Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * Simple CPU accounting cgroup controller
4 : */
5 :
6 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 : #include <asm/cputime.h>
8 : #endif
9 :
10 : #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 :
12 : /*
13 : * There are no locks covering percpu hardirq/softirq time.
14 : * They are only modified in vtime_account, on corresponding CPU
15 : * with interrupts disabled. So, writes are safe.
16 : * They are read and saved off onto struct rq in update_rq_clock().
17 : * This may result in other CPU reading this CPU's irq time and can
18 : * race with irq/vtime_account on this CPU. We would either get old
19 : * or new value with a side effect of accounting a slice of irq time to wrong
20 : * task when irq is in progress while we read rq->clock. That is a worthy
21 : * compromise in place of having locks on each irq in account_system_time.
22 : */
23 : DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 :
25 : static int sched_clock_irqtime;
26 :
27 : void enable_sched_clock_irqtime(void)
28 : {
29 : sched_clock_irqtime = 1;
30 : }
31 :
32 : void disable_sched_clock_irqtime(void)
33 : {
34 : sched_clock_irqtime = 0;
35 : }
36 :
37 : static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 : enum cpu_usage_stat idx)
39 : {
40 : u64 *cpustat = kcpustat_this_cpu->cpustat;
41 :
42 : u64_stats_update_begin(&irqtime->sync);
43 : cpustat[idx] += delta;
44 : irqtime->total += delta;
45 : irqtime->tick_delta += delta;
46 : u64_stats_update_end(&irqtime->sync);
47 : }
48 :
49 : /*
50 : * Called after incrementing preempt_count on {soft,}irq_enter
51 : * and before decrementing preempt_count on {soft,}irq_exit.
52 : */
53 : void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 : {
55 : struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 : unsigned int pc;
57 : s64 delta;
58 : int cpu;
59 :
60 : if (!sched_clock_irqtime)
61 : return;
62 :
63 : cpu = smp_processor_id();
64 : delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 : irqtime->irq_start_time += delta;
66 : pc = irq_count() - offset;
67 :
68 : /*
69 : * We do not account for softirq time from ksoftirqd here.
70 : * We want to continue accounting softirq time to ksoftirqd thread
71 : * in that case, so as not to confuse scheduler with a special task
72 : * that do not consume any time, but still wants to run.
73 : */
74 : if (pc & HARDIRQ_MASK)
75 : irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 : else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 : irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 : }
79 :
80 : static u64 irqtime_tick_accounted(u64 maxtime)
81 : {
82 : struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 : u64 delta;
84 :
85 : delta = min(irqtime->tick_delta, maxtime);
86 : irqtime->tick_delta -= delta;
87 :
88 : return delta;
89 : }
90 :
91 : #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92 :
93 : #define sched_clock_irqtime (0)
94 :
95 : static u64 irqtime_tick_accounted(u64 dummy)
96 : {
97 : return 0;
98 : }
99 :
100 : #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 :
102 : static inline void task_group_account_field(struct task_struct *p, int index,
103 : u64 tmp)
104 : {
105 : /*
106 : * Since all updates are sure to touch the root cgroup, we
107 : * get ourselves ahead and touch it first. If the root cgroup
108 : * is the only cgroup, then nothing else should be necessary.
109 : *
110 : */
111 2942 : __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 :
113 2942 : cgroup_account_cputime_field(p, index, tmp);
114 : }
115 :
116 : /*
117 : * Account user CPU time to a process.
118 : * @p: the process that the CPU time gets accounted to
119 : * @cputime: the CPU time spent in user space since the last update
120 : */
121 0 : void account_user_time(struct task_struct *p, u64 cputime)
122 : {
123 : int index;
124 :
125 : /* Add user time to process. */
126 2937 : p->utime += cputime;
127 2937 : account_group_user_time(p, cputime);
128 :
129 5874 : index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 :
131 : /* Add user time to cpustat. */
132 5874 : task_group_account_field(p, index, cputime);
133 :
134 : /* Account for user time used */
135 2937 : acct_account_cputime(p);
136 0 : }
137 :
138 : /*
139 : * Account guest CPU time to a process.
