LCOV - code coverage report
Current view: top level - kernel/sched - core.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 417 1097 38.0 %
Date: 2023-07-19 18:55:55 Functions: 39 123 31.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  kernel/sched/core.c
       4             :  *
       5             :  *  Core kernel scheduler code and related syscalls
       6             :  *
       7             :  *  Copyright (C) 1991-2002  Linus Torvalds
       8             :  */
       9             : #include <linux/highmem.h>
      10             : #include <linux/hrtimer_api.h>
      11             : #include <linux/ktime_api.h>
      12             : #include <linux/sched/signal.h>
      13             : #include <linux/syscalls_api.h>
      14             : #include <linux/debug_locks.h>
      15             : #include <linux/prefetch.h>
      16             : #include <linux/capability.h>
      17             : #include <linux/pgtable_api.h>
      18             : #include <linux/wait_bit.h>
      19             : #include <linux/jiffies.h>
      20             : #include <linux/spinlock_api.h>
      21             : #include <linux/cpumask_api.h>
      22             : #include <linux/lockdep_api.h>
      23             : #include <linux/hardirq.h>
      24             : #include <linux/softirq.h>
      25             : #include <linux/refcount_api.h>
      26             : #include <linux/topology.h>
      27             : #include <linux/sched/clock.h>
      28             : #include <linux/sched/cond_resched.h>
      29             : #include <linux/sched/cputime.h>
      30             : #include <linux/sched/debug.h>
      31             : #include <linux/sched/hotplug.h>
      32             : #include <linux/sched/init.h>
      33             : #include <linux/sched/isolation.h>
      34             : #include <linux/sched/loadavg.h>
      35             : #include <linux/sched/mm.h>
      36             : #include <linux/sched/nohz.h>
      37             : #include <linux/sched/rseq_api.h>
      38             : #include <linux/sched/rt.h>
      39             : 
      40             : #include <linux/blkdev.h>
      41             : #include <linux/context_tracking.h>
      42             : #include <linux/cpuset.h>
      43             : #include <linux/delayacct.h>
      44             : #include <linux/init_task.h>
      45             : #include <linux/interrupt.h>
      46             : #include <linux/ioprio.h>
      47             : #include <linux/kallsyms.h>
      48             : #include <linux/kcov.h>
      49             : #include <linux/kprobes.h>
      50             : #include <linux/llist_api.h>
      51             : #include <linux/mmu_context.h>
      52             : #include <linux/mmzone.h>
      53             : #include <linux/mutex_api.h>
      54             : #include <linux/nmi.h>
      55             : #include <linux/nospec.h>
      56             : #include <linux/perf_event_api.h>
      57             : #include <linux/profile.h>
      58             : #include <linux/psi.h>
      59             : #include <linux/rcuwait_api.h>
      60             : #include <linux/sched/wake_q.h>
      61             : #include <linux/scs.h>
      62             : #include <linux/slab.h>
      63             : #include <linux/syscalls.h>
      64             : #include <linux/vtime.h>
      65             : #include <linux/wait_api.h>
      66             : #include <linux/workqueue_api.h>
      67             : 
      68             : #ifdef CONFIG_PREEMPT_DYNAMIC
      69             : # ifdef CONFIG_GENERIC_ENTRY
      70             : #  include <linux/entry-common.h>
      71             : # endif
      72             : #endif
      73             : 
      74             : #include <uapi/linux/sched/types.h>
      75             : 
      76             : #include <asm/irq_regs.h>
      77             : #include <asm/switch_to.h>
      78             : #include <asm/tlb.h>
      79             : 
      80             : #define CREATE_TRACE_POINTS
      81             : #include <linux/sched/rseq_api.h>
      82             : #include <trace/events/sched.h>
      83             : #include <trace/events/ipi.h>
      84             : #undef CREATE_TRACE_POINTS
      85             : 
      86             : #include "sched.h"
      87             : #include "stats.h"
      88             : #include "autogroup.h"
      89             : 
      90             : #include "autogroup.h"
      91             : #include "pelt.h"
      92             : #include "smp.h"
      93             : #include "stats.h"
      94             : 
      95             : #include "../workqueue_internal.h"
      96             : #include "../../io_uring/io-wq.h"
      97             : #include "../smpboot.h"
      98             : 
      99             : EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
     100             : EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
     101             : 
     102             : /*
     103             :  * Export tracepoints that act as a bare tracehook (ie: have no trace event
     104             :  * associated with them) to allow external modules to probe them.
     105             :  */
     106             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
     107             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
     108             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
     109             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
     110             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
     111             : EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
     112             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
     113             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
     114             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
     115             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
     116             : EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
     117             : 
     118             : DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
     119             : 
     120             : #ifdef CONFIG_SCHED_DEBUG
     121             : /*
     122             :  * Debugging: various feature bits
     123             :  *
     124             :  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
     125             :  * sysctl_sched_features, defined in sched.h, to allow constants propagation
     126             :  * at compile time and compiler optimization based on features default.
     127             :  */
     128             : #define SCHED_FEAT(name, enabled)       \
     129             :         (1UL << __SCHED_FEAT_##name) * enabled |
     130             : const_debug unsigned int sysctl_sched_features =
     131             : #include "features.h"
     132             :         0;
     133             : #undef SCHED_FEAT
     134             : 
     135             : /*
     136             :  * Print a warning if need_resched is set for the given duration (if
     137             :  * LATENCY_WARN is enabled).
     138             :  *
     139             :  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
     140             :  * per boot.
     141             :  */
     142             : __read_mostly int sysctl_resched_latency_warn_ms = 100;
     143             : __read_mostly int sysctl_resched_latency_warn_once = 1;
     144             : #endif /* CONFIG_SCHED_DEBUG */
     145             : 
     146             : /*
     147             :  * Number of tasks to iterate in a single balance run.
     148             :  * Limited because this is done with IRQs disabled.
     149             :  */
     150             : const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
     151             : 
     152             : __read_mostly int scheduler_running;
     153             : 
     154             : #ifdef CONFIG_SCHED_CORE
     155             : 
     156             : DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
     157             : 
     158             : /* kernel prio, less is more */
     159             : static inline int __task_prio(const struct task_struct *p)
     160             : {
     161             :         if (p->sched_class == &stop_sched_class) /* trumps deadline */
     162             :                 return -2;
     163             : 
     164             :         if (rt_prio(p->prio)) /* includes deadline */
     165             :                 return p->prio; /* [-1, 99] */
     166             : 
     167             :         if (p->sched_class == &idle_sched_class)
     168             :                 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
     169             : 
     170             :         return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
     171             : }
     172             : 
     173             : /*
     174             :  * l(a,b)
     175             :  * le(a,b) := !l(b,a)
     176             :  * g(a,b)  := l(b,a)
     177             :  * ge(a,b) := !l(a,b)
     178             :  */
     179             : 
     180             : /* real prio, less is less */
     181             : static inline bool prio_less(const struct task_struct *a,
     182             :                              const struct task_struct *b, bool in_fi)
     183             : {
     184             : 
     185             :         int pa = __task_prio(a), pb = __task_prio(b);
     186             : 
     187             :         if (-pa < -pb)
     188             :                 return true;
     189             : 
     190             :         if (-pb < -pa)
     191             :                 return false;
     192             : 
     193             :         if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
     194             :                 return !dl_time_before(a->dl.deadline, b->dl.deadline);
     195             : 
     196             :         if (pa == MAX_RT_PRIO + MAX_NICE)       /* fair */
     197             :                 return cfs_prio_less(a, b, in_fi);
     198             : 
     199             :         return false;
     200             : }
     201             : 
     202             : static inline bool __sched_core_less(const struct task_struct *a,
     203             :                                      const struct task_struct *b)
     204             : {
     205             :         if (a->core_cookie < b->core_cookie)
     206             :                 return true;
     207             : 
     208             :         if (a->core_cookie > b->core_cookie)
     209             :                 return false;
     210             : 
     211             :         /* flip prio, so high prio is leftmost */
     212             :         if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
     213             :                 return true;
     214             : 
     215             :         return false;
     216             : }
     217             : 
     218             : #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
     219             : 
     220             : static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
     221             : {
     222             :         return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
     223             : }
     224             : 
     225             : static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
     226             : {
     227             :         const struct task_struct *p = __node_2_sc(node);
     228             :         unsigned long cookie = (unsigned long)key;
     229             : 
     230             :         if (cookie < p->core_cookie)
     231             :                 return -1;
     232             : 
     233             :         if (cookie > p->core_cookie)
     234             :                 return 1;
     235             : 
     236             :         return 0;
     237             : }
     238             : 
     239             : void sched_core_enqueue(struct rq *rq, struct task_struct *p)
     240             : {
     241             :         rq->core->core_task_seq++;
     242             : 
     243             :         if (!p->core_cookie)
     244             :                 return;
     245             : 
     246             :         rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
     247             : }
     248             : 
     249             : void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
     250             : {
     251             :         rq->core->core_task_seq++;
     252             : 
     253             :         if (sched_core_enqueued(p)) {
     254             :                 rb_erase(&p->core_node, &rq->core_tree);
     255             :                 RB_CLEAR_NODE(&p->core_node);
     256             :         }
     257             : 
     258             :         /*
     259             :          * Migrating the last task off the cpu, with the cpu in forced idle
     260             :          * state. Reschedule to create an accounting edge for forced idle,
     261             :          * and re-examine whether the core is still in forced idle state.
     262             :          */
     263             :         if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
     264             :             rq->core->core_forceidle_count && rq->curr == rq->idle)
     265             :                 resched_curr(rq);
     266             : }
     267             : 
     268             : static int sched_task_is_throttled(struct task_struct *p, int cpu)
     269             : {
     270             :         if (p->sched_class->task_is_throttled)
     271             :                 return p->sched_class->task_is_throttled(p, cpu);
     272             : 
     273             :         return 0;
     274             : }
     275             : 
     276             : static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
     277             : {
     278             :         struct rb_node *node = &p->core_node;
     279             :         int cpu = task_cpu(p);
     280             : 
     281             :         do {
     282             :                 node = rb_next(node);
     283             :                 if (!node)
     284             :                         return NULL;
     285             : 
     286             :                 p = __node_2_sc(node);
     287             :                 if (p->core_cookie != cookie)
     288             :                         return NULL;
     289             : 
     290             :         } while (sched_task_is_throttled(p, cpu));
     291             : 
     292             :         return p;
     293             : }
     294             : 
     295             : /*
     296             :  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
     297             :  * If no suitable task is found, NULL will be returned.
     298             :  */
     299             : static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
     300             : {
     301             :         struct task_struct *p;
     302             :         struct rb_node *node;
     303             : 
     304             :         node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
     305             :         if (!node)
     306             :                 return NULL;
     307             : 
     308             :         p = __node_2_sc(node);
     309             :         if (!sched_task_is_throttled(p, rq->cpu))
     310             :                 return p;
     311             : 
     312             :         return sched_core_next(p, cookie);
     313             : }
     314             : 
     315             : /*
     316             :  * Magic required such that:
     317             :  *
     318             :  *      raw_spin_rq_lock(rq);
     319             :  *      ...
     320             :  *      raw_spin_rq_unlock(rq);
     321             :  *
     322             :  * ends up locking and unlocking the _same_ lock, and all CPUs
     323             :  * always agree on what rq has what lock.
     324             :  *
     325             :  * XXX entirely possible to selectively enable cores, don't bother for now.
     326             :  */
     327             : 
     328             : static DEFINE_MUTEX(sched_core_mutex);
     329             : static atomic_t sched_core_count;
     330             : static struct cpumask sched_core_mask;
     331             : 
     332             : static void sched_core_lock(int cpu, unsigned long *flags)
     333             : {
     334             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     335             :         int t, i = 0;
     336             : 
     337             :         local_irq_save(*flags);
     338             :         for_each_cpu(t, smt_mask)
     339             :                 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
     340             : }
     341             : 
     342             : static void sched_core_unlock(int cpu, unsigned long *flags)
     343             : {
     344             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     345             :         int t;
     346             : 
     347             :         for_each_cpu(t, smt_mask)
     348             :                 raw_spin_unlock(&cpu_rq(t)->__lock);
     349             :         local_irq_restore(*flags);
     350             : }
     351             : 
     352             : static void __sched_core_flip(bool enabled)
     353             : {
     354             :         unsigned long flags;
     355             :         int cpu, t;
     356             : 
     357             :         cpus_read_lock();
     358             : 
     359             :         /*
     360             :          * Toggle the online cores, one by one.
     361             :          */
     362             :         cpumask_copy(&sched_core_mask, cpu_online_mask);
     363             :         for_each_cpu(cpu, &sched_core_mask) {
     364             :                 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
     365             : 
     366             :                 sched_core_lock(cpu, &flags);
     367             : 
     368             :                 for_each_cpu(t, smt_mask)
     369             :                         cpu_rq(t)->core_enabled = enabled;
     370             : 
     371             :                 cpu_rq(cpu)->core->core_forceidle_start = 0;
     372             : 
     373             :                 sched_core_unlock(cpu, &flags);
     374             : 
     375             :                 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
     376             :         }
     377             : 
     378             :         /*
     379             :          * Toggle the offline CPUs.
     380             :          */
     381             :         for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
     382             :                 cpu_rq(cpu)->core_enabled = enabled;
     383             : 
     384             :         cpus_read_unlock();
     385             : }
     386             : 
     387             : static void sched_core_assert_empty(void)
     388             : {
     389             :         int cpu;
     390             : 
     391             :         for_each_possible_cpu(cpu)
     392             :                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
     393             : }
     394             : 
     395             : static void __sched_core_enable(void)
     396             : {
     397             :         static_branch_enable(&__sched_core_enabled);
     398             :         /*
     399             :          * Ensure all previous instances of raw_spin_rq_*lock() have finished
     400             :          * and future ones will observe !sched_core_disabled().
     401             :          */
     402             :         synchronize_rcu();
     403             :         __sched_core_flip(true);
     404             :         sched_core_assert_empty();
     405             : }
     406             : 
     407             : static void __sched_core_disable(void)
     408             : {
     409             :         sched_core_assert_empty();
     410             :         __sched_core_flip(false);
     411             :         static_branch_disable(&__sched_core_enabled);
     412             : }
     413             : 
     414             : void sched_core_get(void)
     415             : {
     416             :         if (atomic_inc_not_zero(&sched_core_count))
     417             :                 return;
     418             : 
     419             :         mutex_lock(&sched_core_mutex);
     420             :         if (!atomic_read(&sched_core_count))
     421             :                 __sched_core_enable();
     422             : 
     423             :         smp_mb__before_atomic();
     424             :         atomic_inc(&sched_core_count);
     425             :         mutex_unlock(&sched_core_mutex);
     426             : }
     427             : 
     428             : static void __sched_core_put(struct work_struct *work)
     429             : {
     430             :         if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
     431             :                 __sched_core_disable();
     432             :                 mutex_unlock(&sched_core_mutex);
     433             :         }
     434             : }
     435             : 
     436             : void sched_core_put(void)
     437             : {
     438             :         static DECLARE_WORK(_work, __sched_core_put);
     439             : 
     440             :         /*
     441             :          * "There can be only one"
     442             :          *
     443             :          * Either this is the last one, or we don't actually need to do any
     444             :          * 'work'. If it is the last *again*, we rely on
     445             :          * WORK_STRUCT_PENDING_BIT.
     446             :          */
     447             :         if (!atomic_add_unless(&sched_core_count, -1, 1))
     448             :                 schedule_work(&_work);
     449             : }
     450             : 
     451             : #else /* !CONFIG_SCHED_CORE */
     452             : 
     453             : static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
     454             : static inline void
     455             : sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
     456             : 
     457             : #endif /* CONFIG_SCHED_CORE */
     458             : 
     459             : /*
     460             :  * Serialization rules:
     461             :  *
     462             :  * Lock order:
     463             :  *
     464             :  *   p->pi_lock
     465             :  *     rq->lock
     466             :  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
     467             :  *
     468             :  *  rq1->lock
     469             :  *    rq2->lock  where: rq1 < rq2
     470             :  *
     471             :  * Regular state:
     472             :  *
     473             :  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
     474             :  * local CPU's rq->lock, it optionally removes the task from the runqueue and
     475             :  * always looks at the local rq data structures to find the most eligible task
     476             :  * to run next.
     477             :  *
     478             :  * Task enqueue is also under rq->lock, possibly taken from another CPU.
     479             :  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
     480             :  * the local CPU to avoid bouncing the runqueue state around [ see
     481             :  * ttwu_queue_wakelist() ]
     482             :  *
     483             :  * Task wakeup, specifically wakeups that involve migration, are horribly
     484             :  * complicated to avoid having to take two rq->locks.
     485             :  *
     486             :  * Special state:
     487             :  *
     488             :  * System-calls and anything external will use task_rq_lock() which acquires
     489             :  * both p->pi_lock and rq->lock. As a consequence the state they change is
     490             :  * stable while holding either lock:
     491             :  *
     492             :  *  - sched_setaffinity()/
     493             :  *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
     494             :  *  - set_user_nice():          p->se.load, p->*prio
     495             :  *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
     496             :  *                              p->se.load, p->rt_priority,
     497             :  *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
     498             :  *  - sched_setnuma():          p->numa_preferred_nid
     499             :  *  - sched_move_task():        p->sched_task_group
     500             :  *  - uclamp_update_active()    p->uclamp*
     501             :  *
     502             :  * p->state <- TASK_*:
     503             :  *
     504             :  *   is changed locklessly using set_current_state(), __set_current_state() or
     505             :  *   set_special_state(), see their respective comments, or by
     506             :  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
     507             :  *   concurrent self.
     508             :  *
     509             :  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
     510             :  *
     511             :  *   is set by activate_task() and cleared by deactivate_task(), under
     512             :  *   rq->lock. Non-zero indicates the task is runnable, the special
     513             :  *   ON_RQ_MIGRATING state is used for migration without holding both
     514             :  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
     515             :  *
     516             :  * p->on_cpu <- { 0, 1 }:
     517             :  *
     518             :  *   is set by prepare_task() and cleared by finish_task() such that it will be
     519             :  *   set before p is scheduled-in and cleared after p is scheduled-out, both
     520             :  *   under rq->lock. Non-zero indicates the task is running on its CPU.
     521             :  *
     522             :  *   [ The astute reader will observe that it is possible for two tasks on one
     523             :  *     CPU to have ->on_cpu = 1 at the same time. ]
     524             :  *
     525             :  * task_cpu(p): is changed by set_task_cpu(), the rules are:
     526             :  *
     527             :  *  - Don't call set_task_cpu() on a blocked task:
     528             :  *
     529             :  *    We don't care what CPU we're not running on, this simplifies hotplug,
     530             :  *    the CPU assignment of blocked tasks isn't required to be valid.
     531             :  *
     532             :  *  - for try_to_wake_up(), called under p->pi_lock:
     533             :  *
     534             :  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
     535             :  *
     536             :  *  - for migration called under rq->lock:
     537             :  *    [ see task_on_rq_migrating() in task_rq_lock() ]
     538             :  *
     539             :  *    o move_queued_task()
     540             :  *    o detach_task()
     541             :  *
     542             :  *  - for migration called under double_rq_lock():
     543             :  *
     544             :  *    o __migrate_swap_task()
     545             :  *    o push_rt_task() / pull_rt_task()
     546             :  *    o push_dl_task() / pull_dl_task()
     547             :  *    o dl_task_offline_migration()
     548             :  *
     549             :  */
     550             : 
     551         382 : void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
     552             : {
     553             :         raw_spinlock_t *lock;
     554             : 
     555             :         /* Matches synchronize_rcu() in __sched_core_enable() */
     556        8666 :         preempt_disable();
     557             :         if (sched_core_disabled()) {
     558        8666 :                 raw_spin_lock_nested(&rq->__lock, subclass);
     559             :                 /* preempt_count *MUST* be > 1 */
     560        8666 :                 preempt_enable_no_resched();
     561             :                 return;
     562             :         }
     563             : 
     564             :         for (;;) {
     565             :                 lock = __rq_lockp(rq);
     566             :                 raw_spin_lock_nested(lock, subclass);
     567             :                 if (likely(lock == __rq_lockp(rq))) {
     568             :                         /* preempt_count *MUST* be > 1 */
     569             :                         preempt_enable_no_resched();
     570             :                         return;
     571             :                 }
     572             :                 raw_spin_unlock(lock);
     573             :         }
     574             : }
     575             : 
     576           0 : bool raw_spin_rq_trylock(struct rq *rq)
     577             : {
     578             :         raw_spinlock_t *lock;
     579             :         bool ret;
     580             : 
     581             :         /* Matches synchronize_rcu() in __sched_core_enable() */
     582           0 :         preempt_disable();
     583             :         if (sched_core_disabled()) {
     584           0 :                 ret = raw_spin_trylock(&rq->__lock);
     585           0 :                 preempt_enable();
     586             :                 return ret;
     587             :         }
     588             : 
     589             :         for (;;) {
     590             :                 lock = __rq_lockp(rq);
     591             :                 ret = raw_spin_trylock(lock);
     592             :                 if (!ret || (likely(lock == __rq_lockp(rq)))) {
     593             :                         preempt_enable();
     594             :                         return ret;
     595             :                 }
     596             :                 raw_spin_unlock(lock);
     597             :         }
     598             : }
     599             : 
     600         382 : void raw_spin_rq_unlock(struct rq *rq)
     601             : {
     602        8666 :         raw_spin_unlock(rq_lockp(rq));
     603         382 : }
     604             : 
     605             : #ifdef CONFIG_SMP
     606             : /*
     607             :  * double_rq_lock - safely lock two runqueues
     608             :  */
     609             : void double_rq_lock(struct rq *rq1, struct rq *rq2)
     610             : {
     611             :         lockdep_assert_irqs_disabled();
     612             : 
     613             :         if (rq_order_less(rq2, rq1))
     614             :                 swap(rq1, rq2);
     615             : 
     616             :         raw_spin_rq_lock(rq1);
     617             :         if (__rq_lockp(rq1) != __rq_lockp(rq2))
     618             :                 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
     619             : 
     620             :         double_rq_clock_clear_update(rq1, rq2);
     621             : }
     622             : #endif
     623             : 
     624             : /*
     625             :  * __task_rq_lock - lock the rq @p resides on.
     626             :  */
     627           0 : struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
     628             :         __acquires(rq->lock)
     629             : {
     630             :         struct rq *rq;
     631             : 
     632             :         lockdep_assert_held(&p->pi_lock);
     633             : 
     634             :         for (;;) {
     635         382 :                 rq = task_rq(p);
     636         382 :                 raw_spin_rq_lock(rq);
     637         764 :                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
     638         382 :                         rq_pin_lock(rq, rf);
     639           0 :                         return rq;
     640             :                 }
     641             :                 raw_spin_rq_unlock(rq);
     642             : 
     643           0 :                 while (unlikely(task_on_rq_migrating(p)))
     644             :                         cpu_relax();
     645             :         }
     646             : }
     647             : 
     648             : /*
     649             :  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
     650             :  */
     651         385 : struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
     652             :         __acquires(p->pi_lock)
     653             :         __acquires(rq->lock)
     654             : {
     655             :         struct rq *rq;
     656             : 
     657             :         for (;;) {
     658         385 :                 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
     659         385 :                 rq = task_rq(p);
     660         385 :                 raw_spin_rq_lock(rq);
     661             :                 /*
     662             :                  *      move_queued_task()              task_rq_lock()
     663             :                  *
     664             :                  *      ACQUIRE (rq->lock)
     665             :                  *      [S] ->on_rq = MIGRATING              [L] rq = task_rq()
     666             :                  *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
     667             :                  *      [S] ->cpu = new_cpu          [L] task_rq()
     668             :                  *                                      [L] ->on_rq
     669             :                  *      RELEASE (rq->lock)
     670             :                  *
     671             :                  * If we observe the old CPU in task_rq_lock(), the acquire of
     672             :                  * the old rq->lock will fully serialize against the stores.
     673             :                  *
     674             :                  * If we observe the new CPU in task_rq_lock(), the address
     675             :                  * dependency headed by '[L] rq = task_rq()' and the acquire
     676             :                  * will pair with the WMB to ensure we then also see migrating.
     677             :                  */
     678         770 :                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
     679         385 :                         rq_pin_lock(rq, rf);
     680         385 :                         return rq;
     681             :                 }
     682           0 :                 raw_spin_rq_unlock(rq);
     683           0 :                 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
     684             : 
     685           0 :                 while (unlikely(task_on_rq_migrating(p)))
     686             :                         cpu_relax();
     687             :         }
     688             : }
     689             : 
     690             : /*
     691             :  * RQ-clock updating methods:
     692             :  */
     693             : 
     694             : static void update_rq_clock_task(struct rq *rq, s64 delta)
     695             : {
     696             : /*
     697             :  * In theory, the compile should just see 0 here, and optimize out the call
     698             :  * to sched_rt_avg_update. But I don't trust it...
     699             :  */
     700        7826 :         s64 __maybe_unused steal = 0, irq_delta = 0;
     701             : 
     702             : #ifdef CONFIG_IRQ_TIME_ACCOUNTING
     703             :         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
     704             : 
     705             :         /*
     706             :          * Since irq_time is only updated on {soft,}irq_exit, we might run into
     707             :          * this case when a previous update_rq_clock() happened inside a
     708             :          * {soft,}irq region.
     709             :          *
     710             :          * When this happens, we stop ->clock_task and only update the
     711             :          * prev_irq_time stamp to account for the part that fit, so that a next
     712             :          * update will consume the rest. This ensures ->clock_task is
     713             :          * monotonic.
     714             :          *
     715             :          * It does however cause some slight miss-attribution of {soft,}irq
     716             :          * time, a more accurate solution would be to update the irq_time using
     717             :          * the current rq->clock timestamp, except that would require using
     718             :          * atomic ops.
     719             :          */
     720             :         if (irq_delta > delta)
     721             :                 irq_delta = delta;
     722             : 
     723             :         rq->prev_irq_time += irq_delta;
     724             :         delta -= irq_delta;
     725             :         psi_account_irqtime(rq->curr, irq_delta);
     726             :         delayacct_irq(rq->curr, irq_delta);
     727             : #endif
     728             : #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
     729             :         if (static_key_false((&paravirt_steal_rq_enabled))) {
     730             :                 steal = paravirt_steal_clock(cpu_of(rq));
     731             :                 steal -= rq->prev_steal_time_rq;
     732             : 
     733             :                 if (unlikely(steal > delta))
     734             :                         steal = delta;
     735             : 
     736             :                 rq->prev_steal_time_rq += steal;
     737             :                 delta -= steal;
     738             :         }
     739             : #endif
     740             : 
     741        7826 :         rq->clock_task += delta;
     742             : 
     743             : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
     744             :         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
     745             :                 update_irq_load_avg(rq, irq_delta + steal);
     746             : #endif
     747        7826 :         update_rq_clock_pelt(rq, delta);
     748             : }
     749             : 
     750        8665 : void update_rq_clock(struct rq *rq)
     751             : {
     752             :         s64 delta;
     753             : 
     754        8665 :         lockdep_assert_rq_held(rq);
     755             : 
     756        8665 :         if (rq->clock_update_flags & RQCF_ACT_SKIP)
     757             :                 return;
     758             : 
     759             : #ifdef CONFIG_SCHED_DEBUG
     760             :         if (sched_feat(WARN_DOUBLE_CLOCK))
     761             :                 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
     762             :         rq->clock_update_flags |= RQCF_UPDATED;
     763             : #endif
     764             : 
     765        7826 :         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
     766        7826 :         if (delta < 0)
     767             :                 return;
     768        7826 :         rq->clock += delta;
     769        7826 :         update_rq_clock_task(rq, delta);
     770             : }
     771             : 
     772             : #ifdef CONFIG_SCHED_HRTICK
     773             : /*
     774             :  * Use HR-timers to deliver accurate preemption points.
     775             :  */
     776             : 
     777             : static void hrtick_clear(struct rq *rq)
     778             : {
     779             :         if (hrtimer_active(&rq->hrtick_timer))
     780             :                 hrtimer_cancel(&rq->hrtick_timer);
     781             : }
     782             : 
     783             : /*
     784             :  * High-resolution timer tick.
     785             :  * Runs from hardirq context with interrupts disabled.
     786             :  */
     787             : static enum hrtimer_restart hrtick(struct hrtimer *timer)
     788             : {
     789             :         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
     790             :         struct rq_flags rf;
     791             : 
     792             :         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
     793             : 
     794             :         rq_lock(rq, &rf);
     795             :         update_rq_clock(rq);
     796             :         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
     797             :         rq_unlock(rq, &rf);
     798             : 
     799             :         return HRTIMER_NORESTART;
     800             : }
     801             : 
     802             : #ifdef CONFIG_SMP
     803             : 
     804             : static void __hrtick_restart(struct rq *rq)
     805             : {
     806             :         struct hrtimer *timer = &rq->hrtick_timer;
     807             :         ktime_t time = rq->hrtick_time;
     808             : 
     809             :         hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
     810             : }
     811             : 
     812             : /*
     813             :  * called from hardirq (IPI) context
     814             :  */
     815             : static void __hrtick_start(void *arg)
     816             : {
     817             :         struct rq *rq = arg;
     818             :         struct rq_flags rf;
     819             : 
     820             :         rq_lock(rq, &rf);
     821             :         __hrtick_restart(rq);
     822             :         rq_unlock(rq, &rf);
     823             : }
     824             : 
     825             : /*
     826             :  * Called to set the hrtick timer state.
     827             :  *
     828             :  * called with rq->lock held and irqs disabled
     829             :  */
     830             : void hrtick_start(struct rq *rq, u64 delay)
     831             : {
     832             :         struct hrtimer *timer = &rq->hrtick_timer;
     833             :         s64 delta;
     834             : 
     835             :         /*
     836             :          * Don't schedule slices shorter than 10000ns, that just
     837             :          * doesn't make sense and can cause timer DoS.
     838             :          */
     839             :         delta = max_t(s64, delay, 10000LL);
     840             :         rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
     841             : 
     842             :         if (rq == this_rq())
     843             :                 __hrtick_restart(rq);
     844             :         else
     845             :                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
     846             : }
     847             : 
     848             : #else
     849             : /*
     850             :  * Called to set the hrtick timer state.
     851             :  *
     852             :  * called with rq->lock held and irqs disabled
     853             :  */
     854             : void hrtick_start(struct rq *rq, u64 delay)
     855             : {
     856             :         /*
     857             :          * Don't schedule slices shorter than 10000ns, that just
     858             :          * doesn't make sense. Rely on vruntime for fairness.
     859             :          */
     860             :         delay = max_t(u64, delay, 10000LL);
     861             :         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
     862             :                       HRTIMER_MODE_REL_PINNED_HARD);
     863             : }
     864             : 
     865             : #endif /* CONFIG_SMP */
     866             : 
     867             : static void hrtick_rq_init(struct rq *rq)
     868             : {
     869             : #ifdef CONFIG_SMP
     870             :         INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
     871             : #endif
     872             :         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
     873             :         rq->hrtick_timer.function = hrtick;
     874             : }
     875             : #else   /* CONFIG_SCHED_HRTICK */
     876             : static inline void hrtick_clear(struct rq *rq)
     877             : {
     878             : }
     879             : 
     880             : static inline void hrtick_rq_init(struct rq *rq)
     881             : {
     882             : }
     883             : #endif  /* CONFIG_SCHED_HRTICK */
     884             : 
     885             : /*
     886             :  * cmpxchg based fetch_or, macro so it works for different integer types
     887             :  */
     888             : #define fetch_or(ptr, mask)                                             \
     889             :         ({                                                              \
     890             :                 typeof(ptr) _ptr = (ptr);                               \
     891             :                 typeof(mask) _mask = (mask);                            \
     892             :                 typeof(*_ptr) _val = *_ptr;                             \
     893             :                                                                         \
     894             :                 do {                                                    \
     895             :                 } while (!try_cmpxchg(_ptr, &_val, _val | _mask));  \
     896             :         _val;                                                           \
     897             : })
     898             : 
     899             : #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
     900             : /*
     901             :  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
     902             :  * this avoids any races wrt polling state changes and thereby avoids
     903             :  * spurious IPIs.
     904             :  */
     905             : static inline bool set_nr_and_not_polling(struct task_struct *p)
     906             : {
     907             :         struct thread_info *ti = task_thread_info(p);
     908             :         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
     909             : }
     910             : 
     911             : /*
     912             :  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
     913             :  *
     914             :  * If this returns true, then the idle task promises to call
     915             :  * sched_ttwu_pending() and reschedule soon.
     916             :  */
     917             : static bool set_nr_if_polling(struct task_struct *p)
     918             : {
     919             :         struct thread_info *ti = task_thread_info(p);
     920             :         typeof(ti->flags) val = READ_ONCE(ti->flags);
     921             : 
     922             :         for (;;) {
     923             :                 if (!(val & _TIF_POLLING_NRFLAG))
     924             :                         return false;
     925             :                 if (val & _TIF_NEED_RESCHED)
     926             :                         return true;
     927             :                 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
     928             :                         break;
     929             :         }
     930             :         return true;
     931             : }
     932             : 
     933             : #else
     934             : static inline bool set_nr_and_not_polling(struct task_struct *p)
     935             : {
     936             :         set_tsk_need_resched(p);
     937             :         return true;
     938             : }
     939             : 
     940             : #ifdef CONFIG_SMP
     941             : static inline bool set_nr_if_polling(struct task_struct *p)
     942             : {
     943             :         return false;
     944             : }
     945             : #endif
     946             : #endif
     947             : 
     948             : static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
     949             : {
     950           0 :         struct wake_q_node *node = &task->wake_q;
     951             : 
     952             :         /*
     953             :          * Atomically grab the task, if ->wake_q is !nil already it means
     954             :          * it's already queued (either by us or someone else) and will get the
     955             :          * wakeup due to that.
     956             :          *
     957             :          * In order to ensure that a pending wakeup will observe our pending
     958             :          * state, even in the failed case, an explicit smp_mb() must be used.
     959             :          */
     960           0 :         smp_mb__before_atomic();
     961           0 :         if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
     962             :                 return false;
     963             : 
     964             :         /*
     965             :          * The head is context local, there can be no concurrency.
     966             :          */
     967           0 :         *head->lastp = node;
     968           0 :         head->lastp = &node->next;
     969             :         return true;
     970             : }
     971             : 
     972             : /**
     973             :  * wake_q_add() - queue a wakeup for 'later' waking.
     974             :  * @head: the wake_q_head to add @task to
     975             :  * @task: the task to queue for 'later' wakeup
     976             :  *
     977             :  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
     978             :  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
     979             :  * instantly.
     980             :  *
     981             :  * This function must be used as-if it were wake_up_process(); IOW the task
     982             :  * must be ready to be woken at this location.
     983             :  */
     984           0 : void wake_q_add(struct wake_q_head *head, struct task_struct *task)
     985             : {
     986           0 :         if (__wake_q_add(head, task))
     987             :                 get_task_struct(task);
     988           0 : }
     989             : 
     990             : /**
     991             :  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
     992             :  * @head: the wake_q_head to add @task to
     993             :  * @task: the task to queue for 'later' wakeup
     994             :  *
     995             :  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
     996             :  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
     997             :  * instantly.
     998             :  *
     999             :  * This function must be used as-if it were wake_up_process(); IOW the task
    1000             :  * must be ready to be woken at this location.
    1001             :  *
    1002             :  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
    1003             :  * that already hold reference to @task can call the 'safe' version and trust
    1004             :  * wake_q to do the right thing depending whether or not the @task is already
    1005             :  * queued for wakeup.
    1006             :  */
    1007           0 : void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
    1008             : {
    1009           0 :         if (!__wake_q_add(head, task))
    1010           0 :                 put_task_struct(task);
    1011           0 : }
    1012             : 
    1013           0 : void wake_up_q(struct wake_q_head *head)
    1014             : {
    1015           0 :         struct wake_q_node *node = head->first;
    1016             : 
    1017           0 :         while (node != WAKE_Q_TAIL) {
    1018             :                 struct task_struct *task;
    1019             : 
    1020           0 :                 task = container_of(node, struct task_struct, wake_q);
    1021             :                 /* Task can safely be re-inserted now: */
    1022           0 :                 node = node->next;
    1023           0 :                 task->wake_q.next = NULL;
    1024             : 
    1025             :                 /*
    1026             :                  * wake_up_process() executes a full barrier, which pairs with
    1027             :                  * the queueing in wake_q_add() so as not to miss wakeups.
    1028             :                  */
    1029           0 :                 wake_up_process(task);
    1030           0 :                 put_task_struct(task);
    1031             :         }
    1032           0 : }
    1033             : 
    1034             : /*
    1035             :  * resched_curr - mark rq's current task 'to be rescheduled now'.
    1036             :  *
    1037             :  * On UP this means the setting of the need_resched flag, on SMP it
    1038             :  * might also involve a cross-CPU call to trigger the scheduler on
    1039             :  * the target CPU.
    1040             :  */
    1041        1075 : void resched_curr(struct rq *rq)
    1042             : {
    1043        1075 :         struct task_struct *curr = rq->curr;
    1044             :         int cpu;
    1045             : 
    1046        2150 :         lockdep_assert_rq_held(rq);
    1047             : 
    1048        1075 :         if (test_tsk_need_resched(curr))
    1049             :                 return;
    1050             : 
    1051         843 :         cpu = cpu_of(rq);
    1052             : 
    1053             :         if (cpu == smp_processor_id()) {
    1054             :                 set_tsk_need_resched(curr);
    1055             :                 set_preempt_need_resched();
    1056             :                 return;
    1057             :         }
    1058             : 
    1059             :         if (set_nr_and_not_polling(curr))
    1060             :                 smp_send_reschedule(cpu);
    1061             :         else
    1062             :                 trace_sched_wake_idle_without_ipi(cpu);
    1063             : }
    1064             : 
    1065           0 : void resched_cpu(int cpu)
    1066             : {
    1067           0 :         struct rq *rq = cpu_rq(cpu);
    1068             :         unsigned long flags;
    1069             : 
    1070           0 :         raw_spin_rq_lock_irqsave(rq, flags);
    1071           0 :         if (cpu_online(cpu) || cpu == smp_processor_id())
    1072           0 :                 resched_curr(rq);
    1073           0 :         raw_spin_rq_unlock_irqrestore(rq, flags);
    1074           0 : }
    1075             : 
    1076             : #ifdef CONFIG_SMP
    1077             : #ifdef CONFIG_NO_HZ_COMMON
    1078             : /*
    1079             :  * In the semi idle case, use the nearest busy CPU for migrating timers
    1080             :  * from an idle CPU.  This is good for power-savings.
    1081             :  *
    1082             :  * We don't do similar optimization for completely idle system, as
    1083             :  * selecting an idle CPU will add more delays to the timers than intended
    1084             :  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
    1085             :  */
    1086             : int get_nohz_timer_target(void)
    1087             : {
    1088             :         int i, cpu = smp_processor_id(), default_cpu = -1;
    1089             :         struct sched_domain *sd;
    1090             :         const struct cpumask *hk_mask;
    1091             : 
    1092             :         if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
    1093             :                 if (!idle_cpu(cpu))
    1094             :                         return cpu;
    1095             :                 default_cpu = cpu;
    1096             :         }
    1097             : 
    1098             :         hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
    1099             : 
    1100             :         rcu_read_lock();
    1101             :         for_each_domain(cpu, sd) {
    1102             :                 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
    1103             :                         if (cpu == i)
    1104             :                                 continue;
    1105             : 
    1106             :                         if (!idle_cpu(i)) {
    1107             :                                 cpu = i;
    1108             :                                 goto unlock;
    1109             :                         }
    1110             :                 }
    1111             :         }
    1112             : 
    1113             :         if (default_cpu == -1)
    1114             :                 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
    1115             :         cpu = default_cpu;
    1116             : unlock:
    1117             :         rcu_read_unlock();
    1118             :         return cpu;
    1119             : }
    1120             : 
    1121             : /*
    1122             :  * When add_timer_on() enqueues a timer into the timer wheel of an
    1123             :  * idle CPU then this timer might expire before the next timer event
    1124             :  * which is scheduled to wake up that CPU. In case of a completely
    1125             :  * idle system the next event might even be infinite time into the
    1126             :  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
    1127             :  * leaves the inner idle loop so the newly added timer is taken into
    1128             :  * account when the CPU goes back to idle and evaluates the timer
    1129             :  * wheel for the next timer event.
    1130             :  */
    1131             : static void wake_up_idle_cpu(int cpu)
    1132             : {
    1133             :         struct rq *rq = cpu_rq(cpu);
    1134             : 
    1135             :         if (cpu == smp_processor_id())
    1136             :                 return;
    1137             : 
    1138             :         if (set_nr_and_not_polling(rq->idle))
    1139             :                 smp_send_reschedule(cpu);
    1140             :         else
    1141             :                 trace_sched_wake_idle_without_ipi(cpu);
    1142             : }
    1143             : 
    1144             : static bool wake_up_full_nohz_cpu(int cpu)
    1145             : {
    1146             :         /*
    1147             :          * We just need the target to call irq_exit() and re-evaluate
    1148             :          * the next tick. The nohz full kick at least implies that.
    1149             :          * If needed we can still optimize that later with an
    1150             :          * empty IRQ.
    1151             :          */
    1152             :         if (cpu_is_offline(cpu))
    1153             :                 return true;  /* Don't try to wake offline CPUs. */
    1154             :         if (tick_nohz_full_cpu(cpu)) {
    1155             :                 if (cpu != smp_processor_id() ||
    1156             :                     tick_nohz_tick_stopped())
    1157             :                         tick_nohz_full_kick_cpu(cpu);
    1158             :                 return true;
    1159             :         }
    1160             : 
    1161             :         return false;
    1162             : }
    1163             : 
    1164             : /*
    1165             :  * Wake up the specified CPU.  If the CPU is going offline, it is the
    1166             :  * caller's responsibility to deal with the lost wakeup, for example,
    1167             :  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
    1168             :  */
    1169             : void wake_up_nohz_cpu(int cpu)
    1170             : {
    1171             :         if (!wake_up_full_nohz_cpu(cpu))
    1172             :                 wake_up_idle_cpu(cpu);
    1173             : }
    1174             : 
    1175             : static void nohz_csd_func(void *info)
    1176             : {
    1177             :         struct rq *rq = info;
    1178             :         int cpu = cpu_of(rq);
    1179             :         unsigned int flags;
    1180             : 
    1181             :         /*
    1182             :          * Release the rq::nohz_csd.
    1183             :          */
    1184             :         flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
    1185             :         WARN_ON(!(flags & NOHZ_KICK_MASK));
    1186             : 
    1187             :         rq->idle_balance = idle_cpu(cpu);
    1188             :         if (rq->idle_balance && !need_resched()) {
    1189             :                 rq->nohz_idle_balance = flags;
    1190             :                 raise_softirq_irqoff(SCHED_SOFTIRQ);
    1191             :         }
    1192             : }
    1193             : 
    1194             : #endif /* CONFIG_NO_HZ_COMMON */
    1195             : 
    1196             : #ifdef CONFIG_NO_HZ_FULL
    1197             : bool sched_can_stop_tick(struct rq *rq)
    1198             : {
    1199             :         int fifo_nr_running;
    1200             : 
    1201             :         /* Deadline tasks, even if single, need the tick */
    1202             :         if (rq->dl.dl_nr_running)
    1203             :                 return false;
    1204             : 
    1205             :         /*
    1206             :          * If there are more than one RR tasks, we need the tick to affect the
    1207             :          * actual RR behaviour.
    1208             :          */
    1209             :         if (rq->rt.rr_nr_running) {
    1210             :                 if (rq->rt.rr_nr_running == 1)
    1211             :                         return true;
    1212             :                 else
    1213             :                         return false;
    1214             :         }
    1215             : 
    1216             :         /*
    1217             :          * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
    1218             :          * forced preemption between FIFO tasks.
    1219             :          */
    1220             :         fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
    1221             :         if (fifo_nr_running)
    1222             :                 return true;
    1223             : 
    1224             :         /*
    1225             :          * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
    1226             :          * if there's more than one we need the tick for involuntary
    1227             :          * preemption.
    1228             :          */
    1229             :         if (rq->nr_running > 1)
    1230             :                 return false;
    1231             : 
    1232             :         return true;
    1233             : }
    1234             : #endif /* CONFIG_NO_HZ_FULL */
    1235             : #endif /* CONFIG_SMP */
    1236             : 
    1237             : #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
    1238             :                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
    1239             : /*
    1240             :  * Iterate task_group tree rooted at *from, calling @down when first entering a
    1241             :  * node and @up when leaving it for the final time.
    1242             :  *
    1243             :  * Caller must hold rcu_lock or sufficient equivalent.
    1244             :  */
    1245             : int walk_tg_tree_from(struct task_group *from,
    1246             :                              tg_visitor down, tg_visitor up, void *data)
    1247             : {
    1248             :         struct task_group *parent, *child;
    1249             :         int ret;
    1250             : 
    1251             :         parent = from;
    1252             : 
    1253             : down:
    1254             :         ret = (*down)(parent, data);
    1255             :         if (ret)
    1256             :                 goto out;
    1257             :         list_for_each_entry_rcu(child, &parent->children, siblings) {
    1258             :                 parent = child;
    1259             :                 goto down;
    1260             : 
    1261             : up:
    1262             :                 continue;
    1263             :         }
    1264             :         ret = (*up)(parent, data);
    1265             :         if (ret || parent == from)
    1266             :                 goto out;
    1267             : 
    1268             :         child = parent;
    1269             :         parent = parent->parent;
    1270             :         if (parent)
    1271             :                 goto up;
    1272             : out:
    1273             :         return ret;
    1274             : }
    1275             : 
    1276             : int tg_nop(struct task_group *tg, void *data)
    1277             : {
    1278             :         return 0;
    1279             : }
    1280             : #endif
    1281             : 
    1282           6 : static void set_load_weight(struct task_struct *p, bool update_load)
    1283             : {
    1284           6 :         int prio = p->static_prio - MAX_RT_PRIO;
    1285           6 :         struct load_weight *load = &p->se.load;
    1286             : 
    1287             :         /*
    1288             :          * SCHED_IDLE tasks get minimal weight:
    1289             :          */
    1290          12 :         if (task_has_idle_policy(p)) {
    1291           0 :                 load->weight = scale_load(WEIGHT_IDLEPRIO);
    1292           0 :                 load->inv_weight = WMULT_IDLEPRIO;
    1293           0 :                 return;
    1294             :         }
    1295             : 
    1296             :         /*
    1297             :          * SCHED_OTHER tasks have to update their load when changing their
    1298             :          * weight
    1299             :          */
    1300           6 :         if (update_load && p->sched_class == &fair_sched_class) {
    1301           5 :                 reweight_task(p, prio);
    1302             :         } else {
    1303           1 :                 load->weight = scale_load(sched_prio_to_weight[prio]);
    1304           1 :                 load->inv_weight = sched_prio_to_wmult[prio];
    1305             :         }
    1306             : }
    1307             : 
    1308             : #ifdef CONFIG_UCLAMP_TASK
    1309             : /*
    1310             :  * Serializes updates of utilization clamp values
    1311             :  *
    1312             :  * The (slow-path) user-space triggers utilization clamp value updates which
    1313             :  * can require updates on (fast-path) scheduler's data structures used to
    1314             :  * support enqueue/dequeue operations.
    1315             :  * While the per-CPU rq lock protects fast-path update operations, user-space
    1316             :  * requests are serialized using a mutex to reduce the risk of conflicting
    1317             :  * updates or API abuses.
    1318             :  */
    1319             : static DEFINE_MUTEX(uclamp_mutex);
    1320             : 
    1321             : /* Max allowed minimum utilization */
    1322             : static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
    1323             : 
    1324             : /* Max allowed maximum utilization */
    1325             : static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
    1326             : 
    1327             : /*
    1328             :  * By default RT tasks run at the maximum performance point/capacity of the
    1329             :  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
    1330             :  * SCHED_CAPACITY_SCALE.
    1331             :  *
    1332             :  * This knob allows admins to change the default behavior when uclamp is being
    1333             :  * used. In battery powered devices, particularly, running at the maximum
    1334             :  * capacity and frequency will increase energy consumption and shorten the
    1335             :  * battery life.
    1336             :  *
    1337             :  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
    1338             :  *
    1339             :  * This knob will not override the system default sched_util_clamp_min defined
    1340             :  * above.
    1341             :  */
    1342             : static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
    1343             : 
    1344             : /* All clamps are required to be less or equal than these values */
    1345             : static struct uclamp_se uclamp_default[UCLAMP_CNT];
    1346             : 
    1347             : /*
    1348             :  * This static key is used to reduce the uclamp overhead in the fast path. It
    1349             :  * primarily disables the call to uclamp_rq_{inc, dec}() in
    1350             :  * enqueue/dequeue_task().
    1351             :  *
    1352             :  * This allows users to continue to enable uclamp in their kernel config with
    1353             :  * minimum uclamp overhead in the fast path.
    1354             :  *
    1355             :  * As soon as userspace modifies any of the uclamp knobs, the static key is
    1356             :  * enabled, since we have an actual users that make use of uclamp
    1357             :  * functionality.
    1358             :  *
    1359             :  * The knobs that would enable this static key are:
    1360             :  *
    1361             :  *   * A task modifying its uclamp value with sched_setattr().
    1362             :  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
    1363             :  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
    1364             :  */
    1365             : DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
    1366             : 
    1367             : /* Integer rounded range for each bucket */
    1368             : #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
    1369             : 
    1370             : #define for_each_clamp_id(clamp_id) \
    1371             :         for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
    1372             : 
    1373             : static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
    1374             : {
    1375             :         return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
    1376             : }
    1377             : 
    1378             : static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
    1379             : {
    1380             :         if (clamp_id == UCLAMP_MIN)
    1381             :                 return 0;
    1382             :         return SCHED_CAPACITY_SCALE;
    1383             : }
    1384             : 
    1385             : static inline void uclamp_se_set(struct uclamp_se *uc_se,
    1386             :                                  unsigned int value, bool user_defined)
    1387             : {
    1388             :         uc_se->value = value;
    1389             :         uc_se->bucket_id = uclamp_bucket_id(value);
    1390             :         uc_se->user_defined = user_defined;
    1391             : }
    1392             : 
    1393             : static inline unsigned int
    1394             : uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
    1395             :                   unsigned int clamp_value)
    1396             : {
    1397             :         /*
    1398             :          * Avoid blocked utilization pushing up the frequency when we go
    1399             :          * idle (which drops the max-clamp) by retaining the last known
    1400             :          * max-clamp.
    1401             :          */
    1402             :         if (clamp_id == UCLAMP_MAX) {
    1403             :                 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
    1404             :                 return clamp_value;
    1405             :         }
    1406             : 
    1407             :         return uclamp_none(UCLAMP_MIN);
    1408             : }
    1409             : 
    1410             : static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
    1411             :                                      unsigned int clamp_value)
    1412             : {
    1413             :         /* Reset max-clamp retention only on idle exit */
    1414             :         if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
    1415             :                 return;
    1416             : 
    1417             :         uclamp_rq_set(rq, clamp_id, clamp_value);
    1418             : }
    1419             : 
    1420             : static inline
    1421             : unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
    1422             :                                    unsigned int clamp_value)
    1423             : {
    1424             :         struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
    1425             :         int bucket_id = UCLAMP_BUCKETS - 1;
    1426             : 
    1427             :         /*
    1428             :          * Since both min and max clamps are max aggregated, find the
    1429             :          * top most bucket with tasks in.
    1430             :          */
    1431             :         for ( ; bucket_id >= 0; bucket_id--) {
    1432             :                 if (!bucket[bucket_id].tasks)
    1433             :                         continue;
    1434             :                 return bucket[bucket_id].value;
    1435             :         }
    1436             : 
    1437             :         /* No tasks -- default clamp values */
    1438             :         return uclamp_idle_value(rq, clamp_id, clamp_value);
    1439             : }
    1440             : 
    1441             : static void __uclamp_update_util_min_rt_default(struct task_struct *p)
    1442             : {
    1443             :         unsigned int default_util_min;
    1444             :         struct uclamp_se *uc_se;
    1445             : 
    1446             :         lockdep_assert_held(&p->pi_lock);
    1447             : 
    1448             :         uc_se = &p->uclamp_req[UCLAMP_MIN];
    1449             : 
    1450             :         /* Only sync if user didn't override the default */
    1451             :         if (uc_se->user_defined)
    1452             :                 return;
    1453             : 
    1454             :         default_util_min = sysctl_sched_uclamp_util_min_rt_default;
    1455             :         uclamp_se_set(uc_se, default_util_min, false);
    1456             : }
    1457             : 
    1458             : static void uclamp_update_util_min_rt_default(struct task_struct *p)
    1459             : {
    1460             :         struct rq_flags rf;
    1461             :         struct rq *rq;
    1462             : 
    1463             :         if (!rt_task(p))
    1464             :                 return;
    1465             : 
    1466             :         /* Protect updates to p->uclamp_* */
    1467             :         rq = task_rq_lock(p, &rf);
    1468             :         __uclamp_update_util_min_rt_default(p);
    1469             :         task_rq_unlock(rq, p, &rf);
    1470             : }
    1471             : 
    1472             : static inline struct uclamp_se
    1473             : uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
    1474             : {
    1475             :         /* Copy by value as we could modify it */
    1476             :         struct uclamp_se uc_req = p->uclamp_req[clamp_id];
    1477             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1478             :         unsigned int tg_min, tg_max, value;
    1479             : 
    1480             :         /*
    1481             :          * Tasks in autogroups or root task group will be
    1482             :          * restricted by system defaults.
    1483             :          */
    1484             :         if (task_group_is_autogroup(task_group(p)))
    1485             :                 return uc_req;
    1486             :         if (task_group(p) == &root_task_group)
    1487             :                 return uc_req;
    1488             : 
    1489             :         tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
    1490             :         tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
    1491             :         value = uc_req.value;
    1492             :         value = clamp(value, tg_min, tg_max);
    1493             :         uclamp_se_set(&uc_req, value, false);
    1494             : #endif
    1495             : 
    1496             :         return uc_req;
    1497             : }
    1498             : 
    1499             : /*
    1500             :  * The effective clamp bucket index of a task depends on, by increasing
    1501             :  * priority:
    1502             :  * - the task specific clamp value, when explicitly requested from userspace
    1503             :  * - the task group effective clamp value, for tasks not either in the root
    1504             :  *   group or in an autogroup
    1505             :  * - the system default clamp value, defined by the sysadmin
    1506             :  */
    1507             : static inline struct uclamp_se
    1508             : uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
    1509             : {
    1510             :         struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
    1511             :         struct uclamp_se uc_max = uclamp_default[clamp_id];
    1512             : 
    1513             :         /* System default restrictions always apply */
    1514             :         if (unlikely(uc_req.value > uc_max.value))
    1515             :                 return uc_max;
    1516             : 
    1517             :         return uc_req;
    1518             : }
    1519             : 
    1520             : unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
    1521             : {
    1522             :         struct uclamp_se uc_eff;
    1523             : 
    1524             :         /* Task currently refcounted: use back-annotated (effective) value */
    1525             :         if (p->uclamp[clamp_id].active)
    1526             :                 return (unsigned long)p->uclamp[clamp_id].value;
    1527             : 
    1528             :         uc_eff = uclamp_eff_get(p, clamp_id);
    1529             : 
    1530             :         return (unsigned long)uc_eff.value;
    1531             : }
    1532             : 
    1533             : /*
    1534             :  * When a task is enqueued on a rq, the clamp bucket currently defined by the
    1535             :  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
    1536             :  * updates the rq's clamp value if required.
    1537             :  *
    1538             :  * Tasks can have a task-specific value requested from user-space, track
    1539             :  * within each bucket the maximum value for tasks refcounted in it.
    1540             :  * This "local max aggregation" allows to track the exact "requested" value
    1541             :  * for each bucket when all its RUNNABLE tasks require the same clamp.
    1542             :  */
    1543             : static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
    1544             :                                     enum uclamp_id clamp_id)
    1545             : {
    1546             :         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
    1547             :         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
    1548             :         struct uclamp_bucket *bucket;
    1549             : 
    1550             :         lockdep_assert_rq_held(rq);
    1551             : 
    1552             :         /* Update task effective clamp */
    1553             :         p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
    1554             : 
    1555             :         bucket = &uc_rq->bucket[uc_se->bucket_id];
    1556             :         bucket->tasks++;
    1557             :         uc_se->active = true;
    1558             : 
    1559             :         uclamp_idle_reset(rq, clamp_id, uc_se->value);
    1560             : 
    1561             :         /*
    1562             :          * Local max aggregation: rq buckets always track the max
    1563             :          * "requested" clamp value of its RUNNABLE tasks.
    1564             :          */
    1565             :         if (bucket->tasks == 1 || uc_se->value > bucket->value)
    1566             :                 bucket->value = uc_se->value;
    1567             : 
    1568             :         if (uc_se->value > uclamp_rq_get(rq, clamp_id))
    1569             :                 uclamp_rq_set(rq, clamp_id, uc_se->value);
    1570             : }
    1571             : 
    1572             : /*
    1573             :  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
    1574             :  * is released. If this is the last task reference counting the rq's max
    1575             :  * active clamp value, then the rq's clamp value is updated.
    1576             :  *
    1577             :  * Both refcounted tasks and rq's cached clamp values are expected to be
    1578             :  * always valid. If it's detected they are not, as defensive programming,
    1579             :  * enforce the expected state and warn.
    1580             :  */
    1581             : static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
    1582             :                                     enum uclamp_id clamp_id)
    1583             : {
    1584             :         struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
    1585             :         struct uclamp_se *uc_se = &p->uclamp[clamp_id];
    1586             :         struct uclamp_bucket *bucket;
    1587             :         unsigned int bkt_clamp;
    1588             :         unsigned int rq_clamp;
    1589             : 
    1590             :         lockdep_assert_rq_held(rq);
    1591             : 
    1592             :         /*
    1593             :          * If sched_uclamp_used was enabled after task @p was enqueued,
    1594             :          * we could end up with unbalanced call to uclamp_rq_dec_id().
    1595             :          *
    1596             :          * In this case the uc_se->active flag should be false since no uclamp
    1597             :          * accounting was performed at enqueue time and we can just return
    1598             :          * here.
