Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 :
3 : #include <linux/kernel.h>
4 : #include <linux/irqflags.h>
5 : #include <linux/string.h>
6 : #include <linux/errno.h>
7 : #include <linux/bug.h>
8 : #include "printk_ringbuffer.h"
9 :
10 : /**
11 : * DOC: printk_ringbuffer overview
12 : *
13 : * Data Structure
14 : * --------------
15 : * The printk_ringbuffer is made up of 3 internal ringbuffers:
16 : *
17 : * desc_ring
18 : * A ring of descriptors and their meta data (such as sequence number,
19 : * timestamp, loglevel, etc.) as well as internal state information about
20 : * the record and logical positions specifying where in the other
21 : * ringbuffer the text strings are located.
22 : *
23 : * text_data_ring
24 : * A ring of data blocks. A data block consists of an unsigned long
25 : * integer (ID) that maps to a desc_ring index followed by the text
26 : * string of the record.
27 : *
28 : * The internal state information of a descriptor is the key element to allow
29 : * readers and writers to locklessly synchronize access to the data.
30 : *
31 : * Implementation
32 : * --------------
33 : *
34 : * Descriptor Ring
35 : * ~~~~~~~~~~~~~~~
36 : * The descriptor ring is an array of descriptors. A descriptor contains
37 : * essential meta data to track the data of a printk record using
38 : * blk_lpos structs pointing to associated text data blocks (see
39 : * "Data Rings" below). Each descriptor is assigned an ID that maps
40 : * directly to index values of the descriptor array and has a state. The ID
41 : * and the state are bitwise combined into a single descriptor field named
42 : * @state_var, allowing ID and state to be synchronously and atomically
43 : * updated.
44 : *
45 : * Descriptors have four states:
46 : *
47 : * reserved
48 : * A writer is modifying the record.
49 : *
50 : * committed
51 : * The record and all its data are written. A writer can reopen the
52 : * descriptor (transitioning it back to reserved), but in the committed
53 : * state the data is consistent.
54 : *
55 : * finalized
56 : * The record and all its data are complete and available for reading. A
57 : * writer cannot reopen the descriptor.
58 : *
59 : * reusable
60 : * The record exists, but its text and/or meta data may no longer be
61 : * available.
62 : *
63 : * Querying the @state_var of a record requires providing the ID of the
64 : * descriptor to query. This can yield a possible fifth (pseudo) state:
65 : *
66 : * miss
67 : * The descriptor being queried has an unexpected ID.
68 : *
69 : * The descriptor ring has a @tail_id that contains the ID of the oldest
70 : * descriptor and @head_id that contains the ID of the newest descriptor.
71 : *
72 : * When a new descriptor should be created (and the ring is full), the tail
73 : * descriptor is invalidated by first transitioning to the reusable state and
74 : * then invalidating all tail data blocks up to and including the data blocks
75 : * associated with the tail descriptor (for the text ring). Then
76 : * @tail_id is advanced, followed by advancing @head_id. And finally the
77 : * @state_var of the new descriptor is initialized to the new ID and reserved
78 : * state.
79 : *
80 : * The @tail_id can only be advanced if the new @tail_id would be in the
81 : * committed or reusable queried state. This makes it possible that a valid
82 : * sequence number of the tail is always available.
83 : *
84 : * Descriptor Finalization
85 : * ~~~~~~~~~~~~~~~~~~~~~~~
86 : * When a writer calls the commit function prb_commit(), record data is
87 : * fully stored and is consistent within the ringbuffer. However, a writer can
88 : * reopen that record, claiming exclusive access (as with prb_reserve()), and
89 : * modify that record. When finished, the writer must again commit the record.
90 : *
91 : * In order for a record to be made available to readers (and also become
92 : * recyclable for writers), it must be finalized. A finalized record cannot be
93 : * reopened and can never become "unfinalized". Record finalization can occur
94 : * in three different scenarios:
95 : *
96 : * 1) A writer can simultaneously commit and finalize its record by calling
97 : * prb_final_commit() instead of prb_commit().
98 : *
99 : * 2) When a new record is reserved and the previous record has been
100 : * committed via prb_commit(), that previous record is automatically
101 : * finalized.
102 : *
103 : * 3) When a record is committed via prb_commit() and a newer record
104 : * already exists, the record being committed is automatically finalized.
105 : *
106 : * Data Ring
107 : * ~~~~~~~~~
108 : * The text data ring is a byte array composed of data blocks. Data blocks are
109 : * referenced by blk_lpos structs that point to the logical position of the
110 : * beginning of a data block and the beginning of the next adjacent data
111 : * block. Logical positions are mapped directly to index values of the byte
112 : * array ringbuffer.
113 : *
114 : * Each data block consists of an ID followed by the writer data. The ID is
115 : * the identifier of a descriptor that is associated with the data block. A
116 : * given data block is considered valid if all of the following conditions
117 : * are met:
118 : *
119 : * 1) The descriptor associated with the data block is in the committed
120 : * or finalized queried state.
121 : *
122 : * 2) The blk_lpos struct within the descriptor associated with the data
123 : * block references back to the same data block.
124 : *
125 : * 3) The data block is within the head/tail logical position range.
126 : *
127 : * If the writer data of a data block would extend beyond the end of the
128 : * byte array, only the ID of the data block is stored at the logical
129 : * position and the full data block (ID and writer data) is stored at the
130 : * beginning of the byte array. The referencing blk_lpos will point to the
131 : * ID before the wrap and the next data block will be at the logical
132 : * position adjacent the full data block after the wrap.
133 : *
134 : * Data rings have a @tail_lpos that points to the beginning of the oldest
135 : * data block and a @head_lpos that points to the logical position of the
136 : * next (not yet existing) data block.
137 : *
138 : * When a new data block should be created (and the ring is full), tail data
139 : * blocks will first be invalidated by putting their associated descriptors
140 : * into the reusable state and then pushing the @tail_lpos forward beyond
141 : * them. Then the @head_lpos is pushed forward and is associated with a new
142 : * descriptor. If a data block is not valid, the @tail_lpos cannot be
143 : * advanced beyond it.
144 : *
145 : * Info Array
146 : * ~~~~~~~~~~
147 : * The general meta data of printk records are stored in printk_info structs,
148 : * stored in an array with the same number of elements as the descriptor ring.
149 : * Each info corresponds to the descriptor of the same index in the
150 : * descriptor ring. Info validity is confirmed by evaluating the corresponding
151 : * descriptor before and after loading the info.
152 : *
153 : * Usage
154 : * -----
155 : * Here are some simple examples demonstrating writers and readers. For the
156 : * examples a global ringbuffer (test_rb) is available (which is not the
157 : * actual ringbuffer used by printk)::
158 : *
159 : * DEFINE_PRINTKRB(test_rb, 15, 5);
160 : *
161 : * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162 : * 1 MiB (2 ^ (15 + 5)) for text data.
163 : *
164 : * Sample writer code::
165 : *
166 : * const char *textstr = "message text";
167 : * struct prb_reserved_entry e;
168 : * struct printk_record r;
169 : *
170 : * // specify how much to allocate
171 : * prb_rec_init_wr(&r, strlen(textstr) + 1);
172 : *
173 : * if (prb_reserve(&e, &test_rb, &r)) {
174 : * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175 : *
176 : * r.info->text_len = strlen(textstr);
177 : * r.info->ts_nsec = local_clock();
178 : * r.info->caller_id = printk_caller_id();
179 : *
180 : * // commit and finalize the record
181 : * prb_final_commit(&e);
182 : * }
183 : *
184 : * Note that additional writer functions are available to extend a record
185 : * after it has been committed but not yet finalized. This can be done as
186 : * long as no new records have been reserved and the caller is the same.
187 : *
188 : * Sample writer code (record extending)::
189 : *
190 : * // alternate rest of previous example
191 : *
192 : * r.info->text_len = strlen(textstr);
193 : * r.info->ts_nsec = local_clock();
194 : * r.info->caller_id = printk_caller_id();
195 : *
196 : * // commit the record (but do not finalize yet)
197 : * prb_commit(&e);
198 : * }
199 : *
200 : * ...
201 : *
202 : * // specify additional 5 bytes text space to extend
203 : * prb_rec_init_wr(&r, 5);
204 : *
205 : * // try to extend, but only if it does not exceed 32 bytes
206 : * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id(), 32)) {
207 : * snprintf(&r.text_buf[r.info->text_len],
208 : * r.text_buf_size - r.info->text_len, "hello");
209 : *
210 : * r.info->text_len += 5;
211 : *
212 : * // commit and finalize the record
213 : * prb_final_commit(&e);
214 : * }
215 : *
216 : * Sample reader code::
217 : *
218 : * struct printk_info info;
219 : * struct printk_record r;
220 : * char text_buf[32];
221 : * u64 seq;
222 : *
223 : * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224 : *
225 : * prb_for_each_record(0, &test_rb, &seq, &r) {
226 : * if (info.seq != seq)
227 : * pr_warn("lost %llu records\n", info.seq - seq);
228 : *
229 : * if (info.text_len > r.text_buf_size) {
230 : * pr_warn("record %llu text truncated\n", info.seq);
231 : * text_buf[r.text_buf_size - 1] = 0;
232 : * }
233 : *
234 : * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235 : * &text_buf[0]);
236 : * }
237 : *
238 : * Note that additional less convenient reader functions are available to
239 : * allow complex record access.
