Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * kernel/power/main.c - PM subsystem core functionality.
4 : *
5 : * Copyright (c) 2003 Patrick Mochel
6 : * Copyright (c) 2003 Open Source Development Lab
7 : */
8 :
9 : #include <linux/acpi.h>
10 : #include <linux/export.h>
11 : #include <linux/kobject.h>
12 : #include <linux/string.h>
13 : #include <linux/pm-trace.h>
14 : #include <linux/workqueue.h>
15 : #include <linux/debugfs.h>
16 : #include <linux/seq_file.h>
17 : #include <linux/suspend.h>
18 : #include <linux/syscalls.h>
19 : #include <linux/pm_runtime.h>
20 :
21 : #include "power.h"
22 :
23 : #ifdef CONFIG_PM_SLEEP
24 :
25 1 : unsigned int lock_system_sleep(void)
26 : {
27 1 : unsigned int flags = current->flags;
28 1 : current->flags |= PF_NOFREEZE;
29 1 : mutex_lock(&system_transition_mutex);
30 1 : return flags;
31 : }
32 : EXPORT_SYMBOL_GPL(lock_system_sleep);
33 :
34 1 : void unlock_system_sleep(unsigned int flags)
35 : {
36 : /*
37 : * Don't use freezer_count() because we don't want the call to
38 : * try_to_freeze() here.
39 : *
40 : * Reason:
41 : * Fundamentally, we just don't need it, because freezing condition
42 : * doesn't come into effect until we release the
43 : * system_transition_mutex lock, since the freezer always works with
44 : * system_transition_mutex held.
45 : *
46 : * More importantly, in the case of hibernation,
47 : * unlock_system_sleep() gets called in snapshot_read() and
48 : * snapshot_write() when the freezing condition is still in effect.
49 : * Which means, if we use try_to_freeze() here, it would make them
50 : * enter the refrigerator, thus causing hibernation to lockup.
51 : */
52 1 : if (!(flags & PF_NOFREEZE))
53 1 : current->flags &= ~PF_NOFREEZE;
54 1 : mutex_unlock(&system_transition_mutex);
55 1 : }
56 : EXPORT_SYMBOL_GPL(unlock_system_sleep);
57 :
58 0 : void ksys_sync_helper(void)
59 : {
60 : ktime_t start;
61 : long elapsed_msecs;
62 :
63 0 : start = ktime_get();
64 0 : ksys_sync();
65 0 : elapsed_msecs = ktime_to_ms(ktime_sub(ktime_get(), start));
66 0 : pr_info("Filesystems sync: %ld.%03ld seconds\n",
67 : elapsed_msecs / MSEC_PER_SEC, elapsed_msecs % MSEC_PER_SEC);
68 0 : }
69 : EXPORT_SYMBOL_GPL(ksys_sync_helper);
70 :
71 : /* Routines for PM-transition notifications */
72 :
73 : static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
74 :
75 2 : int register_pm_notifier(struct notifier_block *nb)
76 : {
77 2 : return blocking_notifier_chain_register(&pm_chain_head, nb);
78 : }
79 : EXPORT_SYMBOL_GPL(register_pm_notifier);
80 :
81 0 : int unregister_pm_notifier(struct notifier_block *nb)
82 : {
83 0 : return blocking_notifier_chain_unregister(&pm_chain_head, nb);
84 : }
85 : EXPORT_SYMBOL_GPL(unregister_pm_notifier);
86 :
87 0 : void pm_report_hw_sleep_time(u64 t)
88 : {
89 0 : suspend_stats.last_hw_sleep = t;
90 0 : suspend_stats.total_hw_sleep += t;
91 0 : }
92 : EXPORT_SYMBOL_GPL(pm_report_hw_sleep_time);
93 :
94 0 : void pm_report_max_hw_sleep(u64 t)
95 : {
96 0 : suspend_stats.max_hw_sleep = t;
97 0 : }
98 : EXPORT_SYMBOL_GPL(pm_report_max_hw_sleep);
99 :