140 : * @p: the process that the CPU time gets accounted to
141 : * @cputime: the CPU time spent in virtual machine since the last update
142 : */
143 0 : void account_guest_time(struct task_struct *p, u64 cputime)
144 : {
145 0 : u64 *cpustat = kcpustat_this_cpu->cpustat;
146 :
147 : /* Add guest time to process. */
148 0 : p->utime += cputime;
149 0 : account_group_user_time(p, cputime);
150 0 : p->gtime += cputime;
151 :
152 : /* Add guest time to cpustat. */
153 0 : if (task_nice(p) > 0) {
154 0 : task_group_account_field(p, CPUTIME_NICE, cputime);
155 0 : cpustat[CPUTIME_GUEST_NICE] += cputime;
156 : } else {
157 0 : task_group_account_field(p, CPUTIME_USER, cputime);
158 0 : cpustat[CPUTIME_GUEST] += cputime;
159 : }
160 0 : }
161 :
162 : /*
163 : * Account system CPU time to a process and desired cpustat field
164 : * @p: the process that the CPU time gets accounted to
165 : * @cputime: the CPU time spent in kernel space since the last update
166 : * @index: pointer to cpustat field that has to be updated
167 : */
168 0 : void account_system_index_time(struct task_struct *p,
169 : u64 cputime, enum cpu_usage_stat index)
170 : {
171 : /* Add system time to process. */
172 5 : p->stime += cputime;
173 5 : account_group_system_time(p, cputime);
174 :
175 : /* Add system time to cpustat. */
176 10 : task_group_account_field(p, index, cputime);
177 :
178 : /* Account for system time used */
179 5 : acct_account_cputime(p);
180 0 : }
181 :
182 : /*
183 : * Account system CPU time to a process.
184 : * @p: the process that the CPU time gets accounted to
185 : * @hardirq_offset: the offset to subtract from hardirq_count()
186 : * @cputime: the CPU time spent in kernel space since the last update
187 : */
188 5 : void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 : {
190 : int index;
191 :
192 5 : if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193 0 : account_guest_time(p, cputime);
194 0 : return;
195 : }
196 :
197 5 : if (hardirq_count() - hardirq_offset)
198 : index = CPUTIME_IRQ;
199 5 : else if (in_serving_softirq())
200 : index = CPUTIME_SOFTIRQ;
201 : else
202 5 : index = CPUTIME_SYSTEM;
203 :
204 5 : account_system_index_time(p, cputime, index);
205 : }
206 :
207 : /*
208 : * Account for involuntary wait time.
209 : * @cputime: the CPU time spent in involuntary wait
210 : */
211 0 : void account_steal_time(u64 cputime)
212 : {
213 0 : u64 *cpustat = kcpustat_this_cpu->cpustat;
214 :
215 0 : cpustat[CPUTIME_STEAL] += cputime;
216 0 : }
217 :
218 : /*
219 : * Account for idle time.
220 : * @cputime: the CPU time spent in idle wait
221 : */
222 0 : void account_idle_time(u64 cputime)
223 : {
224 1 : u64 *cpustat = kcpustat_this_cpu->cpustat;
225 1 : struct rq *rq = this_rq();
226 :
227 2 : if (atomic_read(&rq->nr_iowait) > 0)
228 0 : cpustat[CPUTIME_IOWAIT] += cputime;
229 : else
230 1 : cpustat[CPUTIME_IDLE] += cputime;
231 0 : }
232 :
233 :
234 : #ifdef CONFIG_SCHED_CORE
235 : /*
236 : * Account for forceidle time due to core scheduling.
237 : *
238 : * REQUIRES: schedstat is enabled.
239 : */
240 : void __account_forceidle_time(struct task_struct *p, u64 delta)
241 : {
242 : __schedstat_add(p->stats.core_forceidle_sum, delta);
243 :
244 : task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 : }
246 : #endif
247 :
248 : /*
249 : * When a guest is interrupted for a longer amount of time, missed clock
250 : * ticks are not redelivered later. Due to that, this function may on
251 : * occasion account more time than the calling functions think elapsed.
