized rt_mutex_waiter
324 : * @task: the task to prepare
325 : *
326 : * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
327 : * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
328 : *
329 : * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
330 : * on failure.
331 : *
332 : * Returns:
333 : * 0 - task blocked on lock
334 : * 1 - acquired the lock for task, caller should wake it up
335 : * <0 - error
336 : *
337 : * Special API call for PI-futex support.
338 : */
339 0 : int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
340 : struct rt_mutex_waiter *waiter,
341 : struct task_struct *task)
342 : {
343 : int ret;
344 :
345 0 : raw_spin_lock_irq(&lock->wait_lock);
346 0 : ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
347 0 : if (unlikely(ret))
348 0 : remove_waiter(lock, waiter);
349 0 : raw_spin_unlock_irq(&lock->wait_lock);
350 :
351 0 : return ret;
352 : }
353 :
354 : /**
355 : * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
356 : * @lock: the rt_mutex we were woken on
357 : * @to: the timeout, null if none. hrtimer should already have
358 : * been started.
359 : * @waiter: the pre-initialized rt_mutex_waiter
360 : *
361 : * Wait for the lock acquisition started on our behalf by
362 : * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
363 : * rt_mutex_cleanup_proxy_lock().
364 : *
365 : * Returns:
366 : * 0 - success
367 : * <0 - error, one of -EINTR, -ETIMEDOUT
368 : *
369 : * Special API call for PI-futex support
370 : */
371 0 : int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
372 : struct hrtimer_sleeper *to,
373 : struct rt_mutex_waiter *waiter)
374 : {
375 : int ret;
376 :
377 0 : raw_spin_lock_irq(&lock->wait_lock);
378 : /* sleep on the mutex */
379 0 : set_current_state(TASK_INTERRUPTIBLE);
380 0 : ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
381 : /*
382 : * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
383 : * have to fix that up.
384 : */
385 0 : fixup_rt_mutex_waiters(lock, true);
386 0 : raw_spin_unlock_irq(&lock->wait_lock);
387 :
388 0 : return ret;
389 : }
390 :
391 : /**
392 : * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
393 : * @lock: the rt_mutex we were woken on
394 : * @waiter: the pre-initialized rt_mutex_waiter
395 : *
396 : * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
397 : * rt_mutex_wait_proxy_lock().
398 : *
399 : * Unless we acquired the lock; we're still enqueued on the wait-list and can
400 : * in fact still be granted ownership until we're removed. Therefore we can
401 : * find we are in fact the owner and must disregard the
402 : * rt_mutex_wait_proxy_lock() failure.
403 : *
404 : * Returns:
405 : * true - did the cleanup, we done.
406 : * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
407 : * caller should disregards its return value.
408 : *
409 : * Special API call for PI-futex support
410 : */
411 0 : bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
412 : struct rt_mutex_waiter *waiter)
413 : {
414 0 : bool cleanup = false;
415 :
416 0 : raw_spin_lock_irq(&lock->wait_lock);
417 : /*
418 : * Do an unconditional try-lock, this deals with the lock stealing
419 : * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
420 : * sets a NULL owner.
421 : *
422 : * We're not interested in the return value, because the subsequent
423 : * test on rt_mutex_owner() will infer that. If the trylock succeeded,
424 : * we will own the lock and it will have removed the waiter. If we
425 : * failed the trylock, we're still not owner and we need to remove
426 : * ourselves.
427 : */
428 0 : try_to_take_rt_mutex(lock, current, waiter);
429 : /*
430 : * Unless we're the owner; we're still enqueued on the wait_list.
431 : * So check if we became owner, if not, take us off the wait_list.
432 : */
433 0 : if (rt_mutex_owner(lock) != current) {
434 0 : remove_waiter(lock, waiter);
435 0 : cleanup = true;
436 : }
437 : /*
438 : * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
439 : * have to fix that up.