100 0 : int pm_notifier_call_chain_robust(unsigned long val_up, unsigned long val_down)
101 : {
102 : int ret;
103 :
104 0 : ret = blocking_notifier_call_chain_robust(&pm_chain_head, val_up, val_down, NULL);
105 :
106 0 : return notifier_to_errno(ret);
107 : }
108 :
109 0 : int pm_notifier_call_chain(unsigned long val)
110 : {
111 0 : return blocking_notifier_call_chain(&pm_chain_head, val, NULL);
112 : }
113 :
114 : /* If set, devices may be suspended and resumed asynchronously. */
115 : int pm_async_enabled = 1;
116 :
117 0 : static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
118 : char *buf)
119 : {
120 0 : return sprintf(buf, "%d\n", pm_async_enabled);
121 : }
122 :
123 0 : static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
124 : const char *buf, size_t n)
125 : {
126 : unsigned long val;
127 :
128 0 : if (kstrtoul(buf, 10, &val))
129 : return -EINVAL;
130 :
131 0 : if (val > 1)
132 : return -EINVAL;
133 :
134 0 : pm_async_enabled = val;
135 0 : return n;
136 : }
137 :
138 : power_attr(pm_async);
139 :
140 : #ifdef CONFIG_SUSPEND
141 0 : static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
142 : char *buf)
143 : {
144 0 : char *s = buf;
145 : suspend_state_t i;
146 :
147 0 : for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++) {
148 : if (i >= PM_SUSPEND_MEM && cxl_mem_active())
149 : continue;
150 0 : if (mem_sleep_states[i]) {
151 0 : const char *label = mem_sleep_states[i];
152 :
153 0 : if (mem_sleep_current == i)
154 0 : s += sprintf(s, "[%s] ", label);
155 : else
156 0 : s += sprintf(s, "%s ", label);
157 : }
158 : }
159 :
160 : /* Convert the last space to a newline if needed. */
161 0 : if (s != buf)
162 0 : *(s-1) = '\n';
163 :
164 0 : return (s - buf);
165 : }
166 :
167 0 : static suspend_state_t decode_suspend_state(const char *buf, size_t n)
168 : {
169 : suspend_state_t state;
170 : char *p;
171 : int len;
172 :
173 0 : p = memchr(buf, '\n', n);
174 0 : len = p ? p - buf : n;
175 :
176 0 : for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
177 0 : const char *label = mem_sleep_states[state];
178 :
179 0 : if (label && len == strlen(label) && !strncmp(buf, label, len))
180 : return state;
181 : }
182 :
183 : return PM_SUSPEND_ON;
184 : }
185 :
186 0 : static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
187 : const char *buf, size_t n)
188 : {
189 : suspend_state_t state;
190 : int error;
191 :
192 0 : error = pm_autosleep_lock();
193 : if (error)
194 : return error;
195 :
196 : if (pm_autosleep_state() > PM_SUSPEND_ON) {
197 : error = -EBUSY;
198 : goto out;
199 : }
200 :
201 0 : state = decode_suspend_state(buf, n);
202 0 : if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
203 0 : mem_sleep_current = state;
204 : else
205 : error = -EINVAL;
206 :
207 : out:
208 : pm_autosleep_unlock();
209 0 : return error ? error : n;
210 : }
211 :
212 : power_attr(mem_sleep);
213 :
214 : /*
215 : * sync_on_suspend: invoke ksys_sync_helper() before suspend.
216 : *
217 : * show() returns whether ksys_sync_helper() is invoked before suspend.
218 : * store() accepts 0 or 1. 0 disables ksys_sync_helper() and 1 enables it.