252 : */
253 : static __always_inline u64 steal_account_process_time(u64 maxtime)
254 : {
255 : #ifdef CONFIG_PARAVIRT
256 : if (static_key_false(¶virt_steal_enabled)) {
257 : u64 steal;
258 :
259 : steal = paravirt_steal_clock(smp_processor_id());
260 : steal -= this_rq()->prev_steal_time;
261 : steal = min(steal, maxtime);
262 : account_steal_time(steal);
263 : this_rq()->prev_steal_time += steal;
264 :
265 : return steal;
266 : }
267 : #endif
268 : return 0;
269 : }
270 :
271 : /*
272 : * Account how much elapsed time was spent in steal, irq, or softirq time.
273 : */
274 : static inline u64 account_other_time(u64 max)
275 : {
276 : u64 accounted;
277 :
278 : lockdep_assert_irqs_disabled();
279 :
280 : accounted = steal_account_process_time(max);
281 :
282 : if (accounted < max)
283 : accounted += irqtime_tick_accounted(max - accounted);
284 :
285 : return accounted;
286 : }
287 :
288 : #ifdef CONFIG_64BIT
289 : static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 : {
291 : return t->se.sum_exec_runtime;
292 : }
293 : #else
294 : static u64 read_sum_exec_runtime(struct task_struct *t)
295 : {
296 : u64 ns;
297 : struct rq_flags rf;
298 : struct rq *rq;
299 :
300 : rq = task_rq_lock(t, &rf);
301 : ns = t->se.sum_exec_runtime;
302 : task_rq_unlock(rq, t, &rf);
303 :
304 : return ns;
305 : }
306 : #endif
307 :
308 : /*
309 : * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310 : * tasks (sum on group iteration) belonging to @tsk's group.
311 : */
312 0 : void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 : {
314 0 : struct signal_struct *sig = tsk->signal;
315 : u64 utime, stime;
316 : struct task_struct *t;
317 : unsigned int seq, nextseq;
318 : unsigned long flags;
319 :
320 : /*
321 : * Update current task runtime to account pending time since last
322 : * scheduler action or thread_group_cputime() call. This thread group
323 : * might have other running tasks on different CPUs, but updating
324 : * their runtime can affect syscall performance, so we skip account
325 : * those pending times and rely only on values updated on tick or
326 : * other scheduler action.
327 : */
328 0 : if (same_thread_group(current, tsk))
329 0 : (void) task_sched_runtime(current);
330 :
331 : rcu_read_lock();
332 : /* Attempt a lockless read on the first round. */
333 0 : nextseq = 0;
334 : do {
335 0 : seq = nextseq;
336 0 : flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337 0 : times->utime = sig->utime;
338 0 : times->stime = sig->stime;
339 0 : times->sum_exec_runtime = sig->sum_sched_runtime;
340 :
341 0 : for_each_thread(tsk, t) {
342 0 : task_cputime(t, &utime, &stime);
343 0 : times->utime += utime;
344 0 : times->stime += stime;
345 0 : times->sum_exec_runtime += read_sum_exec_runtime(t);
346 : }
347 : /* If lockless access failed, take the lock. */
348 0 : nextseq = 1;
349 0 : } while (need_seqretry(&sig->stats_lock, seq));
350 0 : done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351 : rcu_read_unlock();
352 0 : }
353 :
354 : #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 : /*
356 : * Account a tick to a process and cpustat
357 : * @p: the process that the CPU time gets accounted to
358 : * @user_tick: is the tick from userspace
359 : * @rq: the pointer to rq
360 : *
361 : * Tick demultiplexing follows the order
362 : * - pending hardirq update
363 : * - pending softirq update
364 : * - user_time
365 : * - idle_time
366 : * - system time
367 : * - check for guest_time
368 : * - else account as system_time
369 : *
370 : * Check for hardirq is done both for system and user time as there is
371 : * no timer going off while we are on hardirq and hence we may never get an
372 : * opportunity to update it solely in system time.