    1599             :          *
    1600             :          * Need to be careful of the following enqueue/dequeue ordering
    1601             :          * problem too
    1602             :          *
    1603             :          *      enqueue(taskA)
    1604             :          *      // sched_uclamp_used gets enabled
    1605             :          *      enqueue(taskB)
    1606             :          *      dequeue(taskA)
    1607             :          *      // Must not decrement bucket->tasks here
    1608             :          *      dequeue(taskB)
    1609             :          *
    1610             :          * where we could end up with stale data in uc_se and
    1611             :          * bucket[uc_se->bucket_id].
    1612             :          *
    1613             :          * The following check here eliminates the possibility of such race.
    1614             :          */
    1615             :         if (unlikely(!uc_se->active))
    1616             :                 return;
    1617             : 
    1618             :         bucket = &uc_rq->bucket[uc_se->bucket_id];
    1619             : 
    1620             :         SCHED_WARN_ON(!bucket->tasks);
    1621             :         if (likely(bucket->tasks))
    1622             :                 bucket->tasks--;
    1623             : 
    1624             :         uc_se->active = false;
    1625             : 
    1626             :         /*
    1627             :          * Keep "local max aggregation" simple and accept to (possibly)
    1628             :          * overboost some RUNNABLE tasks in the same bucket.
    1629             :          * The rq clamp bucket value is reset to its base value whenever
    1630             :          * there are no more RUNNABLE tasks refcounting it.
    1631             :          */
    1632             :         if (likely(bucket->tasks))
    1633             :                 return;
    1634             : 
    1635             :         rq_clamp = uclamp_rq_get(rq, clamp_id);
    1636             :         /*
    1637             :          * Defensive programming: this should never happen. If it happens,
    1638             :          * e.g. due to future modification, warn and fixup the expected value.
    1639             :          */
    1640             :         SCHED_WARN_ON(bucket->value > rq_clamp);
    1641             :         if (bucket->value >= rq_clamp) {
    1642             :                 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
    1643             :                 uclamp_rq_set(rq, clamp_id, bkt_clamp);
    1644             :         }
    1645             : }
    1646             : 
    1647             : static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
    1648             : {
    1649             :         enum uclamp_id clamp_id;
    1650             : 
    1651             :         /*
    1652             :          * Avoid any overhead until uclamp is actually used by the userspace.
    1653             :          *
    1654             :          * The condition is constructed such that a NOP is generated when
    1655             :          * sched_uclamp_used is disabled.
    1656             :          */
    1657             :         if (!static_branch_unlikely(&sched_uclamp_used))
    1658             :                 return;
    1659             : 
    1660             :         if (unlikely(!p->sched_class->uclamp_enabled))
    1661             :                 return;
    1662             : 
    1663             :         for_each_clamp_id(clamp_id)
    1664             :                 uclamp_rq_inc_id(rq, p, clamp_id);
    1665             : 
    1666             :         /* Reset clamp idle holding when there is one RUNNABLE task */
    1667             :         if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
    1668             :                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
    1669             : }
    1670             : 
    1671             : static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
    1672             : {
    1673             :         enum uclamp_id clamp_id;
    1674             : 
    1675             :         /*
    1676             :          * Avoid any overhead until uclamp is actually used by the userspace.
    1677             :          *
    1678             :          * The condition is constructed such that a NOP is generated when
    1679             :          * sched_uclamp_used is disabled.
    1680             :          */
    1681             :         if (!static_branch_unlikely(&sched_uclamp_used))
    1682             :                 return;
    1683             : 
    1684             :         if (unlikely(!p->sched_class->uclamp_enabled))
    1685             :                 return;
    1686             : 
    1687             :         for_each_clamp_id(clamp_id)
    1688             :                 uclamp_rq_dec_id(rq, p, clamp_id);
    1689             : }
    1690             : 
    1691             : static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
    1692             :                                       enum uclamp_id clamp_id)
    1693             : {
    1694             :         if (!p->uclamp[clamp_id].active)
    1695             :                 return;
    1696             : 
    1697             :         uclamp_rq_dec_id(rq, p, clamp_id);
    1698             :         uclamp_rq_inc_id(rq, p, clamp_id);
    1699             : 
    1700             :         /*
    1701             :          * Make sure to clear the idle flag if we've transiently reached 0
    1702             :          * active tasks on rq.
    1703             :          */
    1704             :         if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
    1705             :                 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
    1706             : }
    1707             : 
    1708             : static inline void
    1709             : uclamp_update_active(struct task_struct *p)
    1710             : {
    1711             :         enum uclamp_id clamp_id;
    1712             :         struct rq_flags rf;
    1713             :         struct rq *rq;
    1714             : 
    1715             :         /*
    1716             :          * Lock the task and the rq where the task is (or was) queued.
    1717             :          *
    1718             :          * We might lock the (previous) rq of a !RUNNABLE task, but that's the
    1719             :          * price to pay to safely serialize util_{min,max} updates with
    1720             :          * enqueues, dequeues and migration operations.
    1721             :          * This is the same locking schema used by __set_cpus_allowed_ptr().
    1722             :          */
    1723             :         rq = task_rq_lock(p, &rf);
    1724             : 
    1725             :         /*
    1726             :          * Setting the clamp bucket is serialized by task_rq_lock().
    1727             :          * If the task is not yet RUNNABLE and its task_struct is not
    1728             :          * affecting a valid clamp bucket, the next time it's enqueued,
    1729             :          * it will already see the updated clamp bucket value.
    1730             :          */
    1731             :         for_each_clamp_id(clamp_id)
    1732             :                 uclamp_rq_reinc_id(rq, p, clamp_id);
    1733             : 
    1734             :         task_rq_unlock(rq, p, &rf);
    1735             : }
    1736             : 
    1737             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1738             : static inline void
    1739             : uclamp_update_active_tasks(struct cgroup_subsys_state *css)
    1740             : {
    1741             :         struct css_task_iter it;
    1742             :         struct task_struct *p;
    1743             : 
    1744             :         css_task_iter_start(css, 0, &it);
    1745             :         while ((p = css_task_iter_next(&it)))
    1746             :                 uclamp_update_active(p);
    1747             :         css_task_iter_end(&it);
    1748             : }
    1749             : 
    1750             : static void cpu_util_update_eff(struct cgroup_subsys_state *css);
    1751             : #endif
    1752             : 
    1753             : #ifdef CONFIG_SYSCTL
    1754             : #ifdef CONFIG_UCLAMP_TASK
    1755             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    1756             : static void uclamp_update_root_tg(void)
    1757             : {
    1758             :         struct task_group *tg = &root_task_group;
    1759             : 
    1760             :         uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
    1761             :                       sysctl_sched_uclamp_util_min, false);
    1762             :         uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
    1763             :                       sysctl_sched_uclamp_util_max, false);
    1764             : 
    1765             :         rcu_read_lock();
    1766             :         cpu_util_update_eff(&root_task_group.css);
    1767             :         rcu_read_unlock();
    1768             : }
    1769             : #else
    1770             : static void uclamp_update_root_tg(void) { }
    1771             : #endif
    1772             : 
    1773             : static void uclamp_sync_util_min_rt_default(void)
    1774             : {
    1775             :         struct task_struct *g, *p;
    1776             : 
    1777             :         /*
    1778             :          * copy_process()                       sysctl_uclamp
    1779             :          *                                        uclamp_min_rt = X;
    1780             :          *   write_lock(&tasklist_lock)               read_lock(&tasklist_lock)
    1781             :          *   // link thread                       smp_mb__after_spinlock()
    1782             :          *   write_unlock(&tasklist_lock)     read_unlock(&tasklist_lock);
    1783             :          *   sched_post_fork()                    for_each_process_thread()
    1784             :          *     __uclamp_sync_rt()                   __uclamp_sync_rt()
    1785             :          *
    1786             :          * Ensures that either sched_post_fork() will observe the new
    1787             :          * uclamp_min_rt or for_each_process_thread() will observe the new
    1788             :          * task.
    1789             :          */
    1790             :         read_lock(&tasklist_lock);
    1791             :         smp_mb__after_spinlock();
    1792             :         read_unlock(&tasklist_lock);
    1793             : 
    1794             :         rcu_read_lock();
    1795             :         for_each_process_thread(g, p)
    1796             :                 uclamp_update_util_min_rt_default(p);
    1797             :         rcu_read_unlock();
    1798             : }
    1799             : 
    1800             : static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
    1801             :                                 void *buffer, size_t *lenp, loff_t *ppos)
    1802             : {
    1803             :         bool update_root_tg = false;
    1804             :         int old_min, old_max, old_min_rt;
    1805             :         int result;
    1806             : 
    1807             :         mutex_lock(&uclamp_mutex);
    1808             :         old_min = sysctl_sched_uclamp_util_min;
    1809             :         old_max = sysctl_sched_uclamp_util_max;
    1810             :         old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
    1811             : 
    1812             :         result = proc_dointvec(table, write, buffer, lenp, ppos);
    1813             :         if (result)
    1814             :                 goto undo;
    1815             :         if (!write)
    1816             :                 goto done;
    1817             : 
    1818             :         if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
    1819             :             sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE      ||
    1820             :             sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
    1821             : 
    1822             :                 result = -EINVAL;
    1823             :                 goto undo;
    1824             :         }
    1825             : 
    1826             :         if (old_min != sysctl_sched_uclamp_util_min) {
    1827             :                 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
    1828             :                               sysctl_sched_uclamp_util_min, false);
    1829             :                 update_root_tg = true;
    1830             :         }
    1831             :         if (old_max != sysctl_sched_uclamp_util_max) {
    1832             :                 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
    1833             :                               sysctl_sched_uclamp_util_max, false);
    1834             :                 update_root_tg = true;
    1835             :         }
    1836             : 
    1837             :         if (update_root_tg) {
    1838             :                 static_branch_enable(&sched_uclamp_used);
    1839             :                 uclamp_update_root_tg();
    1840             :         }
    1841             : 
    1842             :         if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
    1843             :                 static_branch_enable(&sched_uclamp_used);
    1844             :                 uclamp_sync_util_min_rt_default();
    1845             :         }
    1846             : 
    1847             :         /*
    1848             :          * We update all RUNNABLE tasks only when task groups are in use.
    1849             :          * Otherwise, keep it simple and do just a lazy update at each next
    1850             :          * task enqueue time.
    1851             :          */
    1852             : 
    1853             :         goto done;
    1854             : 
    1855             : undo:
    1856             :         sysctl_sched_uclamp_util_min = old_min;
    1857             :         sysctl_sched_uclamp_util_max = old_max;
    1858             :         sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
    1859             : done:
    1860             :         mutex_unlock(&uclamp_mutex);
    1861             : 
    1862             :         return result;
    1863             : }
    1864             : #endif
    1865             : #endif
    1866             : 
    1867             : static int uclamp_validate(struct task_struct *p,
    1868             :                            const struct sched_attr *attr)
    1869             : {
    1870             :         int util_min = p->uclamp_req[UCLAMP_MIN].value;
    1871             :         int util_max = p->uclamp_req[UCLAMP_MAX].value;
    1872             : 
    1873             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
    1874             :                 util_min = attr->sched_util_min;
    1875             : 
    1876             :                 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
    1877             :                         return -EINVAL;
    1878             :         }
    1879             : 
    1880             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
    1881             :                 util_max = attr->sched_util_max;
    1882             : 
    1883             :                 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
    1884             :                         return -EINVAL;
    1885             :         }
    1886             : 
    1887             :         if (util_min != -1 && util_max != -1 && util_min > util_max)
    1888             :                 return -EINVAL;
    1889             : 
    1890             :         /*
    1891             :          * We have valid uclamp attributes; make sure uclamp is enabled.
    1892             :          *
    1893             :          * We need to do that here, because enabling static branches is a
    1894             :          * blocking operation which obviously cannot be done while holding
    1895             :          * scheduler locks.
    1896             :          */
    1897             :         static_branch_enable(&sched_uclamp_used);
    1898             : 
    1899             :         return 0;
    1900             : }
    1901             : 
    1902             : static bool uclamp_reset(const struct sched_attr *attr,
    1903             :                          enum uclamp_id clamp_id,
    1904             :                          struct uclamp_se *uc_se)
    1905             : {
    1906             :         /* Reset on sched class change for a non user-defined clamp value. */
    1907             :         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
    1908             :             !uc_se->user_defined)
    1909             :                 return true;
    1910             : 
    1911             :         /* Reset on sched_util_{min,max} == -1. */
    1912             :         if (clamp_id == UCLAMP_MIN &&
    1913             :             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
    1914             :             attr->sched_util_min == -1) {
    1915             :                 return true;
    1916             :         }
    1917             : 
    1918             :         if (clamp_id == UCLAMP_MAX &&
    1919             :             attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
    1920             :             attr->sched_util_max == -1) {
    1921             :                 return true;
    1922             :         }
    1923             : 
    1924             :         return false;
    1925             : }
    1926             : 
    1927             : static void __setscheduler_uclamp(struct task_struct *p,
    1928             :                                   const struct sched_attr *attr)
    1929             : {
    1930             :         enum uclamp_id clamp_id;
    1931             : 
    1932             :         for_each_clamp_id(clamp_id) {
    1933             :                 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
    1934             :                 unsigned int value;
    1935             : 
    1936             :                 if (!uclamp_reset(attr, clamp_id, uc_se))
    1937             :                         continue;
    1938             : 
    1939             :                 /*
    1940             :                  * RT by default have a 100% boost value that could be modified
    1941             :                  * at runtime.
    1942             :                  */
    1943             :                 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
    1944             :                         value = sysctl_sched_uclamp_util_min_rt_default;
    1945             :                 else
    1946             :                         value = uclamp_none(clamp_id);
    1947             : 
    1948             :                 uclamp_se_set(uc_se, value, false);
    1949             : 
    1950             :         }
    1951             : 
    1952             :         if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
    1953             :                 return;
    1954             : 
    1955             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
    1956             :             attr->sched_util_min != -1) {
    1957             :                 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
    1958             :                               attr->sched_util_min, true);
    1959             :         }
    1960             : 
    1961             :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
    1962             :             attr->sched_util_max != -1) {
    1963             :                 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
    1964             :                               attr->sched_util_max, true);
    1965             :         }
    1966             : }
    1967             : 
    1968             : static void uclamp_fork(struct task_struct *p)
    1969             : {
    1970             :         enum uclamp_id clamp_id;
    1971             : 
    1972             :         /*
    1973             :          * We don't need to hold task_rq_lock() when updating p->uclamp_* here
    1974             :          * as the task is still at its early fork stages.
    1975             :          */
    1976             :         for_each_clamp_id(clamp_id)
    1977             :                 p->uclamp[clamp_id].active = false;
    1978             : 
    1979             :         if (likely(!p->sched_reset_on_fork))
    1980             :                 return;
    1981             : 
    1982             :         for_each_clamp_id(clamp_id) {
    1983             :                 uclamp_se_set(&p->uclamp_req[clamp_id],
    1984             :                               uclamp_none(clamp_id), false);
    1985             :         }
    1986             : }
    1987             : 
    1988             : static void uclamp_post_fork(struct task_struct *p)
    1989             : {
    1990             :         uclamp_update_util_min_rt_default(p);
    1991             : }
    1992             : 
    1993             : static void __init init_uclamp_rq(struct rq *rq)
    1994             : {
    1995             :         enum uclamp_id clamp_id;
    1996             :         struct uclamp_rq *uc_rq = rq->uclamp;
    1997             : 
    1998             :         for_each_clamp_id(clamp_id) {
    1999             :                 uc_rq[clamp_id] = (struct uclamp_rq) {
    2000             :                         .value = uclamp_none(clamp_id)
    2001             :                 };
    2002             :         }
    2003             : 
    2004             :         rq->uclamp_flags = UCLAMP_FLAG_IDLE;
    2005             : }
    2006             : 
    2007             : static void __init init_uclamp(void)
    2008             : {
    2009             :         struct uclamp_se uc_max = {};
    2010             :         enum uclamp_id clamp_id;
    2011             :         int cpu;
    2012             : 
    2013             :         for_each_possible_cpu(cpu)
    2014             :                 init_uclamp_rq(cpu_rq(cpu));
    2015             : 
    2016             :         for_each_clamp_id(clamp_id) {
    2017             :                 uclamp_se_set(&init_task.uclamp_req[clamp_id],
    2018             :                               uclamp_none(clamp_id), false);
    2019             :         }
    2020             : 
    2021             :         /* System defaults allow max clamp values for both indexes */
    2022             :         uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
    2023             :         for_each_clamp_id(clamp_id) {
    2024             :                 uclamp_default[clamp_id] = uc_max;
    2025             : #ifdef CONFIG_UCLAMP_TASK_GROUP
    2026             :                 root_task_group.uclamp_req[clamp_id] = uc_max;
    2027             :                 root_task_group.uclamp[clamp_id] = uc_max;
    2028             : #endif
    2029             :         }
    2030             : }
    2031             : 
    2032             : #else /* CONFIG_UCLAMP_TASK */
    2033             : static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
    2034             : static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
    2035             : static inline int uclamp_validate(struct task_struct *p,
    2036             :                                   const struct sched_attr *attr)
    2037             : {
    2038             :         return -EOPNOTSUPP;
    2039             : }
    2040             : static void __setscheduler_uclamp(struct task_struct *p,
    2041             :                                   const struct sched_attr *attr) { }
    2042             : static inline void uclamp_fork(struct task_struct *p) { }
    2043             : static inline void uclamp_post_fork(struct task_struct *p) { }
    2044             : static inline void init_uclamp(void) { }
    2045             : #endif /* CONFIG_UCLAMP_TASK */
    2046             : 
    2047           0 : bool sched_task_on_rq(struct task_struct *p)
    2048             : {
    2049           0 :         return task_on_rq_queued(p);
    2050             : }
    2051             : 
    2052           0 : unsigned long get_wchan(struct task_struct *p)
    2053             : {
    2054           0 :         unsigned long ip = 0;
    2055             :         unsigned int state;
    2056             : 
    2057           0 :         if (!p || p == current)
    2058             :                 return 0;
    2059             : 
    2060             :         /* Only get wchan if task is blocked and we can keep it that way. */
    2061           0 :         raw_spin_lock_irq(&p->pi_lock);
    2062           0 :         state = READ_ONCE(p->__state);
    2063           0 :         smp_rmb(); /* see try_to_wake_up() */
    2064           0 :         if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
    2065           0 :                 ip = __get_wchan(p);
    2066           0 :         raw_spin_unlock_irq(&p->pi_lock);
    2067             : 
    2068           0 :         return ip;
    2069             : }
    2070             : 
    2071        2442 : static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
    2072             : {
    2073        2442 :         if (!(flags & ENQUEUE_NOCLOCK))
    2074           0 :                 update_rq_clock(rq);
    2075             : 
    2076             :         if (!(flags & ENQUEUE_RESTORE)) {
    2077             :                 sched_info_enqueue(rq, p);
    2078             :                 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
    2079             :         }
    2080             : 
    2081        2446 :         uclamp_rq_inc(rq, p);
    2082        2446 :         p->sched_class->enqueue_task(rq, p, flags);
    2083             : 
    2084        2446 :         if (sched_core_enabled(rq))
    2085             :                 sched_core_enqueue(rq, p);
    2086        2442 : }
    2087             : 
    2088        2440 : static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
    2089             : {
    2090        2444 :         if (sched_core_enabled(rq))
    2091             :                 sched_core_dequeue(rq, p, flags);
    2092             : 
    2093        2440 :         if (!(flags & DEQUEUE_NOCLOCK))
    2094           0 :                 update_rq_clock(rq);
    2095             : 
    2096             :         if (!(flags & DEQUEUE_SAVE)) {
    2097             :                 sched_info_dequeue(rq, p);
    2098             :                 psi_dequeue(p, flags & DEQUEUE_SLEEP);
    2099             :         }
    2100             : 
    2101        2444 :         uclamp_rq_dec(rq, p);
    2102        2444 :         p->sched_class->dequeue_task(rq, p, flags);
    2103        2440 : }
    2104             : 
    2105           0 : void activate_task(struct rq *rq, struct task_struct *p, int flags)
    2106             : {
    2107        2442 :         if (task_on_rq_migrating(p))
    2108             :                 flags |= ENQUEUE_MIGRATED;
    2109             :         if (flags & ENQUEUE_MIGRATED)
    2110             :                 sched_mm_cid_migrate_to(rq, p);
    2111             : 
    2112        2442 :         enqueue_task(rq, p, flags);
    2113             : 
    2114        2442 :         p->on_rq = TASK_ON_RQ_QUEUED;
    2115           0 : }
    2116             : 
    2117           0 : void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
    2118             : {
    2119        2440 :         p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
    2120             : 
    2121        2440 :         dequeue_task(rq, p, flags);
    2122           0 : }
    2123             : 
    2124             : static inline int __normal_prio(int policy, int rt_prio, int nice)
    2125             : {
    2126             :         int prio;
    2127             : 
    2128           5 :         if (dl_policy(policy))
    2129             :                 prio = MAX_DL_PRIO - 1;
    2130           5 :         else if (rt_policy(policy))
    2131           0 :                 prio = MAX_RT_PRIO - 1 - rt_prio;
    2132             :         else
    2133           0 :                 prio = NICE_TO_PRIO(nice);
    2134             : 
    2135             :         return prio;
    2136             : }
    2137             : 
    2138             : /*
    2139             :  * Calculate the expected normal priority: i.e. priority
    2140             :  * without taking RT-inheritance into account. Might be
    2141             :  * boosted by interactivity modifiers. Changes upon fork,
    2142             :  * setprio syscalls, and whenever the interactivity
    2143             :  * estimator recalculates.
    2144             :  */
    2145             : static inline int normal_prio(struct task_struct *p)
    2146             : {
    2147          10 :         return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
    2148             : }
    2149             : 
    2150             : /*
    2151             :  * Calculate the current priority, i.e. the priority
    2152             :  * taken into account by the scheduler. This value might
    2153             :  * be boosted by RT tasks, or might be boosted by
    2154             :  * interactivity modifiers. Will be RT if the task got
    2155             :  * RT-boosted. If not then it returns p->normal_prio.
    2156             :  */
    2157             : static int effective_prio(struct task_struct *p)
    2158             : {
    2159          10 :         p->normal_prio = normal_prio(p);
    2160             :         /*
    2161             :          * If we are RT tasks or we were boosted to RT priority,
    2162             :          * keep the priority unchanged. Otherwise, update priority
    2163             :          * to the normal priority:
    2164             :          */
    2165          10 :         if (!rt_prio(p->prio))
    2166             :                 return p->normal_prio;
    2167             :         return p->prio;
    2168             : }
    2169             : 
    2170             : /**
    2171             :  * task_curr - is this task currently executing on a CPU?
    2172             :  * @p: the task in question.
    2173             :  *
    2174             :  * Return: 1 if the task is currently executing. 0 otherwise.
    2175             :  */
    2176           0 : inline int task_curr(const struct task_struct *p)
    2177             : {
    2178           0 :         return cpu_curr(task_cpu(p)) == p;
    2179             : }
    2180             : 
    2181             : /*
    2182             :  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
    2183             :  * use the balance_callback list if you want balancing.
    2184             :  *
    2185             :  * this means any call to check_class_changed() must be followed by a call to
    2186             :  * balance_callback().
    2187             :  */
    2188           0 : static inline void check_class_changed(struct rq *rq, struct task_struct *p,
    2189             :                                        const struct sched_class *prev_class,
    2190             :                                        int oldprio)
    2191             : {
    2192           0 :         if (prev_class != p->sched_class) {
    2193           0 :                 if (prev_class->switched_from)
    2194           0 :                         prev_class->switched_from(rq, p);
    2195             : 
    2196           0 :                 p->sched_class->switched_to(rq, p);
    2197           0 :         } else if (oldprio != p->prio || dl_task(p))
    2198           0 :                 p->sched_class->prio_changed(rq, p, oldprio);
    2199           0 : }
    2200             : 
    2201        2442 : void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
    2202             : {
    2203        2442 :         if (p->sched_class == rq->curr->sched_class)
    2204        2439 :                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
    2205           3 :         else if (sched_class_above(p->sched_class, rq->curr->sched_class))
    2206           3 :                 resched_curr(rq);
    2207             : 
    2208             :         /*
    2209             :          * A queue event has occurred, and we're going to schedule.  In
    2210             :          * this case, we can save a useless back to back clock update.
    2211             :          */
    2212        4884 :         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
    2213        1252 :                 rq_clock_skip_update(rq);
    2214        2442 : }
    2215             : 
    2216             : #ifdef CONFIG_SMP
    2217             : 
    2218             : static void
    2219             : __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
    2220             : 
    2221             : static int __set_cpus_allowed_ptr(struct task_struct *p,
    2222             :                                   struct affinity_context *ctx);
    2223             : 
    2224             : static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
    2225             : {
    2226             :         struct affinity_context ac = {
    2227             :                 .new_mask  = cpumask_of(rq->cpu),
    2228             :                 .flags     = SCA_MIGRATE_DISABLE,
    2229             :         };
    2230             : 
    2231             :         if (likely(!p->migration_disabled))
    2232             :                 return;
    2233             : 
    2234             :         if (p->cpus_ptr != &p->cpus_mask)
    2235             :                 return;
    2236             : 
    2237             :         /*
    2238             :          * Violates locking rules! see comment in __do_set_cpus_allowed().
    2239             :          */
    2240             :         __do_set_cpus_allowed(p, &ac);
    2241             : }
    2242             : 
    2243             : void migrate_disable(void)
    2244             : {
    2245             :         struct task_struct *p = current;
    2246             : 
    2247             :         if (p->migration_disabled) {
    2248             :                 p->migration_disabled++;
    2249             :                 return;
    2250             :         }
    2251             : 
    2252             :         preempt_disable();
    2253             :         this_rq()->nr_pinned++;
    2254             :         p->migration_disabled = 1;
    2255             :         preempt_enable();
    2256             : }
    2257             : EXPORT_SYMBOL_GPL(migrate_disable);
    2258             : 
    2259             : void migrate_enable(void)
    2260             : {
    2261             :         struct task_struct *p = current;
    2262             :         struct affinity_context ac = {
    2263             :                 .new_mask  = &p->cpus_mask,
    2264             :                 .flags     = SCA_MIGRATE_ENABLE,
    2265             :         };
    2266             : 
    2267             :         if (p->migration_disabled > 1) {
    2268             :                 p->migration_disabled--;
    2269             :                 return;
    2270             :         }
    2271             : 
    2272             :         if (WARN_ON_ONCE(!p->migration_disabled))
    2273             :                 return;
    2274             : 
    2275             :         /*
    2276             :          * Ensure stop_task runs either before or after this, and that
    2277             :          * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
    2278             :          */
    2279             :         preempt_disable();
    2280             :         if (p->cpus_ptr != &p->cpus_mask)
    2281             :                 __set_cpus_allowed_ptr(p, &ac);
    2282             :         /*
    2283             :          * Mustn't clear migration_disabled() until cpus_ptr points back at the
    2284             :          * regular cpus_mask, otherwise things that race (eg.
    2285             :          * select_fallback_rq) get confused.
    2286             :          */
    2287             :         barrier();
    2288             :         p->migration_disabled = 0;
    2289             :         this_rq()->nr_pinned--;
    2290             :         preempt_enable();
    2291             : }
    2292             : EXPORT_SYMBOL_GPL(migrate_enable);
    2293             : 
    2294             : static inline bool rq_has_pinned_tasks(struct rq *rq)
    2295             : {
    2296             :         return rq->nr_pinned;
    2297             : }
    2298             : 
    2299             : /*
    2300             :  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
    2301             :  * __set_cpus_allowed_ptr() and select_fallback_rq().
    2302             :  */
    2303             : static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
    2304             : {
    2305             :         /* When not in the task's cpumask, no point in looking further. */
    2306             :         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    2307             :                 return false;
    2308             : 
    2309             :         /* migrate_disabled() must be allowed to finish. */
    2310             :         if (is_migration_disabled(p))
    2311             :                 return cpu_online(cpu);
    2312             : 
    2313             :         /* Non kernel threads are not allowed during either online or offline. */
    2314             :         if (!(p->flags & PF_KTHREAD))
    2315             :                 return cpu_active(cpu) && task_cpu_possible(cpu, p);
    2316             : 
    2317             :         /* KTHREAD_IS_PER_CPU is always allowed. */
    2318             :         if (kthread_is_per_cpu(p))
    2319             :                 return cpu_online(cpu);
    2320             : 
    2321             :         /* Regular kernel threads don't get to stay during offline. */
    2322             :         if (cpu_dying(cpu))
    2323             :                 return false;
    2324             : 
    2325             :         /* But are allowed during online. */
    2326             :         return cpu_online(cpu);
    2327             : }
    2328             : 
    2329             : /*
    2330             :  * This is how migration works:
    2331             :  *
    2332             :  * 1) we invoke migration_cpu_stop() on the target CPU using
    2333             :  *    stop_one_cpu().
    2334             :  * 2) stopper starts to run (implicitly forcing the migrated thread
    2335             :  *    off the CPU)
    2336             :  * 3) it checks whether the migrated task is still in the wrong runqueue.
    2337             :  * 4) if it's in the wrong runqueue then the migration thread removes
    2338             :  *    it and puts it into the right queue.
    2339             :  * 5) stopper completes and stop_one_cpu() returns and the migration
    2340             :  *    is done.
    2341             :  */
    2342             : 
    2343             : /*
    2344             :  * move_queued_task - move a queued task to new rq.
    2345             :  *
    2346             :  * Returns (locked) new rq. Old rq's lock is released.
    2347             :  */
    2348             : static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
    2349             :                                    struct task_struct *p, int new_cpu)
    2350             : {
    2351             :         lockdep_assert_rq_held(rq);
    2352             : 
    2353             :         deactivate_task(rq, p, DEQUEUE_NOCLOCK);
    2354             :         set_task_cpu(p, new_cpu);
    2355             :         rq_unlock(rq, rf);
    2356             : 
    2357             :         rq = cpu_rq(new_cpu);
    2358             : 
    2359             :         rq_lock(rq, rf);
    2360             :         WARN_ON_ONCE(task_cpu(p) != new_cpu);
    2361             :         activate_task(rq, p, 0);
    2362             :         check_preempt_curr(rq, p, 0);
    2363             : 
    2364             :         return rq;
    2365             : }
    2366             : 
    2367             : struct migration_arg {
    2368             :         struct task_struct              *task;
    2369             :         int                             dest_cpu;
    2370             :         struct set_affinity_pending     *pending;
    2371             : };
    2372             : 
    2373             : /*
    2374             :  * @refs: number of wait_for_completion()
    2375             :  * @stop_pending: is @stop_work in use
    2376             :  */
    2377             : struct set_affinity_pending {
    2378             :         refcount_t              refs;
    2379             :         unsigned int            stop_pending;
    2380             :         struct completion       done;
    2381             :         struct cpu_stop_work    stop_work;
    2382             :         struct migration_arg    arg;
    2383             : };
    2384             : 
    2385             : /*
    2386             :  * Move (not current) task off this CPU, onto the destination CPU. We're doing
    2387             :  * this because either it can't run here any more (set_cpus_allowed()
    2388             :  * away from this CPU, or CPU going down), or because we're
    2389             :  * attempting to rebalance this task on exec (sched_exec).
    2390             :  *
    2391             :  * So we race with normal scheduler movements, but that's OK, as long
    2392             :  * as the task is no longer on this CPU.
    2393             :  */
    2394             : static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
    2395             :                                  struct task_struct *p, int dest_cpu)
    2396             : {
    2397             :         /* Affinity changed (again). */
    2398             :         if (!is_cpu_allowed(p, dest_cpu))
    2399             :                 return rq;
    2400             : 
    2401             :         update_rq_clock(rq);
    2402             :         rq = move_queued_task(rq, rf, p, dest_cpu);
    2403             : 
    2404             :         return rq;
    2405             : }
    2406             : 
    2407             : /*
    2408             :  * migration_cpu_stop - this will be executed by a highprio stopper thread
    2409             :  * and performs thread migration by bumping thread off CPU then
    2410             :  * 'pushing' onto another runqueue.
    2411             :  */
    2412             : static int migration_cpu_stop(void *data)
    2413             : {
    2414             :         struct migration_arg *arg = data;
    2415             :         struct set_affinity_pending *pending = arg->pending;
    2416             :         struct task_struct *p = arg->task;
    2417             :         struct rq *rq = this_rq();
    2418             :         bool complete = false;
    2419             :         struct rq_flags rf;
    2420             : 
    2421             :         /*
    2422             :          * The original target CPU might have gone down and we might
    2423             :          * be on another CPU but it doesn't matter.
    2424             :          */
    2425             :         local_irq_save(rf.flags);
    2426             :         /*
    2427             :          * We need to explicitly wake pending tasks before running
    2428             :          * __migrate_task() such that we will not miss enforcing cpus_ptr
    2429             :          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
    2430             :          */
    2431             :         flush_smp_call_function_queue();
    2432             : 
    2433             :         raw_spin_lock(&p->pi_lock);
    2434             :         rq_lock(rq, &rf);
    2435             : 
    2436             :         /*
    2437             :          * If we were passed a pending, then ->stop_pending was set, thus
    2438             :          * p->migration_pending must have remained stable.
    2439             :          */
    2440             :         WARN_ON_ONCE(pending && pending != p->migration_pending);
    2441             : 
    2442             :         /*
    2443             :          * If task_rq(p) != rq, it cannot be migrated here, because we're
    2444             :          * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
    2445             :          * we're holding p->pi_lock.
    2446             :          */
    2447             :         if (task_rq(p) == rq) {
    2448             :                 if (is_migration_disabled(p))
    2449             :                         goto out;
    2450             : 
    2451             :                 if (pending) {
    2452             :                         p->migration_pending = NULL;
    2453             :                         complete = true;
    2454             : 
    2455             :                         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
    2456             :                                 goto out;
    2457             :                 }
    2458             : 
    2459             :                 if (task_on_rq_queued(p))
    2460             :                         rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
    2461             :                 else
    2462             :                         p->wake_cpu = arg->dest_cpu;
    2463             : 
    2464             :                 /*
    2465             :                  * XXX __migrate_task() can fail, at which point we might end
    2466             :                  * up running on a dodgy CPU, AFAICT this can only happen
    2467             :                  * during CPU hotplug, at which point we'll get pushed out
    2468             :                  * anyway, so it's probably not a big deal.
    2469             :                  */
    2470             : 
    2471             :         } else if (pending) {
    2472             :                 /*
    2473             :                  * This happens when we get migrated between migrate_enable()'s
    2474             :                  * preempt_enable() and scheduling the stopper task. At that
    2475             :                  * point we're a regular task again and not current anymore.
    2476             :                  *
    2477             :                  * A !PREEMPT kernel has a giant hole here, which makes it far
    2478             :                  * more likely.
    2479             :                  */
    2480             : 
    2481             :                 /*
    2482             :                  * The task moved before the stopper got to run. We're holding
    2483             :                  * ->pi_lock, so the allowed mask is stable - if it got
    2484             :                  * somewhere allowed, we're done.
    2485             :                  */
    2486             :                 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
    2487             :                         p->migration_pending = NULL;
    2488             :                         complete = true;
    2489             :                         goto out;
    2490             :                 }
    2491             : 
    2492             :                 /*
    2493             :                  * When migrate_enable() hits a rq mis-match we can't reliably
    2494             :                  * determine is_migration_disabled() and so have to chase after
    2495             :                  * it.
    2496             :                  */
    2497             :                 WARN_ON_ONCE(!pending->stop_pending);
    2498             :                 task_rq_unlock(rq, p, &rf);
    2499             :                 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
    2500             :                                     &pending->arg, &pending->stop_work);
    2501             :                 return 0;
    2502             :         }
    2503             : out:
    2504             :         if (pending)
    2505             :                 pending->stop_pending = false;
    2506             :         task_rq_unlock(rq, p, &rf);
    2507             : 
    2508             :         if (complete)
    2509             :                 complete_all(&pending->done);
    2510             : 
    2511             :         return 0;
    2512             : }
    2513             : 
    2514             : int push_cpu_stop(void *arg)
    2515             : {
    2516             :         struct rq *lowest_rq = NULL, *rq = this_rq();
    2517             :         struct task_struct *p = arg;
    2518             : 
    2519             :         raw_spin_lock_irq(&p->pi_lock);
    2520             :         raw_spin_rq_lock(rq);
    2521             : 
    2522             :         if (task_rq(p) != rq)
    2523             :                 goto out_unlock;
    2524             : 
    2525             :         if (is_migration_disabled(p)) {
    2526             :                 p->migration_flags |= MDF_PUSH;
    2527             :                 goto out_unlock;
    2528             :         }
    2529             : 
    2530             :         p->migration_flags &= ~MDF_PUSH;
    2531             : 
    2532             :         if (p->sched_class->find_lock_rq)
    2533             :                 lowest_rq = p->sched_class->find_lock_rq(p, rq);
    2534             : 
    2535             :         if (!lowest_rq)
    2536             :                 goto out_unlock;
    2537             : 
    2538             :         // XXX validate p is still the highest prio task
    2539             :         if (task_rq(p) == rq) {
    2540             :                 deactivate_task(rq, p, 0);
    2541             :                 set_task_cpu(p, lowest_rq->cpu);
    2542             :                 activate_task(lowest_rq, p, 0);
    2543             :                 resched_curr(lowest_rq);
    2544             :         }
    2545             : 
    2546             :         double_unlock_balance(rq, lowest_rq);
    2547             : 
    2548             : out_unlock:
    2549             :         rq->push_busy = false;
    2550             :         raw_spin_rq_unlock(rq);
    2551             :         raw_spin_unlock_irq(&p->pi_lock);
    2552             : 
    2553             :         put_task_struct(p);
    2554             :         return 0;
    2555             : }
    2556             : 
    2557             : /*
    2558             :  * sched_class::set_cpus_allowed must do the below, but is not required to
    2559             :  * actually call this function.
    2560             :  */
    2561             : void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
    2562             : {
    2563             :         if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
    2564             :                 p->cpus_ptr = ctx->new_mask;
    2565             :                 return;
    2566             :         }
    2567             : 
    2568             :         cpumask_copy(&p->cpus_mask, ctx->new_mask);
    2569             :         p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
    2570             : 
    2571             :         /*
    2572             :          * Swap in a new user_cpus_ptr if SCA_USER flag set
    2573             :          */
    2574             :         if (ctx->flags & SCA_USER)
    2575             :                 swap(p->user_cpus_ptr, ctx->user_mask);
    2576             : }
    2577             : 
    2578             : static void
    2579             : __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
    2580             : {
    2581             :         struct rq *rq = task_rq(p);
    2582             :         bool queued, running;
    2583             : 
    2584             :         /*
    2585             :          * This here violates the locking rules for affinity, since we're only
    2586             :          * supposed to change these variables while holding both rq->lock and
    2587             :          * p->pi_lock.
    2588             :          *
    2589             :          * HOWEVER, it magically works, because ttwu() is the only code that
    2590             :          * accesses these variables under p->pi_lock and only does so after
    2591             :          * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
    2592             :          * before finish_task().
    2593             :          *
    2594             :          * XXX do further audits, this smells like something putrid.
    2595             :          */
    2596             :         if (ctx->flags & SCA_MIGRATE_DISABLE)
    2597             :                 SCHED_WARN_ON(!p->on_cpu);
    2598             :         else
    2599             :                 lockdep_assert_held(&p->pi_lock);
    2600             : 
    2601             :         queued = task_on_rq_queued(p);
    2602             :         running = task_current(rq, p);
    2603             : 
    2604             :         if (queued) {
    2605             :                 /*
    2606             :                  * Because __kthread_bind() calls this on blocked tasks without
    2607             :                  * holding rq->lock.
    2608             :                  */
    2609             :                 lockdep_assert_rq_held(rq);
    2610             :                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
    2611             :         }
    2612             :         if (running)
    2613             :                 put_prev_task(rq, p);
    2614             : 
    2615             :         p->sched_class->set_cpus_allowed(p, ctx);
    2616             : 
    2617             :         if (queued)
    2618             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    2619             :         if (running)
    2620             :                 set_next_task(rq, p);
    2621             : }
    2622             : 
    2623             : /*
    2624             :  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
    2625             :  * affinity (if any) should be destroyed too.
    2626             :  */
    2627             : void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
    2628             : {
    2629             :         struct affinity_context ac = {
    2630             :                 .new_mask  = new_mask,
    2631             :                 .user_mask = NULL,
    2632             :                 .flags     = SCA_USER,  /* clear the user requested mask */
    2633             :         };
    2634             :         union cpumask_rcuhead {
    2635             :                 cpumask_t cpumask;
    2636             :                 struct rcu_head rcu;
    2637             :         };
    2638             : 
    2639             :         __do_set_cpus_allowed(p, &ac);
    2640             : 
    2641             :         /*
    2642             :          * Because this is called with p->pi_lock held, it is not possible
    2643             :          * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
    2644             :          * kfree_rcu().
    2645             :          */
    2646             :         kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
    2647             : }
    2648             : 
    2649             : static cpumask_t *alloc_user_cpus_ptr(int node)
    2650             : {
    2651             :         /*
    2652             :          * See do_set_cpus_allowed() above for the rcu_head usage.
    2653             :          */
    2654             :         int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
    2655             : 
    2656             :         return kmalloc_node(size, GFP_KERNEL, node);
    2657             : }
    2658             : 
    2659             : int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
    2660             :                       int node)
    2661             : {
    2662             :         cpumask_t *user_mask;
    2663             :         unsigned long flags;
    2664             : 
    2665             :         /*
    2666             :          * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
    2667             :          * may differ by now due to racing.
    2668             :          */
    2669             :         dst->user_cpus_ptr = NULL;
    2670             : 
    2671             :         /*
    2672             :          * This check is racy and losing the race is a valid situation.
    2673             :          * It is not worth the extra overhead of taking the pi_lock on
    2674             :          * every fork/clone.
    2675             :          */
    2676             :         if (data_race(!src->user_cpus_ptr))
    2677             :                 return 0;
    2678             : 
    2679             :         user_mask = alloc_user_cpus_ptr(node);
    2680             :         if (!user_mask)
    2681             :                 return -ENOMEM;
    2682             : 
    2683             :         /*
    2684             :          * Use pi_lock to protect content of user_cpus_ptr
    2685             :          *
    2686             :          * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
    2687             :          * do_set_cpus_allowed().
    2688             :          */
    2689             :         raw_spin_lock_irqsave(&src->pi_lock, flags);
    2690             :         if (src->user_cpus_ptr) {
    2691             :                 swap(dst->user_cpus_ptr, user_mask);
    2692             :                 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
    2693             :         }
    2694             :         raw_spin_unlock_irqrestore(&src->pi_lock, flags);
    2695             : 
    2696             :         if (unlikely(user_mask))
    2697             :                 kfree(user_mask);
    2698             : 
    2699             :         return 0;
    2700             : }
    2701             : 
    2702             : static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
    2703             : {
    2704             :         struct cpumask *user_mask = NULL;
    2705             : 
    2706             :         swap(p->user_cpus_ptr, user_mask);
    2707             : 
    2708             :         return user_mask;
    2709             : }
    2710             : 
    2711             : void release_user_cpus_ptr(struct task_struct *p)
    2712             : {
    2713             :         kfree(clear_user_cpus_ptr(p));
    2714             : }
    2715             : 
    2716             : /*
    2717             :  * This function is wildly self concurrent; here be dragons.
    2718             :  *
    2719             :  *
    2720             :  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
    2721             :  * designated task is enqueued on an allowed CPU. If that task is currently
    2722             :  * running, we have to kick it out using the CPU stopper.
    2723             :  *
    2724             :  * Migrate-Disable comes along and tramples all over our nice sandcastle.
    2725             :  * Consider:
    2726             :  *
    2727             :  *     Initial conditions: P0->cpus_mask = [0, 1]
    2728             :  *
    2729             :  *     P0@CPU0                  P1
    2730             :  *
    2731             :  *     migrate_disable();
    2732             :  *     <preempted>
    2733             :  *                              set_cpus_allowed_ptr(P0, [1]);
    2734             :  *
    2735             :  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
    2736             :  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
    2737             :  * This means we need the following scheme:
    2738             :  *
    2739             :  *     P0@CPU0                  P1
    2740             :  *
    2741             :  *     migrate_disable();
    2742             :  *     <preempted>
    2743             :  *                              set_cpus_allowed_ptr(P0, [1]);
    2744             :  *                                <blocks>
    2745             :  *     <resumes>
    2746             :  *     migrate_enable();
    2747             :  *       __set_cpus_allowed_ptr();
    2748             :  *       <wakes local stopper>
    2749             :  *                         `--> <woken on migration completion>
    2750             :  *
    2751             :  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
    2752             :  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
    2753             :  * task p are serialized by p->pi_lock, which we can leverage: the one that
    2754             :  * should come into effect at the end of the Migrate-Disable region is the last
    2755             :  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
    2756             :  * but we still need to properly signal those waiting tasks at the appropriate
    2757             :  * moment.
    2758             :  *
    2759             :  * This is implemented using struct set_affinity_pending. The first
    2760             :  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
    2761             :  * setup an instance of that struct and install it on the targeted task_struct.
    2762             :  * Any and all further callers will reuse that instance. Those then wait for
    2763             :  * a completion signaled at the tail of the CPU stopper callback (1), triggered
    2764             :  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
    2765             :  *
    2766             :  *
    2767             :  * (1) In the cases covered above. There is one more where the completion is
    2768             :  * signaled within affine_move_task() itself: when a subsequent affinity request
    2769             :  * occurs after the stopper bailed out due to the targeted task still being
    2770             :  * Migrate-Disable. Consider:
    2771             :  *
    2772             :  *     Initial conditions: P0->cpus_mask = [0, 1]
    2773             :  *
    2774             :  *     CPU0               P1                            P2
    2775             :  *     <P0>
    2776             :  *       migrate_disable();
    2777             :  *       <preempted>
    2778             :  *                        set_cpus_allowed_ptr(P0, [1]);
    2779             :  *                          <blocks>
    2780             :  *     <migration/0>
    2781             :  *       migration_cpu_stop()
    2782             :  *         is_migration_disabled()
    2783             :  *           <bails>
    2784             :  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
    2785             :  *                                                         <signal completion>
    2786             :  *                          <awakes>
    2787             :  *
    2788             :  * Note that the above is safe vs a concurrent migrate_enable(), as any
    2789             :  * pending affinity completion is preceded by an uninstallation of
    2790             :  * p->migration_pending done with p->pi_lock held.
    2791             :  */
    2792             : static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
    2793             :                             int dest_cpu, unsigned int flags)
    2794             :         __releases(rq->lock)
    2795             :         __releases(p->pi_lock)
    2796             : {
    2797             :         struct set_affinity_pending my_pending = { }, *pending = NULL;
    2798             :         bool stop_pending, complete = false;
    2799             : 
    2800             :         /* Can the task run on the task's current CPU? If so, we're done */
    2801             :         if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
    2802             :                 struct task_struct *push_task = NULL;
    2803             : 
    2804             :                 if ((flags & SCA_MIGRATE_ENABLE) &&
    2805             :                     (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
    2806             :                         rq->push_busy = true;
    2807             :                         push_task = get_task_struct(p);
    2808             :                 }
    2809             : 
    2810             :                 /*
    2811             :                  * If there are pending waiters, but no pending stop_work,
    2812             :                  * then complete now.
    2813             :                  */
    2814             :                 pending = p->migration_pending;
    2815             :                 if (pending && !pending->stop_pending) {
    2816             :                         p->migration_pending = NULL;
    2817             :                         complete = true;
    2818             :                 }
    2819             : 
    2820             :                 task_rq_unlock(rq, p, rf);
    2821             : 
    2822             :                 if (push_task) {
    2823             :                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
    2824             :                                             p, &rq->push_work);
    2825             :                 }
    2826             : 
    2827             :                 if (complete)
    2828             :                         complete_all(&pending->done);
    2829             : 
    2830             :                 return 0;
    2831             :         }
    2832             : 
    2833             :         if (!(flags & SCA_MIGRATE_ENABLE)) {
    2834             :                 /* serialized by p->pi_lock */
    2835             :                 if (!p->migration_pending) {
    2836             :                         /* Install the request */
    2837             :                         refcount_set(&my_pending.refs, 1);
    2838             :                         init_completion(&my_pending.done);
    2839             :                         my_pending.arg = (struct migration_arg) {
    2840             :                                 .task = p,
    2841             :                                 .dest_cpu = dest_cpu,
    2842             :                                 .pending = &my_pending,
    2843             :                         };
    2844             : 
    2845             :                         p->migration_pending = &my_pending;
    2846             :                 } else {
    2847             :                         pending = p->migration_pending;
    2848             :                         refcount_inc(&pending->refs);
    2849             :                         /*
    2850             :                          * Affinity has changed, but we've already installed a
    2851             :                          * pending. migration_cpu_stop() *must* see this, else
    2852             :                          * we risk a completion of the pending despite having a
    2853             :                          * task on a disallowed CPU.
    2854             :                          *
    2855             :                          * Serialized by p->pi_lock, so this is safe.
    2856             :                          */
    2857             :                         pending->arg.dest_cpu = dest_cpu;
    2858             :                 }
    2859             :         }
    2860             :         pending = p->migration_pending;
    2861             :         /*
    2862             :          * - !MIGRATE_ENABLE:
    2863             :          *   we'll have installed a pending if there wasn't one already.
    2864             :          *
    2865             :          * - MIGRATE_ENABLE:
    2866             :          *   we're here because the current CPU isn't matching anymore,
    2867             :          *   the only way that can happen is because of a concurrent
    2868             :          *   set_cpus_allowed_ptr() call, which should then still be
    2869             :          *   pending completion.
    2870             :          *
    2871             :          * Either way, we really should have a @pending here.
    2872             :          */
    2873             :         if (WARN_ON_ONCE(!pending)) {
    2874             :                 task_rq_unlock(rq, p, rf);
    2875             :                 return -EINVAL;
    2876             :         }
    2877             : 
    2878             :         if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
    2879             :                 /*
    2880             :                  * MIGRATE_ENABLE gets here because 'p == current', but for
    2881             :                  * anything else we cannot do is_migration_disabled(), punt
    2882             :                  * and have the stopper function handle it all race-free.
    2883             :                  */
    2884             :                 stop_pending = pending->stop_pending;
    2885             :                 if (!stop_pending)
    2886             :                         pending->stop_pending = true;
    2887             : 
    2888             :                 if (flags & SCA_MIGRATE_ENABLE)
    2889             :                         p->migration_flags &= ~MDF_PUSH;
    2890             : 
    2891             :                 task_rq_unlock(rq, p, rf);
    2892             : 
    2893             :                 if (!stop_pending) {
    2894             :                         stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
    2895             :                                             &pending->arg, &pending->stop_work);
    2896             :                 }
    2897             : 
    2898             :                 if (flags & SCA_MIGRATE_ENABLE)
    2899             :                         return 0;
    2900             :         } else {
    2901             : 
    2902             :                 if (!is_migration_disabled(p)) {
    2903             :                         if (task_on_rq_queued(p))
    2904             :                                 rq = move_queued_task(rq, rf, p, dest_cpu);
    2905             : 
    2906             :                         if (!pending->stop_pending) {
    2907             :                                 p->migration_pending = NULL;
    2908             :                                 complete = true;
    2909             :                         }
    2910             :                 }
    2911             :                 task_rq_unlock(rq, p, rf);
    2912             : 
    2913             :                 if (complete)
    2914             :                         complete_all(&pending->done);
    2915             :         }
    2916             : 
    2917             :         wait_for_completion(&pending->done);
    2918             : 
    2919             :         if (refcount_dec_and_test(&pending->refs))
    2920             :                 wake_up_var(&pending->refs); /* No UaF, just an address */
    2921             : 
    2922             :         /*
    2923             :          * Block the original owner of &pending until all subsequent callers
    2924             :          * have seen the completion and decremented the refcount
    2925             :          */
    2926             :         wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
    2927             : 
    2928             :         /* ARGH */
    2929             :         WARN_ON_ONCE(my_pending.stop_pending);
    2930             : 
    2931             :         return 0;
    2932             : }
    2933             : 
    2934             : /*
    2935             :  * Called with both p->pi_lock and rq->lock held; drops both before returning.
    2936             :  */
    2937             : static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
    2938             :                                          struct affinity_context *ctx,
    2939             :                                          struct rq *rq,
    2940             :                                          struct rq_flags *rf)
    2941             :         __releases(rq->lock)
    2942             :         __releases(p->pi_lock)
    2943             : {
    2944             :         const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
    2945             :         const struct cpumask *cpu_valid_mask = cpu_active_mask;
    2946             :         bool kthread = p->flags & PF_KTHREAD;
    2947             :         unsigned int dest_cpu;
    2948             :         int ret = 0;
    2949             : 
    2950             :         update_rq_clock(rq);
    2951             : 
    2952             :         if (kthread || is_migration_disabled(p)) {
    2953             :                 /*
    2954             :                  * Kernel threads are allowed on online && !active CPUs,
    2955             :                  * however, during cpu-hot-unplug, even these might get pushed
    2956             :                  * away if not KTHREAD_IS_PER_CPU.
    2957             :                  *
    2958             :                  * Specifically, migration_disabled() tasks must not fail the
    2959             :                  * cpumask_any_and_distribute() pick below, esp. so on
    2960             :                  * SCA_MIGRATE_ENABLE, otherwise we'll not call
    2961             :                  * set_cpus_allowed_common() and actually reset p->cpus_ptr.
    2962             :                  */
    2963             :                 cpu_valid_mask = cpu_online_mask;
    2964             :         }
    2965             : 
    2966             :         if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
    2967             :                 ret = -EINVAL;
    2968             :                 goto out;
    2969             :         }
    2970             : 
    2971             :         /*
    2972             :          * Must re-check here, to close a race against __kthread_bind(),
    2973             :          * sched_setaffinity() is not guaranteed to observe the flag.
    2974             :          */
    2975             :         if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
    2976             :                 ret = -EINVAL;
    2977             :                 goto out;
    2978             :         }
    2979             : 
    2980             :         if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
    2981             :                 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
    2982             :                         if (ctx->flags & SCA_USER)
    2983             :                                 swap(p->user_cpus_ptr, ctx->user_mask);
    2984             :                         goto out;
    2985             :                 }
    2986             : 
    2987             :                 if (WARN_ON_ONCE(p == current &&
    2988             :                                  is_migration_disabled(p) &&
    2989             :                                  !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
    2990             :                         ret = -EBUSY;
    2991             :                         goto out;
    2992             :                 }
    2993             :         }
    2994             : 
    2995             :         /*
    2996             :          * Picking a ~random cpu helps in cases where we are changing affinity
    2997             :          * for groups of tasks (ie. cpuset), so that load balancing is not
    2998             :          * immediately required to distribute the tasks within their new mask.
    2999             :          */
    3000             :         dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
    3001             :         if (dest_cpu >= nr_cpu_ids) {
    3002             :                 ret = -EINVAL;
    3003             :                 goto out;
    3004             :         }
    3005             : 
    3006             :         __do_set_cpus_allowed(p, ctx);
    3007             : 
    3008             :         return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
    3009             : 
    3010             : out:
    3011             :         task_rq_unlock(rq, p, rf);
    3012             : 
    3013             :         return ret;
    3014             : }
    3015             : 
    3016             : /*
    3017             :  * Change a given task's CPU affinity. Migrate the thread to a
    3018             :  * proper CPU and schedule it away if the CPU it's executing on
    3019             :  * is removed from the allowed bitmask.
    3020             :  *
    3021             :  * NOTE: the caller must have a valid reference to the task, the
    3022             :  * task must not exit() & deallocate itself prematurely. The
    3023             :  * call is not atomic; no spinlocks may be held.
    3024             :  */
    3025             : static int __set_cpus_allowed_ptr(struct task_struct *p,
    3026             :                                   struct affinity_context *ctx)
    3027             : {
    3028             :         struct rq_flags rf;
    3029             :         struct rq *rq;
    3030             : 
    3031             :         rq = task_rq_lock(p, &rf);
    3032             :         /*
    3033             :          * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
    3034             :          * flags are set.
    3035             :          */
    3036             :         if (p->user_cpus_ptr &&
    3037             :             !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
    3038             :             cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
    3039             :                 ctx->new_mask = rq->scratch_mask;
    3040             : 
    3041             :         return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
    3042             : }
    3043             : 
    3044             : int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
    3045             : {
    3046             :         struct affinity_context ac = {
    3047             :                 .new_mask  = new_mask,
    3048             :                 .flags     = 0,
    3049             :         };
    3050             : 
    3051             :         return __set_cpus_allowed_ptr(p, &ac);
    3052             : }
    3053             : EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
    3054             : 
    3055             : /*
    3056             :  * Change a given task's CPU affinity to the intersection of its current
    3057             :  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
    3058             :  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
    3059             :  * affinity or use cpu_online_mask instead.
    3060             :  *
    3061             :  * If the resulting mask is empty, leave the affinity unchanged and return
    3062             :  * -EINVAL.
    3063             :  */
    3064             : static int restrict_cpus_allowed_ptr(struct task_struct *p,
    3065             :                                      struct cpumask *new_mask,
    3066             :                                      const struct cpumask *subset_mask)
    3067             : {
    3068             :         struct affinity_context ac = {
    3069             :                 .new_mask  = new_mask,
    3070             :                 .flags     = 0,
    3071             :         };
    3072             :         struct rq_flags rf;
    3073             :         struct rq *rq;
    3074             :         int err;
    3075             : 
    3076             :         rq = task_rq_lock(p, &rf);
    3077             : 
    3078             :         /*
    3079             :          * Forcefully restricting the affinity of a deadline task is
    3080             :          * likely to cause problems, so fail and noisily override the
    3081             :          * mask entirely.
    3082             :          */
    3083             :         if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
    3084             :                 err = -EPERM;
    3085             :                 goto err_unlock;
    3086             :         }
    3087             : 
    3088             :         if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
    3089             :                 err = -EINVAL;
    3090             :                 goto err_unlock;
    3091             :         }
    3092             : 
    3093             :         return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
    3094             : 
    3095             : err_unlock:
    3096             :         task_rq_unlock(rq, p, &rf);
    3097             :         return err;
    3098             : }
    3099             : 
    3100             : /*
    3101             :  * Restrict the CPU affinity of task @p so that it is a subset of
    3102             :  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
    3103             :  * old affinity mask. If the resulting mask is empty, we warn and walk
    3104             :  * up the cpuset hierarchy until we find a suitable mask.