219 : */
220 : bool sync_on_suspend_enabled = !IS_ENABLED(CONFIG_SUSPEND_SKIP_SYNC);
221 :
222 0 : static ssize_t sync_on_suspend_show(struct kobject *kobj,
223 : struct kobj_attribute *attr, char *buf)
224 : {
225 0 : return sprintf(buf, "%d\n", sync_on_suspend_enabled);
226 : }
227 :
228 0 : static ssize_t sync_on_suspend_store(struct kobject *kobj,
229 : struct kobj_attribute *attr,
230 : const char *buf, size_t n)
231 : {
232 : unsigned long val;
233 :
234 0 : if (kstrtoul(buf, 10, &val))
235 : return -EINVAL;
236 :
237 0 : if (val > 1)
238 : return -EINVAL;
239 :
240 0 : sync_on_suspend_enabled = !!val;
241 0 : return n;
242 : }
243 :
244 : power_attr(sync_on_suspend);
245 : #endif /* CONFIG_SUSPEND */
246 :
247 : #ifdef CONFIG_PM_SLEEP_DEBUG
248 : int pm_test_level = TEST_NONE;
249 :
250 : static const char * const pm_tests[__TEST_AFTER_LAST] = {
251 : [TEST_NONE] = "none",
252 : [TEST_CORE] = "core",
253 : [TEST_CPUS] = "processors",
254 : [TEST_PLATFORM] = "platform",
255 : [TEST_DEVICES] = "devices",
256 : [TEST_FREEZER] = "freezer",
257 : };
258 :
259 : static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
260 : char *buf)
261 : {
262 : char *s = buf;
263 : int level;
264 :
265 : for (level = TEST_FIRST; level <= TEST_MAX; level++)
266 : if (pm_tests[level]) {
267 : if (level == pm_test_level)
268 : s += sprintf(s, "[%s] ", pm_tests[level]);
269 : else
270 : s += sprintf(s, "%s ", pm_tests[level]);
271 : }
272 :
273 : if (s != buf)
274 : /* convert the last space to a newline */
275 : *(s-1) = '\n';
276 :
277 : return (s - buf);
278 : }
279 :
280 : static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
281 : const char *buf, size_t n)
282 : {
283 : unsigned int sleep_flags;
284 : const char * const *s;
285 : int error = -EINVAL;
286 : int level;
287 : char *p;
288 : int len;
289 :
290 : p = memchr(buf, '\n', n);
291 : len = p ? p - buf : n;
292 :
293 : sleep_flags = lock_system_sleep();
294 :
295 : level = TEST_FIRST;
296 : for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
297 : if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
298 : pm_test_level = level;
299 : error = 0;
300 : break;
301 : }
302 :
303 : unlock_system_sleep(sleep_flags);
304 :
305 : return error ? error : n;
306 : }
307 :
308 : power_attr(pm_test);
309 : #endif /* CONFIG_PM_SLEEP_DEBUG */
310 :
311 : static char *suspend_step_name(enum suspend_stat_step step)
312 : {
313 : switch (step) {
314 : case SUSPEND_FREEZE:
315 : return "freeze";
316 : case SUSPEND_PREPARE:
317 : return "prepare";
318 : case SUSPEND_SUSPEND:
319 : return "suspend";
320 : case SUSPEND_SUSPEND_NOIRQ:
321 : return "suspend_noirq";
322 : case SUSPEND_RESUME_NOIRQ:
323 : return "resume_noirq";
324 : case SUSPEND_RESUME:
325 : return "resume";
326 : default:
327 : return "";
328 : }
329 : }
330 :
331 : #define suspend_attr(_name, format_str) \
332 : static ssize_t _name##_show(struct kobject *kobj, \
333 : struct kobj_attribute *attr, char *buf) \
334 : { \
335 : return sprintf(buf, format_str, suspend_stats._name); \
336 : } \
337 : static struct kobj_attribute _name = __ATTR_RO(_name)
338 :
339 0 : suspend_attr(success, "%d\n");
340 0 : suspend_attr(fail, "%d\n");
341 0 : suspend_attr(failed_freeze, "%d\n");
342 0 : suspend_attr(failed_prepare, "%d\n");
343 0 : suspend_attr(failed_suspend, "%d\n");
344 0 : suspend_attr(failed_suspend_late, "%d\n");
345 0 : suspend_attr(failed_suspend_noirq, "%d\n");
346 0 : suspend_attr(failed_resume, "%d\n");
347 0 : suspend_attr(failed_resume_early, "%d\n");
348 0 : suspend_attr(failed_resume_noirq, "%d\n");
349 0 : suspend_attr(last_hw_sleep, "%llu\n");
350 0 : suspend_attr(total_hw_sleep, "%llu\n");
351 0 : suspend_attr(max_hw_sleep, "%llu\n");
352 :
353 0 : static ssize_t last_failed_dev_show(struct kobject *kobj,