240 : *
241 : * ABA Issues
242 : * ~~~~~~~~~~
243 : * To help avoid ABA issues, descriptors are referenced by IDs (array index
244 : * values combined with tagged bits counting array wraps) and data blocks are
245 : * referenced by logical positions (array index values combined with tagged
246 : * bits counting array wraps). However, on 32-bit systems the number of
247 : * tagged bits is relatively small such that an ABA incident is (at least
248 : * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249 : * printk messages were to occur in NMI context on a 32-bit system, the
250 : * interrupted context would not be able to recognize that the 32-bit integer
251 : * completely wrapped and thus represents a different data block than the one
252 : * the interrupted context expects.
253 : *
254 : * To help combat this possibility, additional state checking is performed
255 : * (such as using cmpxchg() even though set() would suffice). These extra
256 : * checks are commented as such and will hopefully catch any ABA issue that
257 : * a 32-bit system might experience.
258 : *
259 : * Memory Barriers
260 : * ~~~~~~~~~~~~~~~
261 : * Multiple memory barriers are used. To simplify proving correctness and
262 : * generating litmus tests, lines of code related to memory barriers
263 : * (loads, stores, and the associated memory barriers) are labeled::
264 : *
265 : * LMM(function:letter)
266 : *
267 : * Comments reference the labels using only the "function:letter" part.
268 : *
269 : * The memory barrier pairs and their ordering are:
270 : *
271 : * desc_reserve:D / desc_reserve:B
272 : * push descriptor tail (id), then push descriptor head (id)
273 : *
274 : * desc_reserve:D / data_push_tail:B
275 : * push data tail (lpos), then set new descriptor reserved (state)
276 : *
277 : * desc_reserve:D / desc_push_tail:C
278 : * push descriptor tail (id), then set new descriptor reserved (state)
279 : *
280 : * desc_reserve:D / prb_first_seq:C
281 : * push descriptor tail (id), then set new descriptor reserved (state)
282 : *
283 : * desc_reserve:F / desc_read:D
284 : * set new descriptor id and reserved (state), then allow writer changes
285 : *
286 : * data_alloc:A (or data_realloc:A) / desc_read:D
287 : * set old descriptor reusable (state), then modify new data block area
288 : *
289 : * data_alloc:A (or data_realloc:A) / data_push_tail:B
290 : * push data tail (lpos), then modify new data block area
291 : *
292 : * _prb_commit:B / desc_read:B
293 : * store writer changes, then set new descriptor committed (state)
294 : *
295 : * desc_reopen_last:A / _prb_commit:B
296 : * set descriptor reserved (state), then read descriptor data
297 : *
298 : * _prb_commit:B / desc_reserve:D
299 : * set new descriptor committed (state), then check descriptor head (id)
300 : *
301 : * data_push_tail:D / data_push_tail:A
302 : * set descriptor reusable (state), then push data tail (lpos)
303 : *
304 : * desc_push_tail:B / desc_reserve:D
305 : * set descriptor reusable (state), then push descriptor tail (id)
306 : */
307 :
308 : #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
309 : #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
310 :
311 : #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
312 : #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
313 :
314 : /* Determine the data array index from a logical position. */
315 : #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
316 :
317 : /* Determine the desc array index from an ID or sequence number. */
318 : #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
319 :
320 : /* Determine how many times the data array has wrapped. */
321 : #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
322 :
323 : /* Determine if a logical position refers to a data-less block. */
324 : #define LPOS_DATALESS(lpos) ((lpos) & 1UL)
325 : #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
326 : LPOS_DATALESS((blk)->next))
327 :
328 : /* Get the logical position at index 0 of the current wrap. */
329 : #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 : ((lpos) & ~DATA_SIZE_MASK(data_ring))
331 :
332 : /* Get the ID for the same index of the previous wrap as the given ID. */
333 : #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 : DESC_ID((id) - DESCS_COUNT(desc_ring))
335 :
336 : /*
337 : * A data block: mapped directly to the beginning of the data block area
338 : * specified as a logical position within the data ring.
339 : *
340 : * @id: the ID of the associated descriptor
341 : * @data: the writer data
342 : *
343 : * Note that the size of a data block is only known by its associated
344 : * descriptor.
345 : */
346 : struct prb_data_block {
347 : unsigned long id;
348 : char data[];
349 : };
350 :
351 : /*
352 : * Return the descriptor associated with @n. @n can be either a
353 : * descriptor ID or a sequence number.
354 : */
355 : static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 : {
357 16420 : return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 : }
359 :
360 : /*
361 : * Return the printk_info associated with @n. @n can be either a
362 : * descriptor ID or a sequence number.
363 : */
364 : static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 : {
366 13655 : return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 : }
368 :
369 : static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 : unsigned long begin_lpos)
371 : {
372 2720 : return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 : }
374 :
375 : /*
376 : * Increase the data size to account for data block meta data plus any
377 : * padding so that the adjacent data block is aligned on the ID size.
378 : */
379 : static unsigned int to_blk_size(unsigned int size)
380 : {
381 1928 : struct prb_data_block *db = NULL;
382 :
383 1928 : size += sizeof(*db);
384 1928 : size = ALIGN(size, sizeof(db->id));
385 : return size;
386 : }
387 :
388 : /*
389 : * Sanity checker for reserve size. The ringbuffer code assumes that a data
390 : * block does not exceed the maximum possible size that could fit within the
391 : * ringbuffer. This function provides that basic size check so that the
392 : * assumption is safe.
393 : */
394 : static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 : {
396 964 : struct prb_data_block *db = NULL;
397 :
398 964 : if (size == 0)
399 : return true;
400 :
401 : /*
402 : * Ensure the alignment padded size could possibly fit in the data
403 : * array. The largest possible data block must still leave room for
404 : * at least the ID of the next block.
405 : */
406 964 : size = to_blk_size(size);
407 964 : if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 : return false;
409 :
410 : return true;
411 : }
412 :
413 : /* Query the state of a descriptor. */
414 : static enum desc_state get_desc_state(unsigned long id,
415 : unsigned long state_val)
416 : {
417 16062 : if (id != DESC_ID(state_val))
418 : return desc_miss;
419 :
420 15150 : return DESC_STATE(state_val);
421 : }
422 :
423 : /*
424 : * Get a copy of a specified descriptor and return its queried state. If the
425 : * descriptor is in an inconsistent state (miss or reserved), the caller can
426 : * only expect the descriptor's @state_var field to be valid.
427 : *
428 : * The sequence number and caller_id can be optionally retrieved. Like all
429 : * non-state_var data, they are only valid if the descriptor is in a
430 : * consistent state.
431 : */
432 8487 : static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 : unsigned long id, struct prb_desc *desc_out,
434 : u64 *seq_out, u32 *caller_id_out)
435 : {
436 16974 : struct printk_info *info = to_info(desc_ring, id);
437 16974 : struct prb_desc *desc = to_desc(desc_ring, id);
438 8487 : atomic_long_t *state_var = &desc->state_var;
439 : enum desc_state d_state;
440 : unsigned long state_val;
441 :
442 : /* Check the descriptor state. */
443 8487 : state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 8487 : d_state = get_desc_state(id, state_val);
445 8487 : if (d_state == desc_miss || d_state == desc_reserved) {
446 : /*
447 : * The descriptor is in an inconsistent state. Set at least
448 : * @state_var so that the caller can see the details of
449 : * the inconsistent state.
450 : */
451 : goto out;
452 : }
453 :
454 : /*
455 : * Guarantee the state is loaded before copying the descriptor
456 : * content. This avoids copying obsolete descriptor content that might
457 : * not apply to the descriptor state. This pairs with _prb_commit:B.
458 : *
459 : * Memory barrier involvement:
460 : *
461 : * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 : * from _prb_commit:A.
463 : *
464 : * Relies on:
465 : *
466 : * WMB from _prb_commit:A to _prb_commit:B
467 : * matching
468 : * RMB from desc_read:A to desc_read:C
469 : */
470 7575 : smp_rmb(); /* LMM(desc_read:B) */
471 :
472 : /*
473 : * Copy the descriptor data. The data is not valid until the
474 : * state has been re-checked. A memcpy() for all of @desc
475 : * cannot be used because of the atomic_t @state_var field.
476 : */
477 7575 : if (desc_out) {
478 7574 : memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
479 : sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
480 : }
481 7575 : if (seq_out)
482 7497 : *seq_out = info->seq; /* also part of desc_read:C */
483 7575 : if (caller_id_out)
484 78 : *caller_id_out = info->caller_id; /* also part of desc_read:C */
485 :
486 : /*
487 : * 1. Guarantee the descriptor content is loaded before re-checking
488 : * the state. This avoids reading an obsolete descriptor state
489 : * that may not apply to the copied content. This pairs with
490 : * desc_reserve:F.
491 : *
492 : * Memory barrier involvement:
493 : *
494 : * If desc_read:C reads from desc_reserve:G, then desc_read:E
495 : * reads from desc_reserve:F.
496 : *
497 : * Relies on:
498 : *
499 : * WMB from desc_reserve:F to desc_reserve:G
500 : * matching
501 : * RMB from desc_read:C to desc_read:E
502 : *
503 : * 2. Guarantee the record data is loaded before re-checking the
504 : * state. This avoids reading an obsolete descriptor state that may
505 : * not apply to the copied data. This pairs with data_alloc:A and
506 : * data_realloc:A.
507 : *
508 : * Memory barrier involvement:
509 : *
510 : * If copy_data:A reads from data_alloc:B, then desc_read:E
511 : * reads from desc_make_reusable:A.