    3105             :  */
    3106             : void force_compatible_cpus_allowed_ptr(struct task_struct *p)
    3107             : {
    3108             :         cpumask_var_t new_mask;
    3109             :         const struct cpumask *override_mask = task_cpu_possible_mask(p);
    3110             : 
    3111             :         alloc_cpumask_var(&new_mask, GFP_KERNEL);
    3112             : 
    3113             :         /*
    3114             :          * __migrate_task() can fail silently in the face of concurrent
    3115             :          * offlining of the chosen destination CPU, so take the hotplug
    3116             :          * lock to ensure that the migration succeeds.
    3117             :          */
    3118             :         cpus_read_lock();
    3119             :         if (!cpumask_available(new_mask))
    3120             :                 goto out_set_mask;
    3121             : 
    3122             :         if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
    3123             :                 goto out_free_mask;
    3124             : 
    3125             :         /*
    3126             :          * We failed to find a valid subset of the affinity mask for the
    3127             :          * task, so override it based on its cpuset hierarchy.
    3128             :          */
    3129             :         cpuset_cpus_allowed(p, new_mask);
    3130             :         override_mask = new_mask;
    3131             : 
    3132             : out_set_mask:
    3133             :         if (printk_ratelimit()) {
    3134             :                 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
    3135             :                                 task_pid_nr(p), p->comm,
    3136             :                                 cpumask_pr_args(override_mask));
    3137             :         }
    3138             : 
    3139             :         WARN_ON(set_cpus_allowed_ptr(p, override_mask));
    3140             : out_free_mask:
    3141             :         cpus_read_unlock();
    3142             :         free_cpumask_var(new_mask);
    3143             : }
    3144             : 
    3145             : static int
    3146             : __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
    3147             : 
    3148             : /*
    3149             :  * Restore the affinity of a task @p which was previously restricted by a
    3150             :  * call to force_compatible_cpus_allowed_ptr().
    3151             :  *
    3152             :  * It is the caller's responsibility to serialise this with any calls to
    3153             :  * force_compatible_cpus_allowed_ptr(@p).
    3154             :  */
    3155             : void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
    3156             : {
    3157             :         struct affinity_context ac = {
    3158             :                 .new_mask  = task_user_cpus(p),
    3159             :                 .flags     = 0,
    3160             :         };
    3161             :         int ret;
    3162             : 
    3163             :         /*
    3164             :          * Try to restore the old affinity mask with __sched_setaffinity().
    3165             :          * Cpuset masking will be done there too.
    3166             :          */
    3167             :         ret = __sched_setaffinity(p, &ac);
    3168             :         WARN_ON_ONCE(ret);
    3169             : }
    3170             : 
    3171             : void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
    3172             : {
    3173             : #ifdef CONFIG_SCHED_DEBUG
    3174             :         unsigned int state = READ_ONCE(p->__state);
    3175             : 
    3176             :         /*
    3177             :          * We should never call set_task_cpu() on a blocked task,
    3178             :          * ttwu() will sort out the placement.
    3179             :          */
    3180             :         WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
    3181             : 
    3182             :         /*
    3183             :          * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
    3184             :          * because schedstat_wait_{start,end} rebase migrating task's wait_start
    3185             :          * time relying on p->on_rq.
    3186             :          */
    3187             :         WARN_ON_ONCE(state == TASK_RUNNING &&
    3188             :                      p->sched_class == &fair_sched_class &&
    3189             :                      (p->on_rq && !task_on_rq_migrating(p)));
    3190             : 
    3191             : #ifdef CONFIG_LOCKDEP
    3192             :         /*
    3193             :          * The caller should hold either p->pi_lock or rq->lock, when changing
    3194             :          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
    3195             :          *
    3196             :          * sched_move_task() holds both and thus holding either pins the cgroup,
    3197             :          * see task_group().
    3198             :          *
    3199             :          * Furthermore, all task_rq users should acquire both locks, see
    3200             :          * task_rq_lock().
    3201             :          */
    3202             :         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
    3203             :                                       lockdep_is_held(__rq_lockp(task_rq(p)))));
    3204             : #endif
    3205             :         /*
    3206             :          * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
    3207             :          */
    3208             :         WARN_ON_ONCE(!cpu_online(new_cpu));
    3209             : 
    3210             :         WARN_ON_ONCE(is_migration_disabled(p));
    3211             : #endif
    3212             : 
    3213             :         trace_sched_migrate_task(p, new_cpu);
    3214             : 
    3215             :         if (task_cpu(p) != new_cpu) {
    3216             :                 if (p->sched_class->migrate_task_rq)
    3217             :                         p->sched_class->migrate_task_rq(p, new_cpu);
    3218             :                 p->se.nr_migrations++;
    3219             :                 rseq_migrate(p);
    3220             :                 sched_mm_cid_migrate_from(p);
    3221             :                 perf_event_task_migrate(p);
    3222             :         }
    3223             : 
    3224             :         __set_task_cpu(p, new_cpu);
    3225             : }
    3226             : 
    3227             : #ifdef CONFIG_NUMA_BALANCING
    3228             : static void __migrate_swap_task(struct task_struct *p, int cpu)
    3229             : {
    3230             :         if (task_on_rq_queued(p)) {
    3231             :                 struct rq *src_rq, *dst_rq;
    3232             :                 struct rq_flags srf, drf;
    3233             : 
    3234             :                 src_rq = task_rq(p);
    3235             :                 dst_rq = cpu_rq(cpu);
    3236             : 
    3237             :                 rq_pin_lock(src_rq, &srf);
    3238             :                 rq_pin_lock(dst_rq, &drf);
    3239             : 
    3240             :                 deactivate_task(src_rq, p, 0);
    3241             :                 set_task_cpu(p, cpu);
    3242             :                 activate_task(dst_rq, p, 0);
    3243             :                 check_preempt_curr(dst_rq, p, 0);
    3244             : 
    3245             :                 rq_unpin_lock(dst_rq, &drf);
    3246             :                 rq_unpin_lock(src_rq, &srf);
    3247             : 
    3248             :         } else {
    3249             :                 /*
    3250             :                  * Task isn't running anymore; make it appear like we migrated
    3251             :                  * it before it went to sleep. This means on wakeup we make the
    3252             :                  * previous CPU our target instead of where it really is.
    3253             :                  */
    3254             :                 p->wake_cpu = cpu;
    3255             :         }
    3256             : }
    3257             : 
    3258             : struct migration_swap_arg {
    3259             :         struct task_struct *src_task, *dst_task;
    3260             :         int src_cpu, dst_cpu;
    3261             : };
    3262             : 
    3263             : static int migrate_swap_stop(void *data)
    3264             : {
    3265             :         struct migration_swap_arg *arg = data;
    3266             :         struct rq *src_rq, *dst_rq;
    3267             :         int ret = -EAGAIN;
    3268             : 
    3269             :         if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
    3270             :                 return -EAGAIN;
    3271             : 
    3272             :         src_rq = cpu_rq(arg->src_cpu);
    3273             :         dst_rq = cpu_rq(arg->dst_cpu);
    3274             : 
    3275             :         double_raw_lock(&arg->src_task->pi_lock,
    3276             :                         &arg->dst_task->pi_lock);
    3277             :         double_rq_lock(src_rq, dst_rq);
    3278             : 
    3279             :         if (task_cpu(arg->dst_task) != arg->dst_cpu)
    3280             :                 goto unlock;
    3281             : 
    3282             :         if (task_cpu(arg->src_task) != arg->src_cpu)
    3283             :                 goto unlock;
    3284             : 
    3285             :         if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
    3286             :                 goto unlock;
    3287             : 
    3288             :         if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
    3289             :                 goto unlock;
    3290             : 
    3291             :         __migrate_swap_task(arg->src_task, arg->dst_cpu);
    3292             :         __migrate_swap_task(arg->dst_task, arg->src_cpu);
    3293             : 
    3294             :         ret = 0;
    3295             : 
    3296             : unlock:
    3297             :         double_rq_unlock(src_rq, dst_rq);
    3298             :         raw_spin_unlock(&arg->dst_task->pi_lock);
    3299             :         raw_spin_unlock(&arg->src_task->pi_lock);
    3300             : 
    3301             :         return ret;
    3302             : }
    3303             : 
    3304             : /*
    3305             :  * Cross migrate two tasks
    3306             :  */
    3307             : int migrate_swap(struct task_struct *cur, struct task_struct *p,
    3308             :                 int target_cpu, int curr_cpu)
    3309             : {
    3310             :         struct migration_swap_arg arg;
    3311             :         int ret = -EINVAL;
    3312             : 
    3313             :         arg = (struct migration_swap_arg){
    3314             :                 .src_task = cur,
    3315             :                 .src_cpu = curr_cpu,
    3316             :                 .dst_task = p,
    3317             :                 .dst_cpu = target_cpu,
    3318             :         };
    3319             : 
    3320             :         if (arg.src_cpu == arg.dst_cpu)
    3321             :                 goto out;
    3322             : 
    3323             :         /*
    3324             :          * These three tests are all lockless; this is OK since all of them
    3325             :          * will be re-checked with proper locks held further down the line.
    3326             :          */
    3327             :         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
    3328             :                 goto out;
    3329             : 
    3330             :         if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
    3331             :                 goto out;
    3332             : 
    3333             :         if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
    3334             :                 goto out;
    3335             : 
    3336             :         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
    3337             :         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
    3338             : 
    3339             : out:
    3340             :         return ret;
    3341             : }
    3342             : #endif /* CONFIG_NUMA_BALANCING */
    3343             : 
    3344             : /*
    3345             :  * wait_task_inactive - wait for a thread to unschedule.
    3346             :  *
    3347             :  * Wait for the thread to block in any of the states set in @match_state.
    3348             :  * If it changes, i.e. @p might have woken up, then return zero.  When we
    3349             :  * succeed in waiting for @p to be off its CPU, we return a positive number
    3350             :  * (its total switch count).  If a second call a short while later returns the
    3351             :  * same number, the caller can be sure that @p has remained unscheduled the
    3352             :  * whole time.
    3353             :  *
    3354             :  * The caller must ensure that the task *will* unschedule sometime soon,
    3355             :  * else this function might spin for a *long* time. This function can't
    3356             :  * be called with interrupts off, or it may introduce deadlock with
    3357             :  * smp_call_function() if an IPI is sent by the same process we are
    3358             :  * waiting to become inactive.
    3359             :  */
    3360             : unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
    3361             : {
    3362             :         int running, queued;
    3363             :         struct rq_flags rf;
    3364             :         unsigned long ncsw;
    3365             :         struct rq *rq;
    3366             : 
    3367             :         for (;;) {
    3368             :                 /*
    3369             :                  * We do the initial early heuristics without holding
    3370             :                  * any task-queue locks at all. We'll only try to get
    3371             :                  * the runqueue lock when things look like they will
    3372             :                  * work out!
    3373             :                  */
    3374             :                 rq = task_rq(p);
    3375             : 
    3376             :                 /*
    3377             :                  * If the task is actively running on another CPU
    3378             :                  * still, just relax and busy-wait without holding
    3379             :                  * any locks.
    3380             :                  *
    3381             :                  * NOTE! Since we don't hold any locks, it's not
    3382             :                  * even sure that "rq" stays as the right runqueue!
    3383             :                  * But we don't care, since "task_on_cpu()" will
    3384             :                  * return false if the runqueue has changed and p
    3385             :                  * is actually now running somewhere else!
    3386             :                  */
    3387             :                 while (task_on_cpu(rq, p)) {
    3388             :                         if (!(READ_ONCE(p->__state) & match_state))
    3389             :                                 return 0;
    3390             :                         cpu_relax();
    3391             :                 }
    3392             : 
    3393             :                 /*
    3394             :                  * Ok, time to look more closely! We need the rq
    3395             :                  * lock now, to be *sure*. If we're wrong, we'll
    3396             :                  * just go back and repeat.
    3397             :                  */
    3398             :                 rq = task_rq_lock(p, &rf);
    3399             :                 trace_sched_wait_task(p);
    3400             :                 running = task_on_cpu(rq, p);
    3401             :                 queued = task_on_rq_queued(p);
    3402             :                 ncsw = 0;
    3403             :                 if (READ_ONCE(p->__state) & match_state)
    3404             :                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
    3405             :                 task_rq_unlock(rq, p, &rf);
    3406             : 
    3407             :                 /*
    3408             :                  * If it changed from the expected state, bail out now.
    3409             :                  */
    3410             :                 if (unlikely(!ncsw))
    3411             :                         break;
    3412             : 
    3413             :                 /*
    3414             :                  * Was it really running after all now that we
    3415             :                  * checked with the proper locks actually held?
    3416             :                  *
    3417             :                  * Oops. Go back and try again..
    3418             :                  */
    3419             :                 if (unlikely(running)) {
    3420             :                         cpu_relax();
    3421             :                         continue;
    3422             :                 }
    3423             : 
    3424             :                 /*
    3425             :                  * It's not enough that it's not actively running,
    3426             :                  * it must be off the runqueue _entirely_, and not
    3427             :                  * preempted!
    3428             :                  *
    3429             :                  * So if it was still runnable (but just not actively
    3430             :                  * running right now), it's preempted, and we should
    3431             :                  * yield - it could be a while.
    3432             :                  */
    3433             :                 if (unlikely(queued)) {
    3434             :                         ktime_t to = NSEC_PER_SEC / HZ;
    3435             : 
    3436             :                         set_current_state(TASK_UNINTERRUPTIBLE);
    3437             :                         schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
    3438             :                         continue;
    3439             :                 }
    3440             : 
    3441             :                 /*
    3442             :                  * Ahh, all good. It wasn't running, and it wasn't
    3443             :                  * runnable, which means that it will never become
    3444             :                  * running in the future either. We're all done!
    3445             :                  */
    3446             :                 break;
    3447             :         }
    3448             : 
    3449             :         return ncsw;
    3450             : }
    3451             : 
    3452             : /***
    3453             :  * kick_process - kick a running thread to enter/exit the kernel
    3454             :  * @p: the to-be-kicked thread
    3455             :  *
    3456             :  * Cause a process which is running on another CPU to enter
    3457             :  * kernel-mode, without any delay. (to get signals handled.)
    3458             :  *
    3459             :  * NOTE: this function doesn't have to take the runqueue lock,
    3460             :  * because all it wants to ensure is that the remote task enters
    3461             :  * the kernel. If the IPI races and the task has been migrated
    3462             :  * to another CPU then no harm is done and the purpose has been
    3463             :  * achieved as well.
    3464             :  */
    3465             : void kick_process(struct task_struct *p)
    3466             : {
    3467             :         int cpu;
    3468             : 
    3469             :         preempt_disable();
    3470             :         cpu = task_cpu(p);
    3471             :         if ((cpu != smp_processor_id()) && task_curr(p))
    3472             :                 smp_send_reschedule(cpu);
    3473             :         preempt_enable();
    3474             : }
    3475             : EXPORT_SYMBOL_GPL(kick_process);
    3476             : 
    3477             : /*
    3478             :  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
    3479             :  *
    3480             :  * A few notes on cpu_active vs cpu_online:
    3481             :  *
    3482             :  *  - cpu_active must be a subset of cpu_online
    3483             :  *
    3484             :  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
    3485             :  *    see __set_cpus_allowed_ptr(). At this point the newly online
    3486             :  *    CPU isn't yet part of the sched domains, and balancing will not
    3487             :  *    see it.
    3488             :  *
    3489             :  *  - on CPU-down we clear cpu_active() to mask the sched domains and
    3490             :  *    avoid the load balancer to place new tasks on the to be removed
    3491             :  *    CPU. Existing tasks will remain running there and will be taken
    3492             :  *    off.
    3493             :  *
    3494             :  * This means that fallback selection must not select !active CPUs.
    3495             :  * And can assume that any active CPU must be online. Conversely
    3496             :  * select_task_rq() below may allow selection of !active CPUs in order
    3497             :  * to satisfy the above rules.
    3498             :  */
    3499             : static int select_fallback_rq(int cpu, struct task_struct *p)
    3500             : {
    3501             :         int nid = cpu_to_node(cpu);
    3502             :         const struct cpumask *nodemask = NULL;
    3503             :         enum { cpuset, possible, fail } state = cpuset;
    3504             :         int dest_cpu;
    3505             : 
    3506             :         /*
    3507             :          * If the node that the CPU is on has been offlined, cpu_to_node()
    3508             :          * will return -1. There is no CPU on the node, and we should
    3509             :          * select the CPU on the other node.
    3510             :          */
    3511             :         if (nid != -1) {
    3512             :                 nodemask = cpumask_of_node(nid);
    3513             : 
    3514             :                 /* Look for allowed, online CPU in same node. */
    3515             :                 for_each_cpu(dest_cpu, nodemask) {
    3516             :                         if (is_cpu_allowed(p, dest_cpu))
    3517             :                                 return dest_cpu;
    3518             :                 }
    3519             :         }
    3520             : 
    3521             :         for (;;) {
    3522             :                 /* Any allowed, online CPU? */
    3523             :                 for_each_cpu(dest_cpu, p->cpus_ptr) {
    3524             :                         if (!is_cpu_allowed(p, dest_cpu))
    3525             :                                 continue;
    3526             : 
    3527             :                         goto out;
    3528             :                 }
    3529             : 
    3530             :                 /* No more Mr. Nice Guy. */
    3531             :                 switch (state) {
    3532             :                 case cpuset:
    3533             :                         if (cpuset_cpus_allowed_fallback(p)) {
    3534             :                                 state = possible;
    3535             :                                 break;
    3536             :                         }
    3537             :                         fallthrough;
    3538             :                 case possible:
    3539             :                         /*
    3540             :                          * XXX When called from select_task_rq() we only
    3541             :                          * hold p->pi_lock and again violate locking order.
    3542             :                          *
    3543             :                          * More yuck to audit.
    3544             :                          */
    3545             :                         do_set_cpus_allowed(p, task_cpu_possible_mask(p));
    3546             :                         state = fail;
    3547             :                         break;
    3548             :                 case fail:
    3549             :                         BUG();
    3550             :                         break;
    3551             :                 }
    3552             :         }
    3553             : 
    3554             : out:
    3555             :         if (state != cpuset) {
    3556             :                 /*
    3557             :                  * Don't tell them about moving exiting tasks or
    3558             :                  * kernel threads (both mm NULL), since they never
    3559             :                  * leave kernel.
    3560             :                  */
    3561             :                 if (p->mm && printk_ratelimit()) {
    3562             :                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
    3563             :                                         task_pid_nr(p), p->comm, cpu);
    3564             :                 }
    3565             :         }
    3566             : 
    3567             :         return dest_cpu;
    3568             : }
    3569             : 
    3570             : /*
    3571             :  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
    3572             :  */
    3573             : static inline
    3574             : int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
    3575             : {
    3576             :         lockdep_assert_held(&p->pi_lock);
    3577             : 
    3578             :         if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
    3579             :                 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
    3580             :         else
    3581             :                 cpu = cpumask_any(p->cpus_ptr);
    3582             : 
    3583             :         /*
    3584             :          * In order not to call set_task_cpu() on a blocking task we need
    3585             :          * to rely on ttwu() to place the task on a valid ->cpus_ptr
    3586             :          * CPU.
    3587             :          *
    3588             :          * Since this is common to all placement strategies, this lives here.
    3589             :          *
    3590             :          * [ this allows ->select_task() to simply return task_cpu(p) and
    3591             :          *   not worry about this generic constraint ]
    3592             :          */
    3593             :         if (unlikely(!is_cpu_allowed(p, cpu)))
    3594             :                 cpu = select_fallback_rq(task_cpu(p), p);
    3595             : 
    3596             :         return cpu;
    3597             : }
    3598             : 
    3599             : void sched_set_stop_task(int cpu, struct task_struct *stop)
    3600             : {
    3601             :         static struct lock_class_key stop_pi_lock;
    3602             :         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
    3603             :         struct task_struct *old_stop = cpu_rq(cpu)->stop;
    3604             : 
    3605             :         if (stop) {
    3606             :                 /*
    3607             :                  * Make it appear like a SCHED_FIFO task, its something
    3608             :                  * userspace knows about and won't get confused about.
    3609             :                  *
    3610             :                  * Also, it will make PI more or less work without too
    3611             :                  * much confusion -- but then, stop work should not
    3612             :                  * rely on PI working anyway.
    3613             :                  */
    3614             :                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
    3615             : 
    3616             :                 stop->sched_class = &stop_sched_class;
    3617             : 
    3618             :                 /*
    3619             :                  * The PI code calls rt_mutex_setprio() with ->pi_lock held to
    3620             :                  * adjust the effective priority of a task. As a result,
    3621             :                  * rt_mutex_setprio() can trigger (RT) balancing operations,
    3622             :                  * which can then trigger wakeups of the stop thread to push
    3623             :                  * around the current task.
    3624             :                  *
    3625             :                  * The stop task itself will never be part of the PI-chain, it
    3626             :                  * never blocks, therefore that ->pi_lock recursion is safe.
    3627             :                  * Tell lockdep about this by placing the stop->pi_lock in its
    3628             :                  * own class.
    3629             :                  */
    3630             :                 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
    3631             :         }
    3632             : 
    3633             :         cpu_rq(cpu)->stop = stop;
    3634             : 
    3635             :         if (old_stop) {
    3636             :                 /*
    3637             :                  * Reset it back to a normal scheduling class so that
    3638             :                  * it can die in pieces.
    3639             :                  */
    3640             :                 old_stop->sched_class = &rt_sched_class;
    3641             :         }
    3642             : }
    3643             : 
    3644             : #else /* CONFIG_SMP */
    3645             : 
    3646             : static inline int __set_cpus_allowed_ptr(struct task_struct *p,
    3647             :                                          struct affinity_context *ctx)
    3648             : {
    3649           0 :         return set_cpus_allowed_ptr(p, ctx->new_mask);
    3650             : }
    3651             : 
    3652             : static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
    3653             : 
    3654             : static inline bool rq_has_pinned_tasks(struct rq *rq)
    3655             : {
    3656             :         return false;
    3657             : }
    3658             : 
    3659             : static inline cpumask_t *alloc_user_cpus_ptr(int node)
    3660             : {
    3661             :         return NULL;
    3662             : }
    3663             : 
    3664             : #endif /* !CONFIG_SMP */
    3665             : 
    3666             : static void
    3667             : ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
    3668             : {
    3669             :         struct rq *rq;
    3670             : 
    3671             :         if (!schedstat_enabled())
    3672             :                 return;
    3673             : 
    3674             :         rq = this_rq();
    3675             : 
    3676             : #ifdef CONFIG_SMP
    3677             :         if (cpu == rq->cpu) {
    3678             :                 __schedstat_inc(rq->ttwu_local);
    3679             :                 __schedstat_inc(p->stats.nr_wakeups_local);
    3680             :         } else {
    3681             :                 struct sched_domain *sd;
    3682             : 
    3683             :                 __schedstat_inc(p->stats.nr_wakeups_remote);
    3684             :                 rcu_read_lock();
    3685             :                 for_each_domain(rq->cpu, sd) {
    3686             :                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
    3687             :                                 __schedstat_inc(sd->ttwu_wake_remote);
    3688             :                                 break;
    3689             :                         }
    3690             :                 }
    3691             :                 rcu_read_unlock();
    3692             :         }
    3693             : 
    3694             :         if (wake_flags & WF_MIGRATED)
    3695             :                 __schedstat_inc(p->stats.nr_wakeups_migrate);
    3696             : #endif /* CONFIG_SMP */
    3697             : 
    3698             :         __schedstat_inc(rq->ttwu_count);
    3699             :         __schedstat_inc(p->stats.nr_wakeups);
    3700             : 
    3701             :         if (wake_flags & WF_SYNC)
    3702             :                 __schedstat_inc(p->stats.nr_wakeups_sync);
    3703             : }
    3704             : 
    3705             : /*
    3706             :  * Mark the task runnable.
    3707             :  */
    3708             : static inline void ttwu_do_wakeup(struct task_struct *p)
    3709             : {
    3710        2060 :         WRITE_ONCE(p->__state, TASK_RUNNING);
    3711        2060 :         trace_sched_wakeup(p);
    3712             : }
    3713             : 
    3714             : static void
    3715        2060 : ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
    3716             :                  struct rq_flags *rf)
    3717             : {
    3718        2060 :         int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
    3719             : 
    3720        2060 :         lockdep_assert_rq_held(rq);
    3721             : 
    3722        2060 :         if (p->sched_contributes_to_load)
    3723        1153 :                 rq->nr_uninterruptible--;
    3724             : 
    3725             : #ifdef CONFIG_SMP
    3726             :         if (wake_flags & WF_MIGRATED)
    3727             :                 en_flags |= ENQUEUE_MIGRATED;
    3728             :         else
    3729             : #endif
    3730        2060 :         if (p->in_iowait) {
    3731           0 :                 delayacct_blkio_end(p);
    3732           0 :                 atomic_dec(&task_rq(p)->nr_iowait);
    3733             :         }
    3734             : 
    3735        2060 :         activate_task(rq, p, en_flags);
    3736        2060 :         check_preempt_curr(rq, p, wake_flags);
    3737             : 
    3738        2060 :         ttwu_do_wakeup(p);
    3739             : 
    3740             : #ifdef CONFIG_SMP
    3741             :         if (p->sched_class->task_woken) {
    3742             :                 /*
    3743             :                  * Our task @p is fully woken up and running; so it's safe to
    3744             :                  * drop the rq->lock, hereafter rq is only used for statistics.
    3745             :                  */
    3746             :                 rq_unpin_lock(rq, rf);
    3747             :                 p->sched_class->task_woken(rq, p);
    3748             :                 rq_repin_lock(rq, rf);
    3749             :         }
    3750             : 
    3751             :         if (rq->idle_stamp) {
    3752             :                 u64 delta = rq_clock(rq) - rq->idle_stamp;
    3753             :                 u64 max = 2*rq->max_idle_balance_cost;
    3754             : 
    3755             :                 update_avg(&rq->avg_idle, delta);
    3756             : 
    3757             :                 if (rq->avg_idle > max)
    3758             :                         rq->avg_idle = max;
    3759             : 
    3760             :                 rq->wake_stamp = jiffies;
    3761             :                 rq->wake_avg_idle = rq->avg_idle / 2;
    3762             : 
    3763             :                 rq->idle_stamp = 0;
    3764             :         }
    3765             : #endif
    3766        2060 : }
    3767             : 
    3768             : /*
    3769             :  * Consider @p being inside a wait loop:
    3770             :  *
    3771             :  *   for (;;) {
    3772             :  *      set_current_state(TASK_UNINTERRUPTIBLE);
    3773             :  *
    3774             :  *      if (CONDITION)
    3775             :  *         break;
    3776             :  *
    3777             :  *      schedule();
    3778             :  *   }
    3779             :  *   __set_current_state(TASK_RUNNING);
    3780             :  *
    3781             :  * between set_current_state() and schedule(). In this case @p is still
    3782             :  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
    3783             :  * an atomic manner.
    3784             :  *
    3785             :  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
    3786             :  * then schedule() must still happen and p->state can be changed to
    3787             :  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
    3788             :  * need to do a full wakeup with enqueue.
    3789             :  *
    3790             :  * Returns: %true when the wakeup is done,
    3791             :  *          %false otherwise.
    3792             :  */
    3793           0 : static int ttwu_runnable(struct task_struct *p, int wake_flags)
    3794             : {
    3795             :         struct rq_flags rf;
    3796             :         struct rq *rq;
    3797           0 :         int ret = 0;
    3798             : 
    3799           0 :         rq = __task_rq_lock(p, &rf);
    3800           0 :         if (task_on_rq_queued(p)) {
    3801           0 :                 if (!task_on_cpu(rq, p)) {
    3802             :                         /*
    3803             :                          * When on_rq && !on_cpu the task is preempted, see if
    3804             :                          * it should preempt the task that is current now.
    3805             :                          */
    3806           0 :                         update_rq_clock(rq);
    3807           0 :                         check_preempt_curr(rq, p, wake_flags);
    3808             :                 }
    3809           0 :                 ttwu_do_wakeup(p);
    3810           0 :                 ret = 1;
    3811             :         }
    3812           0 :         __task_rq_unlock(rq, &rf);
    3813             : 
    3814           0 :         return ret;
    3815             : }
    3816             : 
    3817             : #ifdef CONFIG_SMP
    3818             : void sched_ttwu_pending(void *arg)
    3819             : {
    3820             :         struct llist_node *llist = arg;
    3821             :         struct rq *rq = this_rq();
    3822             :         struct task_struct *p, *t;
    3823             :         struct rq_flags rf;
    3824             : 
    3825             :         if (!llist)
    3826             :                 return;
    3827             : 
    3828             :         rq_lock_irqsave(rq, &rf);
    3829             :         update_rq_clock(rq);
    3830             : 
    3831             :         llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
    3832             :                 if (WARN_ON_ONCE(p->on_cpu))
    3833             :                         smp_cond_load_acquire(&p->on_cpu, !VAL);
    3834             : 
    3835             :                 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
    3836             :                         set_task_cpu(p, cpu_of(rq));
    3837             : 
    3838             :                 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
    3839             :         }
    3840             : 
    3841             :         /*
    3842             :          * Must be after enqueueing at least once task such that
    3843             :          * idle_cpu() does not observe a false-negative -- if it does,
    3844             :          * it is possible for select_idle_siblings() to stack a number
    3845             :          * of tasks on this CPU during that window.
    3846             :          *
    3847             :          * It is ok to clear ttwu_pending when another task pending.
    3848             :          * We will receive IPI after local irq enabled and then enqueue it.
    3849             :          * Since now nr_running > 0, idle_cpu() will always get correct result.
    3850             :          */
    3851             :         WRITE_ONCE(rq->ttwu_pending, 0);
    3852             :         rq_unlock_irqrestore(rq, &rf);
    3853             : }
    3854             : 
    3855             : /*
    3856             :  * Prepare the scene for sending an IPI for a remote smp_call
    3857             :  *
    3858             :  * Returns true if the caller can proceed with sending the IPI.
    3859             :  * Returns false otherwise.
    3860             :  */
    3861             : bool call_function_single_prep_ipi(int cpu)
    3862             : {
    3863             :         if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
    3864             :                 trace_sched_wake_idle_without_ipi(cpu);
    3865             :                 return false;
    3866             :         }
    3867             : 
    3868             :         return true;
    3869             : }
    3870             : 
    3871             : /*
    3872             :  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
    3873             :  * necessary. The wakee CPU on receipt of the IPI will queue the task
    3874             :  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
    3875             :  * of the wakeup instead of the waker.
    3876             :  */
    3877             : static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    3878             : {
    3879             :         struct rq *rq = cpu_rq(cpu);
    3880             : 
    3881             :         p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
    3882             : 
    3883             :         WRITE_ONCE(rq->ttwu_pending, 1);
    3884             :         __smp_call_single_queue(cpu, &p->wake_entry.llist);
    3885             : }
    3886             : 
    3887             : void wake_up_if_idle(int cpu)
    3888             : {
    3889             :         struct rq *rq = cpu_rq(cpu);
    3890             :         struct rq_flags rf;
    3891             : 
    3892             :         rcu_read_lock();
    3893             : 
    3894             :         if (!is_idle_task(rcu_dereference(rq->curr)))
    3895             :                 goto out;
    3896             : 
    3897             :         rq_lock_irqsave(rq, &rf);
    3898             :         if (is_idle_task(rq->curr))
    3899             :                 resched_curr(rq);
    3900             :         /* Else CPU is not idle, do nothing here: */
    3901             :         rq_unlock_irqrestore(rq, &rf);
    3902             : 
    3903             : out:
    3904             :         rcu_read_unlock();
    3905             : }
    3906             : 
    3907             : bool cpus_share_cache(int this_cpu, int that_cpu)
    3908             : {
    3909             :         if (this_cpu == that_cpu)
    3910             :                 return true;
    3911             : 
    3912             :         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
    3913             : }
    3914             : 
    3915             : static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
    3916             : {
    3917             :         /*
    3918             :          * Do not complicate things with the async wake_list while the CPU is
    3919             :          * in hotplug state.
    3920             :          */
    3921             :         if (!cpu_active(cpu))
    3922             :                 return false;
    3923             : 
    3924             :         /* Ensure the task will still be allowed to run on the CPU. */
    3925             :         if (!cpumask_test_cpu(cpu, p->cpus_ptr))
    3926             :                 return false;
    3927             : 
    3928             :         /*
    3929             :          * If the CPU does not share cache, then queue the task on the
    3930             :          * remote rqs wakelist to avoid accessing remote data.
    3931             :          */
    3932             :         if (!cpus_share_cache(smp_processor_id(), cpu))
    3933             :                 return true;
    3934             : 
    3935             :         if (cpu == smp_processor_id())
    3936             :                 return false;
    3937             : 
    3938             :         /*
    3939             :          * If the wakee cpu is idle, or the task is descheduling and the
    3940             :          * only running task on the CPU, then use the wakelist to offload
    3941             :          * the task activation to the idle (or soon-to-be-idle) CPU as
    3942             :          * the current CPU is likely busy. nr_running is checked to
    3943             :          * avoid unnecessary task stacking.
    3944             :          *
    3945             :          * Note that we can only get here with (wakee) p->on_rq=0,
    3946             :          * p->on_cpu can be whatever, we've done the dequeue, so
    3947             :          * the wakee has been accounted out of ->nr_running.
    3948             :          */
    3949             :         if (!cpu_rq(cpu)->nr_running)
    3950             :                 return true;
    3951             : 
    3952             :         return false;
    3953             : }
    3954             : 
    3955             : static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    3956             : {
    3957             :         if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
    3958             :                 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
    3959             :                 __ttwu_queue_wakelist(p, cpu, wake_flags);
    3960             :                 return true;
    3961             :         }
    3962             : 
    3963             :         return false;
    3964             : }
    3965             : 
    3966             : #else /* !CONFIG_SMP */
    3967             : 
    3968             : static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
    3969             : {
    3970             :         return false;
    3971             : }
    3972             : 
    3973             : #endif /* CONFIG_SMP */
    3974             : 
    3975             : static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
    3976             : {
    3977        2060 :         struct rq *rq = cpu_rq(cpu);
    3978             :         struct rq_flags rf;
    3979             : 
    3980        2060 :         if (ttwu_queue_wakelist(p, cpu, wake_flags))
    3981             :                 return;
    3982             : 
    3983        2060 :         rq_lock(rq, &rf);
    3984        2060 :         update_rq_clock(rq);
    3985        2060 :         ttwu_do_activate(rq, p, wake_flags, &rf);
    3986        2060 :         rq_unlock(rq, &rf);
    3987             : }
    3988             : 
    3989             : /*
    3990             :  * Invoked from try_to_wake_up() to check whether the task can be woken up.
    3991             :  *
    3992             :  * The caller holds p::pi_lock if p != current or has preemption
    3993             :  * disabled when p == current.
    3994             :  *
    3995             :  * The rules of PREEMPT_RT saved_state:
    3996             :  *
    3997             :  *   The related locking code always holds p::pi_lock when updating
    3998             :  *   p::saved_state, which means the code is fully serialized in both cases.
    3999             :  *
    4000             :  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
    4001             :  *   bits set. This allows to distinguish all wakeup scenarios.
    4002             :  */
    4003             : static __always_inline
    4004             : bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
    4005             : {
    4006             :         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
    4007             :                 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
    4008             :                              state != TASK_RTLOCK_WAIT);
    4009             :         }
    4010             : 
    4011        2475 :         if (READ_ONCE(p->__state) & state) {
    4012        2060 :                 *success = 1;
    4013             :                 return true;
    4014             :         }
    4015             : 
    4016             : #ifdef CONFIG_PREEMPT_RT
    4017             :         /*
    4018             :          * Saved state preserves the task state across blocking on
    4019             :          * an RT lock.  If the state matches, set p::saved_state to
    4020             :          * TASK_RUNNING, but do not wake the task because it waits
    4021             :          * for a lock wakeup. Also indicate success because from
    4022             :          * the regular waker's point of view this has succeeded.
    4023             :          *
    4024             :          * After acquiring the lock the task will restore p::__state
    4025             :          * from p::saved_state which ensures that the regular
    4026             :          * wakeup is not lost. The restore will also set
    4027             :          * p::saved_state to TASK_RUNNING so any further tests will
    4028             :          * not result in false positives vs. @success
    4029             :          */
    4030             :         if (p->saved_state & state) {
    4031             :                 p->saved_state = TASK_RUNNING;
    4032             :                 *success = 1;
    4033             :         }
    4034             : #endif
    4035             :         return false;
    4036             : }
    4037             : 
    4038             : /*
    4039             :  * Notes on Program-Order guarantees on SMP systems.
    4040             :  *
    4041             :  *  MIGRATION
    4042             :  *
    4043             :  * The basic program-order guarantee on SMP systems is that when a task [t]
    4044             :  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
    4045             :  * execution on its new CPU [c1].
    4046             :  *
    4047             :  * For migration (of runnable tasks) this is provided by the following means:
    4048             :  *
    4049             :  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
    4050             :  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
    4051             :  *     rq(c1)->lock (if not at the same time, then in that order).
    4052             :  *  C) LOCK of the rq(c1)->lock scheduling in task
    4053             :  *
    4054             :  * Release/acquire chaining guarantees that B happens after A and C after B.
    4055             :  * Note: the CPU doing B need not be c0 or c1
    4056             :  *
    4057             :  * Example:
    4058             :  *
    4059             :  *   CPU0            CPU1            CPU2
    4060             :  *
    4061             :  *   LOCK rq(0)->lock
    4062             :  *   sched-out X
    4063             :  *   sched-in Y
    4064             :  *   UNLOCK rq(0)->lock
    4065             :  *
    4066             :  *                                   LOCK rq(0)->lock // orders against CPU0
    4067             :  *                                   dequeue X
    4068             :  *                                   UNLOCK rq(0)->lock
    4069             :  *
    4070             :  *                                   LOCK rq(1)->lock
    4071             :  *                                   enqueue X
    4072             :  *                                   UNLOCK rq(1)->lock
    4073             :  *
    4074             :  *                   LOCK rq(1)->lock // orders against CPU2
    4075             :  *                   sched-out Z
    4076             :  *                   sched-in X
    4077             :  *                   UNLOCK rq(1)->lock
    4078             :  *
    4079             :  *
    4080             :  *  BLOCKING -- aka. SLEEP + WAKEUP
    4081             :  *
    4082             :  * For blocking we (obviously) need to provide the same guarantee as for
    4083             :  * migration. However the means are completely different as there is no lock
    4084             :  * chain to provide order. Instead we do:
    4085             :  *
    4086             :  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
    4087             :  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
    4088             :  *
    4089             :  * Example:
    4090             :  *
    4091             :  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
    4092             :  *
    4093             :  *   LOCK rq(0)->lock LOCK X->pi_lock
    4094             :  *   dequeue X
    4095             :  *   sched-out X
    4096             :  *   smp_store_release(X->on_cpu, 0);
    4097             :  *
    4098             :  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
    4099             :  *                    X->state = WAKING
    4100             :  *                    set_task_cpu(X,2)
    4101             :  *
    4102             :  *                    LOCK rq(2)->lock
    4103             :  *                    enqueue X
    4104             :  *                    X->state = RUNNING
    4105             :  *                    UNLOCK rq(2)->lock
    4106             :  *
    4107             :  *                                          LOCK rq(2)->lock // orders against CPU1
    4108             :  *                                          sched-out Z
    4109             :  *                                          sched-in X
    4110             :  *                                          UNLOCK rq(2)->lock
    4111             :  *
    4112             :  *                    UNLOCK X->pi_lock
    4113             :  *   UNLOCK rq(0)->lock
    4114             :  *
    4115             :  *
    4116             :  * However, for wakeups there is a second guarantee we must provide, namely we
    4117             :  * must ensure that CONDITION=1 done by the caller can not be reordered with
    4118             :  * accesses to the task state; see try_to_wake_up() and set_current_state().
    4119             :  */
    4120             : 
    4121             : /**
    4122             :  * try_to_wake_up - wake up a thread
    4123             :  * @p: the thread to be awakened
    4124             :  * @state: the mask of task states that can be woken
    4125             :  * @wake_flags: wake modifier flags (WF_*)
    4126             :  *
    4127             :  * Conceptually does:
    4128             :  *
    4129             :  *   If (@state & @p->state) @p->state = TASK_RUNNING.
    4130             :  *
    4131             :  * If the task was not queued/runnable, also place it back on a runqueue.
    4132             :  *
    4133             :  * This function is atomic against schedule() which would dequeue the task.
    4134             :  *
    4135             :  * It issues a full memory barrier before accessing @p->state, see the comment
    4136             :  * with set_current_state().
    4137             :  *
    4138             :  * Uses p->pi_lock to serialize against concurrent wake-ups.
    4139             :  *
    4140             :  * Relies on p->pi_lock stabilizing:
    4141             :  *  - p->sched_class
    4142             :  *  - p->cpus_ptr
    4143             :  *  - p->sched_task_group
    4144             :  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
    4145             :  *
    4146             :  * Tries really hard to only take one task_rq(p)->lock for performance.
    4147             :  * Takes rq->lock in:
    4148             :  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
    4149             :  *  - ttwu_queue()       -- new rq, for enqueue of the task;
    4150             :  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
    4151             :  *
    4152             :  * As a consequence we race really badly with just about everything. See the
    4153             :  * many memory barriers and their comments for details.
    4154             :  *
    4155             :  * Return: %true if @p->state changes (an actual wakeup was done),
    4156             :  *         %false otherwise.
    4157             :  */
    4158             : static int
    4159        2475 : try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
    4160             : {
    4161             :         unsigned long flags;
    4162        2475 :         int cpu, success = 0;
    4163             : 
    4164        2475 :         preempt_disable();
    4165        2475 :         if (p == current) {
    4166             :                 /*
    4167             :                  * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
    4168             :                  * == smp_processor_id()'. Together this means we can special
    4169             :                  * case the whole 'p->on_rq && ttwu_runnable()' case below
    4170             :                  * without taking any locks.
    4171             :                  *
    4172             :                  * In particular:
    4173             :                  *  - we rely on Program-Order guarantees for all the ordering,
    4174             :                  *  - we're serialized against set_special_state() by virtue of
    4175             :                  *    it disabling IRQs (this allows not taking ->pi_lock).
    4176             :                  */
    4177          45 :                 if (!ttwu_state_match(p, state, &success))
    4178             :                         goto out;
    4179             : 
    4180           0 :                 trace_sched_waking(p);
    4181             :                 ttwu_do_wakeup(p);
    4182             :                 goto out;
    4183             :         }
    4184             : 
    4185             :         /*
    4186             :          * If we are going to wake up a thread waiting for CONDITION we
    4187             :          * need to ensure that CONDITION=1 done by the caller can not be
    4188             :          * reordered with p->state check below. This pairs with smp_store_mb()
    4189             :          * in set_current_state() that the waiting thread does.
    4190             :          */
    4191        2430 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    4192             :         smp_mb__after_spinlock();
    4193        2430 :         if (!ttwu_state_match(p, state, &success))
    4194             :                 goto unlock;
    4195             : 
    4196        2060 :         trace_sched_waking(p);
    4197             : 
    4198             :         /*
    4199             :          * Ensure we load p->on_rq _after_ p->state, otherwise it would
    4200             :          * be possible to, falsely, observe p->on_rq == 0 and get stuck
    4201             :          * in smp_cond_load_acquire() below.
    4202             :          *
    4203             :          * sched_ttwu_pending()                 try_to_wake_up()
    4204             :          *   STORE p->on_rq = 1                        LOAD p->state
    4205             :          *   UNLOCK rq->lock
    4206             :          *
    4207             :          * __schedule() (switch to task 'p')
    4208             :          *   LOCK rq->lock                     smp_rmb();
    4209             :          *   smp_mb__after_spinlock();
    4210             :          *   UNLOCK rq->lock
    4211             :          *
    4212             :          * [task p]
    4213             :          *   STORE p->state = UNINTERRUPTIBLE          LOAD p->on_rq
    4214             :          *
    4215             :          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
    4216             :          * __schedule().  See the comment for smp_mb__after_spinlock().
    4217             :          *
    4218             :          * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
    4219             :          */
    4220        2060 :         smp_rmb();
    4221        2060 :         if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
    4222             :                 goto unlock;
    4223             : 
    4224             : #ifdef CONFIG_SMP
    4225             :         /*
    4226             :          * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
    4227             :          * possible to, falsely, observe p->on_cpu == 0.
    4228             :          *
    4229             :          * One must be running (->on_cpu == 1) in order to remove oneself
    4230             :          * from the runqueue.
    4231             :          *
    4232             :          * __schedule() (switch to task 'p')    try_to_wake_up()
    4233             :          *   STORE p->on_cpu = 1               LOAD p->on_rq
    4234             :          *   UNLOCK rq->lock
    4235             :          *
    4236             :          * __schedule() (put 'p' to sleep)
    4237             :          *   LOCK rq->lock                     smp_rmb();
    4238             :          *   smp_mb__after_spinlock();
    4239             :          *   STORE p->on_rq = 0                        LOAD p->on_cpu
    4240             :          *
    4241             :          * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
    4242             :          * __schedule().  See the comment for smp_mb__after_spinlock().
    4243             :          *
    4244             :          * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
    4245             :          * schedule()'s deactivate_task() has 'happened' and p will no longer
    4246             :          * care about it's own p->state. See the comment in __schedule().
    4247             :          */
    4248             :         smp_acquire__after_ctrl_dep();
    4249             : 
    4250             :         /*
    4251             :          * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
    4252             :          * == 0), which means we need to do an enqueue, change p->state to
    4253             :          * TASK_WAKING such that we can unlock p->pi_lock before doing the
    4254             :          * enqueue, such as ttwu_queue_wakelist().
    4255             :          */
    4256             :         WRITE_ONCE(p->__state, TASK_WAKING);
    4257             : 
    4258             :         /*
    4259             :          * If the owning (remote) CPU is still in the middle of schedule() with
    4260             :          * this task as prev, considering queueing p on the remote CPUs wake_list
    4261             :          * which potentially sends an IPI instead of spinning on p->on_cpu to
    4262             :          * let the waker make forward progress. This is safe because IRQs are
    4263             :          * disabled and the IPI will deliver after on_cpu is cleared.
    4264             :          *
    4265             :          * Ensure we load task_cpu(p) after p->on_cpu:
    4266             :          *
    4267             :          * set_task_cpu(p, cpu);
    4268             :          *   STORE p->cpu = @cpu
    4269             :          * __schedule() (switch to task 'p')
    4270             :          *   LOCK rq->lock
    4271             :          *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
    4272             :          *   STORE p->on_cpu = 1             LOAD p->cpu
    4273             :          *
    4274             :          * to ensure we observe the correct CPU on which the task is currently
    4275             :          * scheduling.
    4276             :          */
    4277             :         if (smp_load_acquire(&p->on_cpu) &&
    4278             :             ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
    4279             :                 goto unlock;
    4280             : 
    4281             :         /*
    4282             :          * If the owning (remote) CPU is still in the middle of schedule() with
    4283             :          * this task as prev, wait until it's done referencing the task.
    4284             :          *
    4285             :          * Pairs with the smp_store_release() in finish_task().
    4286             :          *
    4287             :          * This ensures that tasks getting woken will be fully ordered against
    4288             :          * their previous state and preserve Program Order.
    4289             :          */
    4290             :         smp_cond_load_acquire(&p->on_cpu, !VAL);
    4291             : 
    4292             :         cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
    4293             :         if (task_cpu(p) != cpu) {
    4294             :                 if (p->in_iowait) {
    4295             :                         delayacct_blkio_end(p);
    4296             :                         atomic_dec(&task_rq(p)->nr_iowait);
    4297             :                 }
    4298             : 
    4299             :                 wake_flags |= WF_MIGRATED;
    4300             :                 psi_ttwu_dequeue(p);
    4301             :                 set_task_cpu(p, cpu);
    4302             :         }
    4303             : #else
    4304        2060 :         cpu = task_cpu(p);
    4305             : #endif /* CONFIG_SMP */
    4306             : 
    4307        2060 :         ttwu_queue(p, cpu, wake_flags);
    4308             : unlock:
    4309        4860 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    4310             : out:
    4311             :         if (success)
    4312             :                 ttwu_stat(p, task_cpu(p), wake_flags);
    4313        2475 :         preempt_enable();
    4314             : 
    4315        2475 :         return success;
    4316             : }
    4317             : 
    4318             : static bool __task_needs_rq_lock(struct task_struct *p)
    4319             : {
    4320           0 :         unsigned int state = READ_ONCE(p->__state);
    4321             : 
    4322             :         /*
    4323             :          * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
    4324             :          * the task is blocked. Make sure to check @state since ttwu() can drop
    4325             :          * locks at the end, see ttwu_queue_wakelist().
    4326             :          */
    4327           0 :         if (state == TASK_RUNNING || state == TASK_WAKING)
    4328             :                 return true;
    4329             : 
    4330             :         /*
    4331             :          * Ensure we load p->on_rq after p->__state, otherwise it would be
    4332             :          * possible to, falsely, observe p->on_rq == 0.
    4333             :          *
    4334             :          * See try_to_wake_up() for a longer comment.
    4335             :          */
    4336           0 :         smp_rmb();
    4337           0 :         if (p->on_rq)
    4338             :                 return true;
    4339             : 
    4340             : #ifdef CONFIG_SMP
    4341             :         /*
    4342             :          * Ensure the task has finished __schedule() and will not be referenced
    4343             :          * anymore. Again, see try_to_wake_up() for a longer comment.
    4344             :          */
    4345             :         smp_rmb();
    4346             :         smp_cond_load_acquire(&p->on_cpu, !VAL);
    4347             : #endif
    4348             : 
    4349             :         return false;
    4350             : }
    4351             : 
    4352             : /**
    4353             :  * task_call_func - Invoke a function on task in fixed state
    4354             :  * @p: Process for which the function is to be invoked, can be @current.
    4355             :  * @func: Function to invoke.
    4356             :  * @arg: Argument to function.
    4357             :  *
    4358             :  * Fix the task in it's current state by avoiding wakeups and or rq operations
    4359             :  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
    4360             :  * to work out what the state is, if required.  Given that @func can be invoked
    4361             :  * with a runqueue lock held, it had better be quite lightweight.
    4362             :  *
    4363             :  * Returns:
    4364             :  *   Whatever @func returns
    4365             :  */
    4366           0 : int task_call_func(struct task_struct *p, task_call_f func, void *arg)
    4367             : {
    4368           0 :         struct rq *rq = NULL;
    4369             :         struct rq_flags rf;
    4370             :         int ret;
    4371             : 
    4372           0 :         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
    4373             : 
    4374           0 :         if (__task_needs_rq_lock(p))
    4375             :                 rq = __task_rq_lock(p, &rf);
    4376             : 
    4377             :         /*
    4378             :          * At this point the task is pinned; either:
    4379             :          *  - blocked and we're holding off wakeups      (pi->lock)
    4380             :          *  - woken, and we're holding off enqueue       (rq->lock)
    4381             :          *  - queued, and we're holding off schedule     (rq->lock)
    4382             :          *  - running, and we're holding off de-schedule (rq->lock)
    4383             :          *
    4384             :          * The called function (@func) can use: task_curr(), p->on_rq and
    4385             :          * p->__state to differentiate between these states.
    4386             :          */
    4387           0 :         ret = func(p, arg);
    4388             : 
    4389           0 :         if (rq)
    4390           0 :                 rq_unlock(rq, &rf);
    4391             : 
    4392           0 :         raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
    4393           0 :         return ret;
    4394             : }
    4395             : 
    4396             : /**
    4397             :  * cpu_curr_snapshot - Return a snapshot of the currently running task
    4398             :  * @cpu: The CPU on which to snapshot the task.
    4399             :  *
    4400             :  * Returns the task_struct pointer of the task "currently" running on
    4401             :  * the specified CPU.  If the same task is running on that CPU throughout,
    4402             :  * the return value will be a pointer to that task's task_struct structure.
    4403             :  * If the CPU did any context switches even vaguely concurrently with the
    4404             :  * execution of this function, the return value will be a pointer to the
    4405             :  * task_struct structure of a randomly chosen task that was running on
    4406             :  * that CPU somewhere around the time that this function was executing.
    4407             :  *
    4408             :  * If the specified CPU was offline, the return value is whatever it
    4409             :  * is, perhaps a pointer to the task_struct structure of that CPU's idle
    4410             :  * task, but there is no guarantee.  Callers wishing a useful return
    4411             :  * value must take some action to ensure that the specified CPU remains
    4412             :  * online throughout.
    4413             :  *
    4414             :  * This function executes full memory barriers before and after fetching
    4415             :  * the pointer, which permits the caller to confine this function's fetch
    4416             :  * with respect to the caller's accesses to other shared variables.
    4417             :  */
    4418           0 : struct task_struct *cpu_curr_snapshot(int cpu)
    4419             : {
    4420             :         struct task_struct *t;
    4421             : 
    4422           0 :         smp_mb(); /* Pairing determined by caller's synchronization design. */
    4423           0 :         t = rcu_dereference(cpu_curr(cpu));
    4424           0 :         smp_mb(); /* Pairing determined by caller's synchronization design. */
    4425           0 :         return t;
    4426             : }
    4427             : 
    4428             : /**
    4429             :  * wake_up_process - Wake up a specific process
    4430             :  * @p: The process to be woken up.
    4431             :  *
    4432             :  * Attempt to wake up the nominated process and move it to the set of runnable
    4433             :  * processes.
    4434             :  *
    4435             :  * Return: 1 if the process was woken up, 0 if it was already running.
    4436             :  *
    4437             :  * This function executes a full memory barrier before accessing the task state.
    4438             :  */
    4439        2474 : int wake_up_process(struct task_struct *p)
    4440             : {
    4441        2474 :         return try_to_wake_up(p, TASK_NORMAL, 0);
    4442             : }
    4443             : EXPORT_SYMBOL(wake_up_process);
    4444             : 
    4445           1 : int wake_up_state(struct task_struct *p, unsigned int state)
    4446             : {
    4447           1 :         return try_to_wake_up(p, state, 0);
    4448             : }
    4449             : 
    4450             : /*
    4451             :  * Perform scheduler related setup for a newly forked process p.
    4452             :  * p is forked by current.