354 : struct kobj_attribute *attr, char *buf)
355 : {
356 : int index;
357 0 : char *last_failed_dev = NULL;
358 :
359 0 : index = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
360 0 : index %= REC_FAILED_NUM;
361 0 : last_failed_dev = suspend_stats.failed_devs[index];
362 :
363 0 : return sprintf(buf, "%s\n", last_failed_dev);
364 : }
365 : static struct kobj_attribute last_failed_dev = __ATTR_RO(last_failed_dev);
366 :
367 0 : static ssize_t last_failed_errno_show(struct kobject *kobj,
368 : struct kobj_attribute *attr, char *buf)
369 : {
370 : int index;
371 : int last_failed_errno;
372 :
373 0 : index = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
374 0 : index %= REC_FAILED_NUM;
375 0 : last_failed_errno = suspend_stats.errno[index];
376 :
377 0 : return sprintf(buf, "%d\n", last_failed_errno);
378 : }
379 : static struct kobj_attribute last_failed_errno = __ATTR_RO(last_failed_errno);
380 :
381 0 : static ssize_t last_failed_step_show(struct kobject *kobj,
382 : struct kobj_attribute *attr, char *buf)
383 : {
384 : int index;
385 : enum suspend_stat_step step;
386 0 : char *last_failed_step = NULL;
387 :
388 0 : index = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
389 0 : index %= REC_FAILED_NUM;
390 0 : step = suspend_stats.failed_steps[index];
391 0 : last_failed_step = suspend_step_name(step);
392 :
393 0 : return sprintf(buf, "%s\n", last_failed_step);
394 : }
395 : static struct kobj_attribute last_failed_step = __ATTR_RO(last_failed_step);
396 :
397 : static struct attribute *suspend_attrs[] = {
398 : &success.attr,
399 : &fail.attr,
400 : &failed_freeze.attr,
401 : &failed_prepare.attr,
402 : &failed_suspend.attr,
403 : &failed_suspend_late.attr,
404 : &failed_suspend_noirq.attr,
405 : &failed_resume.attr,
406 : &failed_resume_early.attr,
407 : &failed_resume_noirq.attr,
408 : &last_failed_dev.attr,
409 : &last_failed_errno.attr,
410 : &last_failed_step.attr,
411 : &last_hw_sleep.attr,
412 : &total_hw_sleep.attr,
413 : &max_hw_sleep.attr,
414 : NULL,
415 : };
416 :
417 16 : static umode_t suspend_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
418 : {
419 16 : if (attr != &last_hw_sleep.attr &&
420 14 : attr != &total_hw_sleep.attr &&
421 : attr != &max_hw_sleep.attr)
422 : return 0444;
423 :
424 : #ifdef CONFIG_ACPI
425 : if (acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)
426 : return 0444;
427 : #endif
428 3 : return 0;
429 : }
430 :
431 : static const struct attribute_group suspend_attr_group = {
432 : .name = "suspend_stats",
433 : .attrs = suspend_attrs,
434 : .is_visible = suspend_attr_is_visible,
435 : };
436 :
437 : #ifdef CONFIG_DEBUG_FS
438 : static int suspend_stats_show(struct seq_file *s, void *unused)
439 : {
440 : int i, index, last_dev, last_errno, last_step;
441 :
442 : last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
443 : last_dev %= REC_FAILED_NUM;
444 : last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
445 : last_errno %= REC_FAILED_NUM;
446 : last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
447 : last_step %= REC_FAILED_NUM;
448 : seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
449 : "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
450 : "success", suspend_stats.success,
451 : "fail", suspend_stats.fail,
452 : "failed_freeze", suspend_stats.failed_freeze,
453 : "failed_prepare", suspend_stats.failed_prepare,
454 : "failed_suspend", suspend_stats.failed_suspend,
455 : "failed_suspend_late",
456 : suspend_stats.failed_suspend_late,
457 : "failed_suspend_noirq",
458 : suspend_stats.failed_suspend_noirq,
459 : "failed_resume", suspend_stats.failed_resume,
460 : "failed_resume_early",
461 : suspend_stats.failed_resume_early,
462 : "failed_resume_noirq",