373 : * p->stime and friends are only updated on system time and not on irq
374 : * softirq as those do not count in task exec_runtime any more.
375 : */
376 : static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377 : int ticks)
378 : {
379 : u64 other, cputime = TICK_NSEC * ticks;
380 :
381 : /*
382 : * When returning from idle, many ticks can get accounted at
383 : * once, including some ticks of steal, irq, and softirq time.
384 : * Subtract those ticks from the amount of time accounted to
385 : * idle, or potentially user or system time. Due to rounding,
386 : * other time can exceed ticks occasionally.
387 : */
388 : other = account_other_time(ULONG_MAX);
389 : if (other >= cputime)
390 : return;
391 :
392 : cputime -= other;
393 :
394 : if (this_cpu_ksoftirqd() == p) {
395 : /*
396 : * ksoftirqd time do not get accounted in cpu_softirq_time.
397 : * So, we have to handle it separately here.
398 : * Also, p->stime needs to be updated for ksoftirqd.
399 : */
400 : account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401 : } else if (user_tick) {
402 : account_user_time(p, cputime);
403 : } else if (p == this_rq()->idle) {
404 : account_idle_time(cputime);
405 : } else if (p->flags & PF_VCPU) { /* System time or guest time */
406 : account_guest_time(p, cputime);
407 : } else {
408 : account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409 : }
410 : }
411 :
412 : static void irqtime_account_idle_ticks(int ticks)
413 : {
414 : irqtime_account_process_tick(current, 0, ticks);
415 : }
416 : #else /* CONFIG_IRQ_TIME_ACCOUNTING */
417 : static inline void irqtime_account_idle_ticks(int ticks) { }
418 : static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419 : int nr_ticks) { }
420 : #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421 :
422 : /*
423 : * Use precise platform statistics if available:
424 : */
425 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426 :
427 : # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
428 : void vtime_task_switch(struct task_struct *prev)
429 : {
430 : if (is_idle_task(prev))
431 : vtime_account_idle(prev);
432 : else
433 : vtime_account_kernel(prev);
434 :
435 : vtime_flush(prev);
436 : arch_vtime_task_switch(prev);
437 : }
438 : # endif
439 :
440 : void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
441 : {
442 : unsigned int pc = irq_count() - offset;
443 :
444 : if (pc & HARDIRQ_OFFSET) {
445 : vtime_account_hardirq(tsk);
446 : } else if (pc & SOFTIRQ_OFFSET) {
447 : vtime_account_softirq(tsk);
448 : } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
449 : is_idle_task(tsk)) {
450 : vtime_account_idle(tsk);
451 : } else {
452 : vtime_account_kernel(tsk);
453 : }
454 : }
455 :
456 : void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
457 : u64 *ut, u64 *st)
458 : {
459 : *ut = curr->utime;
460 : *st = curr->stime;
461 : }
462 :
463 : void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464 : {
465 : *ut = p->utime;
466 : *st = p->stime;
467 : }
468 : EXPORT_SYMBOL_GPL(task_cputime_adjusted);
469 :
470 : void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
471 : {
472 : struct task_cputime cputime;
473 :
474 : thread_group_cputime(p, &cputime);
475 :
476 : *ut = cputime.utime;
477 : *st = cputime.stime;
478 : }
479 :
480 : #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
481 :
482 : /*
483 : * Account a single tick of CPU time.