    4453             :  *
    4454             :  * __sched_fork() is basic setup used by init_idle() too:
    4455             :  */
    4456         383 : static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
    4457             : {
    4458         383 :         p->on_rq                     = 0;
    4459             : 
    4460         383 :         p->se.on_rq                  = 0;
    4461         383 :         p->se.exec_start             = 0;
    4462         383 :         p->se.sum_exec_runtime               = 0;
    4463         383 :         p->se.prev_sum_exec_runtime  = 0;
    4464         383 :         p->se.nr_migrations          = 0;
    4465         383 :         p->se.vruntime                       = 0;
    4466         766 :         INIT_LIST_HEAD(&p->se.group_node);
    4467             : 
    4468             : #ifdef CONFIG_FAIR_GROUP_SCHED
    4469             :         p->se.cfs_rq                 = NULL;
    4470             : #endif
    4471             : 
    4472             : #ifdef CONFIG_SCHEDSTATS
    4473             :         /* Even if schedstat is disabled, there should not be garbage */
    4474             :         memset(&p->stats, 0, sizeof(p->stats));
    4475             : #endif
    4476             : 
    4477         383 :         RB_CLEAR_NODE(&p->dl.rb_node);
    4478         383 :         init_dl_task_timer(&p->dl);
    4479         383 :         init_dl_inactive_task_timer(&p->dl);
    4480         383 :         __dl_clear_params(p);
    4481             : 
    4482         766 :         INIT_LIST_HEAD(&p->rt.run_list);
    4483         383 :         p->rt.timeout                = 0;
    4484         383 :         p->rt.time_slice     = sched_rr_timeslice;
    4485         383 :         p->rt.on_rq          = 0;
    4486         383 :         p->rt.on_list                = 0;
    4487             : 
    4488             : #ifdef CONFIG_PREEMPT_NOTIFIERS
    4489             :         INIT_HLIST_HEAD(&p->preempt_notifiers);
    4490             : #endif
    4491             : 
    4492             : #ifdef CONFIG_COMPACTION
    4493         383 :         p->capture_control = NULL;
    4494             : #endif
    4495         383 :         init_numa_balancing(clone_flags, p);
    4496             : #ifdef CONFIG_SMP
    4497             :         p->wake_entry.u_flags = CSD_TYPE_TTWU;
    4498             :         p->migration_pending = NULL;
    4499             : #endif
    4500         383 :         init_sched_mm_cid(p);
    4501         383 : }
    4502             : 
    4503             : DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
    4504             : 
    4505             : #ifdef CONFIG_NUMA_BALANCING
    4506             : 
    4507             : int sysctl_numa_balancing_mode;
    4508             : 
    4509             : static void __set_numabalancing_state(bool enabled)
    4510             : {
    4511             :         if (enabled)
    4512             :                 static_branch_enable(&sched_numa_balancing);
    4513             :         else
    4514             :                 static_branch_disable(&sched_numa_balancing);
    4515             : }
    4516             : 
    4517             : void set_numabalancing_state(bool enabled)
    4518             : {
    4519             :         if (enabled)
    4520             :                 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
    4521             :         else
    4522             :                 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
    4523             :         __set_numabalancing_state(enabled);
    4524             : }
    4525             : 
    4526             : #ifdef CONFIG_PROC_SYSCTL
    4527             : static void reset_memory_tiering(void)
    4528             : {
    4529             :         struct pglist_data *pgdat;
    4530             : 
    4531             :         for_each_online_pgdat(pgdat) {
    4532             :                 pgdat->nbp_threshold = 0;
    4533             :                 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
    4534             :                 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
    4535             :         }
    4536             : }
    4537             : 
    4538             : static int sysctl_numa_balancing(struct ctl_table *table, int write,
    4539             :                           void *buffer, size_t *lenp, loff_t *ppos)
    4540             : {
    4541             :         struct ctl_table t;
    4542             :         int err;
    4543             :         int state = sysctl_numa_balancing_mode;
    4544             : 
    4545             :         if (write && !capable(CAP_SYS_ADMIN))
    4546             :                 return -EPERM;
    4547             : 
    4548             :         t = *table;
    4549             :         t.data = &state;
    4550             :         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    4551             :         if (err < 0)
    4552             :                 return err;
    4553             :         if (write) {
    4554             :                 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    4555             :                     (state & NUMA_BALANCING_MEMORY_TIERING))
    4556             :                         reset_memory_tiering();
    4557             :                 sysctl_numa_balancing_mode = state;
    4558             :                 __set_numabalancing_state(state);
    4559             :         }
    4560             :         return err;
    4561             : }
    4562             : #endif
    4563             : #endif
    4564             : 
    4565             : #ifdef CONFIG_SCHEDSTATS
    4566             : 
    4567             : DEFINE_STATIC_KEY_FALSE(sched_schedstats);
    4568             : 
    4569             : static void set_schedstats(bool enabled)
    4570             : {
    4571             :         if (enabled)
    4572             :                 static_branch_enable(&sched_schedstats);
    4573             :         else
    4574             :                 static_branch_disable(&sched_schedstats);
    4575             : }
    4576             : 
    4577             : void force_schedstat_enabled(void)
    4578             : {
    4579             :         if (!schedstat_enabled()) {
    4580             :                 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
    4581             :                 static_branch_enable(&sched_schedstats);
    4582             :         }
    4583             : }
    4584             : 
    4585             : static int __init setup_schedstats(char *str)
    4586             : {
    4587             :         int ret = 0;
    4588             :         if (!str)
    4589             :                 goto out;
    4590             : 
    4591             :         if (!strcmp(str, "enable")) {
    4592             :                 set_schedstats(true);
    4593             :                 ret = 1;
    4594             :         } else if (!strcmp(str, "disable")) {
    4595             :                 set_schedstats(false);
    4596             :                 ret = 1;
    4597             :         }
    4598             : out:
    4599             :         if (!ret)
    4600             :                 pr_warn("Unable to parse schedstats=\n");
    4601             : 
    4602             :         return ret;
    4603             : }
    4604             : __setup("schedstats=", setup_schedstats);
    4605             : 
    4606             : #ifdef CONFIG_PROC_SYSCTL
    4607             : static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
    4608             :                 size_t *lenp, loff_t *ppos)
    4609             : {
    4610             :         struct ctl_table t;
    4611             :         int err;
    4612             :         int state = static_branch_likely(&sched_schedstats);
    4613             : 
    4614             :         if (write && !capable(CAP_SYS_ADMIN))
    4615             :                 return -EPERM;
    4616             : 
    4617             :         t = *table;
    4618             :         t.data = &state;
    4619             :         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
    4620             :         if (err < 0)
    4621             :                 return err;
    4622             :         if (write)
    4623             :                 set_schedstats(state);
    4624             :         return err;
    4625             : }
    4626             : #endif /* CONFIG_PROC_SYSCTL */
    4627             : #endif /* CONFIG_SCHEDSTATS */
    4628             : 
    4629             : #ifdef CONFIG_SYSCTL
    4630             : static struct ctl_table sched_core_sysctls[] = {
    4631             : #ifdef CONFIG_SCHEDSTATS
    4632             :         {
    4633             :                 .procname       = "sched_schedstats",
    4634             :                 .data           = NULL,
    4635             :                 .maxlen         = sizeof(unsigned int),
    4636             :                 .mode           = 0644,
    4637             :                 .proc_handler   = sysctl_schedstats,
    4638             :                 .extra1         = SYSCTL_ZERO,
    4639             :                 .extra2         = SYSCTL_ONE,
    4640             :         },
    4641             : #endif /* CONFIG_SCHEDSTATS */
    4642             : #ifdef CONFIG_UCLAMP_TASK
    4643             :         {
    4644             :                 .procname       = "sched_util_clamp_min",
    4645             :                 .data           = &sysctl_sched_uclamp_util_min,
    4646             :                 .maxlen         = sizeof(unsigned int),
    4647             :                 .mode           = 0644,
    4648             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4649             :         },
    4650             :         {
    4651             :                 .procname       = "sched_util_clamp_max",
    4652             :                 .data           = &sysctl_sched_uclamp_util_max,
    4653             :                 .maxlen         = sizeof(unsigned int),
    4654             :                 .mode           = 0644,
    4655             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4656             :         },
    4657             :         {
    4658             :                 .procname       = "sched_util_clamp_min_rt_default",
    4659             :                 .data           = &sysctl_sched_uclamp_util_min_rt_default,
    4660             :                 .maxlen         = sizeof(unsigned int),
    4661             :                 .mode           = 0644,
    4662             :                 .proc_handler   = sysctl_sched_uclamp_handler,
    4663             :         },
    4664             : #endif /* CONFIG_UCLAMP_TASK */
    4665             : #ifdef CONFIG_NUMA_BALANCING
    4666             :         {
    4667             :                 .procname       = "numa_balancing",
    4668             :                 .data           = NULL, /* filled in by handler */
    4669             :                 .maxlen         = sizeof(unsigned int),
    4670             :                 .mode           = 0644,
    4671             :                 .proc_handler   = sysctl_numa_balancing,
    4672             :                 .extra1         = SYSCTL_ZERO,
    4673             :                 .extra2         = SYSCTL_FOUR,
    4674             :         },
    4675             : #endif /* CONFIG_NUMA_BALANCING */
    4676             :         {}
    4677             : };
    4678           1 : static int __init sched_core_sysctl_init(void)
    4679             : {
    4680           1 :         register_sysctl_init("kernel", sched_core_sysctls);
    4681           1 :         return 0;
    4682             : }
    4683             : late_initcall(sched_core_sysctl_init);
    4684             : #endif /* CONFIG_SYSCTL */
    4685             : 
    4686             : /*
    4687             :  * fork()/clone()-time setup:
    4688             :  */
    4689         382 : int sched_fork(unsigned long clone_flags, struct task_struct *p)
    4690             : {
    4691         382 :         __sched_fork(clone_flags, p);
    4692             :         /*
    4693             :          * We mark the process as NEW here. This guarantees that
    4694             :          * nobody will actually run it, and a signal or other external
    4695             :          * event cannot wake it up and insert it on the runqueue either.
    4696             :          */
    4697         382 :         p->__state = TASK_NEW;
    4698             : 
    4699             :         /*
    4700             :          * Make sure we do not leak PI boosting priority to the child.
    4701             :          */
    4702         382 :         p->prio = current->normal_prio;
    4703             : 
    4704         382 :         uclamp_fork(p);
    4705             : 
    4706             :         /*
    4707             :          * Revert to default priority/policy on fork if requested.
    4708             :          */
    4709         382 :         if (unlikely(p->sched_reset_on_fork)) {
    4710           0 :                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    4711           0 :                         p->policy = SCHED_NORMAL;
    4712           0 :                         p->static_prio = NICE_TO_PRIO(0);
    4713           0 :                         p->rt_priority = 0;
    4714           0 :                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
    4715           0 :                         p->static_prio = NICE_TO_PRIO(0);
    4716             : 
    4717           0 :                 p->prio = p->normal_prio = p->static_prio;
    4718           0 :                 set_load_weight(p, false);
    4719             : 
    4720             :                 /*
    4721             :                  * We don't need the reset flag anymore after the fork. It has
    4722             :                  * fulfilled its duty:
    4723             :                  */
    4724           0 :                 p->sched_reset_on_fork = 0;
    4725             :         }
    4726             : 
    4727         764 :         if (dl_prio(p->prio))
    4728             :                 return -EAGAIN;
    4729         764 :         else if (rt_prio(p->prio))
    4730           0 :                 p->sched_class = &rt_sched_class;
    4731             :         else
    4732         382 :                 p->sched_class = &fair_sched_class;
    4733             : 
    4734         382 :         init_entity_runnable_average(&p->se);
    4735             : 
    4736             : 
    4737             : #ifdef CONFIG_SCHED_INFO
    4738             :         if (likely(sched_info_on()))
    4739             :                 memset(&p->sched_info, 0, sizeof(p->sched_info));
    4740             : #endif
    4741             : #if defined(CONFIG_SMP)
    4742             :         p->on_cpu = 0;
    4743             : #endif
    4744         382 :         init_task_preempt_count(p);
    4745             : #ifdef CONFIG_SMP
    4746             :         plist_node_init(&p->pushable_tasks, MAX_PRIO);
    4747             :         RB_CLEAR_NODE(&p->pushable_dl_tasks);
    4748             : #endif
    4749         382 :         return 0;
    4750             : }
    4751             : 
    4752         382 : void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
    4753             : {
    4754             :         unsigned long flags;
    4755             : 
    4756             :         /*
    4757             :          * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
    4758             :          * required yet, but lockdep gets upset if rules are violated.
    4759             :          */
    4760         382 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    4761             : #ifdef CONFIG_CGROUP_SCHED
    4762             :         if (1) {
    4763             :                 struct task_group *tg;
    4764             :                 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
    4765             :                                   struct task_group, css);
    4766             :                 tg = autogroup_task_group(p, tg);
    4767             :                 p->sched_task_group = tg;
    4768             :         }
    4769             : #endif
    4770         382 :         rseq_migrate(p);
    4771             :         /*
    4772             :          * We're setting the CPU for the first time, we don't migrate,
    4773             :          * so use __set_task_cpu().
    4774             :          */
    4775         382 :         __set_task_cpu(p, smp_processor_id());
    4776         382 :         if (p->sched_class->task_fork)
    4777         382 :                 p->sched_class->task_fork(p);
    4778         764 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    4779         382 : }
    4780             : 
    4781         382 : void sched_post_fork(struct task_struct *p)
    4782             : {
    4783         382 :         uclamp_post_fork(p);
    4784         382 : }
    4785             : 
    4786           3 : unsigned long to_ratio(u64 period, u64 runtime)
    4787             : {
    4788           3 :         if (runtime == RUNTIME_INF)
    4789             :                 return BW_UNIT;
    4790             : 
    4791             :         /*
    4792             :          * Doing this here saves a lot of checks in all
    4793             :          * the calling paths, and returning zero seems
    4794             :          * safe for them anyway.
    4795             :          */
    4796           3 :         if (period == 0)
    4797             :                 return 0;
    4798             : 
    4799           6 :         return div64_u64(runtime << BW_SHIFT, period);
    4800             : }
    4801             : 
    4802             : /*
    4803             :  * wake_up_new_task - wake up a newly created task for the first time.
    4804             :  *
    4805             :  * This function will do some initial scheduler statistics housekeeping
    4806             :  * that must be done for every newly created context, then puts the task
    4807             :  * on the runqueue and wakes it.
    4808             :  */
    4809         382 : void wake_up_new_task(struct task_struct *p)
    4810             : {
    4811             :         struct rq_flags rf;
    4812             :         struct rq *rq;
    4813             : 
    4814         382 :         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
    4815         382 :         WRITE_ONCE(p->__state, TASK_RUNNING);
    4816             : #ifdef CONFIG_SMP
    4817             :         /*
    4818             :          * Fork balancing, do it here and not earlier because:
    4819             :          *  - cpus_ptr can change in the fork path
    4820             :          *  - any previously selected CPU might disappear through hotplug
    4821             :          *
    4822             :          * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
    4823             :          * as we're not fully set-up yet.
    4824             :          */
    4825             :         p->recent_used_cpu = task_cpu(p);
    4826             :         rseq_migrate(p);
    4827             :         __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
    4828             : #endif
    4829         382 :         rq = __task_rq_lock(p, &rf);
    4830         382 :         update_rq_clock(rq);
    4831         382 :         post_init_entity_util_avg(p);
    4832             : 
    4833         382 :         activate_task(rq, p, ENQUEUE_NOCLOCK);
    4834         382 :         trace_sched_wakeup_new(p);
    4835         382 :         check_preempt_curr(rq, p, WF_FORK);
    4836             : #ifdef CONFIG_SMP
    4837             :         if (p->sched_class->task_woken) {
    4838             :                 /*
    4839             :                  * Nothing relies on rq->lock after this, so it's fine to
    4840             :                  * drop it.
    4841             :                  */
    4842             :                 rq_unpin_lock(rq, &rf);
    4843             :                 p->sched_class->task_woken(rq, p);
    4844             :                 rq_repin_lock(rq, &rf);
    4845             :         }
    4846             : #endif
    4847         764 :         task_rq_unlock(rq, p, &rf);
    4848         382 : }
    4849             : 
    4850             : #ifdef CONFIG_PREEMPT_NOTIFIERS
    4851             : 
    4852             : static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
    4853             : 
    4854             : void preempt_notifier_inc(void)
    4855             : {
    4856             :         static_branch_inc(&preempt_notifier_key);
    4857             : }
    4858             : EXPORT_SYMBOL_GPL(preempt_notifier_inc);
    4859             : 
    4860             : void preempt_notifier_dec(void)
    4861             : {
    4862             :         static_branch_dec(&preempt_notifier_key);
    4863             : }
    4864             : EXPORT_SYMBOL_GPL(preempt_notifier_dec);
    4865             : 
    4866             : /**
    4867             :  * preempt_notifier_register - tell me when current is being preempted & rescheduled
    4868             :  * @notifier: notifier struct to register
    4869             :  */
    4870             : void preempt_notifier_register(struct preempt_notifier *notifier)
    4871             : {
    4872             :         if (!static_branch_unlikely(&preempt_notifier_key))
    4873             :                 WARN(1, "registering preempt_notifier while notifiers disabled\n");
    4874             : 
    4875             :         hlist_add_head(&notifier->link, &current->preempt_notifiers);
    4876             : }
    4877             : EXPORT_SYMBOL_GPL(preempt_notifier_register);
    4878             : 
    4879             : /**
    4880             :  * preempt_notifier_unregister - no longer interested in preemption notifications
    4881             :  * @notifier: notifier struct to unregister
    4882             :  *
    4883             :  * This is *not* safe to call from within a preemption notifier.
    4884             :  */
    4885             : void preempt_notifier_unregister(struct preempt_notifier *notifier)
    4886             : {
    4887             :         hlist_del(&notifier->link);
    4888             : }
    4889             : EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
    4890             : 
    4891             : static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4892             : {
    4893             :         struct preempt_notifier *notifier;
    4894             : 
    4895             :         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    4896             :                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
    4897             : }
    4898             : 
    4899             : static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4900             : {
    4901             :         if (static_branch_unlikely(&preempt_notifier_key))
    4902             :                 __fire_sched_in_preempt_notifiers(curr);
    4903             : }
    4904             : 
    4905             : static void
    4906             : __fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4907             :                                    struct task_struct *next)
    4908             : {
    4909             :         struct preempt_notifier *notifier;
    4910             : 
    4911             :         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
    4912             :                 notifier->ops->sched_out(notifier, next);
    4913             : }
    4914             : 
    4915             : static __always_inline void
    4916             : fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4917             :                                  struct task_struct *next)
    4918             : {
    4919             :         if (static_branch_unlikely(&preempt_notifier_key))
    4920             :                 __fire_sched_out_preempt_notifiers(curr, next);
    4921             : }
    4922             : 
    4923             : #else /* !CONFIG_PREEMPT_NOTIFIERS */
    4924             : 
    4925             : static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
    4926             : {
    4927             : }
    4928             : 
    4929             : static inline void
    4930             : fire_sched_out_preempt_notifiers(struct task_struct *curr,
    4931             :                                  struct task_struct *next)
    4932             : {
    4933             : }
    4934             : 
    4935             : #endif /* CONFIG_PREEMPT_NOTIFIERS */
    4936             : 
    4937             : static inline void prepare_task(struct task_struct *next)
    4938             : {
    4939             : #ifdef CONFIG_SMP
    4940             :         /*
    4941             :          * Claim the task as running, we do this before switching to it
    4942             :          * such that any running task will have this set.
    4943             :          *
    4944             :          * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
    4945             :          * its ordering comment.
    4946             :          */
    4947             :         WRITE_ONCE(next->on_cpu, 1);
    4948             : #endif
    4949             : }
    4950             : 
    4951             : static inline void finish_task(struct task_struct *prev)
    4952             : {
    4953             : #ifdef CONFIG_SMP
    4954             :         /*
    4955             :          * This must be the very last reference to @prev from this CPU. After
    4956             :          * p->on_cpu is cleared, the task can be moved to a different CPU. We
    4957             :          * must ensure this doesn't happen until the switch is completely
    4958             :          * finished.
    4959             :          *
    4960             :          * In particular, the load of prev->state in finish_task_switch() must
    4961             :          * happen before this.
    4962             :          *
    4963             :          * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
    4964             :          */
    4965             :         smp_store_release(&prev->on_cpu, 0);
    4966             : #endif
    4967             : }
    4968             : 
    4969             : #ifdef CONFIG_SMP
    4970             : 
    4971             : static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
    4972             : {
    4973             :         void (*func)(struct rq *rq);
    4974             :         struct balance_callback *next;
    4975             : 
    4976             :         lockdep_assert_rq_held(rq);
    4977             : 
    4978             :         while (head) {
    4979             :                 func = (void (*)(struct rq *))head->func;
    4980             :                 next = head->next;
    4981             :                 head->next = NULL;
    4982             :                 head = next;
    4983             : 
    4984             :                 func(rq);
    4985             :         }
    4986             : }
    4987             : 
    4988             : static void balance_push(struct rq *rq);
    4989             : 
    4990             : /*
    4991             :  * balance_push_callback is a right abuse of the callback interface and plays
    4992             :  * by significantly different rules.
    4993             :  *
    4994             :  * Where the normal balance_callback's purpose is to be ran in the same context
    4995             :  * that queued it (only later, when it's safe to drop rq->lock again),
    4996             :  * balance_push_callback is specifically targeted at __schedule().
    4997             :  *
    4998             :  * This abuse is tolerated because it places all the unlikely/odd cases behind
    4999             :  * a single test, namely: rq->balance_callback == NULL.
    5000             :  */
    5001             : struct balance_callback balance_push_callback = {
    5002             :         .next = NULL,
    5003             :         .func = balance_push,
    5004             : };
    5005             : 
    5006             : static inline struct balance_callback *
    5007             : __splice_balance_callbacks(struct rq *rq, bool split)
    5008             : {
    5009             :         struct balance_callback *head = rq->balance_callback;
    5010             : 
    5011             :         if (likely(!head))
    5012             :                 return NULL;
    5013             : 
    5014             :         lockdep_assert_rq_held(rq);
    5015             :         /*
    5016             :          * Must not take balance_push_callback off the list when
    5017             :          * splice_balance_callbacks() and balance_callbacks() are not
    5018             :          * in the same rq->lock section.
    5019             :          *
    5020             :          * In that case it would be possible for __schedule() to interleave
    5021             :          * and observe the list empty.
    5022             :          */
    5023             :         if (split && head == &balance_push_callback)
    5024             :                 head = NULL;
    5025             :         else
    5026             :                 rq->balance_callback = NULL;
    5027             : 
    5028             :         return head;
    5029             : }
    5030             : 
    5031             : static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
    5032             : {
    5033             :         return __splice_balance_callbacks(rq, true);
    5034             : }
    5035             : 
    5036             : static void __balance_callbacks(struct rq *rq)
    5037             : {
    5038             :         do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
    5039             : }
    5040             : 
    5041             : static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
    5042             : {
    5043             :         unsigned long flags;
    5044             : 
    5045             :         if (unlikely(head)) {
    5046             :                 raw_spin_rq_lock_irqsave(rq, flags);
    5047             :                 do_balance_callbacks(rq, head);
    5048             :                 raw_spin_rq_unlock_irqrestore(rq, flags);
    5049             :         }
    5050             : }
    5051             : 
    5052             : #else
    5053             : 
    5054             : static inline void __balance_callbacks(struct rq *rq)
    5055             : {
    5056             : }
    5057             : 
    5058             : static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
    5059             : {
    5060             :         return NULL;
    5061             : }
    5062             : 
    5063             : static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
    5064             : {
    5065             : }
    5066             : 
    5067             : #endif
    5068             : 
    5069             : static inline void
    5070             : prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
    5071             : {
    5072             :         /*
    5073             :          * Since the runqueue lock will be released by the next
    5074             :          * task (which is an invalid locking op but in the case
    5075             :          * of the scheduler it's an obvious special-case), so we
    5076             :          * do an early lockdep release here:
    5077             :          */
    5078             :         rq_unpin_lock(rq, rf);
    5079             :         spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
    5080             : #ifdef CONFIG_DEBUG_SPINLOCK
    5081             :         /* this is a valid case when another task releases the spinlock */
    5082             :         rq_lockp(rq)->owner = next;
    5083             : #endif
    5084             : }
    5085             : 
    5086             : static inline void finish_lock_switch(struct rq *rq)
    5087             : {
    5088             :         /*
    5089             :          * If we are tracking spinlock dependencies then we have to
    5090             :          * fix up the runqueue lock - which gets 'carried over' from
    5091             :          * prev into current:
    5092             :          */
    5093             :         spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
    5094        2513 :         __balance_callbacks(rq);
    5095        2513 :         raw_spin_rq_unlock_irq(rq);
    5096             : }
    5097             : 
    5098             : /*
    5099             :  * NOP if the arch has not defined these:
    5100             :  */
    5101             : 
    5102             : #ifndef prepare_arch_switch
    5103             : # define prepare_arch_switch(next)      do { } while (0)
    5104             : #endif
    5105             : 
    5106             : #ifndef finish_arch_post_lock_switch
    5107             : # define finish_arch_post_lock_switch() do { } while (0)
    5108             : #endif
    5109             : 
    5110             : static inline void kmap_local_sched_out(void)
    5111             : {
    5112             : #ifdef CONFIG_KMAP_LOCAL
    5113             :         if (unlikely(current->kmap_ctrl.idx))
    5114             :                 __kmap_local_sched_out();
    5115             : #endif
    5116             : }
    5117             : 
    5118             : static inline void kmap_local_sched_in(void)
    5119             : {
    5120             : #ifdef CONFIG_KMAP_LOCAL
    5121             :         if (unlikely(current->kmap_ctrl.idx))
    5122             :                 __kmap_local_sched_in();
    5123             : #endif
    5124             : }
    5125             : 
    5126             : /**
    5127             :  * prepare_task_switch - prepare to switch tasks
    5128             :  * @rq: the runqueue preparing to switch
    5129             :  * @prev: the current task that is being switched out
    5130             :  * @next: the task we are going to switch to.
    5131             :  *
    5132             :  * This is called with the rq lock held and interrupts off. It must
    5133             :  * be paired with a subsequent finish_task_switch after the context
    5134             :  * switch.
    5135             :  *
    5136             :  * prepare_task_switch sets up locking and calls architecture specific
    5137             :  * hooks.
    5138             :  */
    5139             : static inline void
    5140             : prepare_task_switch(struct rq *rq, struct task_struct *prev,
    5141             :                     struct task_struct *next)
    5142             : {
    5143             :         kcov_prepare_switch(prev);
    5144             :         sched_info_switch(rq, prev, next);
    5145             :         perf_event_task_sched_out(prev, next);
    5146             :         rseq_preempt(prev);
    5147             :         fire_sched_out_preempt_notifiers(prev, next);
    5148             :         kmap_local_sched_out();
    5149             :         prepare_task(next);
    5150             :         prepare_arch_switch(next);
    5151             : }
    5152             : 
    5153             : /**
    5154             :  * finish_task_switch - clean up after a task-switch
    5155             :  * @prev: the thread we just switched away from.
    5156             :  *
    5157             :  * finish_task_switch must be called after the context switch, paired
    5158             :  * with a prepare_task_switch call before the context switch.
    5159             :  * finish_task_switch will reconcile locking set up by prepare_task_switch,
    5160             :  * and do any other architecture-specific cleanup actions.
    5161             :  *
    5162             :  * Note that we may have delayed dropping an mm in context_switch(). If
    5163             :  * so, we finish that here outside of the runqueue lock. (Doing it
    5164             :  * with the lock held can cause deadlocks; see schedule() for
    5165             :  * details.)
    5166             :  *
    5167             :  * The context switch have flipped the stack from under us and restored the
    5168             :  * local variables which were saved when this task called schedule() in the
    5169             :  * past. prev == current is still correct but we need to recalculate this_rq
    5170             :  * because prev may have moved to another CPU.
    5171             :  */
    5172        2513 : static struct rq *finish_task_switch(struct task_struct *prev)
    5173             :         __releases(rq->lock)
    5174             : {
    5175        2513 :         struct rq *rq = this_rq();
    5176        2513 :         struct mm_struct *mm = rq->prev_mm;
    5177             :         unsigned int prev_state;
    5178             : 
    5179             :         /*
    5180             :          * The previous task will have left us with a preempt_count of 2
    5181             :          * because it left us after:
    5182             :          *
    5183             :          *      schedule()
    5184             :          *        preempt_disable();                    // 1
    5185             :          *        __schedule()
    5186             :          *          raw_spin_lock_irq(&rq->lock) // 2
    5187             :          *
    5188             :          * Also, see FORK_PREEMPT_COUNT.
    5189             :          */
    5190        2513 :         if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
    5191             :                       "corrupted preempt_count: %s/%d/0x%x\n",
    5192             :                       current->comm, current->pid, preempt_count()))
    5193             :                 preempt_count_set(FORK_PREEMPT_COUNT);
    5194             : 
    5195        2513 :         rq->prev_mm = NULL;
    5196             : 
    5197             :         /*
    5198             :          * A task struct has one reference for the use as "current".
    5199             :          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
    5200             :          * schedule one last time. The schedule call will never return, and
    5201             :          * the scheduled task must drop that reference.
    5202             :          *
    5203             :          * We must observe prev->state before clearing prev->on_cpu (in
    5204             :          * finish_task), otherwise a concurrent wakeup can get prev
    5205             :          * running on another CPU and we could rave with its RUNNING -> DEAD
    5206             :          * transition, resulting in a double drop.
    5207             :          */
    5208        2513 :         prev_state = READ_ONCE(prev->__state);
    5209        2513 :         vtime_task_switch(prev);
    5210        2513 :         perf_event_task_sched_in(prev, current);
    5211        2513 :         finish_task(prev);
    5212             :         tick_nohz_task_switch();
    5213        2513 :         finish_lock_switch(rq);
    5214             :         finish_arch_post_lock_switch();
    5215        2513 :         kcov_finish_switch(current);
    5216             :         /*
    5217             :          * kmap_local_sched_out() is invoked with rq::lock held and
    5218             :          * interrupts disabled. There is no requirement for that, but the
    5219             :          * sched out code does not have an interrupt enabled section.
    5220             :          * Restoring the maps on sched in does not require interrupts being
    5221             :          * disabled either.
    5222             :          */
    5223             :         kmap_local_sched_in();
    5224             : 
    5225        2513 :         fire_sched_in_preempt_notifiers(current);
    5226             :         /*
    5227             :          * When switching through a kernel thread, the loop in
    5228             :          * membarrier_{private,global}_expedited() may have observed that
    5229             :          * kernel thread and not issued an IPI. It is therefore possible to
    5230             :          * schedule between user->kernel->user threads without passing though
    5231             :          * switch_mm(). Membarrier requires a barrier after storing to
    5232             :          * rq->curr, before returning to userspace, so provide them here:
    5233             :          *
    5234             :          * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
    5235             :          *   provided by mmdrop_lazy_tlb(),
    5236             :          * - a sync_core for SYNC_CORE.
    5237             :          */
    5238        2513 :         if (mm) {
    5239           0 :                 membarrier_mm_sync_core_before_usermode(mm);
    5240             :                 mmdrop_lazy_tlb_sched(mm);
    5241             :         }
    5242             : 
    5243        2513 :         if (unlikely(prev_state == TASK_DEAD)) {
    5244         367 :                 if (prev->sched_class->task_dead)
    5245           0 :                         prev->sched_class->task_dead(prev);
    5246             : 
    5247             :                 /* Task is done with its stack. */
    5248         367 :                 put_task_stack(prev);
    5249             : 
    5250         367 :                 put_task_struct_rcu_user(prev);
    5251             :         }
    5252             : 
    5253        2513 :         return rq;
    5254             : }
    5255             : 
    5256             : /**
    5257             :  * schedule_tail - first thing a freshly forked thread must call.
    5258             :  * @prev: the thread we just switched away from.
    5259             :  */
    5260         382 : asmlinkage __visible void schedule_tail(struct task_struct *prev)
    5261             :         __releases(rq->lock)
    5262             : {
    5263             :         /*
    5264             :          * New tasks start with FORK_PREEMPT_COUNT, see there and
    5265             :          * finish_task_switch() for details.
    5266             :          *
    5267             :          * finish_task_switch() will drop rq->lock() and lower preempt_count
    5268             :          * and the preempt_enable() will end up enabling preemption (on
    5269             :          * PREEMPT_COUNT kernels).
    5270             :          */
    5271             : 
    5272         382 :         finish_task_switch(prev);
    5273         382 :         preempt_enable();
    5274             : 
    5275         382 :         if (current->set_child_tid)
    5276           0 :                 put_user(task_pid_vnr(current), current->set_child_tid);
    5277             : 
    5278         382 :         calculate_sigpending();
    5279         382 : }
    5280             : 
    5281             : /*
    5282             :  * context_switch - switch to the new MM and the new thread's register state.
    5283             :  */
    5284             : static __always_inline struct rq *
    5285             : context_switch(struct rq *rq, struct task_struct *prev,
    5286             :                struct task_struct *next, struct rq_flags *rf)
    5287             : {
    5288        2513 :         prepare_task_switch(rq, prev, next);
    5289             : 
    5290             :         /*
    5291             :          * For paravirt, this is coupled with an exit in switch_to to
    5292             :          * combine the page table reload and the switch backend into
    5293             :          * one hypercall.
    5294             :          */
    5295             :         arch_start_context_switch(prev);
    5296             : 
    5297             :         /*
    5298             :          * kernel -> kernel   lazy + transfer active
    5299             :          *   user -> kernel   lazy + mmgrab_lazy_tlb() active
    5300             :          *
    5301             :          * kernel ->   user   switch + mmdrop_lazy_tlb() active
    5302             :          *   user ->   user   switch
    5303             :          *
    5304             :          * switch_mm_cid() needs to be updated if the barriers provided
    5305             :          * by context_switch() are modified.
    5306             :          */
    5307        2513 :         if (!next->mm) {                                // to kernel
    5308        2513 :                 enter_lazy_tlb(prev->active_mm, next);
    5309             : 
    5310        2513 :                 next->active_mm = prev->active_mm;
    5311        2513 :                 if (prev->mm)                           // from user
    5312           0 :                         mmgrab_lazy_tlb(prev->active_mm);
    5313             :                 else
    5314        2513 :                         prev->active_mm = NULL;
    5315             :         } else {                                        // to user
    5316           0 :                 membarrier_switch_mm(rq, prev->active_mm, next->mm);
    5317             :                 /*
    5318             :                  * sys_membarrier() requires an smp_mb() between setting
    5319             :                  * rq->curr / membarrier_switch_mm() and returning to userspace.
    5320             :                  *
    5321             :                  * The below provides this either through switch_mm(), or in
    5322             :                  * case 'prev->active_mm == next->mm' through
    5323             :                  * finish_task_switch()'s mmdrop().
    5324             :                  */
    5325           0 :                 switch_mm_irqs_off(prev->active_mm, next->mm, next);
    5326           0 :                 lru_gen_use_mm(next->mm);
    5327             : 
    5328           0 :                 if (!prev->mm) {                        // from kernel
    5329             :                         /* will mmdrop_lazy_tlb() in finish_task_switch(). */
    5330           0 :                         rq->prev_mm = prev->active_mm;
    5331           0 :                         prev->active_mm = NULL;
    5332             :                 }
    5333             :         }
    5334             : 
    5335             :         /* switch_mm_cid() requires the memory barriers above. */
    5336        2513 :         switch_mm_cid(rq, prev, next);
    5337             : 
    5338        2513 :         rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
    5339             : 
    5340        2513 :         prepare_lock_switch(rq, next, rf);
    5341             : 
    5342             :         /* Here we just switch the register state and the stack. */
    5343        2513 :         switch_to(prev, next, prev);
    5344        2131 :         barrier();
    5345             : 
    5346        2131 :         return finish_task_switch(prev);
    5347             : }
    5348             : 
    5349             : /*
    5350             :  * nr_running and nr_context_switches:
    5351             :  *
    5352             :  * externally visible scheduler statistics: current number of runnable
    5353             :  * threads, total number of context switches performed since bootup.
    5354             :  */
    5355           0 : unsigned int nr_running(void)
    5356             : {
    5357           0 :         unsigned int i, sum = 0;
    5358             : 
    5359           0 :         for_each_online_cpu(i)
    5360           0 :                 sum += cpu_rq(i)->nr_running;
    5361             : 
    5362           0 :         return sum;
    5363             : }
    5364             : 
    5365             : /*
    5366             :  * Check if only the current task is running on the CPU.
    5367             :  *
    5368             :  * Caution: this function does not check that the caller has disabled
    5369             :  * preemption, thus the result might have a time-of-check-to-time-of-use
    5370             :  * race.  The caller is responsible to use it correctly, for example:
    5371             :  *
    5372             :  * - from a non-preemptible section (of course)
    5373             :  *
    5374             :  * - from a thread that is bound to a single CPU
    5375             :  *
    5376             :  * - in a loop with very short iterations (e.g. a polling loop)
    5377             :  */
    5378           0 : bool single_task_running(void)
    5379             : {
    5380           0 :         return raw_rq()->nr_running == 1;
    5381             : }
    5382             : EXPORT_SYMBOL(single_task_running);
    5383             : 
    5384           0 : unsigned long long nr_context_switches_cpu(int cpu)
    5385             : {
    5386           0 :         return cpu_rq(cpu)->nr_switches;
    5387             : }
    5388             : 
    5389           0 : unsigned long long nr_context_switches(void)
    5390             : {
    5391             :         int i;
    5392           0 :         unsigned long long sum = 0;
    5393             : 
    5394           0 :         for_each_possible_cpu(i)
    5395           0 :                 sum += cpu_rq(i)->nr_switches;
    5396             : 
    5397           0 :         return sum;
    5398             : }
    5399             : 
    5400             : /*
    5401             :  * Consumers of these two interfaces, like for example the cpuidle menu
    5402             :  * governor, are using nonsensical data. Preferring shallow idle state selection
    5403             :  * for a CPU that has IO-wait which might not even end up running the task when
    5404             :  * it does become runnable.
    5405             :  */
    5406             : 
    5407           0 : unsigned int nr_iowait_cpu(int cpu)
    5408             : {
    5409           0 :         return atomic_read(&cpu_rq(cpu)->nr_iowait);
    5410             : }
    5411             : 
    5412             : /*
    5413             :  * IO-wait accounting, and how it's mostly bollocks (on SMP).
    5414             :  *
    5415             :  * The idea behind IO-wait account is to account the idle time that we could
    5416             :  * have spend running if it were not for IO. That is, if we were to improve the
    5417             :  * storage performance, we'd have a proportional reduction in IO-wait time.
    5418             :  *
    5419             :  * This all works nicely on UP, where, when a task blocks on IO, we account
    5420             :  * idle time as IO-wait, because if the storage were faster, it could've been
    5421             :  * running and we'd not be idle.
    5422             :  *
    5423             :  * This has been extended to SMP, by doing the same for each CPU. This however
    5424             :  * is broken.
    5425             :  *
    5426             :  * Imagine for instance the case where two tasks block on one CPU, only the one
    5427             :  * CPU will have IO-wait accounted, while the other has regular idle. Even
    5428             :  * though, if the storage were faster, both could've ran at the same time,
    5429             :  * utilising both CPUs.
    5430             :  *
    5431             :  * This means, that when looking globally, the current IO-wait accounting on
    5432             :  * SMP is a lower bound, by reason of under accounting.
    5433             :  *
    5434             :  * Worse, since the numbers are provided per CPU, they are sometimes
    5435             :  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
    5436             :  * associated with any one particular CPU, it can wake to another CPU than it
    5437             :  * blocked on. This means the per CPU IO-wait number is meaningless.
    5438             :  *
    5439             :  * Task CPU affinities can make all that even more 'interesting'.
    5440             :  */
    5441             : 
    5442           0 : unsigned int nr_iowait(void)
    5443             : {
    5444           0 :         unsigned int i, sum = 0;
    5445             : 
    5446           0 :         for_each_possible_cpu(i)
    5447           0 :                 sum += nr_iowait_cpu(i);
    5448             : 
    5449           0 :         return sum;
    5450             : }
    5451             : 
    5452             : #ifdef CONFIG_SMP
    5453             : 
    5454             : /*
    5455             :  * sched_exec - execve() is a valuable balancing opportunity, because at
    5456             :  * this point the task has the smallest effective memory and cache footprint.
    5457             :  */
    5458             : void sched_exec(void)
    5459             : {
    5460             :         struct task_struct *p = current;
    5461             :         unsigned long flags;
    5462             :         int dest_cpu;
    5463             : 
    5464             :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    5465             :         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
    5466             :         if (dest_cpu == smp_processor_id())
    5467             :                 goto unlock;
    5468             : 
    5469             :         if (likely(cpu_active(dest_cpu))) {
    5470             :                 struct migration_arg arg = { p, dest_cpu };
    5471             : 
    5472             :                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    5473             :                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
    5474             :                 return;
    5475             :         }
    5476             : unlock:
    5477             :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    5478             : }
    5479             : 
    5480             : #endif
    5481             : 
    5482             : DEFINE_PER_CPU(struct kernel_stat, kstat);
    5483             : DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
    5484             : 
    5485             : EXPORT_PER_CPU_SYMBOL(kstat);
    5486             : EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
    5487             : 
    5488             : /*
    5489             :  * The function fair_sched_class.update_curr accesses the struct curr
    5490             :  * and its field curr->exec_start; when called from task_sched_runtime(),
    5491             :  * we observe a high rate of cache misses in practice.
    5492             :  * Prefetching this data results in improved performance.
    5493             :  */
    5494             : static inline void prefetch_curr_exec_start(struct task_struct *p)
    5495             : {
    5496             : #ifdef CONFIG_FAIR_GROUP_SCHED
    5497             :         struct sched_entity *curr = (&p->se)->cfs_rq->curr;
    5498             : #else
    5499           0 :         struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
    5500             : #endif
    5501           0 :         prefetch(curr);
    5502           0 :         prefetch(&curr->exec_start);
    5503             : }
    5504             : 
    5505             : /*
    5506             :  * Return accounted runtime for the task.
    5507             :  * In case the task is currently running, return the runtime plus current's
    5508             :  * pending runtime that have not been accounted yet.
    5509             :  */
    5510           0 : unsigned long long task_sched_runtime(struct task_struct *p)
    5511             : {
    5512             :         struct rq_flags rf;
    5513             :         struct rq *rq;
    5514             :         u64 ns;
    5515             : 
    5516             : #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
    5517             :         /*
    5518             :          * 64-bit doesn't need locks to atomically read a 64-bit value.
    5519             :          * So we have a optimization chance when the task's delta_exec is 0.
    5520             :          * Reading ->on_cpu is racy, but this is ok.
    5521             :          *
    5522             :          * If we race with it leaving CPU, we'll take a lock. So we're correct.
    5523             :          * If we race with it entering CPU, unaccounted time is 0. This is
    5524             :          * indistinguishable from the read occurring a few cycles earlier.
    5525             :          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
    5526             :          * been accounted, so we're correct here as well.
    5527             :          */
    5528             :         if (!p->on_cpu || !task_on_rq_queued(p))
    5529             :                 return p->se.sum_exec_runtime;
    5530             : #endif
    5531             : 
    5532           0 :         rq = task_rq_lock(p, &rf);
    5533             :         /*
    5534             :          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
    5535             :          * project cycles that may never be accounted to this
    5536             :          * thread, breaking clock_gettime().
    5537             :          */
    5538           0 :         if (task_current(rq, p) && task_on_rq_queued(p)) {
    5539           0 :                 prefetch_curr_exec_start(p);
    5540           0 :                 update_rq_clock(rq);
    5541           0 :                 p->sched_class->update_curr(rq);
    5542             :         }
    5543           0 :         ns = p->se.sum_exec_runtime;
    5544           0 :         task_rq_unlock(rq, p, &rf);
    5545             : 
    5546           0 :         return ns;
    5547             : }
    5548             : 
    5549             : #ifdef CONFIG_SCHED_DEBUG
    5550             : static u64 cpu_resched_latency(struct rq *rq)
    5551             : {
    5552             :         int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
    5553             :         u64 resched_latency, now = rq_clock(rq);
    5554             :         static bool warned_once;
    5555             : 
    5556             :         if (sysctl_resched_latency_warn_once && warned_once)
    5557             :                 return 0;
    5558             : 
    5559             :         if (!need_resched() || !latency_warn_ms)
    5560             :                 return 0;
    5561             : 
    5562             :         if (system_state == SYSTEM_BOOTING)
    5563             :                 return 0;
    5564             : 
    5565             :         if (!rq->last_seen_need_resched_ns) {
    5566             :                 rq->last_seen_need_resched_ns = now;
    5567             :                 rq->ticks_without_resched = 0;
    5568             :                 return 0;
    5569             :         }
    5570             : 
    5571             :         rq->ticks_without_resched++;
    5572             :         resched_latency = now - rq->last_seen_need_resched_ns;
    5573             :         if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
    5574             :                 return 0;
    5575             : 
    5576             :         warned_once = true;
    5577             : 
    5578             :         return resched_latency;
    5579             : }
    5580             : 
    5581             : static int __init setup_resched_latency_warn_ms(char *str)
    5582             : {
    5583             :         long val;
    5584             : 
    5585             :         if ((kstrtol(str, 0, &val))) {
    5586             :                 pr_warn("Unable to set resched_latency_warn_ms\n");
    5587             :                 return 1;
    5588             :         }
    5589             : 
    5590             :         sysctl_resched_latency_warn_ms = val;
    5591             :         return 1;
    5592             : }
    5593             : __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
    5594             : #else
    5595             : static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
    5596             : #endif /* CONFIG_SCHED_DEBUG */
    5597             : 
    5598             : /*
    5599             :  * This function gets called by the timer code, with HZ frequency.
    5600             :  * We call it with interrupts disabled.
    5601             :  */
    5602        2943 : void scheduler_tick(void)
    5603             : {
    5604        2943 :         int cpu = smp_processor_id();
    5605        2943 :         struct rq *rq = cpu_rq(cpu);
    5606        2943 :         struct task_struct *curr = rq->curr;
    5607             :         struct rq_flags rf;
    5608             :         unsigned long thermal_pressure;
    5609             :         u64 resched_latency;
    5610             : 
    5611        2943 :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5612             :                 arch_scale_freq_tick();
    5613             : 
    5614             :         sched_clock_tick();
    5615             : 
    5616        2943 :         rq_lock(rq, &rf);
    5617             : 
    5618        2943 :         update_rq_clock(rq);
    5619        2943 :         thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
    5620        2943 :         update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
    5621        2943 :         curr->sched_class->task_tick(rq, curr, 0);
    5622             :         if (sched_feat(LATENCY_WARN))
    5623             :                 resched_latency = cpu_resched_latency(rq);
    5624        2943 :         calc_global_load_tick(rq);
    5625        2943 :         sched_core_tick(rq);
    5626        2943 :         task_tick_mm_cid(rq, curr);
    5627             : 
    5628        2943 :         rq_unlock(rq, &rf);
    5629             : 
    5630             :         if (sched_feat(LATENCY_WARN) && resched_latency)
    5631             :                 resched_latency_warn(cpu, resched_latency);
    5632             : 
    5633             :         perf_event_task_tick();
    5634             : 
    5635             : #ifdef CONFIG_SMP
    5636             :         rq->idle_balance = idle_cpu(cpu);
    5637             :         trigger_load_balance(rq);
    5638             : #endif
    5639        2943 : }
    5640             : 
    5641             : #ifdef CONFIG_NO_HZ_FULL
    5642             : 
    5643             : struct tick_work {
    5644             :         int                     cpu;
    5645             :         atomic_t                state;
    5646             :         struct delayed_work     work;
    5647             : };
    5648             : /* Values for ->state, see diagram below. */
    5649             : #define TICK_SCHED_REMOTE_OFFLINE       0
    5650             : #define TICK_SCHED_REMOTE_OFFLINING     1
    5651             : #define TICK_SCHED_REMOTE_RUNNING       2
    5652             : 
    5653             : /*
    5654             :  * State diagram for ->state:
    5655             :  *
    5656             :  *
    5657             :  *          TICK_SCHED_REMOTE_OFFLINE
    5658             :  *                    |   ^
    5659             :  *                    |   |
    5660             :  *                    |   | sched_tick_remote()
    5661             :  *                    |   |
    5662             :  *                    |   |
    5663             :  *                    +--TICK_SCHED_REMOTE_OFFLINING
    5664             :  *                    |   ^
    5665             :  *                    |   |
    5666             :  * sched_tick_start() |   | sched_tick_stop()
    5667             :  *                    |   |
    5668             :  *                    V   |
    5669             :  *          TICK_SCHED_REMOTE_RUNNING
    5670             :  *
    5671             :  *
    5672             :  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
    5673             :  * and sched_tick_start() are happy to leave the state in RUNNING.
    5674             :  */
    5675             : 
    5676             : static struct tick_work __percpu *tick_work_cpu;
    5677             : 
    5678             : static void sched_tick_remote(struct work_struct *work)
    5679             : {
    5680             :         struct delayed_work *dwork = to_delayed_work(work);
    5681             :         struct tick_work *twork = container_of(dwork, struct tick_work, work);
    5682             :         int cpu = twork->cpu;
    5683             :         struct rq *rq = cpu_rq(cpu);
    5684             :         struct task_struct *curr;
    5685             :         struct rq_flags rf;
    5686             :         u64 delta;
    5687             :         int os;
    5688             : 
    5689             :         /*
    5690             :          * Handle the tick only if it appears the remote CPU is running in full
    5691             :          * dynticks mode. The check is racy by nature, but missing a tick or
    5692             :          * having one too much is no big deal because the scheduler tick updates
    5693             :          * statistics and checks timeslices in a time-independent way, regardless
    5694             :          * of when exactly it is running.
    5695             :          */
    5696             :         if (!tick_nohz_tick_stopped_cpu(cpu))
    5697             :                 goto out_requeue;
    5698             : 
    5699             :         rq_lock_irq(rq, &rf);
    5700             :         curr = rq->curr;
    5701             :         if (cpu_is_offline(cpu))
    5702             :                 goto out_unlock;
    5703             : 
    5704             :         update_rq_clock(rq);
    5705             : 
    5706             :         if (!is_idle_task(curr)) {
    5707             :                 /*
    5708             :                  * Make sure the next tick runs within a reasonable
    5709             :                  * amount of time.
    5710             :                  */
    5711             :                 delta = rq_clock_task(rq) - curr->se.exec_start;
    5712             :                 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
    5713             :         }
    5714             :         curr->sched_class->task_tick(rq, curr, 0);
    5715             : 
    5716             :         calc_load_nohz_remote(rq);
    5717             : out_unlock:
    5718             :         rq_unlock_irq(rq, &rf);
    5719             : out_requeue:
    5720             : 
    5721             :         /*
    5722             :          * Run the remote tick once per second (1Hz). This arbitrary
    5723             :          * frequency is large enough to avoid overload but short enough
    5724             :          * to keep scheduler internal stats reasonably up to date.  But
    5725             :          * first update state to reflect hotplug activity if required.
    5726             :          */
    5727             :         os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
    5728             :         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
    5729             :         if (os == TICK_SCHED_REMOTE_RUNNING)
    5730             :                 queue_delayed_work(system_unbound_wq, dwork, HZ);
    5731             : }
    5732             : 
    5733             : static void sched_tick_start(int cpu)
    5734             : {
    5735             :         int os;
    5736             :         struct tick_work *twork;
    5737             : 
    5738             :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5739             :                 return;
    5740             : 
    5741             :         WARN_ON_ONCE(!tick_work_cpu);
    5742             : 
    5743             :         twork = per_cpu_ptr(tick_work_cpu, cpu);
    5744             :         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
    5745             :         WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
    5746             :         if (os == TICK_SCHED_REMOTE_OFFLINE) {
    5747             :                 twork->cpu = cpu;
    5748             :                 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
    5749             :                 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
    5750             :         }
    5751             : }
    5752             : 
    5753             : #ifdef CONFIG_HOTPLUG_CPU
    5754             : static void sched_tick_stop(int cpu)
    5755             : {
    5756             :         struct tick_work *twork;
    5757             :         int os;
    5758             : 
    5759             :         if (housekeeping_cpu(cpu, HK_TYPE_TICK))
    5760             :                 return;
    5761             : 
    5762             :         WARN_ON_ONCE(!tick_work_cpu);
    5763             : 
    5764             :         twork = per_cpu_ptr(tick_work_cpu, cpu);
    5765             :         /* There cannot be competing actions, but don't rely on stop-machine. */
    5766             :         os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
    5767             :         WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
    5768             :         /* Don't cancel, as this would mess up the state machine. */
    5769             : }
    5770             : #endif /* CONFIG_HOTPLUG_CPU */
    5771             : 
    5772             : int __init sched_tick_offload_init(void)
    5773             : {
    5774             :         tick_work_cpu = alloc_percpu(struct tick_work);
    5775             :         BUG_ON(!tick_work_cpu);
    5776             :         return 0;
    5777             : }
    5778             : 
    5779             : #else /* !CONFIG_NO_HZ_FULL */
    5780             : static inline void sched_tick_start(int cpu) { }
    5781             : static inline void sched_tick_stop(int cpu) { }
    5782             : #endif
    5783             : 
    5784             : #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
    5785             :                                 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
    5786             : /*
    5787             :  * If the value passed in is equal to the current preempt count
    5788             :  * then we just disabled preemption. Start timing the latency.
    5789             :  */
    5790             : static inline void preempt_latency_start(int val)
    5791             : {
    5792             :         if (preempt_count() == val) {
    5793             :                 unsigned long ip = get_lock_parent_ip();
    5794             : #ifdef CONFIG_DEBUG_PREEMPT
    5795             :                 current->preempt_disable_ip = ip;
    5796             : #endif
    5797             :                 trace_preempt_off(CALLER_ADDR0, ip);
    5798             :         }
    5799             : }
    5800             : 
    5801             : void preempt_count_add(int val)
    5802             : {
    5803             : #ifdef CONFIG_DEBUG_PREEMPT
    5804             :         /*
    5805             :          * Underflow?
    5806             :          */
    5807             :         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
    5808             :                 return;
    5809             : #endif
    5810             :         __preempt_count_add(val);
    5811             : #ifdef CONFIG_DEBUG_PREEMPT
    5812             :         /*
    5813             :          * Spinlock count overflowing soon?
    5814             :          */
    5815             :         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
    5816             :                                 PREEMPT_MASK - 10);
    5817             : #endif
    5818             :         preempt_latency_start(val);
    5819             : }
    5820             : EXPORT_SYMBOL(preempt_count_add);
    5821             : NOKPROBE_SYMBOL(preempt_count_add);
    5822             : 
    5823             : /*
    5824             :  * If the value passed in equals to the current preempt count
    5825             :  * then we just enabled preemption. Stop timing the latency.
    5826             :  */
    5827             : static inline void preempt_latency_stop(int val)
    5828             : {
    5829             :         if (preempt_count() == val)
    5830             :                 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
    5831             : }
    5832             : 
    5833             : void preempt_count_sub(int val)
    5834             : {
    5835             : #ifdef CONFIG_DEBUG_PREEMPT
    5836             :         /*
    5837             :          * Underflow?
    5838             :          */
    5839             :         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
    5840             :                 return;
    5841             :         /*
    5842             :          * Is the spinlock portion underflowing?
    5843             :          */
    5844             :         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
    5845             :                         !(preempt_count() & PREEMPT_MASK)))
    5846             :                 return;
    5847             : #endif
    5848             : 
    5849             :         preempt_latency_stop(val);
    5850             :         __preempt_count_sub(val);
    5851             : }
    5852             : EXPORT_SYMBOL(preempt_count_sub);
    5853             : NOKPROBE_SYMBOL(preempt_count_sub);
    5854             : 
    5855             : #else
    5856             : static inline void preempt_latency_start(int val) { }
    5857             : static inline void preempt_latency_stop(int val) { }
    5858             : #endif
    5859             : 
    5860             : static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
    5861             : {
    5862             : #ifdef CONFIG_DEBUG_PREEMPT
    5863             :         return p->preempt_disable_ip;
    5864             : #else
    5865             :         return 0;
    5866             : #endif
    5867             : }
    5868             : 
    5869             : /*
    5870             :  * Print scheduling while atomic bug:
    5871             :  */
    5872           0 : static noinline void __schedule_bug(struct task_struct *prev)
    5873             : {
    5874             :         /* Save this before calling printk(), since that will clobber it */
    5875           0 :         unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
    5876             : 
    5877           0 :         if (oops_in_progress)
    5878             :                 return;
    5879             : 
    5880           0 :         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
    5881             :                 prev->comm, prev->pid, preempt_count());
    5882             : 
    5883           0 :         debug_show_held_locks(prev);
    5884             :         print_modules();
    5885           0 :         if (irqs_disabled())
    5886             :                 print_irqtrace_events(prev);
    5887             :         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
    5888             :             && in_atomic_preempt_off()) {
    5889             :                 pr_err("Preemption disabled at:");
    5890             :                 print_ip_sym(KERN_ERR, preempt_disable_ip);
    5891             :         }
    5892           0 :         check_panic_on_warn("scheduling while atomic");
    5893             : 
    5894           0 :         dump_stack();
    5895           0 :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
    5896             : }
    5897             : 
    5898             : /*
    5899             :  * Various schedule()-time debugging checks and statistics:
    5900             :  */
    5901             : static inline void schedule_debug(struct task_struct *prev, bool preempt)
    5902             : {
    5903             : #ifdef CONFIG_SCHED_STACK_END_CHECK
    5904             :         if (task_stack_end_corrupted(prev))
    5905             :                 panic("corrupted stack end detected inside scheduler\n");
    5906             : 
    5907             :         if (task_scs_end_corrupted(prev))
    5908             :                 panic("corrupted shadow stack detected inside scheduler\n");
    5909             : #endif
    5910             : 
    5911             : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    5912             :         if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
    5913             :                 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
    5914             :                         prev->comm, prev->pid, prev->non_block_count);
    5915             :                 dump_stack();
    5916             :                 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
    5917             :         }
    5918             : #endif
    5919             : 
    5920        2513 :         if (unlikely(in_atomic_preempt_off())) {
    5921           0 :                 __schedule_bug(prev);
    5922             :                 preempt_count_set(PREEMPT_DISABLED);
    5923             :         }
    5924             :         rcu_sleep_check();
    5925             :         SCHED_WARN_ON(ct_state() == CONTEXT_USER);
    5926             : 
    5927        2513 :         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
    5928             : 
    5929             :         schedstat_inc(this_rq()->sched_count);
    5930             : }
    5931             : 
    5932             : static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
    5933             :                                   struct rq_flags *rf)
    5934             : {
    5935             : #ifdef CONFIG_SMP
    5936             :         const struct sched_class *class;
    5937             :         /*
    5938             :          * We must do the balancing pass before put_prev_task(), such
    5939             :          * that when we release the rq->lock the task is in the same
    5940             :          * state as before we took rq->lock.
    5941             :          *
    5942             :          * We can terminate the balance pass as soon as we know there is
    5943             :          * a runnable task of @class priority or higher.
    5944             :          */
    5945             :         for_class_range(class, prev->sched_class, &idle_sched_class) {
    5946             :                 if (class->balance(rq, prev, rf))
    5947             :                         break;
    5948             :         }
    5949             : #endif
    5950             : 
    5951           0 :         put_prev_task(rq, prev);
    5952             : }
    5953             : 
    5954             : /*
    5955             :  * Pick up the highest-prio task:
    5956             :  */
    5957             : static inline struct task_struct *
    5958        2513 : __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    5959             : {
    5960             :         const struct sched_class *class;
    5961             :         struct task_struct *p;
    5962             : 
    5963             :         /*
    5964             :          * Optimization: we know that if all tasks are in the fair class we can
    5965             :          * call that function directly, but only if the @prev task wasn't of a
    5966             :          * higher scheduling class, because otherwise those lose the
    5967             :          * opportunity to pull in more work from other CPUs.
    5968             :          */
    5969        2513 :         if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
    5970             :                    rq->nr_running == rq->cfs.h_nr_running)) {
    5971             : 
    5972        2513 :                 p = pick_next_task_fair(rq, prev, rf);
    5973        2513 :                 if (unlikely(p == RETRY_TASK))
    5974             :                         goto restart;
    5975             : 
    5976             :                 /* Assume the next prioritized class is idle_sched_class */
    5977        2513 :                 if (!p) {
    5978           1 :                         put_prev_task(rq, prev);
    5979           1 :                         p = pick_next_task_idle(rq);
    5980             :                 }
    5981             : 
    5982             :                 return p;
    5983             :         }
    5984             : 
    5985             : restart:
    5986           0 :         put_prev_task_balance(rq, prev, rf);
    5987             : 
    5988           0 :         for_each_class(class) {
    5989           0 :                 p = class->pick_next_task(rq);
    5990           0 :                 if (p)
    5991             :                         return p;
    5992             :         }
    5993             : 
    5994           0 :         BUG(); /* The idle class should always have a runnable task. */
    5995             : }
    5996             : 
    5997             : #ifdef CONFIG_SCHED_CORE
    5998             : static inline bool is_task_rq_idle(struct task_struct *t)
    5999             : {
    6000             :         return (task_rq(t)->idle == t);
    6001             : }
    6002             : 
    6003             : static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
    6004             : {
    6005             :         return is_task_rq_idle(a) || (a->core_cookie == cookie);
    6006             : }
    6007             : 
    6008             : static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
    6009             : {
    6010             :         if (is_task_rq_idle(a) || is_task_rq_idle(b))
    6011             :                 return true;
    6012             : 
    6013             :         return a->core_cookie == b->core_cookie;
    6014             : }
    6015             : 
    6016             : static inline struct task_struct *pick_task(struct rq *rq)
    6017             : {
    6018             :         const struct sched_class *class;
    6019             :         struct task_struct *p;
    6020             : 
    6021             :         for_each_class(class) {
    6022             :                 p = class->pick_task(rq);
    6023             :                 if (p)
    6024             :                         return p;
    6025             :         }
    6026             : 
    6027             :         BUG(); /* The idle class should always have a runnable task. */
    6028             : }
    6029             : 
    6030             : extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
    6031             : 
    6032             : static void queue_core_balance(struct rq *rq);
    6033             : 
    6034             : static struct task_struct *
    6035             : pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6036             : {
    6037             :         struct task_struct *next, *p, *max = NULL;
    6038             :         const struct cpumask *smt_mask;
    6039             :         bool fi_before = false;
    6040             :         bool core_clock_updated = (rq == rq->core);
    6041             :         unsigned long cookie;
    6042             :         int i, cpu, occ = 0;
    6043             :         struct rq *rq_i;
    6044             :         bool need_sync;
    6045             : 
    6046             :         if (!sched_core_enabled(rq))
    6047             :                 return __pick_next_task(rq, prev, rf);
    6048             : 
    6049             :         cpu = cpu_of(rq);
    6050             : 
    6051             :         /* Stopper task is switching into idle, no need core-wide selection. */
    6052             :         if (cpu_is_offline(cpu)) {
    6053             :                 /*
    6054             :                  * Reset core_pick so that we don't enter the fastpath when
    6055             :                  * coming online. core_pick would already be migrated to
    6056             :                  * another cpu during offline.