463 : suspend_stats.failed_resume_noirq);
464 : seq_printf(s, "failures:\n last_failed_dev:\t%-s\n",
465 : suspend_stats.failed_devs[last_dev]);
466 : for (i = 1; i < REC_FAILED_NUM; i++) {
467 : index = last_dev + REC_FAILED_NUM - i;
468 : index %= REC_FAILED_NUM;
469 : seq_printf(s, "\t\t\t%-s\n",
470 : suspend_stats.failed_devs[index]);
471 : }
472 : seq_printf(s, " last_failed_errno:\t%-d\n",
473 : suspend_stats.errno[last_errno]);
474 : for (i = 1; i < REC_FAILED_NUM; i++) {
475 : index = last_errno + REC_FAILED_NUM - i;
476 : index %= REC_FAILED_NUM;
477 : seq_printf(s, "\t\t\t%-d\n",
478 : suspend_stats.errno[index]);
479 : }
480 : seq_printf(s, " last_failed_step:\t%-s\n",
481 : suspend_step_name(
482 : suspend_stats.failed_steps[last_step]));
483 : for (i = 1; i < REC_FAILED_NUM; i++) {
484 : index = last_step + REC_FAILED_NUM - i;
485 : index %= REC_FAILED_NUM;
486 : seq_printf(s, "\t\t\t%-s\n",
487 : suspend_step_name(
488 : suspend_stats.failed_steps[index]));
489 : }
490 :
491 : return 0;
492 : }
493 : DEFINE_SHOW_ATTRIBUTE(suspend_stats);
494 :
495 : static int __init pm_debugfs_init(void)
496 : {
497 : debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
498 : NULL, NULL, &suspend_stats_fops);
499 : return 0;
500 : }
501 :
502 : late_initcall(pm_debugfs_init);
503 : #endif /* CONFIG_DEBUG_FS */
504 :
505 : #endif /* CONFIG_PM_SLEEP */
506 :
507 : #ifdef CONFIG_PM_SLEEP_DEBUG
508 : /*
509 : * pm_print_times: print time taken by devices to suspend and resume.
510 : *
511 : * show() returns whether printing of suspend and resume times is enabled.
512 : * store() accepts 0 or 1. 0 disables printing and 1 enables it.
513 : */
514 : bool pm_print_times_enabled;
515 :
516 : static ssize_t pm_print_times_show(struct kobject *kobj,
517 : struct kobj_attribute *attr, char *buf)
518 : {
519 : return sprintf(buf, "%d\n", pm_print_times_enabled);
520 : }
521 :
522 : static ssize_t pm_print_times_store(struct kobject *kobj,
523 : struct kobj_attribute *attr,
524 : const char *buf, size_t n)
525 : {
526 : unsigned long val;
527 :
528 : if (kstrtoul(buf, 10, &val))
529 : return -EINVAL;
530 :
531 : if (val > 1)
532 : return -EINVAL;
533 :
534 : pm_print_times_enabled = !!val;
535 : return n;
536 : }
537 :
538 : power_attr(pm_print_times);
539 :
540 : static inline void pm_print_times_init(void)
541 : {
542 : pm_print_times_enabled = !!initcall_debug;
543 : }
544 :
545 : static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
546 : struct kobj_attribute *attr,
547 : char *buf)
548 : {
549 : if (!pm_wakeup_irq())
550 : return -ENODATA;
551 :
552 : return sprintf(buf, "%u\n", pm_wakeup_irq());
553 : }
554 :
555 : power_attr_ro(pm_wakeup_irq);
556 :
557 : bool pm_debug_messages_on __read_mostly;
558 :
559 : static ssize_t pm_debug_messages_show(struct kobject *kobj,
560 : struct kobj_attribute *attr, char *buf)
561 : {
562 : return sprintf(buf, "%d\n", pm_debug_messages_on);
563 : }
564 :
565 : static ssize_t pm_debug_messages_store(struct kobject *kobj,
566 : struct kobj_attribute *attr,
567 : const char *buf, size_t n)
568 : {
569 : unsigned long val;
570 :
571 : if (kstrtoul(buf, 10, &val))
572 : return -EINVAL;
573 :
574 : if (val > 1)
575 : return -EINVAL;
576 :
577 : pm_debug_messages_on = !!val;
578 : return n;
579 : }
580 :
581 : power_attr(pm_debug_messages);
582 :
583 : static int __init pm_debug_messages_setup(char *str)
584 : {
585 : pm_debug_messages_on = true;
586 : return 1;
587 : }
588 : __setup("pm_debug_messages", pm_debug_messages_setup);
589 :
590 : #else /* !CONFIG_PM_SLEEP_DEBUG */
591 : static inline void pm_print_times_init(void) {}
592 : #endif /* CONFIG_PM_SLEEP_DEBUG */
593 :
594 : struct kobject *power_kobj;
595 :
596 : /*
597 : * state - control system sleep states.