512 : *
513 : * Relies on:
514 : *
515 : * MB from desc_make_reusable:A to data_alloc:B
516 : * matching
517 : * RMB from desc_read:C to desc_read:E
518 : *
519 : * Note: desc_make_reusable:A and data_alloc:B can be different
520 : * CPUs. However, the data_alloc:B CPU (which performs the
521 : * full memory barrier) must have previously seen
522 : * desc_make_reusable:A.
523 : */
524 7575 : smp_rmb(); /* LMM(desc_read:D) */
525 :
526 : /*
527 : * The data has been copied. Return the current descriptor state,
528 : * which may have changed since the load above.
529 : */
530 7575 : state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
531 : d_state = get_desc_state(id, state_val);
532 : out:
533 8487 : if (desc_out)
534 8486 : atomic_long_set(&desc_out->state_var, state_val);
535 8487 : return d_state;
536 : }
537 :
538 : /*
539 : * Take a specified descriptor out of the finalized state by attempting
540 : * the transition from finalized to reusable. Either this context or some
541 : * other context will have been successful.
542 : */
543 : static void desc_make_reusable(struct prb_desc_ring *desc_ring,
544 : unsigned long id)
545 : {
546 0 : unsigned long val_finalized = DESC_SV(id, desc_finalized);
547 0 : unsigned long val_reusable = DESC_SV(id, desc_reusable);
548 0 : struct prb_desc *desc = to_desc(desc_ring, id);
549 0 : atomic_long_t *state_var = &desc->state_var;
550 :
551 0 : atomic_long_cmpxchg_relaxed(state_var, val_finalized,
552 : val_reusable); /* LMM(desc_make_reusable:A) */
553 : }
554 :
555 : /*
556 : * Given the text data ring, put the associated descriptor of each
557 : * data block from @lpos_begin until @lpos_end into the reusable state.
558 : *
559 : * If there is any problem making the associated descriptor reusable, either
560 : * the descriptor has not yet been finalized or another writer context has
561 : * already pushed the tail lpos past the problematic data block. Regardless,
562 : * on error the caller can re-load the tail lpos to determine the situation.
563 : */
564 0 : static bool data_make_reusable(struct printk_ringbuffer *rb,
565 : unsigned long lpos_begin,
566 : unsigned long lpos_end,
567 : unsigned long *lpos_out)
568 : {
569 :
570 0 : struct prb_data_ring *data_ring = &rb->text_data_ring;
571 0 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
572 : struct prb_data_block *blk;
573 : enum desc_state d_state;
574 : struct prb_desc desc;
575 0 : struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
576 : unsigned long id;
577 :
578 : /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
579 0 : while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
580 0 : blk = to_block(data_ring, lpos_begin);
581 :
582 : /*
583 : * Load the block ID from the data block. This is a data race
584 : * against a writer that may have newly reserved this data
585 : * area. If the loaded value matches a valid descriptor ID,
586 : * the blk_lpos of that descriptor will be checked to make
587 : * sure it points back to this data block. If the check fails,
588 : * the data area has been recycled by another writer.
589 : */
590 0 : id = blk->id; /* LMM(data_make_reusable:A) */
591 :
592 0 : d_state = desc_read(desc_ring, id, &desc,
593 : NULL, NULL); /* LMM(data_make_reusable:B) */
594 :
595 0 : switch (d_state) {
596 : case desc_miss:
597 : case desc_reserved:
598 : case desc_committed:
599 : return false;
600 : case desc_finalized:
601 : /*
602 : * This data block is invalid if the descriptor
603 : * does not point back to it.
604 : */
605 0 : if (blk_lpos->begin != lpos_begin)
606 : return false;
607 : desc_make_reusable(desc_ring, id);
608 : break;
609 : case desc_reusable:
610 : /*
611 : * This data block is invalid if the descriptor
612 : * does not point back to it.
613 : */
614 0 : if (blk_lpos->begin != lpos_begin)
615 : return false;
616 : break;
617 : }
618 :
619 : /* Advance @lpos_begin to the next data block. */
620 0 : lpos_begin = blk_lpos->next;
621 : }
622 :
623 0 : *lpos_out = lpos_begin;
624 0 : return true;
625 : }
626 :
627 : /*
628 : * Advance the data ring tail to at least @lpos. This function puts
629 : * descriptors into the reusable state if the tail is pushed beyond
630 : * their associated data block.
631 : */
632 951 : static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
633 : {
634 951 : struct prb_data_ring *data_ring = &rb->text_data_ring;
635 : unsigned long tail_lpos_new;
636 : unsigned long tail_lpos;
637 : unsigned long next_lpos;
638 :
639 : /* If @lpos is from a data-less block, there is nothing to do. */
640 951 : if (LPOS_DATALESS(lpos))
641 : return true;
642 :
643 : /*
644 : * Any descriptor states that have transitioned to reusable due to the
645 : * data tail being pushed to this loaded value will be visible to this
646 : * CPU. This pairs with data_push_tail:D.
647 : *
648 : * Memory barrier involvement:
649 : *
650 : * If data_push_tail:A reads from data_push_tail:D, then this CPU can
651 : * see desc_make_reusable:A.
652 : *
653 : * Relies on:
654 : *
655 : * MB from desc_make_reusable:A to data_push_tail:D
656 : * matches
657 : * READFROM from data_push_tail:D to data_push_tail:A
658 : * thus
659 : * READFROM from desc_make_reusable:A to this CPU
660 : */
661 1902 : tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
662 :
663 : /*
664 : * Loop until the tail lpos is at or beyond @lpos. This condition
665 : * may already be satisfied, resulting in no full memory barrier
666 : * from data_push_tail:D being performed. However, since this CPU
667 : * sees the new tail lpos, any descriptor states that transitioned to
668 : * the reusable state must already be visible.
669 : */
670 1902 : while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
671 : /*
672 : * Make all descriptors reusable that are associated with
673 : * data blocks before @lpos.
674 : */
675 0 : if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
676 : /*
677 : * 1. Guarantee the block ID loaded in
678 : * data_make_reusable() is performed before
679 : * reloading the tail lpos. The failed
680 : * data_make_reusable() may be due to a newly
681 : * recycled data area causing the tail lpos to
682 : * have been previously pushed. This pairs with
683 : * data_alloc:A and data_realloc:A.
684 : *
685 : * Memory barrier involvement:
686 : *
687 : * If data_make_reusable:A reads from data_alloc:B,
688 : * then data_push_tail:C reads from
689 : * data_push_tail:D.
690 : *
691 : * Relies on:
692 : *
693 : * MB from data_push_tail:D to data_alloc:B
694 : * matching
695 : * RMB from data_make_reusable:A to
696 : * data_push_tail:C
697 : *
698 : * Note: data_push_tail:D and data_alloc:B can be
699 : * different CPUs. However, the data_alloc:B
700 : * CPU (which performs the full memory
701 : * barrier) must have previously seen
702 : * data_push_tail:D.
703 : *
704 : * 2. Guarantee the descriptor state loaded in
705 : * data_make_reusable() is performed before
706 : * reloading the tail lpos. The failed
707 : * data_make_reusable() may be due to a newly
708 : * recycled descriptor causing the tail lpos to
709 : * have been previously pushed. This pairs with
710 : * desc_reserve:D.
711 : *
712 : * Memory barrier involvement:
713 : *
714 : * If data_make_reusable:B reads from
715 : * desc_reserve:F, then data_push_tail:C reads
716 : * from data_push_tail:D.
717 : *
718 : * Relies on:
719 : *
720 : * MB from data_push_tail:D to desc_reserve:F
721 : * matching
722 : * RMB from data_make_reusable:B to
723 : * data_push_tail:C
724 : *
725 : * Note: data_push_tail:D and desc_reserve:F can
726 : * be different CPUs. However, the
727 : * desc_reserve:F CPU (which performs the
728 : * full memory barrier) must have previously
729 : * seen data_push_tail:D.
730 : */
731 0 : smp_rmb(); /* LMM(data_push_tail:B) */
732 :
733 0 : tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
734 : ); /* LMM(data_push_tail:C) */
735 0 : if (tail_lpos_new == tail_lpos)
736 : return false;
737 :
738 : /* Another CPU pushed the tail. Try again. */
739 0 : tail_lpos = tail_lpos_new;
740 0 : continue;
741 : }
742 :
743 : /*
744 : * Guarantee any descriptor states that have transitioned to
745 : * reusable are stored before pushing the tail lpos. A full
746 : * memory barrier is needed since other CPUs may have made
747 : * the descriptor states reusable. This pairs with
748 : * data_push_tail:A.
749 : */
750 0 : if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
751 : next_lpos)) { /* LMM(data_push_tail:D) */
752 : break;
753 : }
754 : }
755 :
756 : return true;
757 : }
758 :
759 : /*
760 : * Advance the desc ring tail. This function advances the tail by one
761 : * descriptor, thus invalidating the oldest descriptor. Before advancing
762 : * the tail, the tail descriptor is made reusable and all data blocks up to
763 : * and including the descriptor's data block are invalidated (i.e. the data
764 : * ring tail is pushed past the data block of the descriptor being made
765 : * reusable).
766 : */
767 0 : static bool desc_push_tail(struct printk_ringbuffer *rb,
768 : unsigned long tail_id)
769 : {
770 0 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
771 : enum desc_state d_state;
772 : struct prb_desc desc;
773 :
774 0 : d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
775 :
776 0 : switch (d_state) {
777 : case desc_miss:
778 : /*
779 : * If the ID is exactly 1 wrap behind the expected, it is
780 : * in the process of being reserved by another writer and
781 : * must be considered reserved.