    6057             :                  */
    6058             :                 rq->core_pick = NULL;
    6059             :                 return __pick_next_task(rq, prev, rf);
    6060             :         }
    6061             : 
    6062             :         /*
    6063             :          * If there were no {en,de}queues since we picked (IOW, the task
    6064             :          * pointers are all still valid), and we haven't scheduled the last
    6065             :          * pick yet, do so now.
    6066             :          *
    6067             :          * rq->core_pick can be NULL if no selection was made for a CPU because
    6068             :          * it was either offline or went offline during a sibling's core-wide
    6069             :          * selection. In this case, do a core-wide selection.
    6070             :          */
    6071             :         if (rq->core->core_pick_seq == rq->core->core_task_seq &&
    6072             :             rq->core->core_pick_seq != rq->core_sched_seq &&
    6073             :             rq->core_pick) {
    6074             :                 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
    6075             : 
    6076             :                 next = rq->core_pick;
    6077             :                 if (next != prev) {
    6078             :                         put_prev_task(rq, prev);
    6079             :                         set_next_task(rq, next);
    6080             :                 }
    6081             : 
    6082             :                 rq->core_pick = NULL;
    6083             :                 goto out;
    6084             :         }
    6085             : 
    6086             :         put_prev_task_balance(rq, prev, rf);
    6087             : 
    6088             :         smt_mask = cpu_smt_mask(cpu);
    6089             :         need_sync = !!rq->core->core_cookie;
    6090             : 
    6091             :         /* reset state */
    6092             :         rq->core->core_cookie = 0UL;
    6093             :         if (rq->core->core_forceidle_count) {
    6094             :                 if (!core_clock_updated) {
    6095             :                         update_rq_clock(rq->core);
    6096             :                         core_clock_updated = true;
    6097             :                 }
    6098             :                 sched_core_account_forceidle(rq);
    6099             :                 /* reset after accounting force idle */
    6100             :                 rq->core->core_forceidle_start = 0;
    6101             :                 rq->core->core_forceidle_count = 0;
    6102             :                 rq->core->core_forceidle_occupation = 0;
    6103             :                 need_sync = true;
    6104             :                 fi_before = true;
    6105             :         }
    6106             : 
    6107             :         /*
    6108             :          * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
    6109             :          *
    6110             :          * @task_seq guards the task state ({en,de}queues)
    6111             :          * @pick_seq is the @task_seq we did a selection on
    6112             :          * @sched_seq is the @pick_seq we scheduled
    6113             :          *
    6114             :          * However, preemptions can cause multiple picks on the same task set.
    6115             :          * 'Fix' this by also increasing @task_seq for every pick.
    6116             :          */
    6117             :         rq->core->core_task_seq++;
    6118             : 
    6119             :         /*
    6120             :          * Optimize for common case where this CPU has no cookies
    6121             :          * and there are no cookied tasks running on siblings.
    6122             :          */
    6123             :         if (!need_sync) {
    6124             :                 next = pick_task(rq);
    6125             :                 if (!next->core_cookie) {
    6126             :                         rq->core_pick = NULL;
    6127             :                         /*
    6128             :                          * For robustness, update the min_vruntime_fi for
    6129             :                          * unconstrained picks as well.
    6130             :                          */
    6131             :                         WARN_ON_ONCE(fi_before);
    6132             :                         task_vruntime_update(rq, next, false);
    6133             :                         goto out_set_next;
    6134             :                 }
    6135             :         }
    6136             : 
    6137             :         /*
    6138             :          * For each thread: do the regular task pick and find the max prio task
    6139             :          * amongst them.
    6140             :          *
    6141             :          * Tie-break prio towards the current CPU
    6142             :          */
    6143             :         for_each_cpu_wrap(i, smt_mask, cpu) {
    6144             :                 rq_i = cpu_rq(i);
    6145             : 
    6146             :                 /*
    6147             :                  * Current cpu always has its clock updated on entrance to
    6148             :                  * pick_next_task(). If the current cpu is not the core,
    6149             :                  * the core may also have been updated above.
    6150             :                  */
    6151             :                 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
    6152             :                         update_rq_clock(rq_i);
    6153             : 
    6154             :                 p = rq_i->core_pick = pick_task(rq_i);
    6155             :                 if (!max || prio_less(max, p, fi_before))
    6156             :                         max = p;
    6157             :         }
    6158             : 
    6159             :         cookie = rq->core->core_cookie = max->core_cookie;
    6160             : 
    6161             :         /*
    6162             :          * For each thread: try and find a runnable task that matches @max or
    6163             :          * force idle.
    6164             :          */
    6165             :         for_each_cpu(i, smt_mask) {
    6166             :                 rq_i = cpu_rq(i);
    6167             :                 p = rq_i->core_pick;
    6168             : 
    6169             :                 if (!cookie_equals(p, cookie)) {
    6170             :                         p = NULL;
    6171             :                         if (cookie)
    6172             :                                 p = sched_core_find(rq_i, cookie);
    6173             :                         if (!p)
    6174             :                                 p = idle_sched_class.pick_task(rq_i);
    6175             :                 }
    6176             : 
    6177             :                 rq_i->core_pick = p;
    6178             : 
    6179             :                 if (p == rq_i->idle) {
    6180             :                         if (rq_i->nr_running) {
    6181             :                                 rq->core->core_forceidle_count++;
    6182             :                                 if (!fi_before)
    6183             :                                         rq->core->core_forceidle_seq++;
    6184             :                         }
    6185             :                 } else {
    6186             :                         occ++;
    6187             :                 }
    6188             :         }
    6189             : 
    6190             :         if (schedstat_enabled() && rq->core->core_forceidle_count) {
    6191             :                 rq->core->core_forceidle_start = rq_clock(rq->core);
    6192             :                 rq->core->core_forceidle_occupation = occ;
    6193             :         }
    6194             : 
    6195             :         rq->core->core_pick_seq = rq->core->core_task_seq;
    6196             :         next = rq->core_pick;
    6197             :         rq->core_sched_seq = rq->core->core_pick_seq;
    6198             : 
    6199             :         /* Something should have been selected for current CPU */
    6200             :         WARN_ON_ONCE(!next);
    6201             : 
    6202             :         /*
    6203             :          * Reschedule siblings
    6204             :          *
    6205             :          * NOTE: L1TF -- at this point we're no longer running the old task and
    6206             :          * sending an IPI (below) ensures the sibling will no longer be running
    6207             :          * their task. This ensures there is no inter-sibling overlap between
    6208             :          * non-matching user state.
    6209             :          */
    6210             :         for_each_cpu(i, smt_mask) {
    6211             :                 rq_i = cpu_rq(i);
    6212             : 
    6213             :                 /*
    6214             :                  * An online sibling might have gone offline before a task
    6215             :                  * could be picked for it, or it might be offline but later
    6216             :                  * happen to come online, but its too late and nothing was
    6217             :                  * picked for it.  That's Ok - it will pick tasks for itself,
    6218             :                  * so ignore it.
    6219             :                  */
    6220             :                 if (!rq_i->core_pick)
    6221             :                         continue;
    6222             : 
    6223             :                 /*
    6224             :                  * Update for new !FI->FI transitions, or if continuing to be in !FI:
    6225             :                  * fi_before     fi      update?
    6226             :                  *  0            0       1
    6227             :                  *  0            1       1
    6228             :                  *  1            0       1
    6229             :                  *  1            1       0
    6230             :                  */
    6231             :                 if (!(fi_before && rq->core->core_forceidle_count))
    6232             :                         task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
    6233             : 
    6234             :                 rq_i->core_pick->core_occupation = occ;
    6235             : 
    6236             :                 if (i == cpu) {
    6237             :                         rq_i->core_pick = NULL;
    6238             :                         continue;
    6239             :                 }
    6240             : 
    6241             :                 /* Did we break L1TF mitigation requirements? */
    6242             :                 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
    6243             : 
    6244             :                 if (rq_i->curr == rq_i->core_pick) {
    6245             :                         rq_i->core_pick = NULL;
    6246             :                         continue;
    6247             :                 }
    6248             : 
    6249             :                 resched_curr(rq_i);
    6250             :         }
    6251             : 
    6252             : out_set_next:
    6253             :         set_next_task(rq, next);
    6254             : out:
    6255             :         if (rq->core->core_forceidle_count && next == rq->idle)
    6256             :                 queue_core_balance(rq);
    6257             : 
    6258             :         return next;
    6259             : }
    6260             : 
    6261             : static bool try_steal_cookie(int this, int that)
    6262             : {
    6263             :         struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
    6264             :         struct task_struct *p;
    6265             :         unsigned long cookie;
    6266             :         bool success = false;
    6267             : 
    6268             :         local_irq_disable();
    6269             :         double_rq_lock(dst, src);
    6270             : 
    6271             :         cookie = dst->core->core_cookie;
    6272             :         if (!cookie)
    6273             :                 goto unlock;
    6274             : 
    6275             :         if (dst->curr != dst->idle)
    6276             :                 goto unlock;
    6277             : 
    6278             :         p = sched_core_find(src, cookie);
    6279             :         if (!p)
    6280             :                 goto unlock;
    6281             : 
    6282             :         do {
    6283             :                 if (p == src->core_pick || p == src->curr)
    6284             :                         goto next;
    6285             : 
    6286             :                 if (!is_cpu_allowed(p, this))
    6287             :                         goto next;
    6288             : 
    6289             :                 if (p->core_occupation > dst->idle->core_occupation)
    6290             :                         goto next;
    6291             :                 /*
    6292             :                  * sched_core_find() and sched_core_next() will ensure that task @p
    6293             :                  * is not throttled now, we also need to check whether the runqueue
    6294             :                  * of the destination CPU is being throttled.
    6295             :                  */
    6296             :                 if (sched_task_is_throttled(p, this))
    6297             :                         goto next;
    6298             : 
    6299             :                 deactivate_task(src, p, 0);
    6300             :                 set_task_cpu(p, this);
    6301             :                 activate_task(dst, p, 0);
    6302             : 
    6303             :                 resched_curr(dst);
    6304             : 
    6305             :                 success = true;
    6306             :                 break;
    6307             : 
    6308             : next:
    6309             :                 p = sched_core_next(p, cookie);
    6310             :         } while (p);
    6311             : 
    6312             : unlock:
    6313             :         double_rq_unlock(dst, src);
    6314             :         local_irq_enable();
    6315             : 
    6316             :         return success;
    6317             : }
    6318             : 
    6319             : static bool steal_cookie_task(int cpu, struct sched_domain *sd)
    6320             : {
    6321             :         int i;
    6322             : 
    6323             :         for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
    6324             :                 if (i == cpu)
    6325             :                         continue;
    6326             : 
    6327             :                 if (need_resched())
    6328             :                         break;
    6329             : 
    6330             :                 if (try_steal_cookie(cpu, i))
    6331             :                         return true;
    6332             :         }
    6333             : 
    6334             :         return false;
    6335             : }
    6336             : 
    6337             : static void sched_core_balance(struct rq *rq)
    6338             : {
    6339             :         struct sched_domain *sd;
    6340             :         int cpu = cpu_of(rq);
    6341             : 
    6342             :         preempt_disable();
    6343             :         rcu_read_lock();
    6344             :         raw_spin_rq_unlock_irq(rq);
    6345             :         for_each_domain(cpu, sd) {
    6346             :                 if (need_resched())
    6347             :                         break;
    6348             : 
    6349             :                 if (steal_cookie_task(cpu, sd))
    6350             :                         break;
    6351             :         }
    6352             :         raw_spin_rq_lock_irq(rq);
    6353             :         rcu_read_unlock();
    6354             :         preempt_enable();
    6355             : }
    6356             : 
    6357             : static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
    6358             : 
    6359             : static void queue_core_balance(struct rq *rq)
    6360             : {
    6361             :         if (!sched_core_enabled(rq))
    6362             :                 return;
    6363             : 
    6364             :         if (!rq->core->core_cookie)
    6365             :                 return;
    6366             : 
    6367             :         if (!rq->nr_running) /* not forced idle */
    6368             :                 return;
    6369             : 
    6370             :         queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
    6371             : }
    6372             : 
    6373             : static void sched_core_cpu_starting(unsigned int cpu)
    6374             : {
    6375             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
    6376             :         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
    6377             :         unsigned long flags;
    6378             :         int t;
    6379             : 
    6380             :         sched_core_lock(cpu, &flags);
    6381             : 
    6382             :         WARN_ON_ONCE(rq->core != rq);
    6383             : 
    6384             :         /* if we're the first, we'll be our own leader */
    6385             :         if (cpumask_weight(smt_mask) == 1)
    6386             :                 goto unlock;
    6387             : 
    6388             :         /* find the leader */
    6389             :         for_each_cpu(t, smt_mask) {
    6390             :                 if (t == cpu)
    6391             :                         continue;
    6392             :                 rq = cpu_rq(t);
    6393             :                 if (rq->core == rq) {
    6394             :                         core_rq = rq;
    6395             :                         break;
    6396             :                 }
    6397             :         }
    6398             : 
    6399             :         if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
    6400             :                 goto unlock;
    6401             : 
    6402             :         /* install and validate core_rq */
    6403             :         for_each_cpu(t, smt_mask) {
    6404             :                 rq = cpu_rq(t);
    6405             : 
    6406             :                 if (t == cpu)
    6407             :                         rq->core = core_rq;
    6408             : 
    6409             :                 WARN_ON_ONCE(rq->core != core_rq);
    6410             :         }
    6411             : 
    6412             : unlock:
    6413             :         sched_core_unlock(cpu, &flags);
    6414             : }
    6415             : 
    6416             : static void sched_core_cpu_deactivate(unsigned int cpu)
    6417             : {
    6418             :         const struct cpumask *smt_mask = cpu_smt_mask(cpu);
    6419             :         struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
    6420             :         unsigned long flags;
    6421             :         int t;
    6422             : 
    6423             :         sched_core_lock(cpu, &flags);
    6424             : 
    6425             :         /* if we're the last man standing, nothing to do */
    6426             :         if (cpumask_weight(smt_mask) == 1) {
    6427             :                 WARN_ON_ONCE(rq->core != rq);
    6428             :                 goto unlock;
    6429             :         }
    6430             : 
    6431             :         /* if we're not the leader, nothing to do */
    6432             :         if (rq->core != rq)
    6433             :                 goto unlock;
    6434             : 
    6435             :         /* find a new leader */
    6436             :         for_each_cpu(t, smt_mask) {
    6437             :                 if (t == cpu)
    6438             :                         continue;
    6439             :                 core_rq = cpu_rq(t);
    6440             :                 break;
    6441             :         }
    6442             : 
    6443             :         if (WARN_ON_ONCE(!core_rq)) /* impossible */
    6444             :                 goto unlock;
    6445             : 
    6446             :         /* copy the shared state to the new leader */
    6447             :         core_rq->core_task_seq             = rq->core_task_seq;
    6448             :         core_rq->core_pick_seq             = rq->core_pick_seq;
    6449             :         core_rq->core_cookie               = rq->core_cookie;
    6450             :         core_rq->core_forceidle_count      = rq->core_forceidle_count;
    6451             :         core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
    6452             :         core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
    6453             : 
    6454             :         /*
    6455             :          * Accounting edge for forced idle is handled in pick_next_task().
    6456             :          * Don't need another one here, since the hotplug thread shouldn't
    6457             :          * have a cookie.
    6458             :          */
    6459             :         core_rq->core_forceidle_start = 0;
    6460             : 
    6461             :         /* install new leader */
    6462             :         for_each_cpu(t, smt_mask) {
    6463             :                 rq = cpu_rq(t);
    6464             :                 rq->core = core_rq;
    6465             :         }
    6466             : 
    6467             : unlock:
    6468             :         sched_core_unlock(cpu, &flags);
    6469             : }
    6470             : 
    6471             : static inline void sched_core_cpu_dying(unsigned int cpu)
    6472             : {
    6473             :         struct rq *rq = cpu_rq(cpu);
    6474             : 
    6475             :         if (rq->core != rq)
    6476             :                 rq->core = rq;
    6477             : }
    6478             : 
    6479             : #else /* !CONFIG_SCHED_CORE */
    6480             : 
    6481             : static inline void sched_core_cpu_starting(unsigned int cpu) {}
    6482             : static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
    6483             : static inline void sched_core_cpu_dying(unsigned int cpu) {}
    6484             : 
    6485             : static struct task_struct *
    6486             : pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
    6487             : {
    6488        2513 :         return __pick_next_task(rq, prev, rf);
    6489             : }
    6490             : 
    6491             : #endif /* CONFIG_SCHED_CORE */
    6492             : 
    6493             : /*
    6494             :  * Constants for the sched_mode argument of __schedule().
    6495             :  *
    6496             :  * The mode argument allows RT enabled kernels to differentiate a
    6497             :  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
    6498             :  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
    6499             :  * optimize the AND operation out and just check for zero.
    6500             :  */
    6501             : #define SM_NONE                 0x0
    6502             : #define SM_PREEMPT              0x1
    6503             : #define SM_RTLOCK_WAIT          0x2
    6504             : 
    6505             : #ifndef CONFIG_PREEMPT_RT
    6506             : # define SM_MASK_PREEMPT        (~0U)
    6507             : #else
    6508             : # define SM_MASK_PREEMPT        SM_PREEMPT
    6509             : #endif
    6510             : 
    6511             : /*
    6512             :  * __schedule() is the main scheduler function.
    6513             :  *
    6514             :  * The main means of driving the scheduler and thus entering this function are:
    6515             :  *
    6516             :  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
    6517             :  *
    6518             :  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
    6519             :  *      paths. For example, see arch/x86/entry_64.S.
    6520             :  *
    6521             :  *      To drive preemption between tasks, the scheduler sets the flag in timer
    6522             :  *      interrupt handler scheduler_tick().
    6523             :  *
    6524             :  *   3. Wakeups don't really cause entry into schedule(). They add a
    6525             :  *      task to the run-queue and that's it.
    6526             :  *
    6527             :  *      Now, if the new task added to the run-queue preempts the current
    6528             :  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
    6529             :  *      called on the nearest possible occasion:
    6530             :  *
    6531             :  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
    6532             :  *
    6533             :  *         - in syscall or exception context, at the next outmost
    6534             :  *           preempt_enable(). (this might be as soon as the wake_up()'s
    6535             :  *           spin_unlock()!)
    6536             :  *
    6537             :  *         - in IRQ context, return from interrupt-handler to
    6538             :  *           preemptible context
    6539             :  *
    6540             :  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
    6541             :  *         then at the next:
    6542             :  *
    6543             :  *          - cond_resched() call
    6544             :  *          - explicit schedule() call
    6545             :  *          - return from syscall or exception to user-space
    6546             :  *          - return from interrupt-handler to user-space
    6547             :  *
    6548             :  * WARNING: must be called with preemption disabled!
    6549             :  */
    6550        2513 : static void __sched notrace __schedule(unsigned int sched_mode)
    6551             : {
    6552             :         struct task_struct *prev, *next;
    6553             :         unsigned long *switch_count;
    6554             :         unsigned long prev_state;
    6555             :         struct rq_flags rf;
    6556             :         struct rq *rq;
    6557             :         int cpu;
    6558             : 
    6559        2513 :         cpu = smp_processor_id();
    6560        2513 :         rq = cpu_rq(cpu);
    6561        2513 :         prev = rq->curr;
    6562             : 
    6563        5026 :         schedule_debug(prev, !!sched_mode);
    6564             : 
    6565             :         if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
    6566             :                 hrtick_clear(rq);
    6567             : 
    6568             :         local_irq_disable();
    6569        2513 :         rcu_note_context_switch(!!sched_mode);
    6570             : 
    6571             :         /*
    6572             :          * Make sure that signal_pending_state()->signal_pending() below
    6573             :          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
    6574             :          * done by the caller to avoid the race with signal_wake_up():
    6575             :          *
    6576             :          * __set_current_state(@state)          signal_wake_up()
    6577             :          * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
    6578             :          *                                        wake_up_state(p, state)
    6579             :          *   LOCK rq->lock                       LOCK p->pi_state
    6580             :          *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
    6581             :          *     if (signal_pending_state())          if (p->state & @state)
    6582             :          *
    6583             :          * Also, the membarrier system call requires a full memory barrier
    6584             :          * after coming from user-space, before storing to rq->curr.
    6585             :          */
    6586        2513 :         rq_lock(rq, &rf);
    6587             :         smp_mb__after_spinlock();
    6588             : 
    6589             :         /* Promote REQ to ACT */
    6590        2513 :         rq->clock_update_flags <<= 1;
    6591        2513 :         update_rq_clock(rq);
    6592             : 
    6593        2513 :         switch_count = &prev->nivcsw;
    6594             : 
    6595             :         /*
    6596             :          * We must load prev->state once (task_struct::state is volatile), such
    6597             :          * that we form a control dependency vs deactivate_task() below.
    6598             :          */
    6599        2513 :         prev_state = READ_ONCE(prev->__state);
    6600        2513 :         if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
    6601        2440 :                 if (signal_pending_state(prev_state, prev)) {
    6602           0 :                         WRITE_ONCE(prev->__state, TASK_RUNNING);
    6603             :                 } else {
    6604        2440 :                         prev->sched_contributes_to_load =
    6605             :                                 (prev_state & TASK_UNINTERRUPTIBLE) &&
    6606        2440 :                                 !(prev_state & TASK_NOLOAD) &&
    6607             :                                 !(prev_state & TASK_FROZEN);
    6608             : 
    6609        2440 :                         if (prev->sched_contributes_to_load)
    6610        1153 :                                 rq->nr_uninterruptible++;
    6611             : 
    6612             :                         /*
    6613             :                          * __schedule()                 ttwu()
    6614             :                          *   prev_state = prev->state;    if (p->on_rq && ...)
    6615             :                          *   if (prev_state)                goto out;
    6616             :                          *     p->on_rq = 0;           smp_acquire__after_ctrl_dep();
    6617             :                          *                                p->state = TASK_WAKING
    6618             :                          *
    6619             :                          * Where __schedule() and ttwu() have matching control dependencies.
    6620             :                          *
    6621             :                          * After this, schedule() must not care about p->state any more.
    6622             :                          */
    6623        2440 :                         deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
    6624             : 
    6625        2440 :                         if (prev->in_iowait) {
    6626           0 :                                 atomic_inc(&rq->nr_iowait);
    6627             :                                 delayacct_blkio_start();
    6628             :                         }
    6629             :                 }
    6630        2440 :                 switch_count = &prev->nvcsw;
    6631             :         }
    6632             : 
    6633        2513 :         next = pick_next_task(rq, prev, &rf);
    6634        2513 :         clear_tsk_need_resched(prev);
    6635             :         clear_preempt_need_resched();
    6636             : #ifdef CONFIG_SCHED_DEBUG
    6637             :         rq->last_seen_need_resched_ns = 0;
    6638             : #endif
    6639             : 
    6640        2513 :         if (likely(prev != next)) {
    6641        2513 :                 rq->nr_switches++;
    6642             :                 /*
    6643             :                  * RCU users of rcu_dereference(rq->curr) may not see
    6644             :                  * changes to task_struct made by pick_next_task().
    6645             :                  */
    6646        2513 :                 RCU_INIT_POINTER(rq->curr, next);
    6647             :                 /*
    6648             :                  * The membarrier system call requires each architecture
    6649             :                  * to have a full memory barrier after updating
    6650             :                  * rq->curr, before returning to user-space.
    6651             :                  *
    6652             :                  * Here are the schemes providing that barrier on the
    6653             :                  * various architectures:
    6654             :                  * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
    6655             :                  *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
    6656             :                  * - finish_lock_switch() for weakly-ordered
    6657             :                  *   architectures where spin_unlock is a full barrier,
    6658             :                  * - switch_to() for arm64 (weakly-ordered, spin_unlock
    6659             :                  *   is a RELEASE barrier),
    6660             :                  */
    6661        2513 :                 ++*switch_count;
    6662             : 
    6663        2513 :                 migrate_disable_switch(rq, prev);
    6664        2513 :                 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
    6665             : 
    6666        2513 :                 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
    6667             : 
    6668             :                 /* Also unlocks the rq: */
    6669        2131 :                 rq = context_switch(rq, prev, next, &rf);
    6670             :         } else {
    6671           0 :                 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
    6672             : 
    6673           0 :                 rq_unpin_lock(rq, &rf);
    6674           0 :                 __balance_callbacks(rq);
    6675           0 :                 raw_spin_rq_unlock_irq(rq);
    6676             :         }
    6677        2131 : }
    6678             : 
    6679         367 : void __noreturn do_task_dead(void)
    6680             : {
    6681             :         /* Causes final put_task_struct in finish_task_switch(): */
    6682        1835 :         set_special_state(TASK_DEAD);
    6683             : 
    6684             :         /* Tell freezer to ignore us: */
    6685         367 :         current->flags |= PF_NOFREEZE;
    6686             : 
    6687         367 :         __schedule(SM_NONE);
    6688           0 :         BUG();
    6689             : 
    6690             :         /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
    6691             :         for (;;)
    6692             :                 cpu_relax();
    6693             : }
    6694             : 
    6695        2074 : static inline void sched_submit_work(struct task_struct *tsk)
    6696             : {
    6697             :         unsigned int task_flags;
    6698             : 
    6699        2074 :         if (task_is_running(tsk))
    6700             :                 return;
    6701             : 
    6702        2073 :         task_flags = tsk->flags;
    6703             :         /*
    6704             :          * If a worker goes to sleep, notify and ask workqueue whether it
    6705             :          * wants to wake up a task to maintain concurrency.
    6706             :          */
    6707        2073 :         if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
    6708          94 :                 if (task_flags & PF_WQ_WORKER)
    6709          94 :                         wq_worker_sleeping(tsk);
    6710             :                 else
    6711           0 :                         io_wq_worker_sleeping(tsk);
    6712             :         }
    6713             : 
    6714             :         /*
    6715             :          * spinlock and rwlock must not flush block requests.  This will
    6716             :          * deadlock if the callback attempts to acquire a lock which is
    6717             :          * already acquired.
    6718             :          */
    6719        2073 :         SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
    6720             : 
    6721             :         /*
    6722             :          * If we are going to sleep and we have plugged IO queued,
    6723             :          * make sure to submit it to avoid deadlocks.
    6724             :          */
    6725        2073 :         blk_flush_plug(tsk->plug, true);
    6726             : }
    6727             : 
    6728        2059 : static void sched_update_worker(struct task_struct *tsk)
    6729             : {
    6730        2059 :         if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
    6731          85 :                 if (tsk->flags & PF_WQ_WORKER)
    6732          85 :                         wq_worker_running(tsk);
    6733             :                 else
    6734           0 :                         io_wq_worker_running(tsk);
    6735             :         }
    6736        2059 : }
    6737             : 
    6738        2074 : asmlinkage __visible void __sched schedule(void)
    6739             : {
    6740        2074 :         struct task_struct *tsk = current;
    6741             : 
    6742        2074 :         sched_submit_work(tsk);
    6743             :         do {
    6744        2074 :                 preempt_disable();
    6745        2074 :                 __schedule(SM_NONE);
    6746        2059 :                 sched_preempt_enable_no_resched();
    6747        2059 :         } while (need_resched());
    6748        2059 :         sched_update_worker(tsk);
    6749        2059 : }
    6750             : EXPORT_SYMBOL(schedule);
    6751             : 
    6752             : /*
    6753             :  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
    6754             :  * state (have scheduled out non-voluntarily) by making sure that all
    6755             :  * tasks have either left the run queue or have gone into user space.
    6756             :  * As idle tasks do not do either, they must not ever be preempted
    6757             :  * (schedule out non-voluntarily).
    6758             :  *
    6759             :  * schedule_idle() is similar to schedule_preempt_disable() except that it
    6760             :  * never enables preemption because it does not call sched_submit_work().
    6761             :  */
    6762           0 : void __sched schedule_idle(void)
    6763             : {
    6764             :         /*
    6765             :          * As this skips calling sched_submit_work(), which the idle task does
    6766             :          * regardless because that function is a nop when the task is in a
    6767             :          * TASK_RUNNING state, make sure this isn't used someplace that the
    6768             :          * current task can be in any other state. Note, idle is always in the
    6769             :          * TASK_RUNNING state.
    6770             :          */
    6771           0 :         WARN_ON_ONCE(current->__state);
    6772             :         do {
    6773           0 :                 __schedule(SM_NONE);
    6774           0 :         } while (need_resched());
    6775           0 : }
    6776             : 
    6777             : #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
    6778             : asmlinkage __visible void __sched schedule_user(void)
    6779             : {
    6780             :         /*
    6781             :          * If we come here after a random call to set_need_resched(),
    6782             :          * or we have been woken up remotely but the IPI has not yet arrived,
    6783             :          * we haven't yet exited the RCU idle mode. Do it here manually until
    6784             :          * we find a better solution.
    6785             :          *
    6786             :          * NB: There are buggy callers of this function.  Ideally we
    6787             :          * should warn if prev_state != CONTEXT_USER, but that will trigger
    6788             :          * too frequently to make sense yet.
    6789             :          */
    6790             :         enum ctx_state prev_state = exception_enter();
    6791             :         schedule();
    6792             :         exception_exit(prev_state);
    6793             : }
    6794             : #endif
    6795             : 
    6796             : /**
    6797             :  * schedule_preempt_disabled - called with preemption disabled
    6798             :  *
    6799             :  * Returns with preemption disabled. Note: preempt_count must be 1
    6800             :  */
    6801         382 : void __sched schedule_preempt_disabled(void)
    6802             : {
    6803         382 :         sched_preempt_enable_no_resched();
    6804         382 :         schedule();
    6805         381 :         preempt_disable();
    6806         381 : }
    6807             : 
    6808             : #ifdef CONFIG_PREEMPT_RT
    6809             : void __sched notrace schedule_rtlock(void)
    6810             : {
    6811             :         do {
    6812             :                 preempt_disable();
    6813             :                 __schedule(SM_RTLOCK_WAIT);
    6814             :                 sched_preempt_enable_no_resched();
    6815             :         } while (need_resched());
    6816             : }
    6817             : NOKPROBE_SYMBOL(schedule_rtlock);
    6818             : #endif
    6819             : 
    6820             : static void __sched notrace preempt_schedule_common(void)
    6821             : {
    6822             :         do {
    6823             :                 /*
    6824             :                  * Because the function tracer can trace preempt_count_sub()
    6825             :                  * and it also uses preempt_enable/disable_notrace(), if
    6826             :                  * NEED_RESCHED is set, the preempt_enable_notrace() called
    6827             :                  * by the function tracer will call this function again and
    6828             :                  * cause infinite recursion.
    6829             :                  *
    6830             :                  * Preemption must be disabled here before the function
    6831             :                  * tracer can trace. Break up preempt_disable() into two
    6832             :                  * calls. One to disable preemption without fear of being
    6833             :                  * traced. The other to still record the preemption latency,
    6834             :                  * which can also be traced by the function tracer.
    6835             :                  */
    6836          72 :                 preempt_disable_notrace();
    6837          72 :                 preempt_latency_start(1);
    6838          72 :                 __schedule(SM_PREEMPT);
    6839          72 :                 preempt_latency_stop(1);
    6840          72 :                 preempt_enable_no_resched_notrace();
    6841             : 
    6842             :                 /*
    6843             :                  * Check again in case we missed a preemption opportunity
    6844             :                  * between schedule and now.
    6845             :                  */
    6846          72 :         } while (need_resched());
    6847             : }
    6848             : 
    6849             : #ifdef CONFIG_PREEMPTION
    6850             : /*
    6851             :  * This is the entry point to schedule() from in-kernel preemption
    6852             :  * off of preempt_enable.
    6853             :  */
    6854             : asmlinkage __visible void __sched notrace preempt_schedule(void)
    6855             : {
    6856             :         /*
    6857             :          * If there is a non-zero preempt_count or interrupts are disabled,
    6858             :          * we do not want to preempt the current task. Just return..
    6859             :          */
    6860             :         if (likely(!preemptible()))
    6861             :                 return;
    6862             :         preempt_schedule_common();
    6863             : }
    6864             : NOKPROBE_SYMBOL(preempt_schedule);
    6865             : EXPORT_SYMBOL(preempt_schedule);
    6866             : 
    6867             : #ifdef CONFIG_PREEMPT_DYNAMIC
    6868             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    6869             : #ifndef preempt_schedule_dynamic_enabled
    6870             : #define preempt_schedule_dynamic_enabled        preempt_schedule
    6871             : #define preempt_schedule_dynamic_disabled       NULL
    6872             : #endif
    6873             : DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
    6874             : EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
    6875             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    6876             : static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
    6877             : void __sched notrace dynamic_preempt_schedule(void)
    6878             : {
    6879             :         if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
    6880             :                 return;
    6881             :         preempt_schedule();
    6882             : }
    6883             : NOKPROBE_SYMBOL(dynamic_preempt_schedule);
    6884             : EXPORT_SYMBOL(dynamic_preempt_schedule);
    6885             : #endif
    6886             : #endif
    6887             : 
    6888             : /**
    6889             :  * preempt_schedule_notrace - preempt_schedule called by tracing
    6890             :  *
    6891             :  * The tracing infrastructure uses preempt_enable_notrace to prevent
    6892             :  * recursion and tracing preempt enabling caused by the tracing
    6893             :  * infrastructure itself. But as tracing can happen in areas coming
    6894             :  * from userspace or just about to enter userspace, a preempt enable
    6895             :  * can occur before user_exit() is called. This will cause the scheduler
    6896             :  * to be called when the system is still in usermode.
    6897             :  *
    6898             :  * To prevent this, the preempt_enable_notrace will use this function
    6899             :  * instead of preempt_schedule() to exit user context if needed before
    6900             :  * calling the scheduler.
    6901             :  */
    6902             : asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
    6903             : {
    6904             :         enum ctx_state prev_ctx;
    6905             : 
    6906             :         if (likely(!preemptible()))
    6907             :                 return;
    6908             : 
    6909             :         do {
    6910             :                 /*
    6911             :                  * Because the function tracer can trace preempt_count_sub()
    6912             :                  * and it also uses preempt_enable/disable_notrace(), if
    6913             :                  * NEED_RESCHED is set, the preempt_enable_notrace() called
    6914             :                  * by the function tracer will call this function again and
    6915             :                  * cause infinite recursion.
    6916             :                  *
    6917             :                  * Preemption must be disabled here before the function
    6918             :                  * tracer can trace. Break up preempt_disable() into two
    6919             :                  * calls. One to disable preemption without fear of being
    6920             :                  * traced. The other to still record the preemption latency,
    6921             :                  * which can also be traced by the function tracer.
    6922             :                  */
    6923             :                 preempt_disable_notrace();
    6924             :                 preempt_latency_start(1);
    6925             :                 /*
    6926             :                  * Needs preempt disabled in case user_exit() is traced
    6927             :                  * and the tracer calls preempt_enable_notrace() causing
    6928             :                  * an infinite recursion.
    6929             :                  */
    6930             :                 prev_ctx = exception_enter();
    6931             :                 __schedule(SM_PREEMPT);
    6932             :                 exception_exit(prev_ctx);
    6933             : 
    6934             :                 preempt_latency_stop(1);
    6935             :                 preempt_enable_no_resched_notrace();
    6936             :         } while (need_resched());
    6937             : }
    6938             : EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
    6939             : 
    6940             : #ifdef CONFIG_PREEMPT_DYNAMIC
    6941             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    6942             : #ifndef preempt_schedule_notrace_dynamic_enabled
    6943             : #define preempt_schedule_notrace_dynamic_enabled        preempt_schedule_notrace
    6944             : #define preempt_schedule_notrace_dynamic_disabled       NULL
    6945             : #endif
    6946             : DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
    6947             : EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
    6948             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    6949             : static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
    6950             : void __sched notrace dynamic_preempt_schedule_notrace(void)
    6951             : {
    6952             :         if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
    6953             :                 return;
    6954             :         preempt_schedule_notrace();
    6955             : }
    6956             : NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
    6957             : EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
    6958             : #endif
    6959             : #endif
    6960             : 
    6961             : #endif /* CONFIG_PREEMPTION */
    6962             : 
    6963             : /*
    6964             :  * This is the entry point to schedule() from kernel preemption
    6965             :  * off of irq context.
    6966             :  * Note, that this is called and return with irqs disabled. This will
    6967             :  * protect us against recursive calling from irq.
    6968             :  */
    6969           0 : asmlinkage __visible void __sched preempt_schedule_irq(void)
    6970             : {
    6971             :         enum ctx_state prev_state;
    6972             : 
    6973             :         /* Catch callers which need to be fixed */
    6974           0 :         BUG_ON(preempt_count() || !irqs_disabled());
    6975             : 
    6976             :         prev_state = exception_enter();
    6977             : 
    6978             :         do {
    6979           0 :                 preempt_disable();
    6980             :                 local_irq_enable();
    6981           0 :                 __schedule(SM_PREEMPT);
    6982             :                 local_irq_disable();
    6983           0 :                 sched_preempt_enable_no_resched();
    6984           0 :         } while (need_resched());
    6985             : 
    6986             :         exception_exit(prev_state);
    6987           0 : }
    6988             : 
    6989           0 : int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
    6990             :                           void *key)
    6991             : {
    6992           0 :         WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
    6993           0 :         return try_to_wake_up(curr->private, mode, wake_flags);
    6994             : }
    6995             : EXPORT_SYMBOL(default_wake_function);
    6996             : 
    6997             : static void __setscheduler_prio(struct task_struct *p, int prio)
    6998             : {
    6999           0 :         if (dl_prio(prio))
    7000           0 :                 p->sched_class = &dl_sched_class;
    7001           0 :         else if (rt_prio(prio))
    7002           0 :                 p->sched_class = &rt_sched_class;
    7003             :         else
    7004           0 :                 p->sched_class = &fair_sched_class;
    7005             : 
    7006           0 :         p->prio = prio;
    7007             : }
    7008             : 
    7009             : #ifdef CONFIG_RT_MUTEXES
    7010             : 
    7011             : static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
    7012             : {
    7013           0 :         if (pi_task)
    7014           0 :                 prio = min(prio, pi_task->prio);
    7015             : 
    7016             :         return prio;
    7017             : }
    7018             : 
    7019             : static inline int rt_effective_prio(struct task_struct *p, int prio)
    7020             : {
    7021           0 :         struct task_struct *pi_task = rt_mutex_get_top_task(p);
    7022             : 
    7023           0 :         return __rt_effective_prio(pi_task, prio);
    7024             : }
    7025             : 
    7026             : /*
    7027             :  * rt_mutex_setprio - set the current priority of a task
    7028             :  * @p: task to boost
    7029             :  * @pi_task: donor task
    7030             :  *
    7031             :  * This function changes the 'effective' priority of a task. It does
    7032             :  * not touch ->normal_prio like __setscheduler().
    7033             :  *
    7034             :  * Used by the rt_mutex code to implement priority inheritance
    7035             :  * logic. Call site only calls if the priority of the task changed.
    7036             :  */
    7037           0 : void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
    7038             : {
    7039           0 :         int prio, oldprio, queued, running, queue_flag =
    7040             :                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
    7041             :         const struct sched_class *prev_class;
    7042             :         struct rq_flags rf;
    7043             :         struct rq *rq;
    7044             : 
    7045             :         /* XXX used to be waiter->prio, not waiter->task->prio */
    7046           0 :         prio = __rt_effective_prio(pi_task, p->normal_prio);
    7047             : 
    7048             :         /*
    7049             :          * If nothing changed; bail early.
    7050             :          */
    7051           0 :         if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
    7052             :                 return;
    7053             : 
    7054           0 :         rq = __task_rq_lock(p, &rf);
    7055           0 :         update_rq_clock(rq);
    7056             :         /*
    7057             :          * Set under pi_lock && rq->lock, such that the value can be used under
    7058             :          * either lock.
    7059             :          *
    7060             :          * Note that there is loads of tricky to make this pointer cache work
    7061             :          * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
    7062             :          * ensure a task is de-boosted (pi_task is set to NULL) before the
    7063             :          * task is allowed to run again (and can exit). This ensures the pointer
    7064             :          * points to a blocked task -- which guarantees the task is present.
    7065             :          */
    7066           0 :         p->pi_top_task = pi_task;
    7067             : 
    7068             :         /*
    7069             :          * For FIFO/RR we only need to set prio, if that matches we're done.
    7070             :          */
    7071           0 :         if (prio == p->prio && !dl_prio(prio))
    7072             :                 goto out_unlock;
    7073             : 
    7074             :         /*
    7075             :          * Idle task boosting is a nono in general. There is one
    7076             :          * exception, when PREEMPT_RT and NOHZ is active:
    7077             :          *
    7078             :          * The idle task calls get_next_timer_interrupt() and holds
    7079             :          * the timer wheel base->lock on the CPU and another CPU wants
    7080             :          * to access the timer (probably to cancel it). We can safely
    7081             :          * ignore the boosting request, as the idle CPU runs this code
    7082             :          * with interrupts disabled and will complete the lock
    7083             :          * protected section without being interrupted. So there is no
    7084             :          * real need to boost.
    7085             :          */
    7086           0 :         if (unlikely(p == rq->idle)) {
    7087           0 :                 WARN_ON(p != rq->curr);
    7088           0 :                 WARN_ON(p->pi_blocked_on);
    7089             :                 goto out_unlock;
    7090             :         }
    7091             : 
    7092           0 :         trace_sched_pi_setprio(p, pi_task);
    7093           0 :         oldprio = p->prio;
    7094             : 
    7095           0 :         if (oldprio == prio)
    7096           0 :                 queue_flag &= ~DEQUEUE_MOVE;
    7097             : 
    7098           0 :         prev_class = p->sched_class;
    7099           0 :         queued = task_on_rq_queued(p);
    7100           0 :         running = task_current(rq, p);
    7101           0 :         if (queued)
    7102           0 :                 dequeue_task(rq, p, queue_flag);
    7103           0 :         if (running)
    7104           0 :                 put_prev_task(rq, p);
    7105             : 
    7106             :         /*
    7107             :          * Boosting condition are:
    7108             :          * 1. -rt task is running and holds mutex A
    7109             :          *      --> -dl task blocks on mutex A
    7110             :          *
    7111             :          * 2. -dl task is running and holds mutex A
    7112             :          *      --> -dl task blocks on mutex A and could preempt the
    7113             :          *          running task
    7114             :          */
    7115           0 :         if (dl_prio(prio)) {
    7116           0 :                 if (!dl_prio(p->normal_prio) ||
    7117           0 :                     (pi_task && dl_prio(pi_task->prio) &&
    7118           0 :                      dl_entity_preempt(&pi_task->dl, &p->dl))) {
    7119           0 :                         p->dl.pi_se = pi_task->dl.pi_se;
    7120           0 :                         queue_flag |= ENQUEUE_REPLENISH;
    7121             :                 } else {
    7122           0 :                         p->dl.pi_se = &p->dl;
    7123             :                 }
    7124           0 :         } else if (rt_prio(prio)) {
    7125           0 :                 if (dl_prio(oldprio))
    7126           0 :                         p->dl.pi_se = &p->dl;
    7127           0 :                 if (oldprio < prio)
    7128           0 :                         queue_flag |= ENQUEUE_HEAD;
    7129             :         } else {
    7130           0 :                 if (dl_prio(oldprio))
    7131           0 :                         p->dl.pi_se = &p->dl;
    7132           0 :                 if (rt_prio(oldprio))
    7133           0 :                         p->rt.timeout = 0;
    7134             :         }
    7135             : 
    7136           0 :         __setscheduler_prio(p, prio);
    7137             : 
    7138           0 :         if (queued)
    7139           0 :                 enqueue_task(rq, p, queue_flag);
    7140           0 :         if (running)
    7141             :                 set_next_task(rq, p);
    7142             : 
    7143           0 :         check_class_changed(rq, p, prev_class, oldprio);
    7144             : out_unlock:
    7145             :         /* Avoid rq from going away on us: */
    7146           0 :         preempt_disable();
    7147             : 
    7148           0 :         rq_unpin_lock(rq, &rf);
    7149           0 :         __balance_callbacks(rq);
    7150           0 :         raw_spin_rq_unlock(rq);
    7151             : 
    7152           0 :         preempt_enable();
    7153             : }
    7154             : #else
    7155             : static inline int rt_effective_prio(struct task_struct *p, int prio)
    7156             : {
    7157             :         return prio;
    7158             : }
    7159             : #endif
    7160             : 
    7161           9 : void set_user_nice(struct task_struct *p, long nice)
    7162             : {
    7163             :         bool queued, running;
    7164             :         int old_prio;
    7165             :         struct rq_flags rf;
    7166             :         struct rq *rq;
    7167             : 
    7168          18 :         if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
    7169           4 :                 return;
    7170             :         /*
    7171             :          * We have to be careful, if called from sys_setpriority(),
    7172             :          * the task might be in the middle of scheduling on another CPU.
    7173             :          */
    7174           5 :         rq = task_rq_lock(p, &rf);
    7175           5 :         update_rq_clock(rq);
    7176             : 
    7177             :         /*
    7178             :          * The RT priorities are set via sched_setscheduler(), but we still
    7179             :          * allow the 'normal' nice value to be set - but as expected
    7180             :          * it won't have any effect on scheduling until the task is
    7181             :          * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
    7182             :          */
    7183          15 :         if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
    7184           0 :                 p->static_prio = NICE_TO_PRIO(nice);
    7185           0 :                 goto out_unlock;
    7186             :         }
    7187           5 :         queued = task_on_rq_queued(p);
    7188           5 :         running = task_current(rq, p);
    7189           5 :         if (queued)
    7190             :                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
    7191           5 :         if (running)
    7192           4 :                 put_prev_task(rq, p);
    7193             : 
    7194           5 :         p->static_prio = NICE_TO_PRIO(nice);
    7195           5 :         set_load_weight(p, true);
    7196           5 :         old_prio = p->prio;
    7197           5 :         p->prio = effective_prio(p);
    7198             : 
    7199           5 :         if (queued)
    7200             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    7201           5 :         if (running)
    7202             :                 set_next_task(rq, p);
    7203             : 
    7204             :         /*
    7205             :          * If the task increased its priority or is running and
    7206             :          * lowered its priority, then reschedule its CPU:
    7207             :          */
    7208           5 :         p->sched_class->prio_changed(rq, p, old_prio);
    7209             : 
    7210             : out_unlock:
    7211          10 :         task_rq_unlock(rq, p, &rf);
    7212             : }
    7213             : EXPORT_SYMBOL(set_user_nice);
    7214             : 
    7215             : /*
    7216             :  * is_nice_reduction - check if nice value is an actual reduction
    7217             :  *
    7218             :  * Similar to can_nice() but does not perform a capability check.
    7219             :  *
    7220             :  * @p: task
    7221             :  * @nice: nice value
    7222             :  */
    7223             : static bool is_nice_reduction(const struct task_struct *p, const int nice)
    7224             : {
    7225             :         /* Convert nice value [19,-20] to rlimit style value [1,40]: */
    7226           0 :         int nice_rlim = nice_to_rlimit(nice);
    7227             : 
    7228           0 :         return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
    7229             : }
    7230             : 
    7231             : /*
    7232             :  * can_nice - check if a task can reduce its nice value
    7233             :  * @p: task
    7234             :  * @nice: nice value
    7235             :  */
    7236           0 : int can_nice(const struct task_struct *p, const int nice)
    7237             : {
    7238           0 :         return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
    7239             : }
    7240             : 
    7241             : #ifdef __ARCH_WANT_SYS_NICE
    7242             : 
    7243             : /*
    7244             :  * sys_nice - change the priority of the current process.
    7245             :  * @increment: priority increment
    7246             :  *
    7247             :  * sys_setpriority is a more generic, but much slower function that
    7248             :  * does similar things.
    7249             :  */
    7250           0 : SYSCALL_DEFINE1(nice, int, increment)
    7251             : {
    7252             :         long nice, retval;
    7253             : 
    7254             :         /*
    7255             :          * Setpriority might change our priority at the same moment.
    7256             :          * We don't have to worry. Conceptually one call occurs first
    7257             :          * and we have a single winner.
    7258             :          */
    7259           0 :         increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
    7260           0 :         nice = task_nice(current) + increment;
    7261             : 
    7262           0 :         nice = clamp_val(nice, MIN_NICE, MAX_NICE);
    7263           0 :         if (increment < 0 && !can_nice(current, nice))
    7264             :                 return -EPERM;
    7265             : 
    7266           0 :         retval = security_task_setnice(current, nice);
    7267           0 :         if (retval)
    7268             :                 return retval;
    7269             : 
    7270           0 :         set_user_nice(current, nice);
    7271           0 :         return 0;
    7272             : }
    7273             : 
    7274             : #endif
    7275             : 
    7276             : /**
    7277             :  * task_prio - return the priority value of a given task.
    7278             :  * @p: the task in question.
    7279             :  *
    7280             :  * Return: The priority value as seen by users in /proc.
    7281             :  *
    7282             :  * sched policy         return value   kernel prio    user prio/nice
    7283             :  *
    7284             :  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
    7285             :  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
    7286             :  * deadline                     -101             -1           0
    7287             :  */
    7288           0 : int task_prio(const struct task_struct *p)
    7289             : {
    7290           0 :         return p->prio - MAX_RT_PRIO;
    7291             : }
    7292             : 
    7293             : /**
    7294             :  * idle_cpu - is a given CPU idle currently?
    7295             :  * @cpu: the processor in question.
    7296             :  *
    7297             :  * Return: 1 if the CPU is currently idle. 0 otherwise.
    7298             :  */
    7299           0 : int idle_cpu(int cpu)
    7300             : {
    7301           0 :         struct rq *rq = cpu_rq(cpu);
    7302             : 
    7303           0 :         if (rq->curr != rq->idle)
    7304             :                 return 0;
    7305             : 
    7306           0 :         if (rq->nr_running)
    7307             :                 return 0;
    7308             : 
    7309             : #ifdef CONFIG_SMP
    7310             :         if (rq->ttwu_pending)
    7311             :                 return 0;
    7312             : #endif
    7313             : 
    7314           0 :         return 1;
    7315             : }
    7316             : 
    7317             : /**
    7318             :  * available_idle_cpu - is a given CPU idle for enqueuing work.
    7319             :  * @cpu: the CPU in question.
    7320             :  *
    7321             :  * Return: 1 if the CPU is currently idle. 0 otherwise.
    7322             :  */
    7323           0 : int available_idle_cpu(int cpu)
    7324             : {
    7325           0 :         if (!idle_cpu(cpu))
    7326             :                 return 0;
    7327             : 
    7328           0 :         if (vcpu_is_preempted(cpu))
    7329             :                 return 0;
    7330             : 
    7331           0 :         return 1;
    7332             : }
    7333             : 
    7334             : /**
    7335             :  * idle_task - return the idle task for a given CPU.
    7336             :  * @cpu: the processor in question.
    7337             :  *
    7338             :  * Return: The idle task for the CPU @cpu.
    7339             :  */
    7340           0 : struct task_struct *idle_task(int cpu)
    7341             : {
    7342           0 :         return cpu_rq(cpu)->idle;
    7343             : }
    7344             : 
    7345             : #ifdef CONFIG_SMP
    7346             : /*
    7347             :  * This function computes an effective utilization for the given CPU, to be
    7348             :  * used for frequency selection given the linear relation: f = u * f_max.
    7349             :  *
    7350             :  * The scheduler tracks the following metrics:
    7351             :  *
    7352             :  *   cpu_util_{cfs,rt,dl,irq}()
    7353             :  *   cpu_bw_dl()
    7354             :  *
    7355             :  * Where the cfs,rt and dl util numbers are tracked with the same metric and
    7356             :  * synchronized windows and are thus directly comparable.
    7357             :  *
    7358             :  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
    7359             :  * which excludes things like IRQ and steal-time. These latter are then accrued
    7360             :  * in the irq utilization.
    7361             :  *
    7362             :  * The DL bandwidth number otoh is not a measured metric but a value computed
    7363             :  * based on the task model parameters and gives the minimal utilization
    7364             :  * required to meet deadlines.
    7365             :  */
    7366             : unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
    7367             :                                  enum cpu_util_type type,
    7368             :                                  struct task_struct *p)
    7369             : {
    7370             :         unsigned long dl_util, util, irq, max;
    7371             :         struct rq *rq = cpu_rq(cpu);
    7372             : 
    7373             :         max = arch_scale_cpu_capacity(cpu);
    7374             : 
    7375             :         if (!uclamp_is_used() &&
    7376             :             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
    7377             :                 return max;
    7378             :         }
    7379             : 
    7380             :         /*
    7381             :          * Early check to see if IRQ/steal time saturates the CPU, can be
    7382             :          * because of inaccuracies in how we track these -- see
    7383             :          * update_irq_load_avg().
    7384             :          */
    7385             :         irq = cpu_util_irq(rq);
    7386             :         if (unlikely(irq >= max))
    7387             :                 return max;
    7388             : 
    7389             :         /*
    7390             :          * Because the time spend on RT/DL tasks is visible as 'lost' time to
    7391             :          * CFS tasks and we use the same metric to track the effective
    7392             :          * utilization (PELT windows are synchronized) we can directly add them
    7393             :          * to obtain the CPU's actual utilization.
    7394             :          *
    7395             :          * CFS and RT utilization can be boosted or capped, depending on
    7396             :          * utilization clamp constraints requested by currently RUNNABLE
    7397             :          * tasks.
    7398             :          * When there are no CFS RUNNABLE tasks, clamps are released and
    7399             :          * frequency will be gracefully reduced with the utilization decay.
    7400             :          */
    7401             :         util = util_cfs + cpu_util_rt(rq);
    7402             :         if (type == FREQUENCY_UTIL)
    7403             :                 util = uclamp_rq_util_with(rq, util, p);
    7404             : 
    7405             :         dl_util = cpu_util_dl(rq);
    7406             : 
    7407             :         /*
    7408             :          * For frequency selection we do not make cpu_util_dl() a permanent part
    7409             :          * of this sum because we want to use cpu_bw_dl() later on, but we need
    7410             :          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
    7411             :          * that we select f_max when there is no idle time.
    7412             :          *
    7413             :          * NOTE: numerical errors or stop class might cause us to not quite hit
    7414             :          * saturation when we should -- something for later.
    7415             :          */
    7416             :         if (util + dl_util >= max)
    7417             :                 return max;
    7418             : 
    7419             :         /*
    7420             :          * OTOH, for energy computation we need the estimated running time, so
    7421             :          * include util_dl and ignore dl_bw.
    7422             :          */
    7423             :         if (type == ENERGY_UTIL)
    7424             :                 util += dl_util;
    7425             : 
    7426             :         /*
    7427             :          * There is still idle time; further improve the number by using the
    7428             :          * irq metric. Because IRQ/steal time is hidden from the task clock we
    7429             :          * need to scale the task numbers:
    7430             :          *
    7431             :          *              max - irq
    7432             :          *   U' = irq + --------- * U
    7433             :          *                 max
    7434             :          */
    7435             :         util = scale_irq_capacity(util, irq, max);
    7436             :         util += irq;
    7437             : 
    7438             :         /*
    7439             :          * Bandwidth required by DEADLINE must always be granted while, for
    7440             :          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
    7441             :          * to gracefully reduce the frequency when no tasks show up for longer
    7442             :          * periods of time.
    7443             :          *
    7444             :          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
    7445             :          * bw_dl as requested freq. However, cpufreq is not yet ready for such
    7446             :          * an interface. So, we only do the latter for now.
    7447             :          */
    7448             :         if (type == FREQUENCY_UTIL)
    7449             :                 util += cpu_bw_dl(rq);
    7450             : 
    7451             :         return min(max, util);
    7452             : }
    7453             : 
    7454             : unsigned long sched_cpu_util(int cpu)
    7455             : {
    7456             :         return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
    7457             : }
    7458             : #endif /* CONFIG_SMP */
    7459             : 
    7460             : /**
    7461             :  * find_process_by_pid - find a process with a matching PID value.
    7462             :  * @pid: the pid in question.
    7463             :  *
    7464             :  * The task of @pid, if found. %NULL otherwise.
    7465             :  */
    7466             : static struct task_struct *find_process_by_pid(pid_t pid)
    7467             : {
    7468           0 :         return pid ? find_task_by_vpid(pid) : current;
    7469             : }
    7470             : 
    7471             : /*
    7472             :  * sched_setparam() passes in -1 for its policy, to let the functions
    7473             :  * it calls know not to change it.
    7474             :  */
    7475             : #define SETPARAM_POLICY -1
    7476             : 
    7477           0 : static void __setscheduler_params(struct task_struct *p,
    7478             :                 const struct sched_attr *attr)
    7479             : {
    7480           0 :         int policy = attr->sched_policy;
    7481             : 
    7482           0 :         if (policy == SETPARAM_POLICY)
    7483           0 :                 policy = p->policy;
    7484             : 
    7485           0 :         p->policy = policy;
    7486             : 
    7487           0 :         if (dl_policy(policy))
    7488           0 :                 __setparam_dl(p, attr);
    7489           0 :         else if (fair_policy(policy))
    7490           0 :                 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
    7491             : 
    7492             :         /*
    7493             :          * __sched_setscheduler() ensures attr->sched_priority == 0 when
    7494             :          * !rt_policy. Always setting this ensures that things like
    7495             :          * getparam()/getattr() don't report silly values for !rt tasks.