598 : *
599 : * show() returns available sleep state labels, which may be "mem", "standby",
600 : * "freeze" and "disk" (hibernation).
601 : * See Documentation/admin-guide/pm/sleep-states.rst for a description of
602 : * what they mean.
603 : *
604 : * store() accepts one of those strings, translates it into the proper
605 : * enumerated value, and initiates a suspend transition.
606 : */
607 0 : static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
608 : char *buf)
609 : {
610 0 : char *s = buf;
611 : #ifdef CONFIG_SUSPEND
612 : suspend_state_t i;
613 :
614 0 : for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
615 0 : if (pm_states[i])
616 0 : s += sprintf(s,"%s ", pm_states[i]);
617 :
618 : #endif
619 : if (hibernation_available())
620 : s += sprintf(s, "disk ");
621 0 : if (s != buf)
622 : /* convert the last space to a newline */
623 0 : *(s-1) = '\n';
624 0 : return (s - buf);
625 : }
626 :
627 0 : static suspend_state_t decode_state(const char *buf, size_t n)
628 : {
629 : #ifdef CONFIG_SUSPEND
630 : suspend_state_t state;
631 : #endif
632 : char *p;
633 : int len;
634 :
635 0 : p = memchr(buf, '\n', n);
636 0 : len = p ? p - buf : n;
637 :
638 : /* Check hibernation first. */
639 0 : if (len == 4 && str_has_prefix(buf, "disk"))
640 : return PM_SUSPEND_MAX;
641 :
642 : #ifdef CONFIG_SUSPEND
643 0 : for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
644 0 : const char *label = pm_states[state];
645 :
646 0 : if (label && len == strlen(label) && !strncmp(buf, label, len))
647 : return state;
648 : }
649 : #endif
650 :
651 : return PM_SUSPEND_ON;
652 : }
653 :
654 0 : static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
655 : const char *buf, size_t n)
656 : {
657 : suspend_state_t state;
658 : int error;
659 :
660 0 : error = pm_autosleep_lock();
661 : if (error)
662 : return error;
663 :
664 : if (pm_autosleep_state() > PM_SUSPEND_ON) {
665 : error = -EBUSY;
666 : goto out;
667 : }
668 :
669 0 : state = decode_state(buf, n);
670 0 : if (state < PM_SUSPEND_MAX) {
671 0 : if (state == PM_SUSPEND_MEM)
672 0 : state = mem_sleep_current;
673 :
674 0 : error = pm_suspend(state);
675 0 : } else if (state == PM_SUSPEND_MAX) {
676 : error = hibernate();
677 : } else {
678 0 : error = -EINVAL;
679 : }
680 :
681 : out:
682 : pm_autosleep_unlock();
683 0 : return error ? error : n;
684 : }
685 :
686 : power_attr(state);
687 :
688 : #ifdef CONFIG_PM_SLEEP
689 : /*
690 : * The 'wakeup_count' attribute, along with the functions defined in
691 : * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
692 : * handled in a non-racy way.
693 : *
694 : * If a wakeup event occurs when the system is in a sleep state, it simply is
695 : * woken up. In turn, if an event that would wake the system up from a sleep
696 : * state occurs when it is undergoing a transition to that sleep state, the
697 : * transition should be aborted. Moreover, if such an event occurs when the
698 : * system is in the working state, an attempt to start a transition to the
699 : * given sleep state should fail during certain period after the detection of
700 : * the event. Using the 'state' attribute alone is not sufficient to satisfy
701 : * these requirements, because a wakeup event may occur exactly when 'state'
702 : * is being written to and may be delivered to user space right before it is
703 : * frozen, so the event will remain only partially processed until the system is
704 : * woken up by another event. In particular, it won't cause the transition to
705 : * a sleep state to be aborted.
706 : *
707 : * This difficulty may be overcome if user space uses 'wakeup_count' before
708 : * writing to 'state'. It first should read from 'wakeup_count' and store
709 : * the read value. Then, after carrying out its own preparations for the system
710 : * transition to a sleep state, it should write the stored value to
711 : * 'wakeup_count'. If that fails, at least one wakeup event has occurred since
712 : * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it
713 : * is allowed to write to 'state', but the transition will be aborted if there
714 : * are any wakeup events detected after 'wakeup_count' was written to.