782 : */
783 0 : if (DESC_ID(atomic_long_read(&desc.state_var)) ==
784 0 : DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
785 : return false;
786 : }
787 :
788 : /*
789 : * The ID has changed. Another writer must have pushed the
790 : * tail and recycled the descriptor already. Success is
791 : * returned because the caller is only interested in the
792 : * specified tail being pushed, which it was.
793 : */
794 0 : return true;
795 : case desc_reserved:
796 : case desc_committed:
797 : return false;
798 : case desc_finalized:
799 : desc_make_reusable(desc_ring, tail_id);
800 : break;
801 : case desc_reusable:
802 : break;
803 : }
804 :
805 : /*
806 : * Data blocks must be invalidated before their associated
807 : * descriptor can be made available for recycling. Invalidating
808 : * them later is not possible because there is no way to trust
809 : * data blocks once their associated descriptor is gone.
810 : */
811 :
812 0 : if (!data_push_tail(rb, desc.text_blk_lpos.next))
813 : return false;
814 :
815 : /*
816 : * Check the next descriptor after @tail_id before pushing the tail
817 : * to it because the tail must always be in a finalized or reusable
818 : * state. The implementation of prb_first_seq() relies on this.
819 : *
820 : * A successful read implies that the next descriptor is less than or
821 : * equal to @head_id so there is no risk of pushing the tail past the
822 : * head.
823 : */
824 0 : d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
825 : NULL, NULL); /* LMM(desc_push_tail:A) */
826 :
827 0 : if (d_state == desc_finalized || d_state == desc_reusable) {
828 : /*
829 : * Guarantee any descriptor states that have transitioned to
830 : * reusable are stored before pushing the tail ID. This allows
831 : * verifying the recycled descriptor state. A full memory
832 : * barrier is needed since other CPUs may have made the
833 : * descriptor states reusable. This pairs with desc_reserve:D.
834 : */
835 0 : atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
836 0 : DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
837 : } else {
838 : /*
839 : * Guarantee the last state load from desc_read() is before
840 : * reloading @tail_id in order to see a new tail ID in the
841 : * case that the descriptor has been recycled. This pairs
842 : * with desc_reserve:D.
843 : *
844 : * Memory barrier involvement:
845 : *
846 : * If desc_push_tail:A reads from desc_reserve:F, then
847 : * desc_push_tail:D reads from desc_push_tail:B.
848 : *
849 : * Relies on:
850 : *
851 : * MB from desc_push_tail:B to desc_reserve:F
852 : * matching
853 : * RMB from desc_push_tail:A to desc_push_tail:D
854 : *
855 : * Note: desc_push_tail:B and desc_reserve:F can be different
856 : * CPUs. However, the desc_reserve:F CPU (which performs
857 : * the full memory barrier) must have previously seen
858 : * desc_push_tail:B.
859 : */
860 0 : smp_rmb(); /* LMM(desc_push_tail:C) */
861 :
862 : /*
863 : * Re-check the tail ID. The descriptor following @tail_id is
864 : * not in an allowed tail state. But if the tail has since
865 : * been moved by another CPU, then it does not matter.
866 : */
867 0 : if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
868 : return false;
869 : }
870 :
871 : return true;
872 : }
873 :
874 : /* Reserve a new descriptor, invalidating the oldest if necessary. */
875 901 : static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
876 : {
877 901 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
878 : unsigned long prev_state_val;
879 : unsigned long id_prev_wrap;
880 : struct prb_desc *desc;
881 : unsigned long head_id;
882 : unsigned long id;
883 :
884 1802 : head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
885 :
886 : do {
887 901 : id = DESC_ID(head_id + 1);
888 901 : id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
889 :
890 : /*
891 : * Guarantee the head ID is read before reading the tail ID.
892 : * Since the tail ID is updated before the head ID, this
893 : * guarantees that @id_prev_wrap is never ahead of the tail
894 : * ID. This pairs with desc_reserve:D.
895 : *
896 : * Memory barrier involvement:
897 : *
898 : * If desc_reserve:A reads from desc_reserve:D, then
899 : * desc_reserve:C reads from desc_push_tail:B.
900 : *
901 : * Relies on:
902 : *
903 : * MB from desc_push_tail:B to desc_reserve:D
904 : * matching
905 : * RMB from desc_reserve:A to desc_reserve:C
906 : *
907 : * Note: desc_push_tail:B and desc_reserve:D can be different
908 : * CPUs. However, the desc_reserve:D CPU (which performs
909 : * the full memory barrier) must have previously seen
910 : * desc_push_tail:B.
911 : */
912 901 : smp_rmb(); /* LMM(desc_reserve:B) */
913 :
914 1802 : if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
915 : )) { /* LMM(desc_reserve:C) */
916 : /*
917 : * Make space for the new descriptor by
918 : * advancing the tail.
919 : */
920 0 : if (!desc_push_tail(rb, id_prev_wrap))
921 : return false;
922 : }
923 :
924 : /*
925 : * 1. Guarantee the tail ID is read before validating the
926 : * recycled descriptor state. A read memory barrier is
927 : * sufficient for this. This pairs with desc_push_tail:B.
928 : *
929 : * Memory barrier involvement:
930 : *
931 : * If desc_reserve:C reads from desc_push_tail:B, then
932 : * desc_reserve:E reads from desc_make_reusable:A.
933 : *
934 : * Relies on:
935 : *
936 : * MB from desc_make_reusable:A to desc_push_tail:B
937 : * matching
938 : * RMB from desc_reserve:C to desc_reserve:E
939 : *
940 : * Note: desc_make_reusable:A and desc_push_tail:B can be
941 : * different CPUs. However, the desc_push_tail:B CPU
942 : * (which performs the full memory barrier) must have
943 : * previously seen desc_make_reusable:A.
944 : *
945 : * 2. Guarantee the tail ID is stored before storing the head
946 : * ID. This pairs with desc_reserve:B.
947 : *
948 : * 3. Guarantee any data ring tail changes are stored before
949 : * recycling the descriptor. Data ring tail changes can
950 : * happen via desc_push_tail()->data_push_tail(). A full
951 : * memory barrier is needed since another CPU may have
952 : * pushed the data ring tails. This pairs with
953 : * data_push_tail:B.
954 : *
955 : * 4. Guarantee a new tail ID is stored before recycling the
956 : * descriptor. A full memory barrier is needed since
957 : * another CPU may have pushed the tail ID. This pairs
958 : * with desc_push_tail:C and this also pairs with
959 : * prb_first_seq:C.
960 : *
961 : * 5. Guarantee the head ID is stored before trying to
962 : * finalize the previous descriptor. This pairs with
963 : * _prb_commit:B.
964 : */
965 1802 : } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
966 901 : id)); /* LMM(desc_reserve:D) */
967 :
968 1802 : desc = to_desc(desc_ring, id);
969 :
970 : /*
971 : * If the descriptor has been recycled, verify the old state val.
972 : * See "ABA Issues" about why this verification is performed.
973 : */
974 1802 : prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
975 901 : if (prev_state_val &&
976 0 : get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
977 0 : WARN_ON_ONCE(1);
978 : return false;
979 : }
980 :
981 : /*
982 : * Assign the descriptor a new ID and set its state to reserved.
983 : * See "ABA Issues" about why cmpxchg() instead of set() is used.
984 : *
985 : * Guarantee the new descriptor ID and state is stored before making
986 : * any other changes. A write memory barrier is sufficient for this.
987 : * This pairs with desc_read:D.
988 : */
989 1802 : if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
990 : DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
991 0 : WARN_ON_ONCE(1);
992 : return false;
993 : }
994 :
995 : /* Now data in @desc can be modified: LMM(desc_reserve:G) */
996 :
997 901 : *id_out = id;
998 901 : return true;
999 : }
1000 :
1001 : /* Determine the end of a data block. */
1002 : static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1003 : unsigned long lpos, unsigned int size)
1004 : {
1005 : unsigned long begin_lpos;
1006 : unsigned long next_lpos;
1007 :
1008 964 : begin_lpos = lpos;
1009 964 : next_lpos = lpos + size;
1010 :
1011 : /* First check if the data block does not wrap. */
1012 964 : if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1013 : return next_lpos;
1014 :
1015 : /* Wrapping data blocks store their data at the beginning. */
1016 0 : return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1017 : }
1018 :
1019 : /*
1020 : * Allocate a new data block, invalidating the oldest data block(s)
1021 : * if necessary. This function also associates the data block with
1022 : * a specified descriptor.
1023 : */
1024 901 : static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1025 : struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1026 : {
1027 901 : struct prb_data_ring *data_ring = &rb->text_data_ring;
1028 : struct prb_data_block *blk;
1029 : unsigned long begin_lpos;
1030 : unsigned long next_lpos;
1031 :
1032 901 : if (size == 0) {
1033 : /* Specify a data-less block. */
1034 0 : blk_lpos->begin = NO_LPOS;
1035 0 : blk_lpos->next = NO_LPOS;
1036 0 : return NULL;
1037 : }
1038 :
1039 901 : size = to_blk_size(size);
1040 :
1041 1802 : begin_lpos = atomic_long_read(&data_ring->head_lpos);
1042 :
1043 : do {
1044 1802 : next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1045 :
1046 901 : if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1047 : /* Failed to allocate, specify a data-less block. */
1048 0 : blk_lpos->begin = FAILED_LPOS;
1049 0 : blk_lpos->next = FAILED_LPOS;
1050 0 : return NULL;
1051 : }
1052 :
1053 : /*
1054 : * 1. Guarantee any descriptor states that have transitioned
1055 : * to reusable are stored before modifying the newly
1056 : * allocated data area. A full memory barrier is needed
1057 : * since other CPUs may have made the descriptor states
1058 : * reusable. See data_push_tail:A about why the reusable
1059 : * states are visible. This pairs with desc_read:D.