    7496             :          */
    7497           0 :         p->rt_priority = attr->sched_priority;
    7498           0 :         p->normal_prio = normal_prio(p);
    7499           0 :         set_load_weight(p, true);
    7500           0 : }
    7501             : 
    7502             : /*
    7503             :  * Check the target process has a UID that matches the current process's:
    7504             :  */
    7505             : static bool check_same_owner(struct task_struct *p)
    7506             : {
    7507           0 :         const struct cred *cred = current_cred(), *pcred;
    7508             :         bool match;
    7509             : 
    7510             :         rcu_read_lock();
    7511           0 :         pcred = __task_cred(p);
    7512           0 :         match = (uid_eq(cred->euid, pcred->euid) ||
    7513           0 :                  uid_eq(cred->euid, pcred->uid));
    7514             :         rcu_read_unlock();
    7515             :         return match;
    7516             : }
    7517             : 
    7518             : /*
    7519             :  * Allow unprivileged RT tasks to decrease priority.
    7520             :  * Only issue a capable test if needed and only once to avoid an audit
    7521             :  * event on permitted non-privileged operations:
    7522             :  */
    7523           0 : static int user_check_sched_setscheduler(struct task_struct *p,
    7524             :                                          const struct sched_attr *attr,
    7525             :                                          int policy, int reset_on_fork)
    7526             : {
    7527           0 :         if (fair_policy(policy)) {
    7528           0 :                 if (attr->sched_nice < task_nice(p) &&
    7529           0 :                     !is_nice_reduction(p, attr->sched_nice))
    7530             :                         goto req_priv;
    7531             :         }
    7532             : 
    7533           0 :         if (rt_policy(policy)) {
    7534           0 :                 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
    7535             : 
    7536             :                 /* Can't set/change the rt policy: */
    7537           0 :                 if (policy != p->policy && !rlim_rtprio)
    7538             :                         goto req_priv;
    7539             : 
    7540             :                 /* Can't increase priority: */
    7541           0 :                 if (attr->sched_priority > p->rt_priority &&
    7542           0 :                     attr->sched_priority > rlim_rtprio)
    7543             :                         goto req_priv;
    7544             :         }
    7545             : 
    7546             :         /*
    7547             :          * Can't set/change SCHED_DEADLINE policy at all for now
    7548             :          * (safest behavior); in the future we would like to allow
    7549             :          * unprivileged DL tasks to increase their relative deadline
    7550             :          * or reduce their runtime (both ways reducing utilization)
    7551             :          */
    7552           0 :         if (dl_policy(policy))
    7553             :                 goto req_priv;
    7554             : 
    7555             :         /*
    7556             :          * Treat SCHED_IDLE as nice 20. Only allow a switch to
    7557             :          * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
    7558             :          */
    7559           0 :         if (task_has_idle_policy(p) && !idle_policy(policy)) {
    7560           0 :                 if (!is_nice_reduction(p, task_nice(p)))
    7561             :                         goto req_priv;
    7562             :         }
    7563             : 
    7564             :         /* Can't change other user's priorities: */
    7565           0 :         if (!check_same_owner(p))
    7566             :                 goto req_priv;
    7567             : 
    7568             :         /* Normal users shall not reset the sched_reset_on_fork flag: */
    7569           0 :         if (p->sched_reset_on_fork && !reset_on_fork)
    7570             :                 goto req_priv;
    7571             : 
    7572             :         return 0;
    7573             : 
    7574             : req_priv:
    7575           0 :         if (!capable(CAP_SYS_NICE))
    7576             :                 return -EPERM;
    7577             : 
    7578             :         return 0;
    7579             : }
    7580             : 
    7581         380 : static int __sched_setscheduler(struct task_struct *p,
    7582             :                                 const struct sched_attr *attr,
    7583             :                                 bool user, bool pi)
    7584             : {
    7585         380 :         int oldpolicy = -1, policy = attr->sched_policy;
    7586             :         int retval, oldprio, newprio, queued, running;
    7587             :         const struct sched_class *prev_class;
    7588             :         struct balance_callback *head;
    7589             :         struct rq_flags rf;
    7590             :         int reset_on_fork;
    7591         380 :         int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
    7592             :         struct rq *rq;
    7593             : 
    7594             :         /* The pi code expects interrupts enabled */
    7595         760 :         BUG_ON(pi && in_interrupt());
    7596             : recheck:
    7597             :         /* Double check policy once rq lock held: */
    7598         380 :         if (policy < 0) {
    7599           0 :                 reset_on_fork = p->sched_reset_on_fork;
    7600           0 :                 policy = oldpolicy = p->policy;
    7601             :         } else {
    7602         380 :                 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
    7603             : 
    7604         380 :                 if (!valid_policy(policy))
    7605             :                         return -EINVAL;
    7606             :         }
    7607             : 
    7608         380 :         if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
    7609             :                 return -EINVAL;
    7610             : 
    7611             :         /*
    7612             :          * Valid priorities for SCHED_FIFO and SCHED_RR are
    7613             :          * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
    7614             :          * SCHED_BATCH and SCHED_IDLE is 0.
    7615             :          */
    7616         380 :         if (attr->sched_priority > MAX_RT_PRIO-1)
    7617             :                 return -EINVAL;
    7618         760 :         if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
    7619         380 :             (rt_policy(policy) != (attr->sched_priority != 0)))
    7620             :                 return -EINVAL;
    7621             : 
    7622         380 :         if (user) {
    7623           0 :                 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
    7624           0 :                 if (retval)
    7625             :                         return retval;
    7626             : 
    7627           0 :                 if (attr->sched_flags & SCHED_FLAG_SUGOV)
    7628             :                         return -EINVAL;
    7629             : 
    7630           0 :                 retval = security_task_setscheduler(p);
    7631           0 :                 if (retval)
    7632             :                         return retval;
    7633             :         }
    7634             : 
    7635             :         /* Update task specific "requested" clamps */
    7636         380 :         if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
    7637             :                 retval = uclamp_validate(p, attr);
    7638             :                 if (retval)
    7639             :                         return retval;
    7640             :         }
    7641             : 
    7642             :         if (pi)
    7643             :                 cpuset_read_lock();
    7644             : 
    7645             :         /*
    7646             :          * Make sure no PI-waiters arrive (or leave) while we are
    7647             :          * changing the priority of the task:
    7648             :          *
    7649             :          * To be able to change p->policy safely, the appropriate
    7650             :          * runqueue lock must be held.
    7651             :          */
    7652         380 :         rq = task_rq_lock(p, &rf);
    7653         380 :         update_rq_clock(rq);
    7654             : 
    7655             :         /*
    7656             :          * Changing the policy of the stop threads its a very bad idea:
    7657             :          */
    7658         380 :         if (p == rq->stop) {
    7659             :                 retval = -EINVAL;
    7660             :                 goto unlock;
    7661             :         }
    7662             : 
    7663             :         /*
    7664             :          * If not changing anything there's no need to proceed further,
    7665             :          * but store a possible modification of reset_on_fork.
    7666             :          */
    7667         380 :         if (unlikely(policy == p->policy)) {
    7668         760 :                 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
    7669             :                         goto change;
    7670         380 :                 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
    7671             :                         goto change;
    7672         380 :                 if (dl_policy(policy) && dl_param_changed(p, attr))
    7673             :                         goto change;
    7674         380 :                 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
    7675             :                         goto change;
    7676             : 
    7677         380 :                 p->sched_reset_on_fork = reset_on_fork;
    7678         380 :                 retval = 0;
    7679         380 :                 goto unlock;
    7680             :         }
    7681             : change:
    7682             : 
    7683             :         if (user) {
    7684             : #ifdef CONFIG_RT_GROUP_SCHED
    7685             :                 /*
    7686             :                  * Do not allow realtime tasks into groups that have no runtime
    7687             :                  * assigned.
    7688             :                  */
    7689             :                 if (rt_bandwidth_enabled() && rt_policy(policy) &&
    7690             :                                 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
    7691             :                                 !task_group_is_autogroup(task_group(p))) {
    7692             :                         retval = -EPERM;
    7693             :                         goto unlock;
    7694             :                 }
    7695             : #endif
    7696             : #ifdef CONFIG_SMP
    7697             :                 if (dl_bandwidth_enabled() && dl_policy(policy) &&
    7698             :                                 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
    7699             :                         cpumask_t *span = rq->rd->span;
    7700             : 
    7701             :                         /*
    7702             :                          * Don't allow tasks with an affinity mask smaller than
    7703             :                          * the entire root_domain to become SCHED_DEADLINE. We
    7704             :                          * will also fail if there's no bandwidth available.
    7705             :                          */
    7706             :                         if (!cpumask_subset(span, p->cpus_ptr) ||
    7707             :                             rq->rd->dl_bw.bw == 0) {
    7708             :                                 retval = -EPERM;
    7709             :                                 goto unlock;
    7710             :                         }
    7711             :                 }
    7712             : #endif
    7713             :         }
    7714             : 
    7715             :         /* Re-check policy now with rq lock held: */
    7716           0 :         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
    7717           0 :                 policy = oldpolicy = -1;
    7718           0 :                 task_rq_unlock(rq, p, &rf);
    7719             :                 if (pi)
    7720             :                         cpuset_read_unlock();
    7721             :                 goto recheck;
    7722             :         }
    7723             : 
    7724             :         /*
    7725             :          * If setscheduling to SCHED_DEADLINE (or changing the parameters
    7726             :          * of a SCHED_DEADLINE task) we need to check if enough bandwidth
    7727             :          * is available.
    7728             :          */
    7729           0 :         if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
    7730             :                 retval = -EBUSY;
    7731             :                 goto unlock;
    7732             :         }
    7733             : 
    7734           0 :         p->sched_reset_on_fork = reset_on_fork;
    7735           0 :         oldprio = p->prio;
    7736             : 
    7737           0 :         newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
    7738           0 :         if (pi) {
    7739             :                 /*
    7740             :                  * Take priority boosted tasks into account. If the new
    7741             :                  * effective priority is unchanged, we just store the new
    7742             :                  * normal parameters and do not touch the scheduler class and
    7743             :                  * the runqueue. This will be done when the task deboost
    7744             :                  * itself.
    7745             :                  */
    7746           0 :                 newprio = rt_effective_prio(p, newprio);
    7747           0 :                 if (newprio == oldprio)
    7748           0 :                         queue_flags &= ~DEQUEUE_MOVE;
    7749             :         }
    7750             : 
    7751           0 :         queued = task_on_rq_queued(p);
    7752           0 :         running = task_current(rq, p);
    7753           0 :         if (queued)
    7754           0 :                 dequeue_task(rq, p, queue_flags);
    7755           0 :         if (running)
    7756           0 :                 put_prev_task(rq, p);
    7757             : 
    7758           0 :         prev_class = p->sched_class;
    7759             : 
    7760           0 :         if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
    7761           0 :                 __setscheduler_params(p, attr);
    7762           0 :                 __setscheduler_prio(p, newprio);
    7763             :         }
    7764           0 :         __setscheduler_uclamp(p, attr);
    7765             : 
    7766           0 :         if (queued) {
    7767             :                 /*
    7768             :                  * We enqueue to tail when the priority of a task is
    7769             :                  * increased (user space view).
    7770             :                  */
    7771           0 :                 if (oldprio < p->prio)
    7772           0 :                         queue_flags |= ENQUEUE_HEAD;
    7773             : 
    7774           0 :                 enqueue_task(rq, p, queue_flags);
    7775             :         }
    7776           0 :         if (running)
    7777             :                 set_next_task(rq, p);
    7778             : 
    7779           0 :         check_class_changed(rq, p, prev_class, oldprio);
    7780             : 
    7781             :         /* Avoid rq from going away on us: */
    7782           0 :         preempt_disable();
    7783           0 :         head = splice_balance_callbacks(rq);
    7784           0 :         task_rq_unlock(rq, p, &rf);
    7785             : 
    7786           0 :         if (pi) {
    7787             :                 cpuset_read_unlock();
    7788           0 :                 rt_mutex_adjust_pi(p);
    7789             :         }
    7790             : 
    7791             :         /* Run balance callbacks after we've adjusted the PI chain: */
    7792           0 :         balance_callbacks(rq, head);
    7793           0 :         preempt_enable();
    7794             : 
    7795           0 :         return 0;
    7796             : 
    7797             : unlock:
    7798         760 :         task_rq_unlock(rq, p, &rf);
    7799             :         if (pi)
    7800             :                 cpuset_read_unlock();
    7801         380 :         return retval;
    7802             : }
    7803             : 
    7804         380 : static int _sched_setscheduler(struct task_struct *p, int policy,
    7805             :                                const struct sched_param *param, bool check)
    7806             : {
    7807        1140 :         struct sched_attr attr = {
    7808             :                 .sched_policy   = policy,
    7809         380 :                 .sched_priority = param->sched_priority,
    7810         380 :                 .sched_nice     = PRIO_TO_NICE(p->static_prio),
    7811             :         };
    7812             : 
    7813             :         /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
    7814         380 :         if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
    7815           0 :                 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    7816           0 :                 policy &= ~SCHED_RESET_ON_FORK;
    7817           0 :                 attr.sched_policy = policy;
    7818             :         }
    7819             : 
    7820         380 :         return __sched_setscheduler(p, &attr, check, true);
    7821             : }
    7822             : /**
    7823             :  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
    7824             :  * @p: the task in question.
    7825             :  * @policy: new policy.
    7826             :  * @param: structure containing the new RT priority.
    7827             :  *
    7828             :  * Use sched_set_fifo(), read its comment.
    7829             :  *
    7830             :  * Return: 0 on success. An error code otherwise.
    7831             :  *
    7832             :  * NOTE that the task may be already dead.
    7833             :  */
    7834           0 : int sched_setscheduler(struct task_struct *p, int policy,
    7835             :                        const struct sched_param *param)
    7836             : {
    7837           0 :         return _sched_setscheduler(p, policy, param, true);
    7838             : }
    7839             : 
    7840           0 : int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
    7841             : {
    7842           0 :         return __sched_setscheduler(p, attr, true, true);
    7843             : }
    7844             : 
    7845           0 : int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
    7846             : {
    7847           0 :         return __sched_setscheduler(p, attr, false, true);
    7848             : }
    7849             : EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
    7850             : 
    7851             : /**
    7852             :  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
    7853             :  * @p: the task in question.
    7854             :  * @policy: new policy.
    7855             :  * @param: structure containing the new RT priority.
    7856             :  *
    7857             :  * Just like sched_setscheduler, only don't bother checking if the
    7858             :  * current context has permission.  For example, this is needed in
    7859             :  * stop_machine(): we create temporary high priority worker threads,
    7860             :  * but our caller might not have that capability.
    7861             :  *
    7862             :  * Return: 0 on success. An error code otherwise.
    7863             :  */
    7864         380 : int sched_setscheduler_nocheck(struct task_struct *p, int policy,
    7865             :                                const struct sched_param *param)
    7866             : {
    7867         380 :         return _sched_setscheduler(p, policy, param, false);
    7868             : }
    7869             : 
    7870             : /*
    7871             :  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
    7872             :  * incapable of resource management, which is the one thing an OS really should
    7873             :  * be doing.
    7874             :  *
    7875             :  * This is of course the reason it is limited to privileged users only.
    7876             :  *
    7877             :  * Worse still; it is fundamentally impossible to compose static priority
    7878             :  * workloads. You cannot take two correctly working static prio workloads
    7879             :  * and smash them together and still expect them to work.
    7880             :  *
    7881             :  * For this reason 'all' FIFO tasks the kernel creates are basically at:
    7882             :  *
    7883             :  *   MAX_RT_PRIO / 2
    7884             :  *
    7885             :  * The administrator _MUST_ configure the system, the kernel simply doesn't
    7886             :  * know enough information to make a sensible choice.
    7887             :  */
    7888           0 : void sched_set_fifo(struct task_struct *p)
    7889             : {
    7890           0 :         struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
    7891           0 :         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
    7892           0 : }
    7893             : EXPORT_SYMBOL_GPL(sched_set_fifo);
    7894             : 
    7895             : /*
    7896             :  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
    7897             :  */
    7898           0 : void sched_set_fifo_low(struct task_struct *p)
    7899             : {
    7900           0 :         struct sched_param sp = { .sched_priority = 1 };
    7901           0 :         WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
    7902           0 : }
    7903             : EXPORT_SYMBOL_GPL(sched_set_fifo_low);
    7904             : 
    7905           0 : void sched_set_normal(struct task_struct *p, int nice)
    7906             : {
    7907           0 :         struct sched_attr attr = {
    7908             :                 .sched_policy = SCHED_NORMAL,
    7909             :                 .sched_nice = nice,
    7910             :         };
    7911           0 :         WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
    7912           0 : }
    7913             : EXPORT_SYMBOL_GPL(sched_set_normal);
    7914             : 
    7915             : static int
    7916           0 : do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
    7917             : {
    7918             :         struct sched_param lparam;
    7919             :         struct task_struct *p;
    7920             :         int retval;
    7921             : 
    7922           0 :         if (!param || pid < 0)
    7923             :                 return -EINVAL;
    7924           0 :         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
    7925             :                 return -EFAULT;
    7926             : 
    7927             :         rcu_read_lock();
    7928           0 :         retval = -ESRCH;
    7929           0 :         p = find_process_by_pid(pid);
    7930           0 :         if (likely(p))
    7931             :                 get_task_struct(p);
    7932             :         rcu_read_unlock();
    7933             : 
    7934           0 :         if (likely(p)) {
    7935           0 :                 retval = sched_setscheduler(p, policy, &lparam);
    7936           0 :                 put_task_struct(p);
    7937             :         }
    7938             : 
    7939             :         return retval;
    7940             : }
    7941             : 
    7942             : /*
    7943             :  * Mimics kernel/events/core.c perf_copy_attr().
    7944             :  */
    7945           0 : static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
    7946             : {
    7947             :         u32 size;
    7948             :         int ret;
    7949             : 
    7950             :         /* Zero the full structure, so that a short copy will be nice: */
    7951           0 :         memset(attr, 0, sizeof(*attr));
    7952             : 
    7953           0 :         ret = get_user(size, &uattr->size);
    7954           0 :         if (ret)
    7955             :                 return ret;
    7956             : 
    7957             :         /* ABI compatibility quirk: */
    7958           0 :         if (!size)
    7959           0 :                 size = SCHED_ATTR_SIZE_VER0;
    7960           0 :         if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
    7961             :                 goto err_size;
    7962             : 
    7963           0 :         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
    7964           0 :         if (ret) {
    7965           0 :                 if (ret == -E2BIG)
    7966             :                         goto err_size;
    7967             :                 return ret;
    7968             :         }
    7969             : 
    7970           0 :         if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
    7971             :             size < SCHED_ATTR_SIZE_VER1)
    7972             :                 return -EINVAL;
    7973             : 
    7974             :         /*
    7975             :          * XXX: Do we want to be lenient like existing syscalls; or do we want
    7976             :          * to be strict and return an error on out-of-bounds values?
    7977             :          */
    7978           0 :         attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
    7979             : 
    7980           0 :         return 0;
    7981             : 
    7982             : err_size:
    7983           0 :         put_user(sizeof(*attr), &uattr->size);
    7984             :         return -E2BIG;
    7985             : }
    7986             : 
    7987           0 : static void get_params(struct task_struct *p, struct sched_attr *attr)
    7988             : {
    7989           0 :         if (task_has_dl_policy(p))
    7990           0 :                 __getparam_dl(p, attr);
    7991           0 :         else if (task_has_rt_policy(p))
    7992           0 :                 attr->sched_priority = p->rt_priority;
    7993             :         else
    7994           0 :                 attr->sched_nice = task_nice(p);
    7995           0 : }
    7996             : 
    7997             : /**
    7998             :  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
    7999             :  * @pid: the pid in question.
    8000             :  * @policy: new policy.
    8001             :  * @param: structure containing the new RT priority.
    8002             :  *
    8003             :  * Return: 0 on success. An error code otherwise.
    8004             :  */
    8005           0 : SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
    8006             : {
    8007           0 :         if (policy < 0)
    8008             :                 return -EINVAL;
    8009             : 
    8010           0 :         return do_sched_setscheduler(pid, policy, param);
    8011             : }
    8012             : 
    8013             : /**
    8014             :  * sys_sched_setparam - set/change the RT priority of a thread
    8015             :  * @pid: the pid in question.
    8016             :  * @param: structure containing the new RT priority.
    8017             :  *
    8018             :  * Return: 0 on success. An error code otherwise.
    8019             :  */
    8020           0 : SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
    8021             : {
    8022           0 :         return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
    8023             : }
    8024             : 
    8025             : /**
    8026             :  * sys_sched_setattr - same as above, but with extended sched_attr
    8027             :  * @pid: the pid in question.
    8028             :  * @uattr: structure containing the extended parameters.
    8029             :  * @flags: for future extension.
    8030             :  */
    8031           0 : SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
    8032             :                                unsigned int, flags)
    8033             : {
    8034             :         struct sched_attr attr;
    8035             :         struct task_struct *p;
    8036             :         int retval;
    8037             : 
    8038           0 :         if (!uattr || pid < 0 || flags)
    8039             :                 return -EINVAL;
    8040             : 
    8041           0 :         retval = sched_copy_attr(uattr, &attr);
    8042           0 :         if (retval)
    8043           0 :                 return retval;
    8044             : 
    8045           0 :         if ((int)attr.sched_policy < 0)
    8046             :                 return -EINVAL;
    8047           0 :         if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
    8048           0 :                 attr.sched_policy = SETPARAM_POLICY;
    8049             : 
    8050             :         rcu_read_lock();
    8051           0 :         retval = -ESRCH;
    8052           0 :         p = find_process_by_pid(pid);
    8053           0 :         if (likely(p))
    8054             :                 get_task_struct(p);
    8055             :         rcu_read_unlock();
    8056             : 
    8057           0 :         if (likely(p)) {
    8058           0 :                 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
    8059           0 :                         get_params(p, &attr);
    8060           0 :                 retval = sched_setattr(p, &attr);
    8061           0 :                 put_task_struct(p);
    8062             :         }
    8063             : 
    8064           0 :         return retval;
    8065             : }
    8066             : 
    8067             : /**
    8068             :  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
    8069             :  * @pid: the pid in question.
    8070             :  *
    8071             :  * Return: On success, the policy of the thread. Otherwise, a negative error
    8072             :  * code.
    8073             :  */
    8074           0 : SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
    8075             : {
    8076             :         struct task_struct *p;
    8077             :         int retval;
    8078             : 
    8079           0 :         if (pid < 0)
    8080             :                 return -EINVAL;
    8081             : 
    8082           0 :         retval = -ESRCH;
    8083             :         rcu_read_lock();
    8084           0 :         p = find_process_by_pid(pid);
    8085           0 :         if (p) {
    8086           0 :                 retval = security_task_getscheduler(p);
    8087             :                 if (!retval)
    8088           0 :                         retval = p->policy
    8089           0 :                                 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
    8090             :         }
    8091             :         rcu_read_unlock();
    8092           0 :         return retval;
    8093             : }
    8094             : 
    8095             : /**
    8096             :  * sys_sched_getparam - get the RT priority of a thread
    8097             :  * @pid: the pid in question.
    8098             :  * @param: structure containing the RT priority.
    8099             :  *
    8100             :  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
    8101             :  * code.
    8102             :  */
    8103           0 : SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
    8104             : {
    8105           0 :         struct sched_param lp = { .sched_priority = 0 };
    8106             :         struct task_struct *p;
    8107             :         int retval;
    8108             : 
    8109           0 :         if (!param || pid < 0)
    8110             :                 return -EINVAL;
    8111             : 
    8112             :         rcu_read_lock();
    8113           0 :         p = find_process_by_pid(pid);
    8114           0 :         retval = -ESRCH;
    8115           0 :         if (!p)
    8116             :                 goto out_unlock;
    8117             : 
    8118           0 :         retval = security_task_getscheduler(p);
    8119             :         if (retval)
    8120             :                 goto out_unlock;
    8121             : 
    8122           0 :         if (task_has_rt_policy(p))
    8123           0 :                 lp.sched_priority = p->rt_priority;
    8124           0 :         rcu_read_unlock();
    8125             : 
    8126             :         /*
    8127             :          * This one might sleep, we cannot do it with a spinlock held ...
    8128             :          */
    8129           0 :         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
    8130             : 
    8131           0 :         return retval;
    8132             : 
    8133             : out_unlock:
    8134             :         rcu_read_unlock();
    8135           0 :         return retval;
    8136             : }
    8137             : 
    8138             : /*
    8139             :  * Copy the kernel size attribute structure (which might be larger
    8140             :  * than what user-space knows about) to user-space.
    8141             :  *
    8142             :  * Note that all cases are valid: user-space buffer can be larger or
    8143             :  * smaller than the kernel-space buffer. The usual case is that both
    8144             :  * have the same size.
    8145             :  */
    8146             : static int
    8147           0 : sched_attr_copy_to_user(struct sched_attr __user *uattr,
    8148             :                         struct sched_attr *kattr,
    8149             :                         unsigned int usize)
    8150             : {
    8151           0 :         unsigned int ksize = sizeof(*kattr);
    8152             : 
    8153           0 :         if (!access_ok(uattr, usize))
    8154             :                 return -EFAULT;
    8155             : 
    8156             :         /*
    8157             :          * sched_getattr() ABI forwards and backwards compatibility:
    8158             :          *
    8159             :          * If usize == ksize then we just copy everything to user-space and all is good.
    8160             :          *
    8161             :          * If usize < ksize then we only copy as much as user-space has space for,
    8162             :          * this keeps ABI compatibility as well. We skip the rest.
    8163             :          *
    8164             :          * If usize > ksize then user-space is using a newer version of the ABI,
    8165             :          * which part the kernel doesn't know about. Just ignore it - tooling can
    8166             :          * detect the kernel's knowledge of attributes from the attr->size value
    8167             :          * which is set to ksize in this case.
    8168             :          */
    8169           0 :         kattr->size = min(usize, ksize);
    8170             : 
    8171           0 :         if (copy_to_user(uattr, kattr, kattr->size))
    8172             :                 return -EFAULT;
    8173             : 
    8174           0 :         return 0;
    8175             : }
    8176             : 
    8177             : /**
    8178             :  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
    8179             :  * @pid: the pid in question.
    8180             :  * @uattr: structure containing the extended parameters.
    8181             :  * @usize: sizeof(attr) for fwd/bwd comp.
    8182             :  * @flags: for future extension.
    8183             :  */
    8184           0 : SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
    8185             :                 unsigned int, usize, unsigned int, flags)
    8186             : {
    8187           0 :         struct sched_attr kattr = { };
    8188             :         struct task_struct *p;
    8189             :         int retval;
    8190             : 
    8191           0 :         if (!uattr || pid < 0 || usize > PAGE_SIZE ||
    8192           0 :             usize < SCHED_ATTR_SIZE_VER0 || flags)
    8193             :                 return -EINVAL;
    8194             : 
    8195             :         rcu_read_lock();
    8196           0 :         p = find_process_by_pid(pid);
    8197           0 :         retval = -ESRCH;
    8198           0 :         if (!p)
    8199             :                 goto out_unlock;
    8200             : 
    8201           0 :         retval = security_task_getscheduler(p);
    8202             :         if (retval)
    8203             :                 goto out_unlock;
    8204             : 
    8205           0 :         kattr.sched_policy = p->policy;
    8206           0 :         if (p->sched_reset_on_fork)
    8207           0 :                 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
    8208           0 :         get_params(p, &kattr);
    8209           0 :         kattr.sched_flags &= SCHED_FLAG_ALL;
    8210             : 
    8211             : #ifdef CONFIG_UCLAMP_TASK
    8212             :         /*
    8213             :          * This could race with another potential updater, but this is fine
    8214             :          * because it'll correctly read the old or the new value. We don't need
    8215             :          * to guarantee who wins the race as long as it doesn't return garbage.
    8216             :          */
    8217             :         kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
    8218             :         kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
    8219             : #endif
    8220             : 
    8221             :         rcu_read_unlock();
    8222             : 
    8223           0 :         return sched_attr_copy_to_user(uattr, &kattr, usize);
    8224             : 
    8225             : out_unlock:
    8226             :         rcu_read_unlock();
    8227           0 :         return retval;
    8228             : }
    8229             : 
    8230             : #ifdef CONFIG_SMP
    8231             : int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
    8232             : {
    8233             :         int ret = 0;
    8234             : 
    8235             :         /*
    8236             :          * If the task isn't a deadline task or admission control is
    8237             :          * disabled then we don't care about affinity changes.
    8238             :          */
    8239             :         if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
    8240             :                 return 0;
    8241             : 
    8242             :         /*
    8243             :          * Since bandwidth control happens on root_domain basis,
    8244             :          * if admission test is enabled, we only admit -deadline
    8245             :          * tasks allowed to run on all the CPUs in the task's
    8246             :          * root_domain.
    8247             :          */
    8248             :         rcu_read_lock();
    8249             :         if (!cpumask_subset(task_rq(p)->rd->span, mask))
    8250             :                 ret = -EBUSY;
    8251             :         rcu_read_unlock();
    8252             :         return ret;
    8253             : }
    8254             : #endif
    8255             : 
    8256             : static int
    8257           0 : __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
    8258             : {
    8259             :         int retval;
    8260             :         cpumask_var_t cpus_allowed, new_mask;
    8261             : 
    8262           0 :         if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
    8263             :                 return -ENOMEM;
    8264             : 
    8265           0 :         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
    8266             :                 retval = -ENOMEM;
    8267             :                 goto out_free_cpus_allowed;
    8268             :         }
    8269             : 
    8270           0 :         cpuset_cpus_allowed(p, cpus_allowed);
    8271           0 :         cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
    8272             : 
    8273           0 :         ctx->new_mask = new_mask;
    8274           0 :         ctx->flags |= SCA_CHECK;
    8275             : 
    8276           0 :         retval = dl_task_check_affinity(p, new_mask);
    8277             :         if (retval)
    8278             :                 goto out_free_new_mask;
    8279             : 
    8280           0 :         retval = __set_cpus_allowed_ptr(p, ctx);
    8281           0 :         if (retval)
    8282             :                 goto out_free_new_mask;
    8283             : 
    8284           0 :         cpuset_cpus_allowed(p, cpus_allowed);
    8285           0 :         if (!cpumask_subset(new_mask, cpus_allowed)) {
    8286             :                 /*
    8287             :                  * We must have raced with a concurrent cpuset update.
    8288             :                  * Just reset the cpumask to the cpuset's cpus_allowed.
    8289             :                  */
    8290           0 :                 cpumask_copy(new_mask, cpus_allowed);
    8291             : 
    8292             :                 /*
    8293             :                  * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
    8294             :                  * will restore the previous user_cpus_ptr value.
    8295             :                  *
    8296             :                  * In the unlikely event a previous user_cpus_ptr exists,
    8297             :                  * we need to further restrict the mask to what is allowed
    8298             :                  * by that old user_cpus_ptr.
    8299             :                  */
    8300           0 :                 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
    8301           0 :                         bool empty = !cpumask_and(new_mask, new_mask,
    8302           0 :                                                   ctx->user_mask);
    8303             : 
    8304           0 :                         if (WARN_ON_ONCE(empty))
    8305             :                                 cpumask_copy(new_mask, cpus_allowed);
    8306             :                 }
    8307           0 :                 __set_cpus_allowed_ptr(p, ctx);
    8308             :                 retval = -EINVAL;
    8309             :         }
    8310             : 
    8311             : out_free_new_mask:
    8312           0 :         free_cpumask_var(new_mask);
    8313             : out_free_cpus_allowed:
    8314           0 :         free_cpumask_var(cpus_allowed);
    8315             :         return retval;
    8316             : }
    8317             : 
    8318           0 : long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
    8319             : {
    8320             :         struct affinity_context ac;
    8321             :         struct cpumask *user_mask;
    8322             :         struct task_struct *p;
    8323             :         int retval;
    8324             : 
    8325             :         rcu_read_lock();
    8326             : 
    8327           0 :         p = find_process_by_pid(pid);
    8328           0 :         if (!p) {
    8329             :                 rcu_read_unlock();
    8330           0 :                 return -ESRCH;
    8331             :         }
    8332             : 
    8333             :         /* Prevent p going away */
    8334           0 :         get_task_struct(p);
    8335             :         rcu_read_unlock();
    8336             : 
    8337           0 :         if (p->flags & PF_NO_SETAFFINITY) {
    8338             :                 retval = -EINVAL;
    8339             :                 goto out_put_task;
    8340             :         }
    8341             : 
    8342           0 :         if (!check_same_owner(p)) {
    8343             :                 rcu_read_lock();
    8344           0 :                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
    8345             :                         rcu_read_unlock();
    8346           0 :                         retval = -EPERM;
    8347           0 :                         goto out_put_task;
    8348             :                 }
    8349             :                 rcu_read_unlock();
    8350             :         }
    8351             : 
    8352           0 :         retval = security_task_setscheduler(p);
    8353           0 :         if (retval)
    8354             :                 goto out_put_task;
    8355             : 
    8356             :         /*
    8357             :          * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
    8358             :          * alloc_user_cpus_ptr() returns NULL.
    8359             :          */
    8360           0 :         user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
    8361             :         if (user_mask) {
    8362             :                 cpumask_copy(user_mask, in_mask);
    8363             :         } else if (IS_ENABLED(CONFIG_SMP)) {
    8364             :                 retval = -ENOMEM;
    8365             :                 goto out_put_task;
    8366             :         }
    8367             : 
    8368           0 :         ac = (struct affinity_context){
    8369             :                 .new_mask  = in_mask,
    8370             :                 .user_mask = user_mask,
    8371             :                 .flags     = SCA_USER,
    8372             :         };
    8373             : 
    8374           0 :         retval = __sched_setaffinity(p, &ac);
    8375           0 :         kfree(ac.user_mask);
    8376             : 
    8377             : out_put_task:
    8378           0 :         put_task_struct(p);
    8379           0 :         return retval;
    8380             : }
    8381             : 
    8382           0 : static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
    8383             :                              struct cpumask *new_mask)
    8384             : {
    8385           0 :         if (len < cpumask_size())
    8386             :                 cpumask_clear(new_mask);
    8387           0 :         else if (len > cpumask_size())
    8388           0 :                 len = cpumask_size();
    8389             : 
    8390           0 :         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
    8391             : }
    8392             : 
    8393             : /**
    8394             :  * sys_sched_setaffinity - set the CPU affinity of a process
    8395             :  * @pid: pid of the process
    8396             :  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
    8397             :  * @user_mask_ptr: user-space pointer to the new CPU mask
    8398             :  *
    8399             :  * Return: 0 on success. An error code otherwise.
    8400             :  */
    8401           0 : SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
    8402             :                 unsigned long __user *, user_mask_ptr)
    8403             : {
    8404             :         cpumask_var_t new_mask;
    8405             :         int retval;
    8406             : 
    8407           0 :         if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
    8408             :                 return -ENOMEM;
    8409             : 
    8410           0 :         retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
    8411           0 :         if (retval == 0)
    8412           0 :                 retval = sched_setaffinity(pid, new_mask);
    8413           0 :         free_cpumask_var(new_mask);
    8414           0 :         return retval;
    8415             : }
    8416             : 
    8417           0 : long sched_getaffinity(pid_t pid, struct cpumask *mask)
    8418             : {
    8419             :         struct task_struct *p;
    8420             :         unsigned long flags;
    8421             :         int retval;
    8422             : 
    8423             :         rcu_read_lock();
    8424             : 
    8425           0 :         retval = -ESRCH;
    8426           0 :         p = find_process_by_pid(pid);
    8427           0 :         if (!p)
    8428             :                 goto out_unlock;
    8429             : 
    8430           0 :         retval = security_task_getscheduler(p);
    8431             :         if (retval)
    8432             :                 goto out_unlock;
    8433             : 
    8434           0 :         raw_spin_lock_irqsave(&p->pi_lock, flags);
    8435           0 :         cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
    8436           0 :         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
    8437             : 
    8438             : out_unlock:
    8439             :         rcu_read_unlock();
    8440             : 
    8441           0 :         return retval;
    8442             : }
    8443             : 
    8444             : /**
    8445             :  * sys_sched_getaffinity - get the CPU affinity of a process
    8446             :  * @pid: pid of the process
    8447             :  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
    8448             :  * @user_mask_ptr: user-space pointer to hold the current CPU mask
    8449             :  *
    8450             :  * Return: size of CPU mask copied to user_mask_ptr on success. An
    8451             :  * error code otherwise.
    8452             :  */
    8453           0 : SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
    8454             :                 unsigned long __user *, user_mask_ptr)
    8455             : {
    8456             :         int ret;
    8457             :         cpumask_var_t mask;
    8458             : 
    8459           0 :         if ((len * BITS_PER_BYTE) < nr_cpu_ids)
    8460             :                 return -EINVAL;
    8461           0 :         if (len & (sizeof(unsigned long)-1))
    8462             :                 return -EINVAL;
    8463             : 
    8464           0 :         if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
    8465             :                 return -ENOMEM;
    8466             : 
    8467           0 :         ret = sched_getaffinity(pid, mask);
    8468           0 :         if (ret == 0) {
    8469           0 :                 unsigned int retlen = min(len, cpumask_size());
    8470             : 
    8471           0 :                 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
    8472             :                         ret = -EFAULT;
    8473             :                 else
    8474           0 :                         ret = retlen;
    8475             :         }
    8476           0 :         free_cpumask_var(mask);
    8477             : 
    8478           0 :         return ret;
    8479             : }
    8480             : 
    8481           0 : static void do_sched_yield(void)
    8482             : {
    8483             :         struct rq_flags rf;
    8484             :         struct rq *rq;
    8485             : 
    8486           0 :         rq = this_rq_lock_irq(&rf);
    8487             : 
    8488             :         schedstat_inc(rq->yld_count);
    8489           0 :         current->sched_class->yield_task(rq);
    8490             : 
    8491           0 :         preempt_disable();
    8492           0 :         rq_unlock_irq(rq, &rf);
    8493           0 :         sched_preempt_enable_no_resched();
    8494             : 
    8495           0 :         schedule();
    8496           0 : }
    8497             : 
    8498             : /**
    8499             :  * sys_sched_yield - yield the current processor to other threads.
    8500             :  *
    8501             :  * This function yields the current CPU to other tasks. If there are no
    8502             :  * other threads running on this CPU then this function will return.
    8503             :  *
    8504             :  * Return: 0.
    8505             :  */
    8506           0 : SYSCALL_DEFINE0(sched_yield)
    8507             : {
    8508           0 :         do_sched_yield();
    8509           0 :         return 0;
    8510             : }
    8511             : 
    8512             : #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
    8513       47766 : int __sched __cond_resched(void)
    8514             : {
    8515       47766 :         if (should_resched(0)) {
    8516             :                 preempt_schedule_common();
    8517             :                 return 1;
    8518             :         }
    8519             :         /*
    8520             :          * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
    8521             :          * whether the current CPU is in an RCU read-side critical section,
    8522             :          * so the tick can report quiescent states even for CPUs looping
    8523             :          * in kernel context.  In contrast, in non-preemptible kernels,
    8524             :          * RCU readers leave no in-memory hints, which means that CPU-bound
    8525             :          * processes executing in kernel context might never report an
    8526             :          * RCU quiescent state.  Therefore, the following code causes
    8527             :          * cond_resched() to report a quiescent state, but only when RCU
    8528             :          * is in urgent need of one.
    8529             :          */
    8530             : #ifndef CONFIG_PREEMPT_RCU
    8531             :         rcu_all_qs();
    8532             : #endif
    8533       47694 :         return 0;
    8534             : }
    8535             : EXPORT_SYMBOL(__cond_resched);
    8536             : #endif
    8537             : 
    8538             : #ifdef CONFIG_PREEMPT_DYNAMIC
    8539             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    8540             : #define cond_resched_dynamic_enabled    __cond_resched
    8541             : #define cond_resched_dynamic_disabled   ((void *)&__static_call_return0)
    8542             : DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
    8543             : EXPORT_STATIC_CALL_TRAMP(cond_resched);
    8544             : 
    8545             : #define might_resched_dynamic_enabled   __cond_resched
    8546             : #define might_resched_dynamic_disabled  ((void *)&__static_call_return0)
    8547             : DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
    8548             : EXPORT_STATIC_CALL_TRAMP(might_resched);
    8549             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    8550             : static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
    8551             : int __sched dynamic_cond_resched(void)
    8552             : {
    8553             :         klp_sched_try_switch();
    8554             :         if (!static_branch_unlikely(&sk_dynamic_cond_resched))
    8555             :                 return 0;
    8556             :         return __cond_resched();
    8557             : }
    8558             : EXPORT_SYMBOL(dynamic_cond_resched);
    8559             : 
    8560             : static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
    8561             : int __sched dynamic_might_resched(void)
    8562             : {
    8563             :         if (!static_branch_unlikely(&sk_dynamic_might_resched))
    8564             :                 return 0;
    8565             :         return __cond_resched();
    8566             : }
    8567             : EXPORT_SYMBOL(dynamic_might_resched);
    8568             : #endif
    8569             : #endif
    8570             : 
    8571             : /*
    8572             :  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
    8573             :  * call schedule, and on return reacquire the lock.
    8574             :  *
    8575             :  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
    8576             :  * operations here to prevent schedule() from being called twice (once via
    8577             :  * spin_unlock(), once by hand).
    8578             :  */
    8579           5 : int __cond_resched_lock(spinlock_t *lock)
    8580             : {
    8581           5 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8582           5 :         int ret = 0;
    8583             : 
    8584             :         lockdep_assert_held(lock);
    8585             : 
    8586           5 :         if (spin_needbreak(lock) || resched) {
    8587           2 :                 spin_unlock(lock);
    8588           2 :                 if (!_cond_resched())
    8589             :                         cpu_relax();
    8590           2 :                 ret = 1;
    8591             :                 spin_lock(lock);
    8592             :         }
    8593           5 :         return ret;
    8594             : }
    8595             : EXPORT_SYMBOL(__cond_resched_lock);
    8596             : 
    8597           0 : int __cond_resched_rwlock_read(rwlock_t *lock)
    8598             : {
    8599           0 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8600           0 :         int ret = 0;
    8601             : 
    8602             :         lockdep_assert_held_read(lock);
    8603             : 
    8604           0 :         if (rwlock_needbreak(lock) || resched) {
    8605           0 :                 read_unlock(lock);
    8606           0 :                 if (!_cond_resched())
    8607             :                         cpu_relax();
    8608           0 :                 ret = 1;
    8609           0 :                 read_lock(lock);
    8610             :         }
    8611           0 :         return ret;
    8612             : }
    8613             : EXPORT_SYMBOL(__cond_resched_rwlock_read);
    8614             : 
    8615           0 : int __cond_resched_rwlock_write(rwlock_t *lock)
    8616             : {
    8617           0 :         int resched = should_resched(PREEMPT_LOCK_OFFSET);
    8618           0 :         int ret = 0;
    8619             : 
    8620             :         lockdep_assert_held_write(lock);
    8621             : 
    8622           0 :         if (rwlock_needbreak(lock) || resched) {
    8623           0 :                 write_unlock(lock);
    8624           0 :                 if (!_cond_resched())
    8625             :                         cpu_relax();
    8626           0 :                 ret = 1;
    8627           0 :                 write_lock(lock);
    8628             :         }
    8629           0 :         return ret;
    8630             : }
    8631             : EXPORT_SYMBOL(__cond_resched_rwlock_write);
    8632             : 
    8633             : #ifdef CONFIG_PREEMPT_DYNAMIC
    8634             : 
    8635             : #ifdef CONFIG_GENERIC_ENTRY
    8636             : #include <linux/entry-common.h>
    8637             : #endif
    8638             : 
    8639             : /*
    8640             :  * SC:cond_resched
    8641             :  * SC:might_resched
    8642             :  * SC:preempt_schedule
    8643             :  * SC:preempt_schedule_notrace
    8644             :  * SC:irqentry_exit_cond_resched
    8645             :  *
    8646             :  *
    8647             :  * NONE:
    8648             :  *   cond_resched               <- __cond_resched
    8649             :  *   might_resched              <- RET0
    8650             :  *   preempt_schedule           <- NOP
    8651             :  *   preempt_schedule_notrace   <- NOP
    8652             :  *   irqentry_exit_cond_resched <- NOP
    8653             :  *
    8654             :  * VOLUNTARY:
    8655             :  *   cond_resched               <- __cond_resched
    8656             :  *   might_resched              <- __cond_resched
    8657             :  *   preempt_schedule           <- NOP
    8658             :  *   preempt_schedule_notrace   <- NOP
    8659             :  *   irqentry_exit_cond_resched <- NOP
    8660             :  *
    8661             :  * FULL:
    8662             :  *   cond_resched               <- RET0
    8663             :  *   might_resched              <- RET0
    8664             :  *   preempt_schedule           <- preempt_schedule
    8665             :  *   preempt_schedule_notrace   <- preempt_schedule_notrace
    8666             :  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
    8667             :  */
    8668             : 
    8669             : enum {
    8670             :         preempt_dynamic_undefined = -1,
    8671             :         preempt_dynamic_none,
    8672             :         preempt_dynamic_voluntary,
    8673             :         preempt_dynamic_full,
    8674             : };
    8675             : 
    8676             : int preempt_dynamic_mode = preempt_dynamic_undefined;
    8677             : 
    8678             : int sched_dynamic_mode(const char *str)
    8679             : {
    8680             :         if (!strcmp(str, "none"))
    8681             :                 return preempt_dynamic_none;
    8682             : 
    8683             :         if (!strcmp(str, "voluntary"))
    8684             :                 return preempt_dynamic_voluntary;
    8685             : 
    8686             :         if (!strcmp(str, "full"))
    8687             :                 return preempt_dynamic_full;
    8688             : 
    8689             :         return -EINVAL;
    8690             : }
    8691             : 
    8692             : #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
    8693             : #define preempt_dynamic_enable(f)       static_call_update(f, f##_dynamic_enabled)
    8694             : #define preempt_dynamic_disable(f)      static_call_update(f, f##_dynamic_disabled)
    8695             : #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
    8696             : #define preempt_dynamic_enable(f)       static_key_enable(&sk_dynamic_##f.key)
    8697             : #define preempt_dynamic_disable(f)      static_key_disable(&sk_dynamic_##f.key)
    8698             : #else
    8699             : #error "Unsupported PREEMPT_DYNAMIC mechanism"
    8700             : #endif
    8701             : 
    8702             : static DEFINE_MUTEX(sched_dynamic_mutex);
    8703             : static bool klp_override;
    8704             : 
    8705             : static void __sched_dynamic_update(int mode)
    8706             : {
    8707             :         /*
    8708             :          * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
    8709             :          * the ZERO state, which is invalid.
    8710             :          */
    8711             :         if (!klp_override)
    8712             :                 preempt_dynamic_enable(cond_resched);
    8713             :         preempt_dynamic_enable(might_resched);
    8714             :         preempt_dynamic_enable(preempt_schedule);
    8715             :         preempt_dynamic_enable(preempt_schedule_notrace);
    8716             :         preempt_dynamic_enable(irqentry_exit_cond_resched);
    8717             : 
    8718             :         switch (mode) {
    8719             :         case preempt_dynamic_none:
    8720             :                 if (!klp_override)
    8721             :                         preempt_dynamic_enable(cond_resched);
    8722             :                 preempt_dynamic_disable(might_resched);
    8723             :                 preempt_dynamic_disable(preempt_schedule);
    8724             :                 preempt_dynamic_disable(preempt_schedule_notrace);
    8725             :                 preempt_dynamic_disable(irqentry_exit_cond_resched);
    8726             :                 if (mode != preempt_dynamic_mode)
    8727             :                         pr_info("Dynamic Preempt: none\n");
    8728             :                 break;
    8729             : 
    8730             :         case preempt_dynamic_voluntary:
    8731             :                 if (!klp_override)
    8732             :                         preempt_dynamic_enable(cond_resched);
    8733             :                 preempt_dynamic_enable(might_resched);
    8734             :                 preempt_dynamic_disable(preempt_schedule);
    8735             :                 preempt_dynamic_disable(preempt_schedule_notrace);
    8736             :                 preempt_dynamic_disable(irqentry_exit_cond_resched);
    8737             :                 if (mode != preempt_dynamic_mode)
    8738             :                         pr_info("Dynamic Preempt: voluntary\n");
    8739             :                 break;
    8740             : 
    8741             :         case preempt_dynamic_full:
    8742             :                 if (!klp_override)
    8743             :                         preempt_dynamic_disable(cond_resched);
    8744             :                 preempt_dynamic_disable(might_resched);
    8745             :                 preempt_dynamic_enable(preempt_schedule);
    8746             :                 preempt_dynamic_enable(preempt_schedule_notrace);
    8747             :                 preempt_dynamic_enable(irqentry_exit_cond_resched);
    8748             :                 if (mode != preempt_dynamic_mode)
    8749             :                         pr_info("Dynamic Preempt: full\n");
    8750             :                 break;
    8751             :         }
    8752             : 
    8753             :         preempt_dynamic_mode = mode;
    8754             : }
    8755             : 
    8756             : void sched_dynamic_update(int mode)
    8757             : {
    8758             :         mutex_lock(&sched_dynamic_mutex);
    8759             :         __sched_dynamic_update(mode);
    8760             :         mutex_unlock(&sched_dynamic_mutex);
    8761             : }
    8762             : 
    8763             : #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
    8764             : 
    8765             : static int klp_cond_resched(void)
    8766             : {
    8767             :         __klp_sched_try_switch();
    8768             :         return __cond_resched();
    8769             : }
    8770             : 
    8771             : void sched_dynamic_klp_enable(void)
    8772             : {
    8773             :         mutex_lock(&sched_dynamic_mutex);
    8774             : 
    8775             :         klp_override = true;
    8776             :         static_call_update(cond_resched, klp_cond_resched);
    8777             : 
    8778             :         mutex_unlock(&sched_dynamic_mutex);
    8779             : }
    8780             : 
    8781             : void sched_dynamic_klp_disable(void)
    8782             : {
    8783             :         mutex_lock(&sched_dynamic_mutex);
    8784             : 
    8785             :         klp_override = false;
    8786             :         __sched_dynamic_update(preempt_dynamic_mode);
    8787             : 
    8788             :         mutex_unlock(&sched_dynamic_mutex);
    8789             : }
    8790             : 
    8791             : #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
    8792             : 
    8793             : static int __init setup_preempt_mode(char *str)
    8794             : {
    8795             :         int mode = sched_dynamic_mode(str);
    8796             :         if (mode < 0) {
    8797             :                 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
    8798             :                 return 0;
    8799             :         }
    8800             : 
    8801             :         sched_dynamic_update(mode);
    8802             :         return 1;
    8803             : }
    8804             : __setup("preempt=", setup_preempt_mode);
    8805             : 
    8806             : static void __init preempt_dynamic_init(void)
    8807             : {
    8808             :         if (preempt_dynamic_mode == preempt_dynamic_undefined) {
    8809             :                 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
    8810             :                         sched_dynamic_update(preempt_dynamic_none);
    8811             :                 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
    8812             :                         sched_dynamic_update(preempt_dynamic_voluntary);
    8813             :                 } else {
    8814             :                         /* Default static call setting, nothing to do */
    8815             :                         WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
    8816             :                         preempt_dynamic_mode = preempt_dynamic_full;
    8817             :                         pr_info("Dynamic Preempt: full\n");
    8818             :                 }
    8819             :         }
    8820             : }
    8821             : 
    8822             : #define PREEMPT_MODEL_ACCESSOR(mode) \
    8823             :         bool preempt_model_##mode(void)                                          \
    8824             :         {                                                                        \
    8825             :                 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
    8826             :                 return preempt_dynamic_mode == preempt_dynamic_##mode;           \
    8827             :         }                                                                        \
    8828             :         EXPORT_SYMBOL_GPL(preempt_model_##mode)
    8829             : 
    8830             : PREEMPT_MODEL_ACCESSOR(none);
    8831             : PREEMPT_MODEL_ACCESSOR(voluntary);
    8832             : PREEMPT_MODEL_ACCESSOR(full);
    8833             : 
    8834             : #else /* !CONFIG_PREEMPT_DYNAMIC */
    8835             : 
    8836             : static inline void preempt_dynamic_init(void) { }
    8837             : 
    8838             : #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
    8839             : 
    8840             : /**
    8841             :  * yield - yield the current processor to other threads.
    8842             :  *
    8843             :  * Do not ever use this function, there's a 99% chance you're doing it wrong.
    8844             :  *
    8845             :  * The scheduler is at all times free to pick the calling task as the most
    8846             :  * eligible task to run, if removing the yield() call from your code breaks
    8847             :  * it, it's already broken.
    8848             :  *
    8849             :  * Typical broken usage is:
    8850             :  *
    8851             :  * while (!event)
    8852             :  *      yield();
    8853             :  *
    8854             :  * where one assumes that yield() will let 'the other' process run that will
    8855             :  * make event true. If the current task is a SCHED_FIFO task that will never
    8856             :  * happen. Never use yield() as a progress guarantee!!
    8857             :  *
    8858             :  * If you want to use yield() to wait for something, use wait_event().
    8859             :  * If you want to use yield() to be 'nice' for others, use cond_resched().
    8860             :  * If you still want to use yield(), do not!
    8861             :  */
    8862           0 : void __sched yield(void)
    8863             : {
    8864           0 :         set_current_state(TASK_RUNNING);
    8865           0 :         do_sched_yield();
    8866           0 : }
    8867             : EXPORT_SYMBOL(yield);
    8868             : 
    8869             : /**
    8870             :  * yield_to - yield the current processor to another thread in
    8871             :  * your thread group, or accelerate that thread toward the
    8872             :  * processor it's on.
    8873             :  * @p: target task
    8874             :  * @preempt: whether task preemption is allowed or not
    8875             :  *
    8876             :  * It's the caller's job to ensure that the target task struct
    8877             :  * can't go away on us before we can do any checks.
    8878             :  *
    8879             :  * Return:
    8880             :  *      true (>0) if we indeed boosted the target task.
    8881             :  *      false (0) if we failed to boost the target.
    8882             :  *      -ESRCH if there's no task to yield to.
    8883             :  */
    8884           0 : int __sched yield_to(struct task_struct *p, bool preempt)
    8885             : {
    8886           0 :         struct task_struct *curr = current;
    8887             :         struct rq *rq, *p_rq;
    8888             :         unsigned long flags;
    8889           0 :         int yielded = 0;
    8890             : 
    8891           0 :         local_irq_save(flags);
    8892           0 :         rq = this_rq();
    8893             : 
    8894             : again:
    8895           0 :         p_rq = task_rq(p);
    8896             :         /*
    8897             :          * If we're the only runnable task on the rq and target rq also
    8898             :          * has only one task, there's absolutely no point in yielding.
    8899             :          */
    8900           0 :         if (rq->nr_running == 1 && p_rq->nr_running == 1) {
    8901             :                 yielded = -ESRCH;
    8902             :                 goto out_irq;
    8903             :         }
    8904             : 
    8905           0 :         double_rq_lock(rq, p_rq);
    8906           0 :         if (task_rq(p) != p_rq) {
    8907             :                 double_rq_unlock(rq, p_rq);
    8908             :                 goto again;
    8909             :         }
    8910             : 
    8911           0 :         if (!curr->sched_class->yield_to_task)
    8912             :                 goto out_unlock;
    8913             : 
    8914           0 :         if (curr->sched_class != p->sched_class)
    8915             :                 goto out_unlock;
    8916             : 
    8917           0 :         if (task_on_cpu(p_rq, p) || !task_is_running(p))
    8918             :                 goto out_unlock;
    8919             : 
    8920           0 :         yielded = curr->sched_class->yield_to_task(rq, p);
    8921             :         if (yielded) {
    8922             :                 schedstat_inc(rq->yld_count);
    8923             :                 /*
    8924             :                  * Make p's CPU reschedule; pick_next_entity takes care of
    8925             :                  * fairness.
    8926             :                  */
    8927             :                 if (preempt && rq != p_rq)
    8928             :                         resched_curr(p_rq);
    8929             :         }
    8930             : 
    8931             : out_unlock:
    8932           0 :         double_rq_unlock(rq, p_rq);
    8933             : out_irq:
    8934           0 :         local_irq_restore(flags);
    8935             : 
    8936           0 :         if (yielded > 0)
    8937           0 :                 schedule();
    8938             : 
    8939           0 :         return yielded;
    8940             : }
    8941             : EXPORT_SYMBOL_GPL(yield_to);
    8942             : 
    8943           0 : int io_schedule_prepare(void)
    8944             : {
    8945           0 :         int old_iowait = current->in_iowait;
    8946             : 
    8947           0 :         current->in_iowait = 1;
    8948           0 :         blk_flush_plug(current->plug, true);
    8949           0 :         return old_iowait;
    8950             : }
    8951             : 
    8952           0 : void io_schedule_finish(int token)
    8953             : {
    8954           0 :         current->in_iowait = token;
    8955           0 : }
    8956             : 
    8957             : /*
    8958             :  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
    8959             :  * that process accounting knows that this is a task in IO wait state.
    8960             :  */
    8961           0 : long __sched io_schedule_timeout(long timeout)
    8962             : {
    8963             :         int token;
    8964             :         long ret;
    8965             : 
    8966           0 :         token = io_schedule_prepare();
    8967           0 :         ret = schedule_timeout(timeout);
    8968           0 :         io_schedule_finish(token);
    8969             : 
    8970           0 :         return ret;
    8971             : }
    8972             : EXPORT_SYMBOL(io_schedule_timeout);
    8973             : 
    8974           0 : void __sched io_schedule(void)
    8975             : {
    8976             :         int token;
    8977             : 
    8978           0 :         token = io_schedule_prepare();
    8979           0 :         schedule();
    8980           0 :         io_schedule_finish(token);
    8981           0 : }
    8982             : EXPORT_SYMBOL(io_schedule);
    8983             : 
    8984             : /**
    8985             :  * sys_sched_get_priority_max - return maximum RT priority.