715 : */
716 :
717 0 : static ssize_t wakeup_count_show(struct kobject *kobj,
718 : struct kobj_attribute *attr,
719 : char *buf)
720 : {
721 : unsigned int val;
722 :
723 0 : return pm_get_wakeup_count(&val, true) ?
724 0 : sprintf(buf, "%u\n", val) : -EINTR;
725 : }
726 :
727 0 : static ssize_t wakeup_count_store(struct kobject *kobj,
728 : struct kobj_attribute *attr,
729 : const char *buf, size_t n)
730 : {
731 : unsigned int val;
732 : int error;
733 :
734 0 : error = pm_autosleep_lock();
735 : if (error)
736 : return error;
737 :
738 : if (pm_autosleep_state() > PM_SUSPEND_ON) {
739 : error = -EBUSY;
740 : goto out;
741 : }
742 :
743 0 : error = -EINVAL;
744 0 : if (sscanf(buf, "%u", &val) == 1) {
745 0 : if (pm_save_wakeup_count(val))
746 0 : error = n;
747 : else
748 0 : pm_print_active_wakeup_sources();
749 : }
750 :
751 : out:
752 : pm_autosleep_unlock();
753 0 : return error;
754 : }
755 :
756 : power_attr(wakeup_count);
757 :
758 : #ifdef CONFIG_PM_AUTOSLEEP
759 : static ssize_t autosleep_show(struct kobject *kobj,
760 : struct kobj_attribute *attr,
761 : char *buf)
762 : {
763 : suspend_state_t state = pm_autosleep_state();
764 :
765 : if (state == PM_SUSPEND_ON)
766 : return sprintf(buf, "off\n");
767 :
768 : #ifdef CONFIG_SUSPEND
769 : if (state < PM_SUSPEND_MAX)
770 : return sprintf(buf, "%s\n", pm_states[state] ?
771 : pm_states[state] : "error");
772 : #endif
773 : #ifdef CONFIG_HIBERNATION
774 : return sprintf(buf, "disk\n");
775 : #else
776 : return sprintf(buf, "error");
777 : #endif
778 : }
779 :
780 : static ssize_t autosleep_store(struct kobject *kobj,
781 : struct kobj_attribute *attr,
782 : const char *buf, size_t n)
783 : {
784 : suspend_state_t state = decode_state(buf, n);
785 : int error;
786 :
787 : if (state == PM_SUSPEND_ON
788 : && strcmp(buf, "off") && strcmp(buf, "off\n"))
789 : return -EINVAL;
790 :
791 : if (state == PM_SUSPEND_MEM)
792 : state = mem_sleep_current;
793 :
794 : error = pm_autosleep_set_state(state);
795 : return error ? error : n;
796 : }
797 :
798 : power_attr(autosleep);
799 : #endif /* CONFIG_PM_AUTOSLEEP */
800 :
801 : #ifdef CONFIG_PM_WAKELOCKS
802 : static ssize_t wake_lock_show(struct kobject *kobj,
803 : struct kobj_attribute *attr,
804 : char *buf)
805 : {
806 : return pm_show_wakelocks(buf, true);
807 : }
808 :
809 : static ssize_t wake_lock_store(struct kobject *kobj,
810 : struct kobj_attribute *attr,
811 : const char *buf, size_t n)
812 : {
813 : int error = pm_wake_lock(buf);
814 : return error ? error : n;
815 : }
816 :
817 : power_attr(wake_lock);
818 :
819 : static ssize_t wake_unlock_show(struct kobject *kobj,
820 : struct kobj_attribute *attr,
821 : char *buf)
822 : {
823 : return pm_show_wakelocks(buf, false);
824 : }
825 :
826 : static ssize_t wake_unlock_store(struct kobject *kobj,
827 : struct kobj_attribute *attr,
828 : const char *buf, size_t n)
829 : {
830 : int error = pm_wake_unlock(buf);
831 : return error ? error : n;
832 : }
833 :
834 : power_attr(wake_unlock);
835 :
836 : #endif /* CONFIG_PM_WAKELOCKS */
837 : #endif /* CONFIG_PM_SLEEP */
838 :
839 : #ifdef CONFIG_PM_TRACE
840 : int pm_trace_enabled;
841 :
842 : static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
843 : char *buf)
844 : {
845 : return sprintf(buf, "%d\n", pm_trace_enabled);