1060 : *
1061 : * 2. Guarantee any updated tail lpos is stored before
1062 : * modifying the newly allocated data area. Another CPU may
1063 : * be in data_make_reusable() and is reading a block ID
1064 : * from this area. data_make_reusable() can handle reading
1065 : * a garbage block ID value, but then it must be able to
1066 : * load a new tail lpos. A full memory barrier is needed
1067 : * since other CPUs may have updated the tail lpos. This
1068 : * pairs with data_push_tail:B.
1069 : */
1070 1802 : } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1071 901 : next_lpos)); /* LMM(data_alloc:A) */
1072 :
1073 1802 : blk = to_block(data_ring, begin_lpos);
1074 901 : blk->id = id; /* LMM(data_alloc:B) */
1075 :
1076 901 : if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1077 : /* Wrapping data blocks store their data at the beginning. */
1078 0 : blk = to_block(data_ring, 0);
1079 :
1080 : /*
1081 : * Store the ID on the wrapped block for consistency.
1082 : * The printk_ringbuffer does not actually use it.
1083 : */
1084 0 : blk->id = id;
1085 : }
1086 :
1087 901 : blk_lpos->begin = begin_lpos;
1088 901 : blk_lpos->next = next_lpos;
1089 :
1090 901 : return &blk->data[0];
1091 : }
1092 :
1093 : /*
1094 : * Try to resize an existing data block associated with the descriptor
1095 : * specified by @id. If the resized data block should become wrapped, it
1096 : * copies the old data to the new data block. If @size yields a data block
1097 : * with the same or less size, the data block is left as is.
1098 : *
1099 : * Fail if this is not the last allocated data block or if there is not
1100 : * enough space or it is not possible make enough space.
1101 : *
1102 : * Return a pointer to the beginning of the entire data buffer or NULL on
1103 : * failure.
1104 : */
1105 63 : static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1106 : struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1107 : {
1108 63 : struct prb_data_ring *data_ring = &rb->text_data_ring;
1109 : struct prb_data_block *blk;
1110 : unsigned long head_lpos;
1111 : unsigned long next_lpos;
1112 : bool wrapped;
1113 :
1114 : /* Reallocation only works if @blk_lpos is the newest data block. */
1115 126 : head_lpos = atomic_long_read(&data_ring->head_lpos);
1116 63 : if (head_lpos != blk_lpos->next)
1117 : return NULL;
1118 :
1119 : /* Keep track if @blk_lpos was a wrapping data block. */
1120 63 : wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1121 :
1122 63 : size = to_blk_size(size);
1123 :
1124 126 : next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1125 :
1126 : /* If the data block does not increase, there is nothing to do. */
1127 63 : if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1128 13 : if (wrapped)
1129 0 : blk = to_block(data_ring, 0);
1130 : else
1131 26 : blk = to_block(data_ring, blk_lpos->begin);
1132 13 : return &blk->data[0];
1133 : }
1134 :
1135 50 : if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1136 : return NULL;
1137 :
1138 : /* The memory barrier involvement is the same as data_alloc:A. */
1139 100 : if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1140 : next_lpos)) { /* LMM(data_realloc:A) */
1141 : return NULL;
1142 : }
1143 :
1144 100 : blk = to_block(data_ring, blk_lpos->begin);
1145 :
1146 50 : if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1147 0 : struct prb_data_block *old_blk = blk;
1148 :
1149 : /* Wrapping data blocks store their data at the beginning. */
1150 0 : blk = to_block(data_ring, 0);
1151 :
1152 : /*
1153 : * Store the ID on the wrapped block for consistency.
1154 : * The printk_ringbuffer does not actually use it.
1155 : */
1156 0 : blk->id = id;
1157 :
1158 0 : if (!wrapped) {
1159 : /*
1160 : * Since the allocated space is now in the newly
1161 : * created wrapping data block, copy the content
1162 : * from the old data block.
1163 : */
1164 0 : memcpy(&blk->data[0], &old_blk->data[0],
1165 0 : (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1166 : }
1167 : }
1168 :
1169 50 : blk_lpos->next = next_lpos;
1170 :
1171 50 : return &blk->data[0];
1172 : }
1173 :
1174 : /* Return the number of bytes used by a data block. */
1175 964 : static unsigned int space_used(struct prb_data_ring *data_ring,
1176 : struct prb_data_blk_lpos *blk_lpos)
1177 : {
1178 : /* Data-less blocks take no space. */
1179 964 : if (BLK_DATALESS(blk_lpos))
1180 : return 0;
1181 :
1182 964 : if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1183 : /* Data block does not wrap. */
1184 1928 : return (DATA_INDEX(data_ring, blk_lpos->next) -
1185 964 : DATA_INDEX(data_ring, blk_lpos->begin));
1186 : }
1187 :
1188 : /*
1189 : * For wrapping data blocks, the trailing (wasted) space is
1190 : * also counted.
1191 : */
1192 0 : return (DATA_INDEX(data_ring, blk_lpos->next) +
1193 0 : DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1194 : }
1195 :
1196 : /*
1197 : * Given @blk_lpos, return a pointer to the writer data from the data block
1198 : * and calculate the size of the data part. A NULL pointer is returned if
1199 : * @blk_lpos specifies values that could never be legal.
1200 : *
1201 : * This function (used by readers) performs strict validation on the lpos
1202 : * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1203 : * triggered if an internal error is detected.
1204 : */
1205 1756 : static const char *get_data(struct prb_data_ring *data_ring,
1206 : struct prb_data_blk_lpos *blk_lpos,
1207 : unsigned int *data_size)
1208 : {
1209 : struct prb_data_block *db;
1210 :
1211 : /* Data-less data block description. */
1212 1756 : if (BLK_DATALESS(blk_lpos)) {
1213 0 : if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1214 0 : *data_size = 0;
1215 0 : return "";
1216 : }
1217 : return NULL;
1218 : }
1219 :
1220 : /* Regular data block: @begin less than @next and in same wrap. */
1221 1756 : if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1222 : blk_lpos->begin < blk_lpos->next) {
1223 3512 : db = to_block(data_ring, blk_lpos->begin);
1224 1756 : *data_size = blk_lpos->next - blk_lpos->begin;
1225 :
1226 : /* Wrapping data block: @begin is one wrap behind @next. */
1227 0 : } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1228 : DATA_WRAPS(data_ring, blk_lpos->next)) {
1229 0 : db = to_block(data_ring, 0);
1230 0 : *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1231 :
1232 : /* Illegal block description. */
1233 : } else {
1234 0 : WARN_ON_ONCE(1);
1235 : return NULL;
1236 : }
1237 :
1238 : /* A valid data block will always be aligned to the ID size. */
1239 3512 : if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1240 1756 : WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1241 : return NULL;
1242 : }
1243 :
1244 : /* A valid data block will always have at least an ID. */
1245 1756 : if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1246 : return NULL;
1247 :
1248 : /* Subtract block ID space from size to reflect data size. */
1249 1756 : *data_size -= sizeof(db->id);
1250 :
1251 1756 : return &db->data[0];
1252 : }
1253 :
1254 : /*
1255 : * Attempt to transition the newest descriptor from committed back to reserved
1256 : * so that the record can be modified by a writer again. This is only possible
1257 : * if the descriptor is not yet finalized and the provided @caller_id matches.
1258 : */
1259 78 : static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1260 : u32 caller_id, unsigned long *id_out)
1261 : {
1262 : unsigned long prev_state_val;
1263 : enum desc_state d_state;
1264 : struct prb_desc desc;
1265 : struct prb_desc *d;
1266 : unsigned long id;
1267 : u32 cid;
1268 :
1269 156 : id = atomic_long_read(&desc_ring->head_id);
1270 :
1271 : /*
1272 : * To reduce unnecessarily reopening, first check if the descriptor
1273 : * state and caller ID are correct.
1274 : */
1275 78 : d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1276 78 : if (d_state != desc_committed || cid != caller_id)
1277 : return NULL;
1278 :
1279 126 : d = to_desc(desc_ring, id);
1280 :
1281 63 : prev_state_val = DESC_SV(id, desc_committed);
1282 :
1283 : /*
1284 : * Guarantee the reserved state is stored before reading any
1285 : * record data. A full memory barrier is needed because @state_var
1286 : * modification is followed by reading. This pairs with _prb_commit:B.
1287 : *
1288 : * Memory barrier involvement:
1289 : *
1290 : * If desc_reopen_last:A reads from _prb_commit:B, then
1291 : * prb_reserve_in_last:A reads from _prb_commit:A.
1292 : *
1293 : * Relies on:
1294 : *
1295 : * WMB from _prb_commit:A to _prb_commit:B
1296 : * matching
1297 : * MB If desc_reopen_last:A to prb_reserve_in_last:A
1298 : */
1299 126 : if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1300 : DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1301 : return NULL;
1302 : }
1303 :
1304 63 : *id_out = id;
1305 63 : return d;
1306 : }
1307 :
1308 : /**
1309 : * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1310 : * used by the newest record.
1311 : *
1312 : * @e: The entry structure to setup.
1313 : * @rb: The ringbuffer to re-reserve and extend data in.
1314 : * @r: The record structure to allocate buffers for.
1315 : * @caller_id: The caller ID of the caller (reserving writer).
1316 : * @max_size: Fail if the extended size would be greater than this.
1317 : *
1318 : * This is the public function available to writers to re-reserve and extend
1319 : * data.