440 : */
441 0 : fixup_rt_mutex_waiters(lock, false);
442 :
443 0 : raw_spin_unlock_irq(&lock->wait_lock);
444 :
445 0 : return cleanup;
446 : }
447 :
448 : /*
449 : * Recheck the pi chain, in case we got a priority setting
450 : *
451 : * Called from sched_setscheduler
452 : */
453 0 : void __sched rt_mutex_adjust_pi(struct task_struct *task)
454 : {
455 : struct rt_mutex_waiter *waiter;
456 : struct rt_mutex_base *next_lock;
457 : unsigned long flags;
458 :
459 0 : raw_spin_lock_irqsave(&task->pi_lock, flags);
460 :
461 0 : waiter = task->pi_blocked_on;
462 0 : if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
463 0 : raw_spin_unlock_irqrestore(&task->pi_lock, flags);
464 0 : return;
465 : }
466 0 : next_lock = waiter->lock;
467 0 : raw_spin_unlock_irqrestore(&task->pi_lock, flags);
468 :
469 : /* gets dropped in rt_mutex_adjust_prio_chain()! */
470 0 : get_task_struct(task);
471 :
472 0 : rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
473 : next_lock, NULL, task);
474 : }
475 :
476 : /*
477 : * Performs the wakeup of the top-waiter and re-enables preemption.
478 : */
479 0 : void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
480 : {
481 0 : rt_mutex_wake_up_q(wqh);
482 0 : }
483 :
484 : #ifdef CONFIG_DEBUG_RT_MUTEXES
485 : void rt_mutex_debug_task_free(struct task_struct *task)
486 : {
487 : DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
488 : DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
489 : }
490 : #endif
491 :
492 : #ifdef CONFIG_PREEMPT_RT
493 : /* Mutexes */
494 : void __mutex_rt_init(struct mutex *mutex, const char *name,
495 : struct lock_class_key *key)
496 : {
497 : debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
498 : lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
499 : }
500 : EXPORT_SYMBOL(__mutex_rt_init);
501 :
502 : static __always_inline int __mutex_lock_common(struct mutex *lock,
503 : unsigned int state,
504 : unsigned int subclass,
505 : struct lockdep_map *nest_lock,
506 : unsigned long ip)
507 : {
508 : int ret;
509 :
510 : might_sleep();
511 : mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
512 : ret = __rt_mutex_lock(&lock->rtmutex, state);
513 : if (ret)
514 : mutex_release(&lock->dep_map, ip);
515 : else
516 : lock_acquired(&lock->dep_map, ip);
517 : return ret;
518 : }
519 :
520 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
521 : void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
522 : {
523 : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
524 : }
525 : EXPORT_SYMBOL_GPL(mutex_lock_nested);
526 :
527 : void __sched _mutex_lock_nest_lock(struct mutex *lock,
528 : struct lockdep_map *nest_lock)
529 : {
530 : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
531 : }
532 : EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
533 :
534 : int __sched mutex_lock_interruptible_nested(struct mutex *lock,
535 : unsigned int subclass)
536 : {
537 : return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
538 : }
539 : EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
540 :
541 : int __sched mutex_lock_killable_nested(struct mutex *lock,
542 : unsigned int subclass)
543 : {
544 : return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
545 : }
546 : EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
547 :
548 : void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
549 : {
550 : int token;
551 :
552 : might_sleep();
553 :
554 : token = io_schedule_prepare();
555 : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
556 : io_schedule_finish(token);
557 : }
558 : EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
559 :
560 : #else /* CONFIG_DEBUG_LOCK_ALLOC */
561 :
562 : void __sched mutex_lock(struct mutex *lock)
563 : {
564 : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
565 : }
566 : EXPORT_SYMBOL(mutex_lock);
567 :
568 : int __sched mutex_lock_interruptible(struct mutex *lock)
569 : {
570 : return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
571 : }
572 : EXPORT_SYMBOL(mutex_lock_interruptible);
573 :
574 : int __sched mutex_lock_killable(struct mutex *lock)
575 : {
576 : return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
577 : }
578 : EXPORT_SYMBOL(mutex_lock_killable);
579 :
580 : void __sched mutex_lock_io(struct mutex *lock)
581 : {
582 : int token = io_schedule_prepare();
583 :
584 : __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
585 : io_schedule_finish(token);
586 : }
587 : EXPORT_SYMBOL(mutex_lock_io);
588 : #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
589 :
590 : int __sched mutex_trylock(struct mutex *lock)
591 : {
592 : int ret;
593 :
594 : if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
595 : return 0;
596 :
597 : ret = __rt_mutex_trylock(&lock->rtmutex);
598 : if (ret)
599 : mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
600 :
601 : return ret;
602 : }
603 : EXPORT_SYMBOL(mutex_trylock);
604 :
605 : void __sched mutex_unlock(struct mutex *lock)
606 : {
607 : mutex_release(&lock->dep_map, _RET_IP_);
608 : __rt_mutex_unlock(&lock->rtmutex);
609 : }
610 : EXPORT_SYMBOL(mutex_unlock);
611 :
612 : #endif /* CONFIG_PREEMPT_RT */
|