484 : * @p: the process that the CPU time gets accounted to
485 : * @user_tick: indicates if the tick is a user or a system tick
486 : */
487 2943 : void account_process_tick(struct task_struct *p, int user_tick)
488 : {
489 : u64 cputime, steal;
490 :
491 : if (vtime_accounting_enabled_this_cpu())
492 : return;
493 :
494 : if (sched_clock_irqtime) {
495 : irqtime_account_process_tick(p, user_tick, 1);
496 : return;
497 : }
498 :
499 2943 : cputime = TICK_NSEC;
500 2943 : steal = steal_account_process_time(ULONG_MAX);
501 :
502 : if (steal >= cputime)
503 : return;
504 :
505 2943 : cputime -= steal;
506 :
507 2943 : if (user_tick)
508 : account_user_time(p, cputime);
509 7 : else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
510 5 : account_system_time(p, HARDIRQ_OFFSET, cputime);
511 : else
512 : account_idle_time(cputime);
513 : }
514 :
515 : /*
516 : * Account multiple ticks of idle time.
517 : * @ticks: number of stolen ticks
518 : */
519 0 : void account_idle_ticks(unsigned long ticks)
520 : {
521 : u64 cputime, steal;
522 :
523 : if (sched_clock_irqtime) {
524 : irqtime_account_idle_ticks(ticks);
525 : return;
526 : }
527 :
528 0 : cputime = ticks * TICK_NSEC;
529 0 : steal = steal_account_process_time(ULONG_MAX);
530 :
531 0 : if (steal >= cputime)
532 : return;
533 :
534 0 : cputime -= steal;
535 : account_idle_time(cputime);
536 : }
537 :
538 : /*
539 : * Adjust tick based cputime random precision against scheduler runtime
540 : * accounting.
541 : *
542 : * Tick based cputime accounting depend on random scheduling timeslices of a
543 : * task to be interrupted or not by the timer. Depending on these
544 : * circumstances, the number of these interrupts may be over or
545 : * under-optimistic, matching the real user and system cputime with a variable
546 : * precision.
547 : *
548 : * Fix this by scaling these tick based values against the total runtime
549 : * accounted by the CFS scheduler.
550 : *
551 : * This code provides the following guarantees:
552 : *
553 : * stime + utime == rtime
554 : * stime_i+1 >= stime_i, utime_i+1 >= utime_i
555 : *
556 : * Assuming that rtime_i+1 >= rtime_i.
557 : */
558 0 : void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
559 : u64 *ut, u64 *st)
560 : {
561 : u64 rtime, stime, utime;
562 : unsigned long flags;
563 :
564 : /* Serialize concurrent callers such that we can honour our guarantees */
565 0 : raw_spin_lock_irqsave(&prev->lock, flags);
566 0 : rtime = curr->sum_exec_runtime;
567 :
568 : /*
569 : * This is possible under two circumstances:
570 : * - rtime isn't monotonic after all (a bug);
571 : * - we got reordered by the lock.
572 : *
573 : * In both cases this acts as a filter such that the rest of the code
574 : * can assume it is monotonic regardless of anything else.
575 : */
576 0 : if (prev->stime + prev->utime >= rtime)
577 : goto out;
578 :
579 0 : stime = curr->stime;
580 0 : utime = curr->utime;
581 :
582 : /*
583 : * If either stime or utime are 0, assume all runtime is userspace.
584 : * Once a task gets some ticks, the monotonicity code at 'update:'
585 : * will ensure things converge to the observed ratio.
586 : */
587 0 : if (stime == 0) {
588 : utime = rtime;
589 : goto update;
590 : }
591 :
592 0 : if (utime == 0) {
593 : stime = rtime;
594 : goto update;
595 : }
596 :
597 0 : stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
598 :
599 : update:
600 : /*
601 : * Make sure stime doesn't go backwards; this preserves monotonicity
602 : * for utime because rtime is monotonic.
603 : *
604 : * utime_i+1 = rtime_i+1 - stime_i
605 : * = rtime_i+1 - (rtime_i - utime_i)
606 : * = (rtime_i+1 - rtime_i) + utime_i
607 : * >= utime_i
608 : */
609 0 : if (stime < prev->stime)
610 0 : stime = prev->stime;
611 0 : utime = rtime - stime;
612 :
613 : /*
614 : * Make sure utime doesn't go backwards; this still preserves
615 : * monotonicity for stime, analogous argument to above.