1320 : *
1321 : * The writer specifies the text size to extend (not the new total size) by
1322 : * setting the @text_buf_size field of @r. To ensure proper initialization
1323 : * of @r, prb_rec_init_wr() should be used.
1324 : *
1325 : * This function will fail if @caller_id does not match the caller ID of the
1326 : * newest record. In that case the caller must reserve new data using
1327 : * prb_reserve().
1328 : *
1329 : * Context: Any context. Disables local interrupts on success.
1330 : * Return: true if text data could be extended, otherwise false.
1331 : *
1332 : * On success:
1333 : *
1334 : * - @r->text_buf points to the beginning of the entire text buffer.
1335 : *
1336 : * - @r->text_buf_size is set to the new total size of the buffer.
1337 : *
1338 : * - @r->info is not touched so that @r->info->text_len could be used
1339 : * to append the text.
1340 : *
1341 : * - prb_record_text_space() can be used on @e to query the new
1342 : * actually used space.
1343 : *
1344 : * Important: All @r->info fields will already be set with the current values
1345 : * for the record. I.e. @r->info->text_len will be less than
1346 : * @text_buf_size. Writers can use @r->info->text_len to know
1347 : * where concatenation begins and writers should update
1348 : * @r->info->text_len after concatenating.
1349 : */
1350 78 : bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1351 : struct printk_record *r, u32 caller_id, unsigned int max_size)
1352 : {
1353 78 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1354 : struct printk_info *info;
1355 : unsigned int data_size;
1356 : struct prb_desc *d;
1357 : unsigned long id;
1358 :
1359 78 : local_irq_save(e->irqflags);
1360 :
1361 : /* Transition the newest descriptor back to the reserved state. */
1362 78 : d = desc_reopen_last(desc_ring, caller_id, &id);
1363 78 : if (!d) {
1364 15 : local_irq_restore(e->irqflags);
1365 : goto fail_reopen;
1366 : }
1367 :
1368 : /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1369 :
1370 126 : info = to_info(desc_ring, id);
1371 :
1372 : /*
1373 : * Set the @e fields here so that prb_commit() can be used if
1374 : * anything fails from now on.
1375 : */
1376 63 : e->rb = rb;
1377 63 : e->id = id;
1378 :
1379 : /*
1380 : * desc_reopen_last() checked the caller_id, but there was no
1381 : * exclusive access at that point. The descriptor may have
1382 : * changed since then.
1383 : */
1384 63 : if (caller_id != info->caller_id)
1385 : goto fail;
1386 :
1387 63 : if (BLK_DATALESS(&d->text_blk_lpos)) {
1388 0 : if (WARN_ON_ONCE(info->text_len != 0)) {
1389 0 : pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1390 : info->text_len);
1391 0 : info->text_len = 0;
1392 : }
1393 :
1394 0 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1395 : goto fail;
1396 :
1397 0 : if (r->text_buf_size > max_size)
1398 : goto fail;
1399 :
1400 0 : r->text_buf = data_alloc(rb, r->text_buf_size,
1401 : &d->text_blk_lpos, id);
1402 : } else {
1403 63 : if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1404 : goto fail;
1405 :
1406 : /*
1407 : * Increase the buffer size to include the original size. If
1408 : * the meta data (@text_len) is not sane, use the full data
1409 : * block size.
1410 : */
1411 63 : if (WARN_ON_ONCE(info->text_len > data_size)) {
1412 0 : pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1413 : info->text_len, data_size);
1414 0 : info->text_len = data_size;
1415 : }
1416 63 : r->text_buf_size += info->text_len;
1417 :
1418 126 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1419 : goto fail;
1420 :
1421 63 : if (r->text_buf_size > max_size)
1422 : goto fail;
1423 :
1424 63 : r->text_buf = data_realloc(rb, r->text_buf_size,
1425 : &d->text_blk_lpos, id);
1426 : }
1427 63 : if (r->text_buf_size && !r->text_buf)
1428 : goto fail;
1429 :
1430 63 : r->info = info;
1431 :
1432 63 : e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1433 :
1434 63 : return true;
1435 : fail:
1436 0 : prb_commit(e);
1437 : /* prb_commit() re-enabled interrupts. */
1438 : fail_reopen:
1439 : /* Make it clear to the caller that the re-reserve failed. */
1440 15 : memset(r, 0, sizeof(*r));
1441 15 : return false;
1442 : }
1443 :
1444 : /*
1445 : * Attempt to finalize a specified descriptor. If this fails, the descriptor
1446 : * is either already final or it will finalize itself when the writer commits.
1447 : */
1448 : static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1449 : {
1450 900 : unsigned long prev_state_val = DESC_SV(id, desc_committed);
1451 1800 : struct prb_desc *d = to_desc(desc_ring, id);
1452 :
1453 1800 : atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1454 900 : DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1455 :
1456 : /* Best effort to remember the last finalized @id. */
1457 1800 : atomic_long_set(&desc_ring->last_finalized_id, id);
1458 : }
1459 :
1460 : /**
1461 : * prb_reserve() - Reserve space in the ringbuffer.
1462 : *
1463 : * @e: The entry structure to setup.
1464 : * @rb: The ringbuffer to reserve data in.
1465 : * @r: The record structure to allocate buffers for.
1466 : *
1467 : * This is the public function available to writers to reserve data.
1468 : *
1469 : * The writer specifies the text size to reserve by setting the
1470 : * @text_buf_size field of @r. To ensure proper initialization of @r,
1471 : * prb_rec_init_wr() should be used.
1472 : *
1473 : * Context: Any context. Disables local interrupts on success.
1474 : * Return: true if at least text data could be allocated, otherwise false.
1475 : *
1476 : * On success, the fields @info and @text_buf of @r will be set by this
1477 : * function and should be filled in by the writer before committing. Also
1478 : * on success, prb_record_text_space() can be used on @e to query the actual
1479 : * space used for the text data block.
1480 : *
1481 : * Important: @info->text_len needs to be set correctly by the writer in
1482 : * order for data to be readable and/or extended. Its value
1483 : * is initialized to 0.
1484 : */
1485 901 : bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1486 : struct printk_record *r)
1487 : {
1488 901 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1489 : struct printk_info *info;
1490 : struct prb_desc *d;
1491 : unsigned long id;
1492 : u64 seq;
1493 :
1494 1802 : if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1495 : goto fail;
1496 :
1497 : /*
1498 : * Descriptors in the reserved state act as blockers to all further
1499 : * reservations once the desc_ring has fully wrapped. Disable
1500 : * interrupts during the reserve/commit window in order to minimize
1501 : * the likelihood of this happening.
1502 : */
1503 901 : local_irq_save(e->irqflags);
1504 :
1505 901 : if (!desc_reserve(rb, &id)) {
1506 : /* Descriptor reservation failures are tracked. */
1507 0 : atomic_long_inc(&rb->fail);
1508 0 : local_irq_restore(e->irqflags);
1509 : goto fail;
1510 : }
1511 :
1512 1802 : d = to_desc(desc_ring, id);
1513 1802 : info = to_info(desc_ring, id);
1514 :
1515 : /*
1516 : * All @info fields (except @seq) are cleared and must be filled in
1517 : * by the writer. Save @seq before clearing because it is used to
1518 : * determine the new sequence number.
1519 : */
1520 901 : seq = info->seq;
1521 901 : memset(info, 0, sizeof(*info));
1522 :
1523 : /*
1524 : * Set the @e fields here so that prb_commit() can be used if
1525 : * text data allocation fails.
1526 : */
1527 901 : e->rb = rb;
1528 901 : e->id = id;
1529 :
1530 : /*
1531 : * Initialize the sequence number if it has "never been set".
1532 : * Otherwise just increment it by a full wrap.
1533 : *
1534 : * @seq is considered "never been set" if it has a value of 0,
1535 : * _except_ for @infos[0], which was specially setup by the ringbuffer
1536 : * initializer and therefore is always considered as set.
1537 : *
1538 : * See the "Bootstrap" comment block in printk_ringbuffer.h for
1539 : * details about how the initializer bootstraps the descriptors.
1540 : */
1541 901 : if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1542 900 : info->seq = DESC_INDEX(desc_ring, id);
1543 : else
1544 1 : info->seq = seq + DESCS_COUNT(desc_ring);
1545 :
1546 : /*
1547 : * New data is about to be reserved. Once that happens, previous
1548 : * descriptors are no longer able to be extended. Finalize the
1549 : * previous descriptor now so that it can be made available to
1550 : * readers. (For seq==0 there is no previous descriptor.)
1551 : */
1552 901 : if (info->seq > 0)
1553 900 : desc_make_final(desc_ring, DESC_ID(id - 1));
1554 :
1555 901 : r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1556 : /* If text data allocation fails, a data-less record is committed. */
1557 901 : if (r->text_buf_size && !r->text_buf) {
1558 0 : prb_commit(e);
1559 : /* prb_commit() re-enabled interrupts. */
1560 0 : goto fail;
1561 : }
1562 :
1563 901 : r->info = info;
1564 :
1565 : /* Record full text space used by record. */
1566 901 : e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1567 :
1568 901 : return true;
1569 : fail:
1570 : /* Make it clear to the caller that the reserve failed. */
1571 0 : memset(r, 0, sizeof(*r));
1572 0 : return false;
1573 : }
1574 :
1575 : /* Commit the data (possibly finalizing it) and restore interrupts. */
1576 964 : static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1577 : {
1578 964 : struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1579 1928 : struct prb_desc *d = to_desc(desc_ring, e->id);
1580 964 : unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1581 :
1582 : /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1583 :
1584 : /*
1585 : * Set the descriptor as committed. See "ABA Issues" about why
1586 : * cmpxchg() instead of set() is used.