    8986             :  * @policy: scheduling class.
    8987             :  *
    8988             :  * Return: On success, this syscall returns the maximum
    8989             :  * rt_priority that can be used by a given scheduling class.
    8990             :  * On failure, a negative error code is returned.
    8991             :  */
    8992           0 : SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
    8993             : {
    8994           0 :         int ret = -EINVAL;
    8995             : 
    8996             :         switch (policy) {
    8997             :         case SCHED_FIFO:
    8998             :         case SCHED_RR:
    8999           0 :                 ret = MAX_RT_PRIO-1;
    9000             :                 break;
    9001             :         case SCHED_DEADLINE:
    9002             :         case SCHED_NORMAL:
    9003             :         case SCHED_BATCH:
    9004             :         case SCHED_IDLE:
    9005             :                 ret = 0;
    9006             :                 break;
    9007             :         }
    9008           0 :         return ret;
    9009             : }
    9010             : 
    9011             : /**
    9012             :  * sys_sched_get_priority_min - return minimum RT priority.
    9013             :  * @policy: scheduling class.
    9014             :  *
    9015             :  * Return: On success, this syscall returns the minimum
    9016             :  * rt_priority that can be used by a given scheduling class.
    9017             :  * On failure, a negative error code is returned.
    9018             :  */
    9019           0 : SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
    9020             : {
    9021           0 :         int ret = -EINVAL;
    9022             : 
    9023             :         switch (policy) {
    9024             :         case SCHED_FIFO:
    9025             :         case SCHED_RR:
    9026           0 :                 ret = 1;
    9027             :                 break;
    9028             :         case SCHED_DEADLINE:
    9029             :         case SCHED_NORMAL:
    9030             :         case SCHED_BATCH:
    9031             :         case SCHED_IDLE:
    9032             :                 ret = 0;
    9033             :         }
    9034           0 :         return ret;
    9035             : }
    9036             : 
    9037           0 : static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
    9038             : {
    9039             :         struct task_struct *p;
    9040             :         unsigned int time_slice;
    9041             :         struct rq_flags rf;
    9042             :         struct rq *rq;
    9043             :         int retval;
    9044             : 
    9045           0 :         if (pid < 0)
    9046             :                 return -EINVAL;
    9047             : 
    9048           0 :         retval = -ESRCH;
    9049             :         rcu_read_lock();
    9050           0 :         p = find_process_by_pid(pid);
    9051           0 :         if (!p)
    9052             :                 goto out_unlock;
    9053             : 
    9054           0 :         retval = security_task_getscheduler(p);
    9055             :         if (retval)
    9056             :                 goto out_unlock;
    9057             : 
    9058           0 :         rq = task_rq_lock(p, &rf);
    9059           0 :         time_slice = 0;
    9060           0 :         if (p->sched_class->get_rr_interval)
    9061           0 :                 time_slice = p->sched_class->get_rr_interval(rq, p);
    9062           0 :         task_rq_unlock(rq, p, &rf);
    9063             : 
    9064             :         rcu_read_unlock();
    9065           0 :         jiffies_to_timespec64(time_slice, t);
    9066           0 :         return 0;
    9067             : 
    9068             : out_unlock:
    9069             :         rcu_read_unlock();
    9070           0 :         return retval;
    9071             : }
    9072             : 
    9073             : /**
    9074             :  * sys_sched_rr_get_interval - return the default timeslice of a process.
    9075             :  * @pid: pid of the process.
    9076             :  * @interval: userspace pointer to the timeslice value.
    9077             :  *
    9078             :  * this syscall writes the default timeslice value of a given process
    9079             :  * into the user-space timespec buffer. A value of '0' means infinity.
    9080             :  *
    9081             :  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
    9082             :  * an error code.
    9083             :  */
    9084           0 : SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
    9085             :                 struct __kernel_timespec __user *, interval)
    9086             : {
    9087             :         struct timespec64 t;
    9088           0 :         int retval = sched_rr_get_interval(pid, &t);
    9089             : 
    9090           0 :         if (retval == 0)
    9091           0 :                 retval = put_timespec64(&t, interval);
    9092             : 
    9093           0 :         return retval;
    9094             : }
    9095             : 
    9096             : #ifdef CONFIG_COMPAT_32BIT_TIME
    9097             : SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
    9098             :                 struct old_timespec32 __user *, interval)
    9099             : {
    9100             :         struct timespec64 t;
    9101             :         int retval = sched_rr_get_interval(pid, &t);
    9102             : 
    9103             :         if (retval == 0)
    9104             :                 retval = put_old_timespec32(&t, interval);
    9105             :         return retval;
    9106             : }
    9107             : #endif
    9108             : 
    9109           0 : void sched_show_task(struct task_struct *p)
    9110             : {
    9111           0 :         unsigned long free = 0;
    9112             :         int ppid;
    9113             : 
    9114           0 :         if (!try_get_task_stack(p))
    9115             :                 return;
    9116             : 
    9117           0 :         pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
    9118             : 
    9119           0 :         if (task_is_running(p))
    9120           0 :                 pr_cont("  running task    ");
    9121             : #ifdef CONFIG_DEBUG_STACK_USAGE
    9122             :         free = stack_not_used(p);
    9123             : #endif
    9124           0 :         ppid = 0;
    9125             :         rcu_read_lock();
    9126           0 :         if (pid_alive(p))
    9127           0 :                 ppid = task_pid_nr(rcu_dereference(p->real_parent));
    9128             :         rcu_read_unlock();
    9129           0 :         pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
    9130             :                 free, task_pid_nr(p), ppid,
    9131             :                 read_task_thread_flags(p));
    9132             : 
    9133           0 :         print_worker_info(KERN_INFO, p);
    9134           0 :         print_stop_info(KERN_INFO, p);
    9135           0 :         show_stack(p, NULL, KERN_INFO);
    9136           0 :         put_task_stack(p);
    9137             : }
    9138             : EXPORT_SYMBOL_GPL(sched_show_task);
    9139             : 
    9140             : static inline bool
    9141             : state_filter_match(unsigned long state_filter, struct task_struct *p)
    9142             : {
    9143           0 :         unsigned int state = READ_ONCE(p->__state);
    9144             : 
    9145             :         /* no filter, everything matches */
    9146           0 :         if (!state_filter)
    9147             :                 return true;
    9148             : 
    9149             :         /* filter, but doesn't match */
    9150           0 :         if (!(state & state_filter))
    9151             :                 return false;
    9152             : 
    9153             :         /*
    9154             :          * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
    9155             :          * TASK_KILLABLE).
    9156             :          */
    9157           0 :         if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
    9158             :                 return false;
    9159             : 
    9160             :         return true;
    9161             : }
    9162             : 
    9163             : 
    9164           0 : void show_state_filter(unsigned int state_filter)
    9165             : {
    9166             :         struct task_struct *g, *p;
    9167             : 
    9168             :         rcu_read_lock();
    9169           0 :         for_each_process_thread(g, p) {
    9170             :                 /*
    9171             :                  * reset the NMI-timeout, listing all files on a slow
    9172             :                  * console might take a lot of time:
    9173             :                  * Also, reset softlockup watchdogs on all CPUs, because
    9174             :                  * another CPU might be blocked waiting for us to process
    9175             :                  * an IPI.
    9176             :                  */
    9177             :                 touch_nmi_watchdog();
    9178             :                 touch_all_softlockup_watchdogs();
    9179           0 :                 if (state_filter_match(state_filter, p))
    9180           0 :                         sched_show_task(p);
    9181             :         }
    9182             : 
    9183             : #ifdef CONFIG_SCHED_DEBUG
    9184             :         if (!state_filter)
    9185             :                 sysrq_sched_debug_show();
    9186             : #endif
    9187             :         rcu_read_unlock();
    9188             :         /*
    9189             :          * Only show locks if all tasks are dumped:
    9190             :          */
    9191             :         if (!state_filter)
    9192             :                 debug_show_all_locks();
    9193           0 : }
    9194             : 
    9195             : /**
    9196             :  * init_idle - set up an idle thread for a given CPU
    9197             :  * @idle: task in question
    9198             :  * @cpu: CPU the idle task belongs to
    9199             :  *
    9200             :  * NOTE: this function does not set the idle thread's NEED_RESCHED
    9201             :  * flag, to make booting more robust.
    9202             :  */
    9203           1 : void __init init_idle(struct task_struct *idle, int cpu)
    9204             : {
    9205             : #ifdef CONFIG_SMP
    9206             :         struct affinity_context ac = (struct affinity_context) {
    9207             :                 .new_mask  = cpumask_of(cpu),
    9208             :                 .flags     = 0,
    9209             :         };
    9210             : #endif
    9211           1 :         struct rq *rq = cpu_rq(cpu);
    9212             :         unsigned long flags;
    9213             : 
    9214           1 :         __sched_fork(0, idle);
    9215             : 
    9216           1 :         raw_spin_lock_irqsave(&idle->pi_lock, flags);
    9217           1 :         raw_spin_rq_lock(rq);
    9218             : 
    9219           1 :         idle->__state = TASK_RUNNING;
    9220           1 :         idle->se.exec_start = sched_clock();
    9221             :         /*
    9222             :          * PF_KTHREAD should already be set at this point; regardless, make it
    9223             :          * look like a proper per-CPU kthread.
    9224             :          */
    9225           1 :         idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
    9226           1 :         kthread_set_per_cpu(idle, cpu);
    9227             : 
    9228             : #ifdef CONFIG_SMP
    9229             :         /*
    9230             :          * It's possible that init_idle() gets called multiple times on a task,
    9231             :          * in that case do_set_cpus_allowed() will not do the right thing.
    9232             :          *
    9233             :          * And since this is boot we can forgo the serialization.
    9234             :          */
    9235             :         set_cpus_allowed_common(idle, &ac);
    9236             : #endif
    9237             :         /*
    9238             :          * We're having a chicken and egg problem, even though we are
    9239             :          * holding rq->lock, the CPU isn't yet set to this CPU so the
    9240             :          * lockdep check in task_group() will fail.
    9241             :          *
    9242             :          * Similar case to sched_fork(). / Alternatively we could
    9243             :          * use task_rq_lock() here and obtain the other rq->lock.
    9244             :          *
    9245             :          * Silence PROVE_RCU
    9246             :          */
    9247             :         rcu_read_lock();
    9248           1 :         __set_task_cpu(idle, cpu);
    9249             :         rcu_read_unlock();
    9250             : 
    9251           1 :         rq->idle = idle;
    9252           1 :         rcu_assign_pointer(rq->curr, idle);
    9253           1 :         idle->on_rq = TASK_ON_RQ_QUEUED;
    9254             : #ifdef CONFIG_SMP
    9255             :         idle->on_cpu = 1;
    9256             : #endif
    9257           1 :         raw_spin_rq_unlock(rq);
    9258           2 :         raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
    9259             : 
    9260             :         /* Set the preempt count _outside_ the spinlocks! */
    9261           1 :         init_idle_preempt_count(idle, cpu);
    9262             : 
    9263             :         /*
    9264             :          * The idle tasks have their own, simple scheduling class:
    9265             :          */
    9266           1 :         idle->sched_class = &idle_sched_class;
    9267           1 :         ftrace_graph_init_idle_task(idle, cpu);
    9268           1 :         vtime_init_idle(idle, cpu);
    9269             : #ifdef CONFIG_SMP
    9270             :         sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
    9271             : #endif
    9272           1 : }
    9273             : 
    9274             : #ifdef CONFIG_SMP
    9275             : 
    9276             : int cpuset_cpumask_can_shrink(const struct cpumask *cur,
    9277             :                               const struct cpumask *trial)
    9278             : {
    9279             :         int ret = 1;
    9280             : 
    9281             :         if (cpumask_empty(cur))
    9282             :                 return ret;
    9283             : 
    9284             :         ret = dl_cpuset_cpumask_can_shrink(cur, trial);
    9285             : 
    9286             :         return ret;
    9287             : }
    9288             : 
    9289             : int task_can_attach(struct task_struct *p,
    9290             :                     const struct cpumask *cs_effective_cpus)
    9291             : {
    9292             :         int ret = 0;
    9293             : 
    9294             :         /*
    9295             :          * Kthreads which disallow setaffinity shouldn't be moved
    9296             :          * to a new cpuset; we don't want to change their CPU
    9297             :          * affinity and isolating such threads by their set of
    9298             :          * allowed nodes is unnecessary.  Thus, cpusets are not
    9299             :          * applicable for such threads.  This prevents checking for
    9300             :          * success of set_cpus_allowed_ptr() on all attached tasks
    9301             :          * before cpus_mask may be changed.
    9302             :          */
    9303             :         if (p->flags & PF_NO_SETAFFINITY) {
    9304             :                 ret = -EINVAL;
    9305             :                 goto out;
    9306             :         }
    9307             : 
    9308             :         if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
    9309             :                                               cs_effective_cpus)) {
    9310             :                 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
    9311             : 
    9312             :                 if (unlikely(cpu >= nr_cpu_ids))
    9313             :                         return -EINVAL;
    9314             :                 ret = dl_cpu_busy(cpu, p);
    9315             :         }
    9316             : 
    9317             : out:
    9318             :         return ret;
    9319             : }
    9320             : 
    9321             : bool sched_smp_initialized __read_mostly;
    9322             : 
    9323             : #ifdef CONFIG_NUMA_BALANCING
    9324             : /* Migrate current task p to target_cpu */
    9325             : int migrate_task_to(struct task_struct *p, int target_cpu)
    9326             : {
    9327             :         struct migration_arg arg = { p, target_cpu };
    9328             :         int curr_cpu = task_cpu(p);
    9329             : 
    9330             :         if (curr_cpu == target_cpu)
    9331             :                 return 0;
    9332             : 
    9333             :         if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
    9334             :                 return -EINVAL;
    9335             : 
    9336             :         /* TODO: This is not properly updating schedstats */
    9337             : 
    9338             :         trace_sched_move_numa(p, curr_cpu, target_cpu);
    9339             :         return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
    9340             : }
    9341             : 
    9342             : /*
    9343             :  * Requeue a task on a given node and accurately track the number of NUMA
    9344             :  * tasks on the runqueues
    9345             :  */
    9346             : void sched_setnuma(struct task_struct *p, int nid)
    9347             : {
    9348             :         bool queued, running;
    9349             :         struct rq_flags rf;
    9350             :         struct rq *rq;
    9351             : 
    9352             :         rq = task_rq_lock(p, &rf);
    9353             :         queued = task_on_rq_queued(p);
    9354             :         running = task_current(rq, p);
    9355             : 
    9356             :         if (queued)
    9357             :                 dequeue_task(rq, p, DEQUEUE_SAVE);
    9358             :         if (running)
    9359             :                 put_prev_task(rq, p);
    9360             : 
    9361             :         p->numa_preferred_nid = nid;
    9362             : 
    9363             :         if (queued)
    9364             :                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
    9365             :         if (running)
    9366             :                 set_next_task(rq, p);
    9367             :         task_rq_unlock(rq, p, &rf);
    9368             : }
    9369             : #endif /* CONFIG_NUMA_BALANCING */
    9370             : 
    9371             : #ifdef CONFIG_HOTPLUG_CPU
    9372             : /*
    9373             :  * Ensure that the idle task is using init_mm right before its CPU goes
    9374             :  * offline.
    9375             :  */
    9376             : void idle_task_exit(void)
    9377             : {
    9378             :         struct mm_struct *mm = current->active_mm;
    9379             : 
    9380             :         BUG_ON(cpu_online(smp_processor_id()));
    9381             :         BUG_ON(current != this_rq()->idle);
    9382             : 
    9383             :         if (mm != &init_mm) {
    9384             :                 switch_mm(mm, &init_mm, current);
    9385             :                 finish_arch_post_lock_switch();
    9386             :         }
    9387             : 
    9388             :         /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
    9389             : }
    9390             : 
    9391             : static int __balance_push_cpu_stop(void *arg)
    9392             : {
    9393             :         struct task_struct *p = arg;
    9394             :         struct rq *rq = this_rq();
    9395             :         struct rq_flags rf;
    9396             :         int cpu;
    9397             : 
    9398             :         raw_spin_lock_irq(&p->pi_lock);
    9399             :         rq_lock(rq, &rf);
    9400             : 
    9401             :         update_rq_clock(rq);
    9402             : 
    9403             :         if (task_rq(p) == rq && task_on_rq_queued(p)) {
    9404             :                 cpu = select_fallback_rq(rq->cpu, p);
    9405             :                 rq = __migrate_task(rq, &rf, p, cpu);
    9406             :         }
    9407             : 
    9408             :         rq_unlock(rq, &rf);
    9409             :         raw_spin_unlock_irq(&p->pi_lock);
    9410             : 
    9411             :         put_task_struct(p);
    9412             : 
    9413             :         return 0;
    9414             : }
    9415             : 
    9416             : static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
    9417             : 
    9418             : /*
    9419             :  * Ensure we only run per-cpu kthreads once the CPU goes !active.
    9420             :  *
    9421             :  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
    9422             :  * effective when the hotplug motion is down.
    9423             :  */
    9424             : static void balance_push(struct rq *rq)
    9425             : {
    9426             :         struct task_struct *push_task = rq->curr;
    9427             : 
    9428             :         lockdep_assert_rq_held(rq);
    9429             : 
    9430             :         /*
    9431             :          * Ensure the thing is persistent until balance_push_set(.on = false);
    9432             :          */
    9433             :         rq->balance_callback = &balance_push_callback;
    9434             : 
    9435             :         /*
    9436             :          * Only active while going offline and when invoked on the outgoing
    9437             :          * CPU.
    9438             :          */
    9439             :         if (!cpu_dying(rq->cpu) || rq != this_rq())
    9440             :                 return;
    9441             : 
    9442             :         /*
    9443             :          * Both the cpu-hotplug and stop task are in this case and are
    9444             :          * required to complete the hotplug process.
    9445             :          */
    9446             :         if (kthread_is_per_cpu(push_task) ||
    9447             :             is_migration_disabled(push_task)) {
    9448             : 
    9449             :                 /*
    9450             :                  * If this is the idle task on the outgoing CPU try to wake
    9451             :                  * up the hotplug control thread which might wait for the
    9452             :                  * last task to vanish. The rcuwait_active() check is
    9453             :                  * accurate here because the waiter is pinned on this CPU
    9454             :                  * and can't obviously be running in parallel.
    9455             :                  *
    9456             :                  * On RT kernels this also has to check whether there are
    9457             :                  * pinned and scheduled out tasks on the runqueue. They
    9458             :                  * need to leave the migrate disabled section first.
    9459             :                  */
    9460             :                 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
    9461             :                     rcuwait_active(&rq->hotplug_wait)) {
    9462             :                         raw_spin_rq_unlock(rq);
    9463             :                         rcuwait_wake_up(&rq->hotplug_wait);
    9464             :                         raw_spin_rq_lock(rq);
    9465             :                 }
    9466             :                 return;
    9467             :         }
    9468             : 
    9469             :         get_task_struct(push_task);
    9470             :         /*
    9471             :          * Temporarily drop rq->lock such that we can wake-up the stop task.
    9472             :          * Both preemption and IRQs are still disabled.
    9473             :          */
    9474             :         raw_spin_rq_unlock(rq);
    9475             :         stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
    9476             :                             this_cpu_ptr(&push_work));
    9477             :         /*
    9478             :          * At this point need_resched() is true and we'll take the loop in
    9479             :          * schedule(). The next pick is obviously going to be the stop task
    9480             :          * which kthread_is_per_cpu() and will push this task away.
    9481             :          */
    9482             :         raw_spin_rq_lock(rq);
    9483             : }
    9484             : 
    9485             : static void balance_push_set(int cpu, bool on)
    9486             : {
    9487             :         struct rq *rq = cpu_rq(cpu);
    9488             :         struct rq_flags rf;
    9489             : 
    9490             :         rq_lock_irqsave(rq, &rf);
    9491             :         if (on) {
    9492             :                 WARN_ON_ONCE(rq->balance_callback);
    9493             :                 rq->balance_callback = &balance_push_callback;
    9494             :         } else if (rq->balance_callback == &balance_push_callback) {
    9495             :                 rq->balance_callback = NULL;
    9496             :         }
    9497             :         rq_unlock_irqrestore(rq, &rf);
    9498             : }
    9499             : 
    9500             : /*
    9501             :  * Invoked from a CPUs hotplug control thread after the CPU has been marked
    9502             :  * inactive. All tasks which are not per CPU kernel threads are either
    9503             :  * pushed off this CPU now via balance_push() or placed on a different CPU
    9504             :  * during wakeup. Wait until the CPU is quiescent.
    9505             :  */
    9506             : static void balance_hotplug_wait(void)
    9507             : {
    9508             :         struct rq *rq = this_rq();
    9509             : 
    9510             :         rcuwait_wait_event(&rq->hotplug_wait,
    9511             :                            rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
    9512             :                            TASK_UNINTERRUPTIBLE);
    9513             : }
    9514             : 
    9515             : #else
    9516             : 
    9517             : static inline void balance_push(struct rq *rq)
    9518             : {
    9519             : }
    9520             : 
    9521             : static inline void balance_push_set(int cpu, bool on)
    9522             : {
    9523             : }
    9524             : 
    9525             : static inline void balance_hotplug_wait(void)
    9526             : {
    9527             : }
    9528             : 
    9529             : #endif /* CONFIG_HOTPLUG_CPU */
    9530             : 
    9531             : void set_rq_online(struct rq *rq)
    9532             : {
    9533             :         if (!rq->online) {
    9534             :                 const struct sched_class *class;
    9535             : 
    9536             :                 cpumask_set_cpu(rq->cpu, rq->rd->online);
    9537             :                 rq->online = 1;
    9538             : 
    9539             :                 for_each_class(class) {
    9540             :                         if (class->rq_online)
    9541             :                                 class->rq_online(rq);
    9542             :                 }
    9543             :         }
    9544             : }
    9545             : 
    9546             : void set_rq_offline(struct rq *rq)
    9547             : {
    9548             :         if (rq->online) {
    9549             :                 const struct sched_class *class;
    9550             : 
    9551             :                 for_each_class(class) {
    9552             :                         if (class->rq_offline)
    9553             :                                 class->rq_offline(rq);
    9554             :                 }
    9555             : 
    9556             :                 cpumask_clear_cpu(rq->cpu, rq->rd->online);
    9557             :                 rq->online = 0;
    9558             :         }
    9559             : }
    9560             : 
    9561             : /*
    9562             :  * used to mark begin/end of suspend/resume:
    9563             :  */
    9564             : static int num_cpus_frozen;
    9565             : 
    9566             : /*
    9567             :  * Update cpusets according to cpu_active mask.  If cpusets are
    9568             :  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
    9569             :  * around partition_sched_domains().
    9570             :  *
    9571             :  * If we come here as part of a suspend/resume, don't touch cpusets because we
    9572             :  * want to restore it back to its original state upon resume anyway.
    9573             :  */
    9574             : static void cpuset_cpu_active(void)
    9575             : {
    9576             :         if (cpuhp_tasks_frozen) {
    9577             :                 /*
    9578             :                  * num_cpus_frozen tracks how many CPUs are involved in suspend
    9579             :                  * resume sequence. As long as this is not the last online
    9580             :                  * operation in the resume sequence, just build a single sched
    9581             :                  * domain, ignoring cpusets.
    9582             :                  */
    9583             :                 partition_sched_domains(1, NULL, NULL);
    9584             :                 if (--num_cpus_frozen)
    9585             :                         return;
    9586             :                 /*
    9587             :                  * This is the last CPU online operation. So fall through and
    9588             :                  * restore the original sched domains by considering the
    9589             :                  * cpuset configurations.
    9590             :                  */
    9591             :                 cpuset_force_rebuild();
    9592             :         }
    9593             :         cpuset_update_active_cpus();
    9594             : }
    9595             : 
    9596             : static int cpuset_cpu_inactive(unsigned int cpu)
    9597             : {
    9598             :         if (!cpuhp_tasks_frozen) {
    9599             :                 int ret = dl_cpu_busy(cpu, NULL);
    9600             : 
    9601             :                 if (ret)
    9602             :                         return ret;
    9603             :                 cpuset_update_active_cpus();
    9604             :         } else {
    9605             :                 num_cpus_frozen++;
    9606             :                 partition_sched_domains(1, NULL, NULL);
    9607             :         }
    9608             :         return 0;
    9609             : }
    9610             : 
    9611             : int sched_cpu_activate(unsigned int cpu)
    9612             : {
    9613             :         struct rq *rq = cpu_rq(cpu);
    9614             :         struct rq_flags rf;
    9615             : 
    9616             :         /*
    9617             :          * Clear the balance_push callback and prepare to schedule
    9618             :          * regular tasks.
    9619             :          */
    9620             :         balance_push_set(cpu, false);
    9621             : 
    9622             : #ifdef CONFIG_SCHED_SMT
    9623             :         /*
    9624             :          * When going up, increment the number of cores with SMT present.
    9625             :          */
    9626             :         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
    9627             :                 static_branch_inc_cpuslocked(&sched_smt_present);
    9628             : #endif
    9629             :         set_cpu_active(cpu, true);
    9630             : 
    9631             :         if (sched_smp_initialized) {
    9632             :                 sched_update_numa(cpu, true);
    9633             :                 sched_domains_numa_masks_set(cpu);
    9634             :                 cpuset_cpu_active();
    9635             :         }
    9636             : 
    9637             :         /*
    9638             :          * Put the rq online, if not already. This happens:
    9639             :          *
    9640             :          * 1) In the early boot process, because we build the real domains
    9641             :          *    after all CPUs have been brought up.
    9642             :          *
    9643             :          * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
    9644             :          *    domains.
    9645             :          */
    9646             :         rq_lock_irqsave(rq, &rf);
    9647             :         if (rq->rd) {
    9648             :                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    9649             :                 set_rq_online(rq);
    9650             :         }
    9651             :         rq_unlock_irqrestore(rq, &rf);
    9652             : 
    9653             :         return 0;
    9654             : }
    9655             : 
    9656             : int sched_cpu_deactivate(unsigned int cpu)
    9657             : {
    9658             :         struct rq *rq = cpu_rq(cpu);
    9659             :         struct rq_flags rf;
    9660             :         int ret;
    9661             : 
    9662             :         /*
    9663             :          * Remove CPU from nohz.idle_cpus_mask to prevent participating in
    9664             :          * load balancing when not active
    9665             :          */
    9666             :         nohz_balance_exit_idle(rq);
    9667             : 
    9668             :         set_cpu_active(cpu, false);
    9669             : 
    9670             :         /*
    9671             :          * From this point forward, this CPU will refuse to run any task that
    9672             :          * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
    9673             :          * push those tasks away until this gets cleared, see
    9674             :          * sched_cpu_dying().
    9675             :          */
    9676             :         balance_push_set(cpu, true);
    9677             : 
    9678             :         /*
    9679             :          * We've cleared cpu_active_mask / set balance_push, wait for all
    9680             :          * preempt-disabled and RCU users of this state to go away such that
    9681             :          * all new such users will observe it.
    9682             :          *
    9683             :          * Specifically, we rely on ttwu to no longer target this CPU, see
    9684             :          * ttwu_queue_cond() and is_cpu_allowed().
    9685             :          *
    9686             :          * Do sync before park smpboot threads to take care the rcu boost case.
    9687             :          */
    9688             :         synchronize_rcu();
    9689             : 
    9690             :         rq_lock_irqsave(rq, &rf);
    9691             :         if (rq->rd) {
    9692             :                 update_rq_clock(rq);
    9693             :                 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
    9694             :                 set_rq_offline(rq);
    9695             :         }
    9696             :         rq_unlock_irqrestore(rq, &rf);
    9697             : 
    9698             : #ifdef CONFIG_SCHED_SMT
    9699             :         /*
    9700             :          * When going down, decrement the number of cores with SMT present.
    9701             :          */
    9702             :         if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
    9703             :                 static_branch_dec_cpuslocked(&sched_smt_present);
    9704             : 
    9705             :         sched_core_cpu_deactivate(cpu);
    9706             : #endif
    9707             : 
    9708             :         if (!sched_smp_initialized)
    9709             :                 return 0;
    9710             : 
    9711             :         sched_update_numa(cpu, false);
    9712             :         ret = cpuset_cpu_inactive(cpu);
    9713             :         if (ret) {
    9714             :                 balance_push_set(cpu, false);
    9715             :                 set_cpu_active(cpu, true);
    9716             :                 sched_update_numa(cpu, true);
    9717             :                 return ret;
    9718             :         }
    9719             :         sched_domains_numa_masks_clear(cpu);
    9720             :         return 0;
    9721             : }
    9722             : 
    9723             : static void sched_rq_cpu_starting(unsigned int cpu)
    9724             : {
    9725             :         struct rq *rq = cpu_rq(cpu);
    9726             : 
    9727             :         rq->calc_load_update = calc_load_update;
    9728             :         update_max_interval();
    9729             : }
    9730             : 
    9731             : int sched_cpu_starting(unsigned int cpu)
    9732             : {
    9733             :         sched_core_cpu_starting(cpu);
    9734             :         sched_rq_cpu_starting(cpu);
    9735             :         sched_tick_start(cpu);
    9736             :         return 0;
    9737             : }
    9738             : 
    9739             : #ifdef CONFIG_HOTPLUG_CPU
    9740             : 
    9741             : /*
    9742             :  * Invoked immediately before the stopper thread is invoked to bring the
    9743             :  * CPU down completely. At this point all per CPU kthreads except the
    9744             :  * hotplug thread (current) and the stopper thread (inactive) have been
    9745             :  * either parked or have been unbound from the outgoing CPU. Ensure that
    9746             :  * any of those which might be on the way out are gone.
    9747             :  *
    9748             :  * If after this point a bound task is being woken on this CPU then the
    9749             :  * responsible hotplug callback has failed to do it's job.
    9750             :  * sched_cpu_dying() will catch it with the appropriate fireworks.
    9751             :  */
    9752             : int sched_cpu_wait_empty(unsigned int cpu)
    9753             : {
    9754             :         balance_hotplug_wait();
    9755             :         return 0;
    9756             : }
    9757             : 
    9758             : /*
    9759             :  * Since this CPU is going 'away' for a while, fold any nr_active delta we
    9760             :  * might have. Called from the CPU stopper task after ensuring that the
    9761             :  * stopper is the last running task on the CPU, so nr_active count is
    9762             :  * stable. We need to take the teardown thread which is calling this into
    9763             :  * account, so we hand in adjust = 1 to the load calculation.
    9764             :  *
    9765             :  * Also see the comment "Global load-average calculations".
    9766             :  */
    9767             : static void calc_load_migrate(struct rq *rq)
    9768             : {
    9769             :         long delta = calc_load_fold_active(rq, 1);
    9770             : 
    9771             :         if (delta)
    9772             :                 atomic_long_add(delta, &calc_load_tasks);
    9773             : }
    9774             : 
    9775             : static void dump_rq_tasks(struct rq *rq, const char *loglvl)
    9776             : {
    9777             :         struct task_struct *g, *p;
    9778             :         int cpu = cpu_of(rq);
    9779             : 
    9780             :         lockdep_assert_rq_held(rq);
    9781             : 
    9782             :         printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
    9783             :         for_each_process_thread(g, p) {
    9784             :                 if (task_cpu(p) != cpu)
    9785             :                         continue;
    9786             : 
    9787             :                 if (!task_on_rq_queued(p))
    9788             :                         continue;
    9789             : 
    9790             :                 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
    9791             :         }
    9792             : }
    9793             : 
    9794             : int sched_cpu_dying(unsigned int cpu)
    9795             : {
    9796             :         struct rq *rq = cpu_rq(cpu);
    9797             :         struct rq_flags rf;
    9798             : 
    9799             :         /* Handle pending wakeups and then migrate everything off */
    9800             :         sched_tick_stop(cpu);
    9801             : 
    9802             :         rq_lock_irqsave(rq, &rf);
    9803             :         if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
    9804             :                 WARN(true, "Dying CPU not properly vacated!");
    9805             :                 dump_rq_tasks(rq, KERN_WARNING);
    9806             :         }
    9807             :         rq_unlock_irqrestore(rq, &rf);
    9808             : 
    9809             :         calc_load_migrate(rq);
    9810             :         update_max_interval();
    9811             :         hrtick_clear(rq);
    9812             :         sched_core_cpu_dying(cpu);
    9813             :         return 0;
    9814             : }
    9815             : #endif
    9816             : 
    9817             : void __init sched_init_smp(void)
    9818             : {
    9819             :         sched_init_numa(NUMA_NO_NODE);
    9820             : 
    9821             :         /*
    9822             :          * There's no userspace yet to cause hotplug operations; hence all the
    9823             :          * CPU masks are stable and all blatant races in the below code cannot
    9824             :          * happen.
    9825             :          */
    9826             :         mutex_lock(&sched_domains_mutex);
    9827             :         sched_init_domains(cpu_active_mask);
    9828             :         mutex_unlock(&sched_domains_mutex);
    9829             : 
    9830             :         /* Move init over to a non-isolated CPU */
    9831             :         if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
    9832             :                 BUG();
    9833             :         current->flags &= ~PF_NO_SETAFFINITY;
    9834             :         sched_init_granularity();
    9835             : 
    9836             :         init_sched_rt_class();
    9837             :         init_sched_dl_class();
    9838             : 
    9839             :         sched_smp_initialized = true;
    9840             : }
    9841             : 
    9842             : static int __init migration_init(void)
    9843             : {
    9844             :         sched_cpu_starting(smp_processor_id());
    9845             :         return 0;
    9846             : }
    9847             : early_initcall(migration_init);
    9848             : 
    9849             : #else
    9850           1 : void __init sched_init_smp(void)
    9851             : {
    9852           1 :         sched_init_granularity();
    9853           1 : }
    9854             : #endif /* CONFIG_SMP */
    9855             : 
    9856           0 : int in_sched_functions(unsigned long addr)
    9857             : {
    9858           0 :         return in_lock_functions(addr) ||
    9859           0 :                 (addr >= (unsigned long)__sched_text_start
    9860           0 :                 && addr < (unsigned long)__sched_text_end);
    9861             : }
    9862             : 
    9863             : #ifdef CONFIG_CGROUP_SCHED
    9864             : /*
    9865             :  * Default task group.
    9866             :  * Every task in system belongs to this group at bootup.
    9867             :  */
    9868             : struct task_group root_task_group;
    9869             : LIST_HEAD(task_groups);
    9870             : 
    9871             : /* Cacheline aligned slab cache for task_group */
    9872             : static struct kmem_cache *task_group_cache __read_mostly;
    9873             : #endif
    9874             : 
    9875           1 : void __init sched_init(void)
    9876             : {
    9877           1 :         unsigned long ptr = 0;
    9878             :         int i;
    9879             : 
    9880             :         /* Make sure the linker didn't screw up */
    9881           1 :         BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
    9882             :                &fair_sched_class != &rt_sched_class + 1 ||
    9883             :                &rt_sched_class   != &dl_sched_class + 1);
    9884             : #ifdef CONFIG_SMP
    9885             :         BUG_ON(&dl_sched_class != &stop_sched_class + 1);
    9886             : #endif
    9887             : 
    9888           1 :         wait_bit_init();
    9889             : 
    9890             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9891             :         ptr += 2 * nr_cpu_ids * sizeof(void **);
    9892             : #endif
    9893             : #ifdef CONFIG_RT_GROUP_SCHED
    9894             :         ptr += 2 * nr_cpu_ids * sizeof(void **);
    9895             : #endif
    9896             :         if (ptr) {
    9897             :                 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
    9898             : 
    9899             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9900             :                 root_task_group.se = (struct sched_entity **)ptr;
    9901             :                 ptr += nr_cpu_ids * sizeof(void **);
    9902             : 
    9903             :                 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
    9904             :                 ptr += nr_cpu_ids * sizeof(void **);
    9905             : 
    9906             :                 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
    9907             :                 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
    9908             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    9909             : #ifdef CONFIG_RT_GROUP_SCHED
    9910             :                 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
    9911             :                 ptr += nr_cpu_ids * sizeof(void **);
    9912             : 
    9913             :                 root_task_group.rt_rq = (struct rt_rq **)ptr;
    9914             :                 ptr += nr_cpu_ids * sizeof(void **);
    9915             : 
    9916             : #endif /* CONFIG_RT_GROUP_SCHED */
    9917             :         }
    9918             : 
    9919           1 :         init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
    9920             : 
    9921             : #ifdef CONFIG_SMP
    9922             :         init_defrootdomain();
    9923             : #endif
    9924             : 
    9925             : #ifdef CONFIG_RT_GROUP_SCHED
    9926             :         init_rt_bandwidth(&root_task_group.rt_bandwidth,
    9927             :                         global_rt_period(), global_rt_runtime());
    9928             : #endif /* CONFIG_RT_GROUP_SCHED */
    9929             : 
    9930             : #ifdef CONFIG_CGROUP_SCHED
    9931             :         task_group_cache = KMEM_CACHE(task_group, 0);
    9932             : 
    9933             :         list_add(&root_task_group.list, &task_groups);
    9934             :         INIT_LIST_HEAD(&root_task_group.children);
    9935             :         INIT_LIST_HEAD(&root_task_group.siblings);
    9936             :         autogroup_init(&init_task);
    9937             : #endif /* CONFIG_CGROUP_SCHED */
    9938             : 
    9939           2 :         for_each_possible_cpu(i) {
    9940             :                 struct rq *rq;
    9941             : 
    9942           1 :                 rq = cpu_rq(i);
    9943             :                 raw_spin_lock_init(&rq->__lock);
    9944           1 :                 rq->nr_running = 0;
    9945           1 :                 rq->calc_load_active = 0;
    9946           1 :                 rq->calc_load_update = jiffies + LOAD_FREQ;
    9947           1 :                 init_cfs_rq(&rq->cfs);
    9948           1 :                 init_rt_rq(&rq->rt);
    9949           1 :                 init_dl_rq(&rq->dl);
    9950             : #ifdef CONFIG_FAIR_GROUP_SCHED
    9951             :                 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
    9952             :                 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
    9953             :                 /*
    9954             :                  * How much CPU bandwidth does root_task_group get?
    9955             :                  *
    9956             :                  * In case of task-groups formed thr' the cgroup filesystem, it
    9957             :                  * gets 100% of the CPU resources in the system. This overall
    9958             :                  * system CPU resource is divided among the tasks of
    9959             :                  * root_task_group and its child task-groups in a fair manner,
    9960             :                  * based on each entity's (task or task-group's) weight
    9961             :                  * (se->load.weight).
    9962             :                  *
    9963             :                  * In other words, if root_task_group has 10 tasks of weight
    9964             :                  * 1024) and two child groups A0 and A1 (of weight 1024 each),
    9965             :                  * then A0's share of the CPU resource is:
    9966             :                  *
    9967             :                  *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
    9968             :                  *
    9969             :                  * We achieve this by letting root_task_group's tasks sit
    9970             :                  * directly in rq->cfs (i.e root_task_group->se[] = NULL).
    9971             :                  */
    9972             :                 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
    9973             : #endif /* CONFIG_FAIR_GROUP_SCHED */
    9974             : 
    9975           1 :                 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
    9976             : #ifdef CONFIG_RT_GROUP_SCHED
    9977             :                 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
    9978             : #endif
    9979             : #ifdef CONFIG_SMP
    9980             :                 rq->sd = NULL;
    9981             :                 rq->rd = NULL;
    9982             :                 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
    9983             :                 rq->balance_callback = &balance_push_callback;
    9984             :                 rq->active_balance = 0;
    9985             :                 rq->next_balance = jiffies;
    9986             :                 rq->push_cpu = 0;
    9987             :                 rq->cpu = i;
    9988             :                 rq->online = 0;
    9989             :                 rq->idle_stamp = 0;
    9990             :                 rq->avg_idle = 2*sysctl_sched_migration_cost;
    9991             :                 rq->wake_stamp = jiffies;
    9992             :                 rq->wake_avg_idle = rq->avg_idle;
    9993             :                 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
    9994             : 
    9995             :                 INIT_LIST_HEAD(&rq->cfs_tasks);
    9996             : 
    9997             :                 rq_attach_root(rq, &def_root_domain);
    9998             : #ifdef CONFIG_NO_HZ_COMMON
    9999             :                 rq->last_blocked_load_update_tick = jiffies;
   10000             :                 atomic_set(&rq->nohz_flags, 0);
   10001             : 
   10002             :                 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
   10003             : #endif
   10004             : #ifdef CONFIG_HOTPLUG_CPU
   10005             :                 rcuwait_init(&rq->hotplug_wait);
   10006             : #endif
   10007             : #endif /* CONFIG_SMP */
   10008           1 :                 hrtick_rq_init(rq);
   10009           2 :                 atomic_set(&rq->nr_iowait, 0);
   10010             : 
   10011             : #ifdef CONFIG_SCHED_CORE
   10012             :                 rq->core = rq;
   10013             :                 rq->core_pick = NULL;
   10014             :                 rq->core_enabled = 0;
   10015             :                 rq->core_tree = RB_ROOT;
   10016             :                 rq->core_forceidle_count = 0;
   10017             :                 rq->core_forceidle_occupation = 0;
   10018             :                 rq->core_forceidle_start = 0;
   10019             : 
   10020             :                 rq->core_cookie = 0UL;
   10021             : #endif
   10022           2 :                 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
   10023             :         }
   10024             : 
   10025           1 :         set_load_weight(&init_task, false);
   10026             : 
   10027             :         /*
   10028             :          * The boot idle thread does lazy MMU switching as well:
   10029             :          */
   10030           1 :         mmgrab_lazy_tlb(&init_mm);
   10031           1 :         enter_lazy_tlb(&init_mm, current);
   10032             : 
   10033             :         /*
   10034             :          * The idle task doesn't need the kthread struct to function, but it
   10035             :          * is dressed up as a per-CPU kthread and thus needs to play the part
   10036             :          * if we want to avoid special-casing it in code that deals with per-CPU
   10037             :          * kthreads.
   10038             :          */
   10039           1 :         WARN_ON(!set_kthread_struct(current));
   10040             : 
   10041             :         /*
   10042             :          * Make us the idle thread. Technically, schedule() should not be
   10043             :          * called from this thread, however somewhere below it might be,
   10044             :          * but because we are the idle thread, we just pick up running again
   10045             :          * when this runqueue becomes "idle".
   10046             :          */
   10047           1 :         init_idle(current, smp_processor_id());
   10048             : 
   10049           1 :         calc_load_update = jiffies + LOAD_FREQ;
   10050             : 
   10051             : #ifdef CONFIG_SMP
   10052             :         idle_thread_set_boot_cpu();
   10053             :         balance_push_set(smp_processor_id(), false);
   10054             : #endif
   10055           1 :         init_sched_fair_class();
   10056             : 
   10057             :         psi_init();
   10058             : 
   10059             :         init_uclamp();
   10060             : 
   10061             :         preempt_dynamic_init();
   10062             : 
   10063           1 :         scheduler_running = 1;
   10064           1 : }
   10065             : 
   10066             : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
   10067             : 
   10068             : void __might_sleep(const char *file, int line)
   10069             : {
   10070             :         unsigned int state = get_current_state();
   10071             :         /*
   10072             :          * Blocking primitives will set (and therefore destroy) current->state,
   10073             :          * since we will exit with TASK_RUNNING make sure we enter with it,
   10074             :          * otherwise we will destroy state.
   10075             :          */
   10076             :         WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
   10077             :                         "do not call blocking ops when !TASK_RUNNING; "
   10078             :                         "state=%x set at [<%p>] %pS\n", state,
   10079             :                         (void *)current->task_state_change,
   10080             :                         (void *)current->task_state_change);
   10081             : 
   10082             :         __might_resched(file, line, 0);
   10083             : }
   10084             : EXPORT_SYMBOL(__might_sleep);
   10085             : 
   10086             : static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
   10087             : {
   10088             :         if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
   10089             :                 return;
   10090             : 
   10091             :         if (preempt_count() == preempt_offset)
   10092             :                 return;
   10093             : 
   10094             :         pr_err("Preemption disabled at:");
   10095             :         print_ip_sym(KERN_ERR, ip);
   10096             : }
   10097             : 
   10098             : static inline bool resched_offsets_ok(unsigned int offsets)
   10099             : {
   10100             :         unsigned int nested = preempt_count();
   10101             : 
   10102             :         nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
   10103             : 
   10104             :         return nested == offsets;
   10105             : }
   10106             : 
   10107             : void __might_resched(const char *file, int line, unsigned int offsets)
   10108             : {
   10109             :         /* Ratelimiting timestamp: */
   10110             :         static unsigned long prev_jiffy;
   10111             : 
   10112             :         unsigned long preempt_disable_ip;
   10113             : 
   10114             :         /* WARN_ON_ONCE() by default, no rate limit required: */
   10115             :         rcu_sleep_check();
   10116             : 
   10117             :         if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
   10118             :              !is_idle_task(current) && !current->non_block_count) ||
   10119             :             system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
   10120             :             oops_in_progress)
   10121             :                 return;
   10122             : 
   10123             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10124             :                 return;
   10125             :         prev_jiffy = jiffies;
   10126             : 
   10127             :         /* Save this before calling printk(), since that will clobber it: */
   10128             :         preempt_disable_ip = get_preempt_disable_ip(current);
   10129             : 
   10130             :         pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
   10131             :                file, line);
   10132             :         pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
   10133             :                in_atomic(), irqs_disabled(), current->non_block_count,
   10134             :                current->pid, current->comm);
   10135             :         pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
   10136             :                offsets & MIGHT_RESCHED_PREEMPT_MASK);
   10137             : 
   10138             :         if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
   10139             :                 pr_err("RCU nest depth: %d, expected: %u\n",
   10140             :                        rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
   10141             :         }
   10142             : 
   10143             :         if (task_stack_end_corrupted(current))
   10144             :                 pr_emerg("Thread overran stack, or stack corrupted\n");
   10145             : 
   10146             :         debug_show_held_locks(current);
   10147             :         if (irqs_disabled())
   10148             :                 print_irqtrace_events(current);
   10149             : 
   10150             :         print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
   10151             :                                  preempt_disable_ip);
   10152             : 
   10153             :         dump_stack();
   10154             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10155             : }
   10156             : EXPORT_SYMBOL(__might_resched);
   10157             : 
   10158             : void __cant_sleep(const char *file, int line, int preempt_offset)
   10159             : {
   10160             :         static unsigned long prev_jiffy;
   10161             : 
   10162             :         if (irqs_disabled())
   10163             :                 return;
   10164             : 
   10165             :         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
   10166             :                 return;
   10167             : 
   10168             :         if (preempt_count() > preempt_offset)
   10169             :                 return;
   10170             : 
   10171             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10172             :                 return;
   10173             :         prev_jiffy = jiffies;
   10174             : 
   10175             :         printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
   10176             :         printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
   10177             :                         in_atomic(), irqs_disabled(),
   10178             :                         current->pid, current->comm);
   10179             : 
   10180             :         debug_show_held_locks(current);
   10181             :         dump_stack();
   10182             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10183             : }
   10184             : EXPORT_SYMBOL_GPL(__cant_sleep);
   10185             : 
   10186             : #ifdef CONFIG_SMP
   10187             : void __cant_migrate(const char *file, int line)
   10188             : {
   10189             :         static unsigned long prev_jiffy;
   10190             : 
   10191             :         if (irqs_disabled())
   10192             :                 return;
   10193             : 
   10194             :         if (is_migration_disabled(current))
   10195             :                 return;
   10196             : 
   10197             :         if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
   10198             :                 return;
   10199             : 
   10200             :         if (preempt_count() > 0)
   10201             :                 return;
   10202             : 
   10203             :         if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
   10204             :                 return;
   10205             :         prev_jiffy = jiffies;
   10206             : 
   10207             :         pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
   10208             :         pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
   10209             :                in_atomic(), irqs_disabled(), is_migration_disabled(current),
   10210             :                current->pid, current->comm);
   10211             : 
   10212             :         debug_show_held_locks(current);
   10213             :         dump_stack();
   10214             :         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
   10215             : }
   10216             : EXPORT_SYMBOL_GPL(__cant_migrate);
   10217             : #endif
   10218             : #endif
   10219             : 
   10220             : #ifdef CONFIG_MAGIC_SYSRQ
   10221             : void normalize_rt_tasks(void)
   10222             : {
   10223             :         struct task_struct *g, *p;
   10224             :         struct sched_attr attr = {
   10225             :                 .sched_policy = SCHED_NORMAL,
   10226             :         };
   10227             : 
   10228             :         read_lock(&tasklist_lock);
   10229             :         for_each_process_thread(g, p) {
   10230             :                 /*
   10231             :                  * Only normalize user tasks:
   10232             :                  */
   10233             :                 if (p->flags & PF_KTHREAD)
   10234             :                         continue;
   10235             : 
   10236             :                 p->se.exec_start = 0;
   10237             :                 schedstat_set(p->stats.wait_start,  0);
   10238             :                 schedstat_set(p->stats.sleep_start, 0);
   10239             :                 schedstat_set(p->stats.block_start, 0);
   10240             : 
   10241             :                 if (!dl_task(p) && !rt_task(p)) {
   10242             :                         /*
   10243             :                          * Renice negative nice level userspace
   10244             :                          * tasks back to 0:
   10245             :                          */
   10246             :                         if (task_nice(p) < 0)
   10247             :                                 set_user_nice(p, 0);
   10248             :                         continue;
   10249             :                 }
   10250             : 
   10251             :                 __sched_setscheduler(p, &attr, false, false);
   10252             :         }
   10253             :         read_unlock(&tasklist_lock);
   10254             : }
   10255             : 
   10256             : #endif /* CONFIG_MAGIC_SYSRQ */
   10257             : 
   10258             : #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
   10259             : /*
   10260             :  * These functions are only useful for the IA64 MCA handling, or kdb.
   10261             :  *
   10262             :  * They can only be called when the whole system has been
   10263             :  * stopped - every CPU needs to be quiescent, and no scheduling
   10264             :  * activity can take place. Using them for anything else would
   10265             :  * be a serious bug, and as a result, they aren't even visible
   10266             :  * under any other configuration.
   10267             :  */
   10268             : 
   10269             : /**
   10270             :  * curr_task - return the current task for a given CPU.
   10271             :  * @cpu: the processor in question.
   10272             :  *
   10273             :  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
   10274             :  *
   10275             :  * Return: The current task for @cpu.
   10276             :  */
   10277             : struct task_struct *curr_task(int cpu)
   10278             : {
   10279             :         return cpu_curr(cpu);
   10280             : }
   10281             : 
   10282             : #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
   10283             : 
   10284             : #ifdef CONFIG_IA64
   10285             : /**
   10286             :  * ia64_set_curr_task - set the current task for a given CPU.
   10287             :  * @cpu: the processor in question.
   10288             :  * @p: the task pointer to set.
   10289             :  *
   10290             :  * Description: This function must only be used when non-maskable interrupts
   10291             :  * are serviced on a separate stack. It allows the architecture to switch the
   10292             :  * notion of the current task on a CPU in a non-blocking manner. This function
   10293             :  * must be called with all CPU's synchronized, and interrupts disabled, the
   10294             :  * and caller must save the original value of the current task (see
   10295             :  * curr_task() above) and restore that value before reenabling interrupts and
   10296             :  * re-starting the system.
   10297             :  *
   10298             :  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
   10299             :  */
   10300             : void ia64_set_curr_task(int cpu, struct task_struct *p)
   10301             : {
   10302             :         cpu_curr(cpu) = p;
   10303             : }
   10304             : 
   10305             : #endif
   10306             : 
   10307             : #ifdef CONFIG_CGROUP_SCHED
   10308             : /* task_group_lock serializes the addition/removal of task groups */
   10309             : static DEFINE_SPINLOCK(task_group_lock);
   10310             : 
   10311             : static inline void alloc_uclamp_sched_group(struct task_group *tg,
   10312             :                                             struct task_group *parent)
   10313             : {
   10314             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10315             :         enum uclamp_id clamp_id;
   10316             : 
   10317             :         for_each_clamp_id(clamp_id) {
   10318             :                 uclamp_se_set(&tg->uclamp_req[clamp_id],
   10319             :                               uclamp_none(clamp_id), false);
   10320             :                 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
   10321             :         }
   10322             : #endif
   10323             : }
   10324             : 
   10325             : static void sched_free_group(struct task_group *tg)
   10326             : {
   10327             :         free_fair_sched_group(tg);
   10328             :         free_rt_sched_group(tg);
   10329             :         autogroup_free(tg);
   10330             :         kmem_cache_free(task_group_cache, tg);
   10331             : }
   10332             : 
   10333             : static void sched_free_group_rcu(struct rcu_head *rcu)
   10334             : {
   10335             :         sched_free_group(container_of(rcu, struct task_group, rcu));
   10336             : }
   10337             : 
   10338             : static void sched_unregister_group(struct task_group *tg)
   10339             : {
   10340             :         unregister_fair_sched_group(tg);
   10341             :         unregister_rt_sched_group(tg);
   10342             :         /*
   10343             :          * We have to wait for yet another RCU grace period to expire, as
   10344             :          * print_cfs_stats() might run concurrently.
   10345             :          */
   10346             :         call_rcu(&tg->rcu, sched_free_group_rcu);
   10347             : }
   10348             : 
   10349             : /* allocate runqueue etc for a new task group */
   10350             : struct task_group *sched_create_group(struct task_group *parent)
   10351             : {
   10352             :         struct task_group *tg;
   10353             : 
   10354             :         tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
   10355             :         if (!tg)
   10356             :                 return ERR_PTR(-ENOMEM);
   10357             : 
   10358             :         if (!alloc_fair_sched_group(tg, parent))
   10359             :                 goto err;
   10360             : 
   10361             :         if (!alloc_rt_sched_group(tg, parent))
   10362             :                 goto err;
   10363             : 
   10364             :         alloc_uclamp_sched_group(tg, parent);
   10365             : 
   10366             :         return tg;
   10367             : 
   10368             : err:
   10369             :         sched_free_group(tg);
   10370             :         return ERR_PTR(-ENOMEM);
   10371             : }
   10372             : 
   10373             : void sched_online_group(struct task_group *tg, struct task_group *parent)
   10374             : {
   10375             :         unsigned long flags;
   10376             : 
   10377             :         spin_lock_irqsave(&task_group_lock, flags);
   10378             :         list_add_rcu(&tg->list, &task_groups);
   10379             : 
   10380             :         /* Root should already exist: */
   10381             :         WARN_ON(!parent);
   10382             : 
   10383             :         tg->parent = parent;
   10384             :         INIT_LIST_HEAD(&tg->children);
   10385             :         list_add_rcu(&tg->siblings, &parent->children);
   10386             :         spin_unlock_irqrestore(&task_group_lock, flags);
   10387             : 
   10388             :         online_fair_sched_group(tg);
   10389             : }
   10390             : 
   10391             : /* rcu callback to free various structures associated with a task group */
   10392             : static void sched_unregister_group_rcu(struct rcu_head *rhp)
   10393             : {
   10394             :         /* Now it should be safe to free those cfs_rqs: */
   10395             :         sched_unregister_group(container_of(rhp, struct task_group, rcu));
   10396             : }
   10397             : 
   10398             : void sched_destroy_group(struct task_group *tg)
   10399             : {
   10400             :         /* Wait for possible concurrent references to cfs_rqs complete: */
   10401             :         call_rcu(&tg->rcu, sched_unregister_group_rcu);
   10402             : }
   10403             : 
   10404             : void sched_release_group(struct task_group *tg)
   10405             : {
   10406             :         unsigned long flags;
   10407             : 
   10408             :         /*
   10409             :          * Unlink first, to avoid walk_tg_tree_from() from finding us (via
   10410             :          * sched_cfs_period_timer()).
   10411             :          *
   10412             :          * For this to be effective, we have to wait for all pending users of
   10413             :          * this task group to leave their RCU critical section to ensure no new
   10414             :          * user will see our dying task group any more. Specifically ensure
   10415             :          * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
   10416             :          *
   10417             :          * We therefore defer calling unregister_fair_sched_group() to
   10418             :          * sched_unregister_group() which is guarantied to get called only after the
   10419             :          * current RCU grace period has expired.
   10420             :          */
   10421             :         spin_lock_irqsave(&task_group_lock, flags);
   10422             :         list_del_rcu(&tg->list);
   10423             :         list_del_rcu(&tg->siblings);
   10424             :         spin_unlock_irqrestore(&task_group_lock, flags);
   10425             : }
   10426             : 
   10427             : static struct task_group *sched_get_task_group(struct task_struct *tsk)
   10428             : {
   10429             :         struct task_group *tg;
   10430             : 
   10431             :         /*
   10432             :          * All callers are synchronized by task_rq_lock(); we do not use RCU
   10433             :          * which is pointless here. Thus, we pass "true" to task_css_check()
   10434             :          * to prevent lockdep warnings.
   10435             :          */
   10436             :         tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
   10437             :                           struct task_group, css);
   10438             :         tg = autogroup_task_group(tsk, tg);
   10439             : 
   10440             :         return tg;
   10441             : }
   10442             : 
   10443             : static void sched_change_group(struct task_struct *tsk, struct task_group *group)
   10444             : {
   10445             :         tsk->sched_task_group = group;
   10446             : 
   10447             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10448             :         if (tsk->sched_class->task_change_group)
   10449             :                 tsk->sched_class->task_change_group(tsk);
   10450             :         else
   10451             : #endif
   10452             :                 set_task_rq(tsk, task_cpu(tsk));
   10453             : }
   10454             : 
   10455             : /*
   10456             :  * Change task's runqueue when it moves between groups.
   10457             :  *
   10458             :  * The caller of this function should have put the task in its new group by
   10459             :  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
   10460             :  * its new group.
   10461             :  */
   10462             : void sched_move_task(struct task_struct *tsk)
   10463             : {
   10464             :         int queued, running, queue_flags =
   10465             :                 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
   10466             :         struct task_group *group;
   10467             :         struct rq_flags rf;
   10468             :         struct rq *rq;
   10469             : 
   10470             :         rq = task_rq_lock(tsk, &rf);
   10471             :         /*
   10472             :          * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
   10473             :          * group changes.