616 : */
617 0 : if (utime < prev->utime) {
618 0 : utime = prev->utime;
619 0 : stime = rtime - utime;
620 : }
621 :
622 0 : prev->stime = stime;
623 0 : prev->utime = utime;
624 : out:
625 0 : *ut = prev->utime;
626 0 : *st = prev->stime;
627 0 : raw_spin_unlock_irqrestore(&prev->lock, flags);
628 0 : }
629 :
630 0 : void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
631 : {
632 0 : struct task_cputime cputime = {
633 0 : .sum_exec_runtime = p->se.sum_exec_runtime,
634 : };
635 :
636 0 : if (task_cputime(p, &cputime.utime, &cputime.stime))
637 : cputime.sum_exec_runtime = task_sched_runtime(p);
638 0 : cputime_adjust(&cputime, &p->prev_cputime, ut, st);
639 0 : }
640 : EXPORT_SYMBOL_GPL(task_cputime_adjusted);
641 :
642 0 : void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
643 : {
644 : struct task_cputime cputime;
645 :
646 0 : thread_group_cputime(p, &cputime);
647 0 : cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
648 0 : }
649 : #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
650 :
651 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
652 : static u64 vtime_delta(struct vtime *vtime)
653 : {
654 : unsigned long long clock;
655 :
656 : clock = sched_clock();
657 : if (clock < vtime->starttime)
658 : return 0;
659 :
660 : return clock - vtime->starttime;
661 : }
662 :
663 : static u64 get_vtime_delta(struct vtime *vtime)
664 : {
665 : u64 delta = vtime_delta(vtime);
666 : u64 other;
667 :
668 : /*
669 : * Unlike tick based timing, vtime based timing never has lost
670 : * ticks, and no need for steal time accounting to make up for
671 : * lost ticks. Vtime accounts a rounded version of actual
672 : * elapsed time. Limit account_other_time to prevent rounding
673 : * errors from causing elapsed vtime to go negative.
674 : */
675 : other = account_other_time(delta);
676 : WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
677 : vtime->starttime += delta;
678 :
679 : return delta - other;
680 : }
681 :
682 : static void vtime_account_system(struct task_struct *tsk,
683 : struct vtime *vtime)
684 : {
685 : vtime->stime += get_vtime_delta(vtime);
686 : if (vtime->stime >= TICK_NSEC) {
687 : account_system_time(tsk, irq_count(), vtime->stime);
688 : vtime->stime = 0;
689 : }
690 : }
691 :
692 : static void vtime_account_guest(struct task_struct *tsk,
693 : struct vtime *vtime)
694 : {
695 : vtime->gtime += get_vtime_delta(vtime);
696 : if (vtime->gtime >= TICK_NSEC) {
697 : account_guest_time(tsk, vtime->gtime);
698 : vtime->gtime = 0;
699 : }
700 : }
701 :
702 : static void __vtime_account_kernel(struct task_struct *tsk,
703 : struct vtime *vtime)
704 : {
705 : /* We might have scheduled out from guest path */
706 : if (vtime->state == VTIME_GUEST)
707 : vtime_account_guest(tsk, vtime);
708 : else
709 : vtime_account_system(tsk, vtime);
710 : }
711 :
712 : void vtime_account_kernel(struct task_struct *tsk)
713 : {
714 : struct vtime *vtime = &tsk->vtime;
715 :
716 : if (!vtime_delta(vtime))
717 : return;
718 :
719 : write_seqcount_begin(&vtime->seqcount);
720 : __vtime_account_kernel(tsk, vtime);
721 : write_seqcount_end(&vtime->seqcount);
722 : }
723 :
724 : void vtime_user_enter(struct task_struct *tsk)
725 : {
726 : struct vtime *vtime = &tsk->vtime;
727 :
728 : write_seqcount_begin(&vtime->seqcount);
729 : vtime_account_system(tsk, vtime);
730 : vtime->state = VTIME_USER;
731 : write_seqcount_end(&vtime->seqcount);
732 : }
733 :
734 : void vtime_user_exit(struct task_struct *tsk)
735 : {
736 : struct vtime *vtime = &tsk->vtime;
737 :
738 : write_seqcount_begin(&vtime->seqcount);
739 : vtime->utime += get_vtime_delta(vtime);
740 : if (vtime->utime >= TICK_NSEC) {
741 : account_user_time(tsk, vtime->utime);
742 : vtime->utime = 0;
743 : }
744 : vtime->state = VTIME_SYS;
745 : write_seqcount_end(&vtime->seqcount);
746 : }
747 :
748 : void vtime_guest_enter(struct task_struct *tsk)
749 : {
750 : struct vtime *vtime = &tsk->vtime;
751 : /*
752 : * The flags must be updated under the lock with
753 : * the vtime_starttime flush and update.