1587 : *
1588 : * 1 Guarantee all record data is stored before the descriptor state
1589 : * is stored as committed. A write memory barrier is sufficient
1590 : * for this. This pairs with desc_read:B and desc_reopen_last:A.
1591 : *
1592 : * 2. Guarantee the descriptor state is stored as committed before
1593 : * re-checking the head ID in order to possibly finalize this
1594 : * descriptor. This pairs with desc_reserve:D.
1595 : *
1596 : * Memory barrier involvement:
1597 : *
1598 : * If prb_commit:A reads from desc_reserve:D, then
1599 : * desc_make_final:A reads from _prb_commit:B.
1600 : *
1601 : * Relies on:
1602 : *
1603 : * MB _prb_commit:B to prb_commit:A
1604 : * matching
1605 : * MB desc_reserve:D to desc_make_final:A
1606 : */
1607 1928 : if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1608 964 : DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1609 0 : WARN_ON_ONCE(1);
1610 : }
1611 :
1612 : /* Restore interrupts, the reserve/commit window is finished. */
1613 1928 : local_irq_restore(e->irqflags);
1614 964 : }
1615 :
1616 : /**
1617 : * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1618 : *
1619 : * @e: The entry containing the reserved data information.
1620 : *
1621 : * This is the public function available to writers to commit data.
1622 : *
1623 : * Note that the data is not yet available to readers until it is finalized.
1624 : * Finalizing happens automatically when space for the next record is
1625 : * reserved.
1626 : *
1627 : * See prb_final_commit() for a version of this function that finalizes
1628 : * immediately.
1629 : *
1630 : * Context: Any context. Enables local interrupts.
1631 : */
1632 553 : void prb_commit(struct prb_reserved_entry *e)
1633 : {
1634 553 : struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1635 : unsigned long head_id;
1636 :
1637 553 : _prb_commit(e, desc_committed);
1638 :
1639 : /*
1640 : * If this descriptor is no longer the head (i.e. a new record has
1641 : * been allocated), extending the data for this record is no longer
1642 : * allowed and therefore it must be finalized.
1643 : */
1644 1106 : head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1645 553 : if (head_id != e->id)
1646 0 : desc_make_final(desc_ring, e->id);
1647 553 : }
1648 :
1649 : /**
1650 : * prb_final_commit() - Commit and finalize (previously reserved) data to
1651 : * the ringbuffer.
1652 : *
1653 : * @e: The entry containing the reserved data information.
1654 : *
1655 : * This is the public function available to writers to commit+finalize data.
1656 : *
1657 : * By finalizing, the data is made immediately available to readers.
1658 : *
1659 : * This function should only be used if there are no intentions of extending
1660 : * this data using prb_reserve_in_last().
1661 : *
1662 : * Context: Any context. Enables local interrupts.
1663 : */
1664 411 : void prb_final_commit(struct prb_reserved_entry *e)
1665 : {
1666 411 : struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1667 :
1668 411 : _prb_commit(e, desc_finalized);
1669 :
1670 : /* Best effort to remember the last finalized @id. */
1671 822 : atomic_long_set(&desc_ring->last_finalized_id, e->id);
1672 411 : }
1673 :
1674 : /*
1675 : * Count the number of lines in provided text. All text has at least 1 line
1676 : * (even if @text_size is 0). Each '\n' processed is counted as an additional
1677 : * line.
1678 : */
1679 0 : static unsigned int count_lines(const char *text, unsigned int text_size)
1680 : {
1681 0 : unsigned int next_size = text_size;
1682 0 : unsigned int line_count = 1;
1683 0 : const char *next = text;
1684 :
1685 0 : while (next_size) {
1686 0 : next = memchr(next, '\n', next_size);
1687 0 : if (!next)
1688 : break;
1689 0 : line_count++;
1690 0 : next++;
1691 0 : next_size = text_size - (next - text);
1692 : }
1693 :
1694 0 : return line_count;
1695 : }
1696 :
1697 : /*
1698 : * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1699 : * If @line_count is provided, count the number of lines in the data.
1700 : *
1701 : * This function (used by readers) performs strict validation on the data
1702 : * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1703 : * triggered if an internal error is detected.
1704 : */
1705 1693 : static bool copy_data(struct prb_data_ring *data_ring,
1706 : struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1707 : unsigned int buf_size, unsigned int *line_count)
1708 : {
1709 : unsigned int data_size;
1710 : const char *data;
1711 :
1712 : /* Caller might not want any data. */
1713 1693 : if ((!buf || !buf_size) && !line_count)
1714 : return true;
1715 :
1716 1693 : data = get_data(data_ring, blk_lpos, &data_size);
1717 1693 : if (!data)
1718 : return false;
1719 :
1720 : /*
1721 : * Actual cannot be less than expected. It can be more than expected
1722 : * because of the trailing alignment padding.
1723 : *
1724 : * Note that invalid @len values can occur because the caller loads
1725 : * the value during an allowed data race.
1726 : */
1727 1693 : if (data_size < (unsigned int)len)
1728 : return false;
1729 :
1730 : /* Caller interested in the line count? */
1731 1693 : if (line_count)
1732 0 : *line_count = count_lines(data, len);
1733 :
1734 : /* Caller interested in the data content? */
1735 1693 : if (!buf || !buf_size)
1736 : return true;
1737 :
1738 1693 : data_size = min_t(u16, buf_size, len);
1739 :
1740 1693 : memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1741 1693 : return true;
1742 : }
1743 :
1744 : /*
1745 : * This is an extended version of desc_read(). It gets a copy of a specified
1746 : * descriptor. However, it also verifies that the record is finalized and has
1747 : * the sequence number @seq. On success, 0 is returned.
1748 : *
1749 : * Error return values:
1750 : * -EINVAL: A finalized record with sequence number @seq does not exist.
1751 : * -ENOENT: A finalized record with sequence number @seq exists, but its data
1752 : * is not available. This is a valid record, so readers should
1753 : * continue with the next record.
1754 : */
1755 5897 : static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1756 : unsigned long id, u64 seq,
1757 : struct prb_desc *desc_out)
1758 : {
1759 5897 : struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1760 : enum desc_state d_state;
1761 : u64 s;
1762 :
1763 5897 : d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1764 :
1765 : /*
1766 : * An unexpected @id (desc_miss) or @seq mismatch means the record
1767 : * does not exist. A descriptor in the reserved or committed state
1768 : * means the record does not yet exist for the reader.
1769 : */
1770 5897 : if (d_state == desc_miss ||
1771 4985 : d_state == desc_reserved ||
1772 3386 : d_state == desc_committed ||
1773 3386 : s != seq) {
1774 : return -EINVAL;
1775 : }
1776 :
1777 : /*
1778 : * A descriptor in the reusable state may no longer have its data
1779 : * available; report it as existing but with lost data. Or the record
1780 : * may actually be a record with lost data.
1781 : */
1782 6772 : if (d_state == desc_reusable ||
1783 3386 : (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1784 : return -ENOENT;
1785 : }
1786 :
1787 3386 : return 0;
1788 : }
1789 :
1790 : /*
1791 : * Copy the ringbuffer data from the record with @seq to the provided
1792 : * @r buffer. On success, 0 is returned.
1793 : *
1794 : * See desc_read_finalized_seq() for error return values.
1795 : */
1796 4204 : static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1797 : struct printk_record *r, unsigned int *line_count)
1798 : {
1799 4204 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1800 8408 : struct printk_info *info = to_info(desc_ring, seq);
1801 8408 : struct prb_desc *rdesc = to_desc(desc_ring, seq);
1802 4204 : atomic_long_t *state_var = &rdesc->state_var;
1803 : struct prb_desc desc;
1804 : unsigned long id;
1805 : int err;
1806 :
1807 : /* Extract the ID, used to specify the descriptor to read. */
1808 4204 : id = DESC_ID(atomic_long_read(state_var));
1809 :
1810 : /* Get a local copy of the correct descriptor (if available). */
1811 4204 : err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1812 :
1813 : /*
1814 : * If @r is NULL, the caller is only interested in the availability
1815 : * of the record.
1816 : */
1817 4204 : if (err || !r)
1818 : return err;
1819 :
1820 : /* If requested, copy meta data. */
1821 1693 : if (r->info)
1822 1693 : memcpy(r->info, info, sizeof(*(r->info)));
1823 :
1824 : /* Copy text data. If it fails, this is a data-less record. */
1825 1693 : if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1826 : r->text_buf, r->text_buf_size, line_count)) {
1827 : return -ENOENT;
1828 : }
1829 :
1830 : /* Ensure the record is still finalized and has the same @seq. */
1831 1693 : return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1832 : }
1833 :
1834 : /* Get the sequence number of the tail descriptor. */
1835 2511 : static u64 prb_first_seq(struct printk_ringbuffer *rb)
1836 : {
1837 2511 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
1838 : enum desc_state d_state;
1839 : struct prb_desc desc;
1840 : unsigned long id;
1841 : u64 seq;
1842 :
1843 : for (;;) {
1844 5022 : id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1845 :
1846 2511 : d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1847 :
1848 : /*
1849 : * This loop will not be infinite because the tail is
1850 : * _always_ in the finalized or reusable state.
1851 : */
1852 2511 : if (d_state == desc_finalized || d_state == desc_reusable)
1853 : break;
1854 :
1855 : /*
1856 : * Guarantee the last state load from desc_read() is before
1857 : * reloading @tail_id in order to see a new tail in the case
1858 : * that the descriptor has been recycled. This pairs with
1859 : * desc_reserve:D.