   10474             :          */
   10475             :         group = sched_get_task_group(tsk);
   10476             :         if (group == tsk->sched_task_group)
   10477             :                 goto unlock;
   10478             : 
   10479             :         update_rq_clock(rq);
   10480             : 
   10481             :         running = task_current(rq, tsk);
   10482             :         queued = task_on_rq_queued(tsk);
   10483             : 
   10484             :         if (queued)
   10485             :                 dequeue_task(rq, tsk, queue_flags);
   10486             :         if (running)
   10487             :                 put_prev_task(rq, tsk);
   10488             : 
   10489             :         sched_change_group(tsk, group);
   10490             : 
   10491             :         if (queued)
   10492             :                 enqueue_task(rq, tsk, queue_flags);
   10493             :         if (running) {
   10494             :                 set_next_task(rq, tsk);
   10495             :                 /*
   10496             :                  * After changing group, the running task may have joined a
   10497             :                  * throttled one but it's still the running task. Trigger a
   10498             :                  * resched to make sure that task can still run.
   10499             :                  */
   10500             :                 resched_curr(rq);
   10501             :         }
   10502             : 
   10503             : unlock:
   10504             :         task_rq_unlock(rq, tsk, &rf);
   10505             : }
   10506             : 
   10507             : static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
   10508             : {
   10509             :         return css ? container_of(css, struct task_group, css) : NULL;
   10510             : }
   10511             : 
   10512             : static struct cgroup_subsys_state *
   10513             : cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
   10514             : {
   10515             :         struct task_group *parent = css_tg(parent_css);
   10516             :         struct task_group *tg;
   10517             : 
   10518             :         if (!parent) {
   10519             :                 /* This is early initialization for the top cgroup */
   10520             :                 return &root_task_group.css;
   10521             :         }
   10522             : 
   10523             :         tg = sched_create_group(parent);
   10524             :         if (IS_ERR(tg))
   10525             :                 return ERR_PTR(-ENOMEM);
   10526             : 
   10527             :         return &tg->css;
   10528             : }
   10529             : 
   10530             : /* Expose task group only after completing cgroup initialization */
   10531             : static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
   10532             : {
   10533             :         struct task_group *tg = css_tg(css);
   10534             :         struct task_group *parent = css_tg(css->parent);
   10535             : 
   10536             :         if (parent)
   10537             :                 sched_online_group(tg, parent);
   10538             : 
   10539             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10540             :         /* Propagate the effective uclamp value for the new group */
   10541             :         mutex_lock(&uclamp_mutex);
   10542             :         rcu_read_lock();
   10543             :         cpu_util_update_eff(css);
   10544             :         rcu_read_unlock();
   10545             :         mutex_unlock(&uclamp_mutex);
   10546             : #endif
   10547             : 
   10548             :         return 0;
   10549             : }
   10550             : 
   10551             : static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
   10552             : {
   10553             :         struct task_group *tg = css_tg(css);
   10554             : 
   10555             :         sched_release_group(tg);
   10556             : }
   10557             : 
   10558             : static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
   10559             : {
   10560             :         struct task_group *tg = css_tg(css);
   10561             : 
   10562             :         /*
   10563             :          * Relies on the RCU grace period between css_released() and this.
   10564             :          */
   10565             :         sched_unregister_group(tg);
   10566             : }
   10567             : 
   10568             : #ifdef CONFIG_RT_GROUP_SCHED
   10569             : static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
   10570             : {
   10571             :         struct task_struct *task;
   10572             :         struct cgroup_subsys_state *css;
   10573             : 
   10574             :         cgroup_taskset_for_each(task, css, tset) {
   10575             :                 if (!sched_rt_can_attach(css_tg(css), task))
   10576             :                         return -EINVAL;
   10577             :         }
   10578             :         return 0;
   10579             : }
   10580             : #endif
   10581             : 
   10582             : static void cpu_cgroup_attach(struct cgroup_taskset *tset)
   10583             : {
   10584             :         struct task_struct *task;
   10585             :         struct cgroup_subsys_state *css;
   10586             : 
   10587             :         cgroup_taskset_for_each(task, css, tset)
   10588             :                 sched_move_task(task);
   10589             : }
   10590             : 
   10591             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   10592             : static void cpu_util_update_eff(struct cgroup_subsys_state *css)
   10593             : {
   10594             :         struct cgroup_subsys_state *top_css = css;
   10595             :         struct uclamp_se *uc_parent = NULL;
   10596             :         struct uclamp_se *uc_se = NULL;
   10597             :         unsigned int eff[UCLAMP_CNT];
   10598             :         enum uclamp_id clamp_id;
   10599             :         unsigned int clamps;
   10600             : 
   10601             :         lockdep_assert_held(&uclamp_mutex);
   10602             :         SCHED_WARN_ON(!rcu_read_lock_held());
   10603             : 
   10604             :         css_for_each_descendant_pre(css, top_css) {
   10605             :                 uc_parent = css_tg(css)->parent
   10606             :                         ? css_tg(css)->parent->uclamp : NULL;
   10607             : 
   10608             :                 for_each_clamp_id(clamp_id) {
   10609             :                         /* Assume effective clamps matches requested clamps */
   10610             :                         eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
   10611             :                         /* Cap effective clamps with parent's effective clamps */
   10612             :                         if (uc_parent &&
   10613             :                             eff[clamp_id] > uc_parent[clamp_id].value) {
   10614             :                                 eff[clamp_id] = uc_parent[clamp_id].value;
   10615             :                         }
   10616             :                 }
   10617             :                 /* Ensure protection is always capped by limit */
   10618             :                 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
   10619             : 
   10620             :                 /* Propagate most restrictive effective clamps */
   10621             :                 clamps = 0x0;
   10622             :                 uc_se = css_tg(css)->uclamp;
   10623             :                 for_each_clamp_id(clamp_id) {
   10624             :                         if (eff[clamp_id] == uc_se[clamp_id].value)
   10625             :                                 continue;
   10626             :                         uc_se[clamp_id].value = eff[clamp_id];
   10627             :                         uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
   10628             :                         clamps |= (0x1 << clamp_id);
   10629             :                 }
   10630             :                 if (!clamps) {
   10631             :                         css = css_rightmost_descendant(css);
   10632             :                         continue;
   10633             :                 }
   10634             : 
   10635             :                 /* Immediately update descendants RUNNABLE tasks */
   10636             :                 uclamp_update_active_tasks(css);
   10637             :         }
   10638             : }
   10639             : 
   10640             : /*
   10641             :  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
   10642             :  * C expression. Since there is no way to convert a macro argument (N) into a
   10643             :  * character constant, use two levels of macros.
   10644             :  */
   10645             : #define _POW10(exp) ((unsigned int)1e##exp)
   10646             : #define POW10(exp) _POW10(exp)
   10647             : 
   10648             : struct uclamp_request {
   10649             : #define UCLAMP_PERCENT_SHIFT    2
   10650             : #define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
   10651             :         s64 percent;
   10652             :         u64 util;
   10653             :         int ret;
   10654             : };
   10655             : 
   10656             : static inline struct uclamp_request
   10657             : capacity_from_percent(char *buf)
   10658             : {
   10659             :         struct uclamp_request req = {
   10660             :                 .percent = UCLAMP_PERCENT_SCALE,
   10661             :                 .util = SCHED_CAPACITY_SCALE,
   10662             :                 .ret = 0,
   10663             :         };
   10664             : 
   10665             :         buf = strim(buf);
   10666             :         if (strcmp(buf, "max")) {
   10667             :                 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
   10668             :                                              &req.percent);
   10669             :                 if (req.ret)
   10670             :                         return req;
   10671             :                 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
   10672             :                         req.ret = -ERANGE;
   10673             :                         return req;
   10674             :                 }
   10675             : 
   10676             :                 req.util = req.percent << SCHED_CAPACITY_SHIFT;
   10677             :                 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
   10678             :         }
   10679             : 
   10680             :         return req;
   10681             : }
   10682             : 
   10683             : static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
   10684             :                                 size_t nbytes, loff_t off,
   10685             :                                 enum uclamp_id clamp_id)
   10686             : {
   10687             :         struct uclamp_request req;
   10688             :         struct task_group *tg;
   10689             : 
   10690             :         req = capacity_from_percent(buf);
   10691             :         if (req.ret)
   10692             :                 return req.ret;
   10693             : 
   10694             :         static_branch_enable(&sched_uclamp_used);
   10695             : 
   10696             :         mutex_lock(&uclamp_mutex);
   10697             :         rcu_read_lock();
   10698             : 
   10699             :         tg = css_tg(of_css(of));
   10700             :         if (tg->uclamp_req[clamp_id].value != req.util)
   10701             :                 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
   10702             : 
   10703             :         /*
   10704             :          * Because of not recoverable conversion rounding we keep track of the
   10705             :          * exact requested value
   10706             :          */
   10707             :         tg->uclamp_pct[clamp_id] = req.percent;
   10708             : 
   10709             :         /* Update effective clamps to track the most restrictive value */
   10710             :         cpu_util_update_eff(of_css(of));
   10711             : 
   10712             :         rcu_read_unlock();
   10713             :         mutex_unlock(&uclamp_mutex);
   10714             : 
   10715             :         return nbytes;
   10716             : }
   10717             : 
   10718             : static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
   10719             :                                     char *buf, size_t nbytes,
   10720             :                                     loff_t off)
   10721             : {
   10722             :         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
   10723             : }
   10724             : 
   10725             : static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
   10726             :                                     char *buf, size_t nbytes,
   10727             :                                     loff_t off)
   10728             : {
   10729             :         return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
   10730             : }
   10731             : 
   10732             : static inline void cpu_uclamp_print(struct seq_file *sf,
   10733             :                                     enum uclamp_id clamp_id)
   10734             : {
   10735             :         struct task_group *tg;
   10736             :         u64 util_clamp;
   10737             :         u64 percent;
   10738             :         u32 rem;
   10739             : 
   10740             :         rcu_read_lock();
   10741             :         tg = css_tg(seq_css(sf));
   10742             :         util_clamp = tg->uclamp_req[clamp_id].value;
   10743             :         rcu_read_unlock();
   10744             : 
   10745             :         if (util_clamp == SCHED_CAPACITY_SCALE) {
   10746             :                 seq_puts(sf, "max\n");
   10747             :                 return;
   10748             :         }
   10749             : 
   10750             :         percent = tg->uclamp_pct[clamp_id];
   10751             :         percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
   10752             :         seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
   10753             : }
   10754             : 
   10755             : static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
   10756             : {
   10757             :         cpu_uclamp_print(sf, UCLAMP_MIN);
   10758             :         return 0;
   10759             : }
   10760             : 
   10761             : static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
   10762             : {
   10763             :         cpu_uclamp_print(sf, UCLAMP_MAX);
   10764             :         return 0;
   10765             : }
   10766             : #endif /* CONFIG_UCLAMP_TASK_GROUP */
   10767             : 
   10768             : #ifdef CONFIG_FAIR_GROUP_SCHED
   10769             : static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
   10770             :                                 struct cftype *cftype, u64 shareval)
   10771             : {
   10772             :         if (shareval > scale_load_down(ULONG_MAX))
   10773             :                 shareval = MAX_SHARES;
   10774             :         return sched_group_set_shares(css_tg(css), scale_load(shareval));
   10775             : }
   10776             : 
   10777             : static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
   10778             :                                struct cftype *cft)
   10779             : {
   10780             :         struct task_group *tg = css_tg(css);
   10781             : 
   10782             :         return (u64) scale_load_down(tg->shares);
   10783             : }
   10784             : 
   10785             : #ifdef CONFIG_CFS_BANDWIDTH
   10786             : static DEFINE_MUTEX(cfs_constraints_mutex);
   10787             : 
   10788             : const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
   10789             : static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
   10790             : /* More than 203 days if BW_SHIFT equals 20. */
   10791             : static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
   10792             : 
   10793             : static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
   10794             : 
   10795             : static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
   10796             :                                 u64 burst)
   10797             : {
   10798             :         int i, ret = 0, runtime_enabled, runtime_was_enabled;
   10799             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   10800             : 
   10801             :         if (tg == &root_task_group)
   10802             :                 return -EINVAL;
   10803             : 
   10804             :         /*
   10805             :          * Ensure we have at some amount of bandwidth every period.  This is
   10806             :          * to prevent reaching a state of large arrears when throttled via
   10807             :          * entity_tick() resulting in prolonged exit starvation.
   10808             :          */
   10809             :         if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
   10810             :                 return -EINVAL;
   10811             : 
   10812             :         /*
   10813             :          * Likewise, bound things on the other side by preventing insane quota
   10814             :          * periods.  This also allows us to normalize in computing quota
   10815             :          * feasibility.
   10816             :          */
   10817             :         if (period > max_cfs_quota_period)
   10818             :                 return -EINVAL;
   10819             : 
   10820             :         /*
   10821             :          * Bound quota to defend quota against overflow during bandwidth shift.
   10822             :          */
   10823             :         if (quota != RUNTIME_INF && quota > max_cfs_runtime)
   10824             :                 return -EINVAL;
   10825             : 
   10826             :         if (quota != RUNTIME_INF && (burst > quota ||
   10827             :                                      burst + quota > max_cfs_runtime))
   10828             :                 return -EINVAL;
   10829             : 
   10830             :         /*
   10831             :          * Prevent race between setting of cfs_rq->runtime_enabled and
   10832             :          * unthrottle_offline_cfs_rqs().
   10833             :          */
   10834             :         cpus_read_lock();
   10835             :         mutex_lock(&cfs_constraints_mutex);
   10836             :         ret = __cfs_schedulable(tg, period, quota);
   10837             :         if (ret)
   10838             :                 goto out_unlock;
   10839             : 
   10840             :         runtime_enabled = quota != RUNTIME_INF;
   10841             :         runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
   10842             :         /*
   10843             :          * If we need to toggle cfs_bandwidth_used, off->on must occur
   10844             :          * before making related changes, and on->off must occur afterwards
   10845             :          */
   10846             :         if (runtime_enabled && !runtime_was_enabled)
   10847             :                 cfs_bandwidth_usage_inc();
   10848             :         raw_spin_lock_irq(&cfs_b->lock);
   10849             :         cfs_b->period = ns_to_ktime(period);
   10850             :         cfs_b->quota = quota;
   10851             :         cfs_b->burst = burst;
   10852             : 
   10853             :         __refill_cfs_bandwidth_runtime(cfs_b);
   10854             : 
   10855             :         /* Restart the period timer (if active) to handle new period expiry: */
   10856             :         if (runtime_enabled)
   10857             :                 start_cfs_bandwidth(cfs_b);
   10858             : 
   10859             :         raw_spin_unlock_irq(&cfs_b->lock);
   10860             : 
   10861             :         for_each_online_cpu(i) {
   10862             :                 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
   10863             :                 struct rq *rq = cfs_rq->rq;
   10864             :                 struct rq_flags rf;
   10865             : 
   10866             :                 rq_lock_irq(rq, &rf);
   10867             :                 cfs_rq->runtime_enabled = runtime_enabled;
   10868             :                 cfs_rq->runtime_remaining = 0;
   10869             : 
   10870             :                 if (cfs_rq->throttled)
   10871             :                         unthrottle_cfs_rq(cfs_rq);
   10872             :                 rq_unlock_irq(rq, &rf);
   10873             :         }
   10874             :         if (runtime_was_enabled && !runtime_enabled)
   10875             :                 cfs_bandwidth_usage_dec();
   10876             : out_unlock:
   10877             :         mutex_unlock(&cfs_constraints_mutex);
   10878             :         cpus_read_unlock();
   10879             : 
   10880             :         return ret;
   10881             : }
   10882             : 
   10883             : static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
   10884             : {
   10885             :         u64 quota, period, burst;
   10886             : 
   10887             :         period = ktime_to_ns(tg->cfs_bandwidth.period);
   10888             :         burst = tg->cfs_bandwidth.burst;
   10889             :         if (cfs_quota_us < 0)
   10890             :                 quota = RUNTIME_INF;
   10891             :         else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
   10892             :                 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
   10893             :         else
   10894             :                 return -EINVAL;
   10895             : 
   10896             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10897             : }
   10898             : 
   10899             : static long tg_get_cfs_quota(struct task_group *tg)
   10900             : {
   10901             :         u64 quota_us;
   10902             : 
   10903             :         if (tg->cfs_bandwidth.quota == RUNTIME_INF)
   10904             :                 return -1;
   10905             : 
   10906             :         quota_us = tg->cfs_bandwidth.quota;
   10907             :         do_div(quota_us, NSEC_PER_USEC);
   10908             : 
   10909             :         return quota_us;
   10910             : }
   10911             : 
   10912             : static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
   10913             : {
   10914             :         u64 quota, period, burst;
   10915             : 
   10916             :         if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
   10917             :                 return -EINVAL;
   10918             : 
   10919             :         period = (u64)cfs_period_us * NSEC_PER_USEC;
   10920             :         quota = tg->cfs_bandwidth.quota;
   10921             :         burst = tg->cfs_bandwidth.burst;
   10922             : 
   10923             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10924             : }
   10925             : 
   10926             : static long tg_get_cfs_period(struct task_group *tg)
   10927             : {
   10928             :         u64 cfs_period_us;
   10929             : 
   10930             :         cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
   10931             :         do_div(cfs_period_us, NSEC_PER_USEC);
   10932             : 
   10933             :         return cfs_period_us;
   10934             : }
   10935             : 
   10936             : static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
   10937             : {
   10938             :         u64 quota, period, burst;
   10939             : 
   10940             :         if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
   10941             :                 return -EINVAL;
   10942             : 
   10943             :         burst = (u64)cfs_burst_us * NSEC_PER_USEC;
   10944             :         period = ktime_to_ns(tg->cfs_bandwidth.period);
   10945             :         quota = tg->cfs_bandwidth.quota;
   10946             : 
   10947             :         return tg_set_cfs_bandwidth(tg, period, quota, burst);
   10948             : }
   10949             : 
   10950             : static long tg_get_cfs_burst(struct task_group *tg)
   10951             : {
   10952             :         u64 burst_us;
   10953             : 
   10954             :         burst_us = tg->cfs_bandwidth.burst;
   10955             :         do_div(burst_us, NSEC_PER_USEC);
   10956             : 
   10957             :         return burst_us;
   10958             : }
   10959             : 
   10960             : static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
   10961             :                                   struct cftype *cft)
   10962             : {
   10963             :         return tg_get_cfs_quota(css_tg(css));
   10964             : }
   10965             : 
   10966             : static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
   10967             :                                    struct cftype *cftype, s64 cfs_quota_us)
   10968             : {
   10969             :         return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
   10970             : }
   10971             : 
   10972             : static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
   10973             :                                    struct cftype *cft)
   10974             : {
   10975             :         return tg_get_cfs_period(css_tg(css));
   10976             : }
   10977             : 
   10978             : static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
   10979             :                                     struct cftype *cftype, u64 cfs_period_us)
   10980             : {
   10981             :         return tg_set_cfs_period(css_tg(css), cfs_period_us);
   10982             : }
   10983             : 
   10984             : static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
   10985             :                                   struct cftype *cft)
   10986             : {
   10987             :         return tg_get_cfs_burst(css_tg(css));
   10988             : }
   10989             : 
   10990             : static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
   10991             :                                    struct cftype *cftype, u64 cfs_burst_us)
   10992             : {
   10993             :         return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
   10994             : }
   10995             : 
   10996             : struct cfs_schedulable_data {
   10997             :         struct task_group *tg;
   10998             :         u64 period, quota;
   10999             : };
   11000             : 
   11001             : /*
   11002             :  * normalize group quota/period to be quota/max_period
   11003             :  * note: units are usecs
   11004             :  */
   11005             : static u64 normalize_cfs_quota(struct task_group *tg,
   11006             :                                struct cfs_schedulable_data *d)
   11007             : {
   11008             :         u64 quota, period;
   11009             : 
   11010             :         if (tg == d->tg) {
   11011             :                 period = d->period;
   11012             :                 quota = d->quota;
   11013             :         } else {
   11014             :                 period = tg_get_cfs_period(tg);
   11015             :                 quota = tg_get_cfs_quota(tg);
   11016             :         }
   11017             : 
   11018             :         /* note: these should typically be equivalent */
   11019             :         if (quota == RUNTIME_INF || quota == -1)
   11020             :                 return RUNTIME_INF;
   11021             : 
   11022             :         return to_ratio(period, quota);
   11023             : }
   11024             : 
   11025             : static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
   11026             : {
   11027             :         struct cfs_schedulable_data *d = data;
   11028             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11029             :         s64 quota = 0, parent_quota = -1;
   11030             : 
   11031             :         if (!tg->parent) {
   11032             :                 quota = RUNTIME_INF;
   11033             :         } else {
   11034             :                 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
   11035             : 
   11036             :                 quota = normalize_cfs_quota(tg, d);
   11037             :                 parent_quota = parent_b->hierarchical_quota;
   11038             : 
   11039             :                 /*
   11040             :                  * Ensure max(child_quota) <= parent_quota.  On cgroup2,
   11041             :                  * always take the min.  On cgroup1, only inherit when no
   11042             :                  * limit is set:
   11043             :                  */
   11044             :                 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
   11045             :                         quota = min(quota, parent_quota);
   11046             :                 } else {
   11047             :                         if (quota == RUNTIME_INF)
   11048             :                                 quota = parent_quota;
   11049             :                         else if (parent_quota != RUNTIME_INF && quota > parent_quota)
   11050             :                                 return -EINVAL;
   11051             :                 }
   11052             :         }
   11053             :         cfs_b->hierarchical_quota = quota;
   11054             : 
   11055             :         return 0;
   11056             : }
   11057             : 
   11058             : static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
   11059             : {
   11060             :         int ret;
   11061             :         struct cfs_schedulable_data data = {
   11062             :                 .tg = tg,
   11063             :                 .period = period,
   11064             :                 .quota = quota,
   11065             :         };
   11066             : 
   11067             :         if (quota != RUNTIME_INF) {
   11068             :                 do_div(data.period, NSEC_PER_USEC);
   11069             :                 do_div(data.quota, NSEC_PER_USEC);
   11070             :         }
   11071             : 
   11072             :         rcu_read_lock();
   11073             :         ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
   11074             :         rcu_read_unlock();
   11075             : 
   11076             :         return ret;
   11077             : }
   11078             : 
   11079             : static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
   11080             : {
   11081             :         struct task_group *tg = css_tg(seq_css(sf));
   11082             :         struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11083             : 
   11084             :         seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
   11085             :         seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
   11086             :         seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
   11087             : 
   11088             :         if (schedstat_enabled() && tg != &root_task_group) {
   11089             :                 struct sched_statistics *stats;
   11090             :                 u64 ws = 0;
   11091             :                 int i;
   11092             : 
   11093             :                 for_each_possible_cpu(i) {
   11094             :                         stats = __schedstats_from_se(tg->se[i]);
   11095             :                         ws += schedstat_val(stats->wait_sum);
   11096             :                 }
   11097             : 
   11098             :                 seq_printf(sf, "wait_sum %llu\n", ws);
   11099             :         }
   11100             : 
   11101             :         seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
   11102             :         seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
   11103             : 
   11104             :         return 0;
   11105             : }
   11106             : #endif /* CONFIG_CFS_BANDWIDTH */
   11107             : #endif /* CONFIG_FAIR_GROUP_SCHED */
   11108             : 
   11109             : #ifdef CONFIG_RT_GROUP_SCHED
   11110             : static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
   11111             :                                 struct cftype *cft, s64 val)
   11112             : {
   11113             :         return sched_group_set_rt_runtime(css_tg(css), val);
   11114             : }
   11115             : 
   11116             : static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
   11117             :                                struct cftype *cft)
   11118             : {
   11119             :         return sched_group_rt_runtime(css_tg(css));
   11120             : }
   11121             : 
   11122             : static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
   11123             :                                     struct cftype *cftype, u64 rt_period_us)
   11124             : {
   11125             :         return sched_group_set_rt_period(css_tg(css), rt_period_us);
   11126             : }
   11127             : 
   11128             : static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
   11129             :                                    struct cftype *cft)
   11130             : {
   11131             :         return sched_group_rt_period(css_tg(css));
   11132             : }
   11133             : #endif /* CONFIG_RT_GROUP_SCHED */
   11134             : 
   11135             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11136             : static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
   11137             :                                struct cftype *cft)
   11138             : {
   11139             :         return css_tg(css)->idle;
   11140             : }
   11141             : 
   11142             : static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
   11143             :                                 struct cftype *cft, s64 idle)
   11144             : {
   11145             :         return sched_group_set_idle(css_tg(css), idle);
   11146             : }
   11147             : #endif
   11148             : 
   11149             : static struct cftype cpu_legacy_files[] = {
   11150             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11151             :         {
   11152             :                 .name = "shares",
   11153             :                 .read_u64 = cpu_shares_read_u64,
   11154             :                 .write_u64 = cpu_shares_write_u64,
   11155             :         },
   11156             :         {
   11157             :                 .name = "idle",
   11158             :                 .read_s64 = cpu_idle_read_s64,
   11159             :                 .write_s64 = cpu_idle_write_s64,
   11160             :         },
   11161             : #endif
   11162             : #ifdef CONFIG_CFS_BANDWIDTH
   11163             :         {
   11164             :                 .name = "cfs_quota_us",
   11165             :                 .read_s64 = cpu_cfs_quota_read_s64,
   11166             :                 .write_s64 = cpu_cfs_quota_write_s64,
   11167             :         },
   11168             :         {
   11169             :                 .name = "cfs_period_us",
   11170             :                 .read_u64 = cpu_cfs_period_read_u64,
   11171             :                 .write_u64 = cpu_cfs_period_write_u64,
   11172             :         },
   11173             :         {
   11174             :                 .name = "cfs_burst_us",
   11175             :                 .read_u64 = cpu_cfs_burst_read_u64,
   11176             :                 .write_u64 = cpu_cfs_burst_write_u64,
   11177             :         },
   11178             :         {
   11179             :                 .name = "stat",
   11180             :                 .seq_show = cpu_cfs_stat_show,
   11181             :         },
   11182             : #endif
   11183             : #ifdef CONFIG_RT_GROUP_SCHED
   11184             :         {
   11185             :                 .name = "rt_runtime_us",
   11186             :                 .read_s64 = cpu_rt_runtime_read,
   11187             :                 .write_s64 = cpu_rt_runtime_write,
   11188             :         },
   11189             :         {
   11190             :                 .name = "rt_period_us",
   11191             :                 .read_u64 = cpu_rt_period_read_uint,
   11192             :                 .write_u64 = cpu_rt_period_write_uint,
   11193             :         },
   11194             : #endif
   11195             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   11196             :         {
   11197             :                 .name = "uclamp.min",
   11198             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11199             :                 .seq_show = cpu_uclamp_min_show,
   11200             :                 .write = cpu_uclamp_min_write,
   11201             :         },
   11202             :         {
   11203             :                 .name = "uclamp.max",
   11204             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11205             :                 .seq_show = cpu_uclamp_max_show,
   11206             :                 .write = cpu_uclamp_max_write,
   11207             :         },
   11208             : #endif
   11209             :         { }     /* Terminate */
   11210             : };
   11211             : 
   11212             : static int cpu_extra_stat_show(struct seq_file *sf,
   11213             :                                struct cgroup_subsys_state *css)
   11214             : {
   11215             : #ifdef CONFIG_CFS_BANDWIDTH
   11216             :         {
   11217             :                 struct task_group *tg = css_tg(css);
   11218             :                 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
   11219             :                 u64 throttled_usec, burst_usec;
   11220             : 
   11221             :                 throttled_usec = cfs_b->throttled_time;
   11222             :                 do_div(throttled_usec, NSEC_PER_USEC);
   11223             :                 burst_usec = cfs_b->burst_time;
   11224             :                 do_div(burst_usec, NSEC_PER_USEC);
   11225             : 
   11226             :                 seq_printf(sf, "nr_periods %d\n"
   11227             :                            "nr_throttled %d\n"
   11228             :                            "throttled_usec %llu\n"
   11229             :                            "nr_bursts %d\n"
   11230             :                            "burst_usec %llu\n",
   11231             :                            cfs_b->nr_periods, cfs_b->nr_throttled,
   11232             :                            throttled_usec, cfs_b->nr_burst, burst_usec);
   11233             :         }
   11234             : #endif
   11235             :         return 0;
   11236             : }
   11237             : 
   11238             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11239             : static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
   11240             :                                struct cftype *cft)
   11241             : {
   11242             :         struct task_group *tg = css_tg(css);
   11243             :         u64 weight = scale_load_down(tg->shares);
   11244             : 
   11245             :         return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
   11246             : }
   11247             : 
   11248             : static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
   11249             :                                 struct cftype *cft, u64 weight)
   11250             : {
   11251             :         /*
   11252             :          * cgroup weight knobs should use the common MIN, DFL and MAX
   11253             :          * values which are 1, 100 and 10000 respectively.  While it loses
   11254             :          * a bit of range on both ends, it maps pretty well onto the shares
   11255             :          * value used by scheduler and the round-trip conversions preserve
   11256             :          * the original value over the entire range.
   11257             :          */
   11258             :         if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
   11259             :                 return -ERANGE;
   11260             : 
   11261             :         weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
   11262             : 
   11263             :         return sched_group_set_shares(css_tg(css), scale_load(weight));
   11264             : }
   11265             : 
   11266             : static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
   11267             :                                     struct cftype *cft)
   11268             : {
   11269             :         unsigned long weight = scale_load_down(css_tg(css)->shares);
   11270             :         int last_delta = INT_MAX;
   11271             :         int prio, delta;
   11272             : 
   11273             :         /* find the closest nice value to the current weight */
   11274             :         for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
   11275             :                 delta = abs(sched_prio_to_weight[prio] - weight);
   11276             :                 if (delta >= last_delta)
   11277             :                         break;
   11278             :                 last_delta = delta;
   11279             :         }
   11280             : 
   11281             :         return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
   11282             : }
   11283             : 
   11284             : static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
   11285             :                                      struct cftype *cft, s64 nice)
   11286             : {
   11287             :         unsigned long weight;
   11288             :         int idx;
   11289             : 
   11290             :         if (nice < MIN_NICE || nice > MAX_NICE)
   11291             :                 return -ERANGE;
   11292             : 
   11293             :         idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
   11294             :         idx = array_index_nospec(idx, 40);
   11295             :         weight = sched_prio_to_weight[idx];
   11296             : 
   11297             :         return sched_group_set_shares(css_tg(css), scale_load(weight));
   11298             : }
   11299             : #endif
   11300             : 
   11301             : static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
   11302             :                                                   long period, long quota)
   11303             : {
   11304             :         if (quota < 0)
   11305             :                 seq_puts(sf, "max");
   11306             :         else
   11307             :                 seq_printf(sf, "%ld", quota);
   11308             : 
   11309             :         seq_printf(sf, " %ld\n", period);
   11310             : }
   11311             : 
   11312             : /* caller should put the current value in *@periodp before calling */
   11313             : static int __maybe_unused cpu_period_quota_parse(char *buf,
   11314             :                                                  u64 *periodp, u64 *quotap)
   11315             : {
   11316             :         char tok[21];   /* U64_MAX */
   11317             : 
   11318             :         if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
   11319             :                 return -EINVAL;
   11320             : 
   11321             :         *periodp *= NSEC_PER_USEC;
   11322             : 
   11323             :         if (sscanf(tok, "%llu", quotap))
   11324             :                 *quotap *= NSEC_PER_USEC;
   11325             :         else if (!strcmp(tok, "max"))
   11326             :                 *quotap = RUNTIME_INF;
   11327             :         else
   11328             :                 return -EINVAL;
   11329             : 
   11330             :         return 0;
   11331             : }
   11332             : 
   11333             : #ifdef CONFIG_CFS_BANDWIDTH
   11334             : static int cpu_max_show(struct seq_file *sf, void *v)
   11335             : {
   11336             :         struct task_group *tg = css_tg(seq_css(sf));
   11337             : 
   11338             :         cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
   11339             :         return 0;
   11340             : }
   11341             : 
   11342             : static ssize_t cpu_max_write(struct kernfs_open_file *of,
   11343             :                              char *buf, size_t nbytes, loff_t off)
   11344             : {
   11345             :         struct task_group *tg = css_tg(of_css(of));
   11346             :         u64 period = tg_get_cfs_period(tg);
   11347             :         u64 burst = tg_get_cfs_burst(tg);
   11348             :         u64 quota;
   11349             :         int ret;
   11350             : 
   11351             :         ret = cpu_period_quota_parse(buf, &period, &quota);
   11352             :         if (!ret)
   11353             :                 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
   11354             :         return ret ?: nbytes;
   11355             : }
   11356             : #endif
   11357             : 
   11358             : static struct cftype cpu_files[] = {
   11359             : #ifdef CONFIG_FAIR_GROUP_SCHED
   11360             :         {
   11361             :                 .name = "weight",
   11362             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11363             :                 .read_u64 = cpu_weight_read_u64,
   11364             :                 .write_u64 = cpu_weight_write_u64,
   11365             :         },
   11366             :         {
   11367             :                 .name = "weight.nice",
   11368             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11369             :                 .read_s64 = cpu_weight_nice_read_s64,
   11370             :                 .write_s64 = cpu_weight_nice_write_s64,
   11371             :         },
   11372             :         {
   11373             :                 .name = "idle",
   11374             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11375             :                 .read_s64 = cpu_idle_read_s64,
   11376             :                 .write_s64 = cpu_idle_write_s64,
   11377             :         },
   11378             : #endif
   11379             : #ifdef CONFIG_CFS_BANDWIDTH
   11380             :         {
   11381             :                 .name = "max",
   11382             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11383             :                 .seq_show = cpu_max_show,
   11384             :                 .write = cpu_max_write,
   11385             :         },
   11386             :         {
   11387             :                 .name = "max.burst",
   11388             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11389             :                 .read_u64 = cpu_cfs_burst_read_u64,
   11390             :                 .write_u64 = cpu_cfs_burst_write_u64,
   11391             :         },
   11392             : #endif
   11393             : #ifdef CONFIG_UCLAMP_TASK_GROUP
   11394             :         {
   11395             :                 .name = "uclamp.min",
   11396             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11397             :                 .seq_show = cpu_uclamp_min_show,
   11398             :                 .write = cpu_uclamp_min_write,
   11399             :         },
   11400             :         {
   11401             :                 .name = "uclamp.max",
   11402             :                 .flags = CFTYPE_NOT_ON_ROOT,
   11403             :                 .seq_show = cpu_uclamp_max_show,
   11404             :                 .write = cpu_uclamp_max_write,
   11405             :         },
   11406             : #endif
   11407             :         { }     /* terminate */
   11408             : };
   11409             : 
   11410             : struct cgroup_subsys cpu_cgrp_subsys = {
   11411             :         .css_alloc      = cpu_cgroup_css_alloc,
   11412             :         .css_online     = cpu_cgroup_css_online,
   11413             :         .css_released   = cpu_cgroup_css_released,
   11414             :         .css_free       = cpu_cgroup_css_free,
   11415             :         .css_extra_stat_show = cpu_extra_stat_show,
   11416             : #ifdef CONFIG_RT_GROUP_SCHED
   11417             :         .can_attach     = cpu_cgroup_can_attach,
   11418             : #endif
   11419             :         .attach         = cpu_cgroup_attach,
   11420             :         .legacy_cftypes = cpu_legacy_files,
   11421             :         .dfl_cftypes    = cpu_files,
   11422             :         .early_init     = true,
   11423             :         .threaded       = true,
   11424             : };
   11425             : 
   11426             : #endif  /* CONFIG_CGROUP_SCHED */
   11427             : 
   11428           0 : void dump_cpu_task(int cpu)
   11429             : {
   11430           0 :         if (cpu == smp_processor_id() && in_hardirq()) {
   11431             :                 struct pt_regs *regs;
   11432             : 
   11433           0 :                 regs = get_irq_regs();
   11434           0 :                 if (regs) {
   11435           0 :                         show_regs(regs);
   11436           0 :                         return;
   11437             :                 }
   11438             :         }
   11439             : 
   11440           0 :         if (trigger_single_cpu_backtrace(cpu))
   11441             :                 return;
   11442             : 
   11443           0 :         pr_info("Task dump for CPU %d:\n", cpu);
   11444           0 :         sched_show_task(cpu_curr(cpu));
   11445             : }
   11446             : 
   11447             : /*
   11448             :  * Nice levels are multiplicative, with a gentle 10% change for every
   11449             :  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
   11450             :  * nice 1, it will get ~10% less CPU time than another CPU-bound task
   11451             :  * that remained on nice 0.
   11452             :  *
   11453             :  * The "10% effect" is relative and cumulative: from _any_ nice level,
   11454             :  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
   11455             :  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
   11456             :  * If a task goes up by ~10% and another task goes down by ~10% then
   11457             :  * the relative distance between them is ~25%.)
   11458             :  */
   11459             : const int sched_prio_to_weight[40] = {
   11460             :  /* -20 */     88761,     71755,     56483,     46273,     36291,
   11461             :  /* -15 */     29154,     23254,     18705,     14949,     11916,
   11462             :  /* -10 */      9548,      7620,      6100,      4904,      3906,
   11463             :  /*  -5 */      3121,      2501,      1991,      1586,      1277,
   11464             :  /*   0 */      1024,       820,       655,       526,       423,
   11465             :  /*   5 */       335,       272,       215,       172,       137,
   11466             :  /*  10 */       110,        87,        70,        56,        45,
   11467             :  /*  15 */        36,        29,        23,        18,        15,
   11468             : };
   11469             : 
   11470             : /*
   11471             :  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
   11472             :  *
   11473             :  * In cases where the weight does not change often, we can use the
   11474             :  * precalculated inverse to speed up arithmetics by turning divisions
   11475             :  * into multiplications:
   11476             :  */
   11477             : const u32 sched_prio_to_wmult[40] = {
   11478             :  /* -20 */     48388,     59856,     76040,     92818,    118348,
   11479             :  /* -15 */    147320,    184698,    229616,    287308,    360437,
   11480             :  /* -10 */    449829,    563644,    704093,    875809,   1099582,
   11481             :  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
   11482             :  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
   11483             :  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
   11484             :  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
   11485             :  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
   11486             : };
   11487             : 
   11488           0 : void call_trace_sched_update_nr_running(struct rq *rq, int count)
   11489             : {
   11490           0 :         trace_sched_update_nr_running_tp(rq, count);
   11491           0 : }
   11492             : 
   11493             : #ifdef CONFIG_SCHED_MM_CID
   11494             : 
   11495             : /*
   11496             :  * @cid_lock: Guarantee forward-progress of cid allocation.
   11497             :  *
   11498             :  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
   11499             :  * is only used when contention is detected by the lock-free allocation so
   11500             :  * forward progress can be guaranteed.
   11501             :  */
   11502             : DEFINE_RAW_SPINLOCK(cid_lock);
   11503             : 
   11504             : /*
   11505             :  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
   11506             :  *
   11507             :  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
   11508             :  * detected, it is set to 1 to ensure that all newly coming allocations are
   11509             :  * serialized by @cid_lock until the allocation which detected contention
   11510             :  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
   11511             :  * of a cid allocation.
   11512             :  */
   11513             : int use_cid_lock;
   11514             : 
   11515             : /*
   11516             :  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
   11517             :  * concurrently with respect to the execution of the source runqueue context
   11518             :  * switch.
   11519             :  *
   11520             :  * There is one basic properties we want to guarantee here:
   11521             :  *
   11522             :  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
   11523             :  * used by a task. That would lead to concurrent allocation of the cid and
   11524             :  * userspace corruption.
   11525             :  *
   11526             :  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
   11527             :  * that a pair of loads observe at least one of a pair of stores, which can be
   11528             :  * shown as:
   11529             :  *
   11530             :  *      X = Y = 0
   11531             :  *
   11532             :  *      w[X]=1          w[Y]=1
   11533             :  *      MB              MB
   11534             :  *      r[Y]=y          r[X]=x
   11535             :  *
   11536             :  * Which guarantees that x==0 && y==0 is impossible. But rather than using
   11537             :  * values 0 and 1, this algorithm cares about specific state transitions of the
   11538             :  * runqueue current task (as updated by the scheduler context switch), and the
   11539             :  * per-mm/cpu cid value.
   11540             :  *
   11541             :  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
   11542             :  * task->mm != mm for the rest of the discussion. There are two scheduler state
   11543             :  * transitions on context switch we care about:
   11544             :  *
   11545             :  * (TSA) Store to rq->curr with transition from (N) to (Y)
   11546             :  *
   11547             :  * (TSB) Store to rq->curr with transition from (Y) to (N)
   11548             :  *
   11549             :  * On the remote-clear side, there is one transition we care about:
   11550             :  *
   11551             :  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
   11552             :  *
   11553             :  * There is also a transition to UNSET state which can be performed from all
   11554             :  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
   11555             :  * guarantees that only a single thread will succeed:
   11556             :  *
   11557             :  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
   11558             :  *
   11559             :  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
   11560             :  * when a thread is actively using the cid (property (1)).
   11561             :  *
   11562             :  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
   11563             :  *
   11564             :  * Scenario A) (TSA)+(TMA) (from next task perspective)
   11565             :  *
   11566             :  * CPU0                                      CPU1
   11567             :  *
   11568             :  * Context switch CS-1                       Remote-clear
   11569             :  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
   11570             :  *                                             (implied barrier after cmpxchg)
   11571             :  *   - switch_mm_cid()
   11572             :  *     - memory barrier (see switch_mm_cid()
   11573             :  *       comment explaining how this barrier
   11574             :  *       is combined with other scheduler
   11575             :  *       barriers)
   11576             :  *     - mm_cid_get (next)
   11577             :  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
   11578             :  *
   11579             :  * This Dekker ensures that either task (Y) is observed by the
   11580             :  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
   11581             :  * observed.
   11582             :  *
   11583             :  * If task (Y) store is observed by rcu_dereference(), it means that there is
   11584             :  * still an active task on the cpu. Remote-clear will therefore not transition
   11585             :  * to UNSET, which fulfills property (1).
   11586             :  *
   11587             :  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
   11588             :  * it will move its state to UNSET, which clears the percpu cid perhaps
   11589             :  * uselessly (which is not an issue for correctness). Because task (Y) is not
   11590             :  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
   11591             :  * state to UNSET is done with a cmpxchg expecting that the old state has the
   11592             :  * LAZY flag set, only one thread will successfully UNSET.
   11593             :  *
   11594             :  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
   11595             :  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
   11596             :  * CPU1 will observe task (Y) and do nothing more, which is fine.
   11597             :  *
   11598             :  * What we are effectively preventing with this Dekker is a scenario where
   11599             :  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
   11600             :  * because this would UNSET a cid which is actively used.
   11601             :  */
   11602             : 
   11603             : void sched_mm_cid_migrate_from(struct task_struct *t)
   11604             : {
   11605             :         t->migrate_from_cpu = task_cpu(t);
   11606             : }
   11607             : 
   11608             : static
   11609             : int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
   11610             :                                           struct task_struct *t,
   11611             :                                           struct mm_cid *src_pcpu_cid)
   11612             : {
   11613             :         struct mm_struct *mm = t->mm;
   11614             :         struct task_struct *src_task;
   11615             :         int src_cid, last_mm_cid;
   11616             : 
   11617             :         if (!mm)
   11618             :                 return -1;
   11619             : 
   11620             :         last_mm_cid = t->last_mm_cid;
   11621             :         /*
   11622             :          * If the migrated task has no last cid, or if the current
   11623             :          * task on src rq uses the cid, it means the source cid does not need
   11624             :          * to be moved to the destination cpu.
   11625             :          */
   11626             :         if (last_mm_cid == -1)
   11627             :                 return -1;
   11628             :         src_cid = READ_ONCE(src_pcpu_cid->cid);
   11629             :         if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
   11630             :                 return -1;
   11631             : 
   11632             :         /*
   11633             :          * If we observe an active task using the mm on this rq, it means we
   11634             :          * are not the last task to be migrated from this cpu for this mm, so
   11635             :          * there is no need to move src_cid to the destination cpu.
   11636             :          */
   11637             :         rcu_read_lock();
   11638             :         src_task = rcu_dereference(src_rq->curr);
   11639             :         if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
   11640             :                 rcu_read_unlock();
   11641             :                 t->last_mm_cid = -1;
   11642             :                 return -1;
   11643             :         }
   11644             :         rcu_read_unlock();
   11645             : 
   11646             :         return src_cid;
   11647             : }
   11648             : 
   11649             : static
   11650             : int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
   11651             :                                               struct task_struct *t,
   11652             :                                               struct mm_cid *src_pcpu_cid,
   11653             :                                               int src_cid)
   11654             : {
   11655             :         struct task_struct *src_task;
   11656             :         struct mm_struct *mm = t->mm;
   11657             :         int lazy_cid;
   11658             : 
   11659             :         if (src_cid == -1)
   11660             :                 return -1;
   11661             : 
   11662             :         /*
   11663             :          * Attempt to clear the source cpu cid to move it to the destination
   11664             :          * cpu.
   11665             :          */
   11666             :         lazy_cid = mm_cid_set_lazy_put(src_cid);
   11667             :         if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
   11668             :                 return -1;
   11669             : 
   11670             :         /*
   11671             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11672             :          * rq->curr->mm matches the scheduler barrier in context_switch()
   11673             :          * between store to rq->curr and load of prev and next task's
   11674             :          * per-mm/cpu cid.
   11675             :          *
   11676             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11677             :          * rq->curr->mm_cid_active matches the barrier in
   11678             :          * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
   11679             :          * sched_mm_cid_after_execve() between store to t->mm_cid_active and
   11680             :          * load of per-mm/cpu cid.
   11681             :          */
   11682             : 
   11683             :         /*
   11684             :          * If we observe an active task using the mm on this rq after setting
   11685             :          * the lazy-put flag, this task will be responsible for transitioning
   11686             :          * from lazy-put flag set to MM_CID_UNSET.
   11687             :          */
   11688             :         rcu_read_lock();
   11689             :         src_task = rcu_dereference(src_rq->curr);
   11690             :         if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
   11691             :                 rcu_read_unlock();
   11692             :                 /*
   11693             :                  * We observed an active task for this mm, there is therefore
   11694             :                  * no point in moving this cid to the destination cpu.
   11695             :                  */
   11696             :                 t->last_mm_cid = -1;
   11697             :                 return -1;
   11698             :         }
   11699             :         rcu_read_unlock();
   11700             : 
   11701             :         /*
   11702             :          * The src_cid is unused, so it can be unset.
   11703             :          */
   11704             :         if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
   11705             :                 return -1;
   11706             :         return src_cid;
   11707             : }
   11708             : 
   11709             : /*
   11710             :  * Migration to dst cpu. Called with dst_rq lock held.
   11711             :  * Interrupts are disabled, which keeps the window of cid ownership without the
   11712             :  * source rq lock held small.
   11713             :  */
   11714             : void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
   11715             : {
   11716             :         struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
   11717             :         struct mm_struct *mm = t->mm;
   11718             :         int src_cid, dst_cid, src_cpu;
   11719             :         struct rq *src_rq;
   11720             : 
   11721             :         lockdep_assert_rq_held(dst_rq);
   11722             : 
   11723             :         if (!mm)
   11724             :                 return;
   11725             :         src_cpu = t->migrate_from_cpu;
   11726             :         if (src_cpu == -1) {
   11727             :                 t->last_mm_cid = -1;
   11728             :                 return;
   11729             :         }
   11730             :         /*
   11731             :          * Move the src cid if the dst cid is unset. This keeps id
   11732             :          * allocation closest to 0 in cases where few threads migrate around
   11733             :          * many cpus.
   11734             :          *
   11735             :          * If destination cid is already set, we may have to just clear
   11736             :          * the src cid to ensure compactness in frequent migrations
   11737             :          * scenarios.
   11738             :          *
   11739             :          * It is not useful to clear the src cid when the number of threads is
   11740             :          * greater or equal to the number of allowed cpus, because user-space
   11741             :          * can expect that the number of allowed cids can reach the number of
   11742             :          * allowed cpus.
   11743             :          */
   11744             :         dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
   11745             :         dst_cid = READ_ONCE(dst_pcpu_cid->cid);
   11746             :         if (!mm_cid_is_unset(dst_cid) &&
   11747             :             atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
   11748             :                 return;
   11749             :         src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
   11750             :         src_rq = cpu_rq(src_cpu);
   11751             :         src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
   11752             :         if (src_cid == -1)
   11753             :                 return;
   11754             :         src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
   11755             :                                                             src_cid);
   11756             :         if (src_cid == -1)
   11757             :                 return;
   11758             :         if (!mm_cid_is_unset(dst_cid)) {
   11759             :                 __mm_cid_put(mm, src_cid);
   11760             :                 return;
   11761             :         }
   11762             :         /* Move src_cid to dst cpu. */
   11763             :         mm_cid_snapshot_time(dst_rq, mm);
   11764             :         WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
   11765             : }
   11766             : 
   11767             : static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
   11768             :                                       int cpu)
   11769             : {
   11770             :         struct rq *rq = cpu_rq(cpu);
   11771             :         struct task_struct *t;
   11772             :         unsigned long flags;
   11773             :         int cid, lazy_cid;
   11774             : 
   11775             :         cid = READ_ONCE(pcpu_cid->cid);
   11776             :         if (!mm_cid_is_valid(cid))
   11777             :                 return;
   11778             : 
   11779             :         /*
   11780             :          * Clear the cpu cid if it is set to keep cid allocation compact.  If
   11781             :          * there happens to be other tasks left on the source cpu using this
   11782             :          * mm, the next task using this mm will reallocate its cid on context
   11783             :          * switch.
   11784             :          */
   11785             :         lazy_cid = mm_cid_set_lazy_put(cid);
   11786             :         if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
   11787             :                 return;
   11788             : 
   11789             :         /*
   11790             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11791             :          * rq->curr->mm matches the scheduler barrier in context_switch()
   11792             :          * between store to rq->curr and load of prev and next task's
   11793             :          * per-mm/cpu cid.
   11794             :          *
   11795             :          * The implicit barrier after cmpxchg per-mm/cpu cid before loading
   11796             :          * rq->curr->mm_cid_active matches the barrier in
   11797             :          * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
   11798             :          * sched_mm_cid_after_execve() between store to t->mm_cid_active and
   11799             :          * load of per-mm/cpu cid.
   11800             :          */
   11801             : 
   11802             :         /*
   11803             :          * If we observe an active task using the mm on this rq after setting
   11804             :          * the lazy-put flag, that task will be responsible for transitioning
   11805             :          * from lazy-put flag set to MM_CID_UNSET.
   11806             :          */
   11807             :         rcu_read_lock();
   11808             :         t = rcu_dereference(rq->curr);
   11809             :         if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
   11810             :                 rcu_read_unlock();
   11811             :                 return;
   11812             :         }
   11813             :         rcu_read_unlock();
   11814             : 
   11815             :         /*
   11816             :          * The cid is unused, so it can be unset.
   11817             :          * Disable interrupts to keep the window of cid ownership without rq
   11818             :          * lock small.
   11819             :          */
   11820             :         local_irq_save(flags);
   11821             :         if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
   11822             :                 __mm_cid_put(mm, cid);
   11823             :         local_irq_restore(flags);
   11824             : }
   11825             : 
   11826             : static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
   11827             : {
   11828             :         struct rq *rq = cpu_rq(cpu);
   11829             :         struct mm_cid *pcpu_cid;
   11830             :         struct task_struct *curr;
   11831             :         u64 rq_clock;
   11832             : 
   11833             :         /*
   11834             :          * rq->clock load is racy on 32-bit but one spurious clear once in a
   11835             :          * while is irrelevant.
   11836             :          */
   11837             :         rq_clock = READ_ONCE(rq->clock);
   11838             :         pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
   11839             : 
   11840             :         /*
   11841             :          * In order to take care of infrequently scheduled tasks, bump the time
   11842             :          * snapshot associated with this cid if an active task using the mm is
   11843             :          * observed on this rq.
   11844             :          */
   11845             :         rcu_read_lock();
   11846             :         curr = rcu_dereference(rq->curr);
   11847             :         if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
   11848             :                 WRITE_ONCE(pcpu_cid->time, rq_clock);
   11849             :                 rcu_read_unlock();
   11850             :                 return;
   11851             :         }
   11852             :         rcu_read_unlock();
   11853             : 
   11854             :         if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
   11855             :                 return;
   11856             :         sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
   11857             : }
   11858             : 
   11859             : static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
   11860             :                                              int weight)
   11861             : {
   11862             :         struct mm_cid *pcpu_cid;
   11863             :         int cid;
   11864             : 
   11865             :         pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
   11866             :         cid = READ_ONCE(pcpu_cid->cid);
   11867             :         if (!mm_cid_is_valid(cid) || cid < weight)
   11868             :                 return;
   11869             :         sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
   11870             : }
   11871             : 
   11872             : static void task_mm_cid_work(struct callback_head *work)
   11873             : {
   11874             :         unsigned long now = jiffies, old_scan, next_scan;
   11875             :         struct task_struct *t = current;
   11876             :         struct cpumask *cidmask;
   11877             :         struct mm_struct *mm;
   11878             :         int weight, cpu;
   11879             : 
   11880             :         SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
   11881             : 
   11882             :         work->next = work;   /* Prevent double-add */
   11883             :         if (t->flags & PF_EXITING)
   11884             :                 return;
   11885             :         mm = t->mm;
   11886             :         if (!mm)
   11887             :                 return;
   11888             :         old_scan = READ_ONCE(mm->mm_cid_next_scan);
   11889             :         next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
   11890             :         if (!old_scan) {
   11891             :                 unsigned long res;
   11892             : 
   11893             :                 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
   11894             :                 if (res != old_scan)
   11895             :                         old_scan = res;
   11896             :                 else
   11897             :                         old_scan = next_scan;
   11898             :         }
   11899             :         if (time_before(now, old_scan))
   11900             :                 return;
   11901             :         if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
   11902             :                 return;
   11903             :         cidmask = mm_cidmask(mm);
   11904             :         /* Clear cids that were not recently used. */
   11905             :         for_each_possible_cpu(cpu)
   11906             :                 sched_mm_cid_remote_clear_old(mm, cpu);
   11907             :         weight = cpumask_weight(cidmask);
   11908             :         /*
   11909             :          * Clear cids that are greater or equal to the cidmask weight to
   11910             :          * recompact it.
   11911             :          */
   11912             :         for_each_possible_cpu(cpu)
   11913             :                 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
   11914             : }
   11915             : 
   11916             : void init_sched_mm_cid(struct task_struct *t)
   11917             : {
   11918             :         struct mm_struct *mm = t->mm;
   11919             :         int mm_users = 0;
   11920             : 
   11921             :         if (mm) {
   11922             :                 mm_users = atomic_read(&mm->mm_users);
   11923             :                 if (mm_users == 1)
   11924             :                         mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
   11925             :         }
   11926             :         t->cid_work.next = &t->cid_work;      /* Protect against double add */
   11927             :         init_task_work(&t->cid_work, task_mm_cid_work);
   11928             : }
   11929             : 
   11930             : void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
   11931             : {
   11932             :         struct callback_head *work = &curr->cid_work;
   11933             :         unsigned long now = jiffies;
   11934             : 
   11935             :         if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
   11936             :             work->next != work)
   11937             :                 return;
   11938             :         if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
   11939             :                 return;
   11940             :         task_work_add(curr, work, TWA_RESUME);
   11941             : }
   11942             : 
   11943             : void sched_mm_cid_exit_signals(struct task_struct *t)
   11944             : {
   11945             :         struct mm_struct *mm = t->mm;
   11946             :         struct rq_flags rf;
   11947             :         struct rq *rq;
   11948             : 
   11949             :         if (!mm)
   11950             :                 return;
   11951             : 
   11952             :         preempt_disable();
   11953             :         rq = this_rq();
   11954             :         rq_lock_irqsave(rq, &rf);
   11955             :         preempt_enable_no_resched();    /* holding spinlock */
   11956             :         WRITE_ONCE(t->mm_cid_active, 0);
   11957             :         /*
   11958             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   11959             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   11960             :          */
   11961             :         smp_mb();
   11962             :         mm_cid_put(mm);
   11963             :         t->last_mm_cid = t->mm_cid = -1;
   11964             :         rq_unlock_irqrestore(rq, &rf);
   11965             : }
   11966             : 
   11967             : void sched_mm_cid_before_execve(struct task_struct *t)
   11968             : {
   11969             :         struct mm_struct *mm = t->mm;
   11970             :         struct rq_flags rf;
   11971             :         struct rq *rq;
   11972             : 
   11973             :         if (!mm)
   11974             :                 return;
   11975             : 
   11976             :         preempt_disable();
   11977             :         rq = this_rq();
   11978             :         rq_lock_irqsave(rq, &rf);
   11979             :         preempt_enable_no_resched();    /* holding spinlock */
   11980             :         WRITE_ONCE(t->mm_cid_active, 0);
   11981             :         /*
   11982             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   11983             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   11984             :          */
   11985             :         smp_mb();
   11986             :         mm_cid_put(mm);
   11987             :         t->last_mm_cid = t->mm_cid = -1;
   11988             :         rq_unlock_irqrestore(rq, &rf);
   11989             : }
   11990             : 
   11991             : void sched_mm_cid_after_execve(struct task_struct *t)
   11992             : {
   11993             :         struct mm_struct *mm = t->mm;
   11994             :         struct rq_flags rf;
   11995             :         struct rq *rq;
   11996             : 
   11997             :         if (!mm)
   11998             :                 return;
   11999             : 
   12000             :         preempt_disable();
   12001             :         rq = this_rq();
   12002             :         rq_lock_irqsave(rq, &rf);
   12003             :         preempt_enable_no_resched();    /* holding spinlock */
   12004             :         WRITE_ONCE(t->mm_cid_active, 1);
   12005             :         /*
   12006             :          * Store t->mm_cid_active before loading per-mm/cpu cid.
   12007             :          * Matches barrier in sched_mm_cid_remote_clear_old().
   12008             :          */
   12009             :         smp_mb();
   12010             :         t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
   12011             :         rq_unlock_irqrestore(rq, &rf);
   12012             :         rseq_set_notify_resume(t);
   12013             : }
   12014             : 
   12015             : void sched_mm_cid_fork(struct task_struct *t)
   12016             : {
   12017             :         WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
   12018             :         t->mm_cid_active = 1;
   12019             : }
   12020             : #endif

Generated by: LCOV version 1.14