846 : }
847 :
848 : static ssize_t
849 : pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
850 : const char *buf, size_t n)
851 : {
852 : int val;
853 :
854 : if (sscanf(buf, "%d", &val) == 1) {
855 : pm_trace_enabled = !!val;
856 : if (pm_trace_enabled) {
857 : pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
858 : "PM: Correct system time has to be restored manually after resume.\n");
859 : }
860 : return n;
861 : }
862 : return -EINVAL;
863 : }
864 :
865 : power_attr(pm_trace);
866 :
867 : static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
868 : struct kobj_attribute *attr,
869 : char *buf)
870 : {
871 : return show_trace_dev_match(buf, PAGE_SIZE);
872 : }
873 :
874 : power_attr_ro(pm_trace_dev_match);
875 :
876 : #endif /* CONFIG_PM_TRACE */
877 :
878 : #ifdef CONFIG_FREEZER
879 0 : static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
880 : struct kobj_attribute *attr, char *buf)
881 : {
882 0 : return sprintf(buf, "%u\n", freeze_timeout_msecs);
883 : }
884 :
885 0 : static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
886 : struct kobj_attribute *attr,
887 : const char *buf, size_t n)
888 : {
889 : unsigned long val;
890 :
891 0 : if (kstrtoul(buf, 10, &val))
892 : return -EINVAL;
893 :
894 0 : freeze_timeout_msecs = val;
895 0 : return n;
896 : }
897 :
898 : power_attr(pm_freeze_timeout);
899 :
900 : #endif /* CONFIG_FREEZER*/
901 :
902 : static struct attribute * g[] = {
903 : &state_attr.attr,
904 : #ifdef CONFIG_PM_TRACE
905 : &pm_trace_attr.attr,
906 : &pm_trace_dev_match_attr.attr,
907 : #endif
908 : #ifdef CONFIG_PM_SLEEP
909 : &pm_async_attr.attr,
910 : &wakeup_count_attr.attr,
911 : #ifdef CONFIG_SUSPEND
912 : &mem_sleep_attr.attr,
913 : &sync_on_suspend_attr.attr,
914 : #endif
915 : #ifdef CONFIG_PM_AUTOSLEEP
916 : &autosleep_attr.attr,
917 : #endif
918 : #ifdef CONFIG_PM_WAKELOCKS
919 : &wake_lock_attr.attr,
920 : &wake_unlock_attr.attr,
921 : #endif
922 : #ifdef CONFIG_PM_SLEEP_DEBUG
923 : &pm_test_attr.attr,
924 : &pm_print_times_attr.attr,
925 : &pm_wakeup_irq_attr.attr,
926 : &pm_debug_messages_attr.attr,
927 : #endif
928 : #endif
929 : #ifdef CONFIG_FREEZER
930 : &pm_freeze_timeout_attr.attr,
931 : #endif
932 : NULL,
933 : };
934 :
935 : static const struct attribute_group attr_group = {
936 : .attrs = g,
937 : };
938 :
939 : static const struct attribute_group *attr_groups[] = {
940 : &attr_group,
941 : #ifdef CONFIG_PM_SLEEP
942 : &suspend_attr_group,
943 : #endif
944 : NULL,
945 : };
946 :
947 : struct workqueue_struct *pm_wq;
948 : EXPORT_SYMBOL_GPL(pm_wq);
949 :
950 1 : static int __init pm_start_workqueue(void)
951 : {
952 1 : pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
953 :
954 1 : return pm_wq ? 0 : -ENOMEM;
955 : }
956 :
957 1 : static int __init pm_init(void)
958 : {
959 1 : int error = pm_start_workqueue();
960 1 : if (error)
961 : return error;
962 : hibernate_image_size_init();
963 : hibernate_reserved_size_init();
964 1 : pm_states_init();
965 1 : power_kobj = kobject_create_and_add("power", NULL);
966 1 : if (!power_kobj)
967 : return -ENOMEM;
968 1 : error = sysfs_create_groups(power_kobj, attr_groups);
969 1 : if (error)
970 : return error;
971 : pm_print_times_init();
972 1 : return pm_autosleep_init();
973 : }
974 :
975 : core_initcall(pm_init);
|