1860 : *
1861 : * Memory barrier involvement:
1862 : *
1863 : * If prb_first_seq:B reads from desc_reserve:F, then
1864 : * prb_first_seq:A reads from desc_push_tail:B.
1865 : *
1866 : * Relies on:
1867 : *
1868 : * MB from desc_push_tail:B to desc_reserve:F
1869 : * matching
1870 : * RMB prb_first_seq:B to prb_first_seq:A
1871 : */
1872 0 : smp_rmb(); /* LMM(prb_first_seq:C) */
1873 : }
1874 :
1875 2511 : return seq;
1876 : }
1877 :
1878 : /*
1879 : * Non-blocking read of a record. Updates @seq to the last finalized record
1880 : * (which may have no data available).
1881 : *
1882 : * See the description of prb_read_valid() and prb_read_valid_info()
1883 : * for details.
1884 : */
1885 4204 : static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1886 : struct printk_record *r, unsigned int *line_count)
1887 : {
1888 : u64 tail_seq;
1889 : int err;
1890 :
1891 8408 : while ((err = prb_read(rb, *seq, r, line_count))) {
1892 2511 : tail_seq = prb_first_seq(rb);
1893 :
1894 2511 : if (*seq < tail_seq) {
1895 : /*
1896 : * Behind the tail. Catch up and try again. This
1897 : * can happen for -ENOENT and -EINVAL cases.
1898 : */
1899 0 : *seq = tail_seq;
1900 :
1901 2511 : } else if (err == -ENOENT) {
1902 : /* Record exists, but no data available. Skip. */
1903 0 : (*seq)++;
1904 :
1905 : } else {
1906 : /* Non-existent/non-finalized record. Must stop. */
1907 : return false;
1908 : }
1909 : }
1910 :
1911 : return true;
1912 : }
1913 :
1914 : /**
1915 : * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1916 : * the next available record.
1917 : *
1918 : * @rb: The ringbuffer to read from.
1919 : * @seq: The sequence number of the record to read.
1920 : * @r: A record data buffer to store the read record to.
1921 : *
1922 : * This is the public function available to readers to read a record.
1923 : *
1924 : * The reader provides the @info and @text_buf buffers of @r to be
1925 : * filled in. Any of the buffer pointers can be set to NULL if the reader
1926 : * is not interested in that data. To ensure proper initialization of @r,
1927 : * prb_rec_init_rd() should be used.
1928 : *
1929 : * Context: Any context.
1930 : * Return: true if a record was read, otherwise false.
1931 : *
1932 : * On success, the reader must check r->info.seq to see which record was
1933 : * actually read. This allows the reader to detect dropped records.
1934 : *
1935 : * Failure means @seq refers to a not yet written record.
1936 : */
1937 4203 : bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1938 : struct printk_record *r)
1939 : {
1940 4203 : return _prb_read_valid(rb, &seq, r, NULL);
1941 : }
1942 :
1943 : /**
1944 : * prb_read_valid_info() - Non-blocking read of meta data for a requested
1945 : * record or (if gone) the next available record.
1946 : *
1947 : * @rb: The ringbuffer to read from.
1948 : * @seq: The sequence number of the record to read.
1949 : * @info: A buffer to store the read record meta data to.
1950 : * @line_count: A buffer to store the number of lines in the record text.
1951 : *
1952 : * This is the public function available to readers to read only the
1953 : * meta data of a record.
1954 : *
1955 : * The reader provides the @info, @line_count buffers to be filled in.
1956 : * Either of the buffer pointers can be set to NULL if the reader is not
1957 : * interested in that data.
1958 : *
1959 : * Context: Any context.
1960 : * Return: true if a record's meta data was read, otherwise false.
1961 : *
1962 : * On success, the reader must check info->seq to see which record meta data
1963 : * was actually read. This allows the reader to detect dropped records.
1964 : *
1965 : * Failure means @seq refers to a not yet written record.
1966 : */
1967 0 : bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1968 : struct printk_info *info, unsigned int *line_count)
1969 : {
1970 : struct printk_record r;
1971 :
1972 0 : prb_rec_init_rd(&r, info, NULL, 0);
1973 :
1974 0 : return _prb_read_valid(rb, &seq, &r, line_count);
1975 : }
1976 :
1977 : /**
1978 : * prb_first_valid_seq() - Get the sequence number of the oldest available
1979 : * record.
1980 : *
1981 : * @rb: The ringbuffer to get the sequence number from.
1982 : *
1983 : * This is the public function available to readers to see what the
1984 : * first/oldest valid sequence number is.
1985 : *
1986 : * This provides readers a starting point to begin iterating the ringbuffer.
1987 : *
1988 : * Context: Any context.
1989 : * Return: The sequence number of the first/oldest record or, if the
1990 : * ringbuffer is empty, 0 is returned.
1991 : */
1992 0 : u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1993 : {
1994 0 : u64 seq = 0;
1995 :
1996 0 : if (!_prb_read_valid(rb, &seq, NULL, NULL))
1997 : return 0;
1998 :
1999 0 : return seq;
2000 : }
2001 :
2002 : /**
2003 : * prb_next_seq() - Get the sequence number after the last available record.
2004 : *
2005 : * @rb: The ringbuffer to get the sequence number from.
2006 : *
2007 : * This is the public function available to readers to see what the next
2008 : * newest sequence number available to readers will be.
2009 : *
2010 : * This provides readers a sequence number to jump to if all currently
2011 : * available records should be skipped.
2012 : *
2013 : * Context: Any context.
2014 : * Return: The sequence number of the next newest (not yet available) record
2015 : * for readers.
2016 : */
2017 1 : u64 prb_next_seq(struct printk_ringbuffer *rb)
2018 : {
2019 1 : struct prb_desc_ring *desc_ring = &rb->desc_ring;
2020 : enum desc_state d_state;
2021 : unsigned long id;
2022 : u64 seq;
2023 :
2024 : /* Check if the cached @id still points to a valid @seq. */
2025 2 : id = atomic_long_read(&desc_ring->last_finalized_id);
2026 1 : d_state = desc_read(desc_ring, id, NULL, &seq, NULL);
2027 :
2028 1 : if (d_state == desc_finalized || d_state == desc_reusable) {
2029 : /*
2030 : * Begin searching after the last finalized record.
2031 : *
2032 : * On 0, the search must begin at 0 because of hack#2
2033 : * of the bootstrapping phase it is not known if a
2034 : * record at index 0 exists.
2035 : */
2036 1 : if (seq != 0)
2037 1 : seq++;
2038 : } else {
2039 : /*
2040 : * The information about the last finalized sequence number
2041 : * has gone. It should happen only when there is a flood of
2042 : * new messages and the ringbuffer is rapidly recycled.
2043 : * Give up and start from the beginning.
2044 : */
2045 0 : seq = 0;
2046 : }
2047 :
2048 : /*
2049 : * The information about the last finalized @seq might be inaccurate.
2050 : * Search forward to find the current one.
2051 : */
2052 1 : while (_prb_read_valid(rb, &seq, NULL, NULL))
2053 0 : seq++;
2054 :
2055 1 : return seq;
2056 : }
2057 :
2058 : /**
2059 : * prb_init() - Initialize a ringbuffer to use provided external buffers.
2060 : *
2061 : * @rb: The ringbuffer to initialize.
2062 : * @text_buf: The data buffer for text data.
2063 : * @textbits: The size of @text_buf as a power-of-2 value.
2064 : * @descs: The descriptor buffer for ringbuffer records.
2065 : * @descbits: The count of @descs items as a power-of-2 value.
2066 : * @infos: The printk_info buffer for ringbuffer records.
2067 : *
2068 : * This is the public function available to writers to setup a ringbuffer
2069 : * during runtime using provided buffers.
2070 : *
2071 : * This must match the initialization of DEFINE_PRINTKRB().
2072 : *
2073 : * Context: Any context.
2074 : */
2075 0 : void prb_init(struct printk_ringbuffer *rb,
2076 : char *text_buf, unsigned int textbits,
2077 : struct prb_desc *descs, unsigned int descbits,
2078 : struct printk_info *infos)
2079 : {
2080 0 : memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2081 0 : memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2082 :
2083 0 : rb->desc_ring.count_bits = descbits;
2084 0 : rb->desc_ring.descs = descs;
2085 0 : rb->desc_ring.infos = infos;
2086 0 : atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2087 0 : atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2088 0 : atomic_long_set(&rb->desc_ring.last_finalized_id, DESC0_ID(descbits));
2089 :
2090 0 : rb->text_data_ring.size_bits = textbits;
2091 0 : rb->text_data_ring.data = text_buf;
2092 0 : atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2093 0 : atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2094 :
2095 0 : atomic_long_set(&rb->fail, 0);
2096 :
2097 0 : atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2098 0 : descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2099 0 : descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2100 :
2101 0 : infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2102 0 : infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2103 0 : }
2104 :
2105 : /**
2106 : * prb_record_text_space() - Query the full actual used ringbuffer space for
2107 : * the text data of a reserved entry.
2108 : *
2109 : * @e: The successfully reserved entry to query.
2110 : *
2111 : * This is the public function available to writers to see how much actual
2112 : * space is used in the ringbuffer to store the text data of the specified
2113 : * entry.
2114 : *
2115 : * This function is only valid if @e has been successfully reserved using
2116 : * prb_reserve().
2117 : *
2118 : * Context: Any context.
2119 : * Return: The size in bytes used by the text data of the associated record.
2120 : */
2121 0 : unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2122 : {
2123 0 : return e->text_space;
2124 : }
|