754 : * That enforces a right ordering and update sequence
755 : * synchronization against the reader (task_gtime())
756 : * that can thus safely catch up with a tickless delta.
757 : */
758 : write_seqcount_begin(&vtime->seqcount);
759 : vtime_account_system(tsk, vtime);
760 : tsk->flags |= PF_VCPU;
761 : vtime->state = VTIME_GUEST;
762 : write_seqcount_end(&vtime->seqcount);
763 : }
764 : EXPORT_SYMBOL_GPL(vtime_guest_enter);
765 :
766 : void vtime_guest_exit(struct task_struct *tsk)
767 : {
768 : struct vtime *vtime = &tsk->vtime;
769 :
770 : write_seqcount_begin(&vtime->seqcount);
771 : vtime_account_guest(tsk, vtime);
772 : tsk->flags &= ~PF_VCPU;
773 : vtime->state = VTIME_SYS;
774 : write_seqcount_end(&vtime->seqcount);
775 : }
776 : EXPORT_SYMBOL_GPL(vtime_guest_exit);
777 :
778 : void vtime_account_idle(struct task_struct *tsk)
779 : {
780 : account_idle_time(get_vtime_delta(&tsk->vtime));
781 : }
782 :
783 : void vtime_task_switch_generic(struct task_struct *prev)
784 : {
785 : struct vtime *vtime = &prev->vtime;
786 :
787 : write_seqcount_begin(&vtime->seqcount);
788 : if (vtime->state == VTIME_IDLE)
789 : vtime_account_idle(prev);
790 : else
791 : __vtime_account_kernel(prev, vtime);
792 : vtime->state = VTIME_INACTIVE;
793 : vtime->cpu = -1;
794 : write_seqcount_end(&vtime->seqcount);
795 :
796 : vtime = ¤t->vtime;
797 :
798 : write_seqcount_begin(&vtime->seqcount);
799 : if (is_idle_task(current))
800 : vtime->state = VTIME_IDLE;
801 : else if (current->flags & PF_VCPU)
802 : vtime->state = VTIME_GUEST;
803 : else
804 : vtime->state = VTIME_SYS;
805 : vtime->starttime = sched_clock();
806 : vtime->cpu = smp_processor_id();
807 : write_seqcount_end(&vtime->seqcount);
808 : }
809 :
810 : void vtime_init_idle(struct task_struct *t, int cpu)
811 : {
812 : struct vtime *vtime = &t->vtime;
813 : unsigned long flags;
814 :
815 : local_irq_save(flags);
816 : write_seqcount_begin(&vtime->seqcount);
817 : vtime->state = VTIME_IDLE;
818 : vtime->starttime = sched_clock();
819 : vtime->cpu = cpu;
820 : write_seqcount_end(&vtime->seqcount);
821 : local_irq_restore(flags);
822 : }
823 :
824 : u64 task_gtime(struct task_struct *t)
825 : {
826 : struct vtime *vtime = &t->vtime;
827 : unsigned int seq;
828 : u64 gtime;
829 :
830 : if (!vtime_accounting_enabled())
831 : return t->gtime;
832 :
833 : do {
834 : seq = read_seqcount_begin(&vtime->seqcount);
835 :
836 : gtime = t->gtime;
837 : if (vtime->state == VTIME_GUEST)
838 : gtime += vtime->gtime + vtime_delta(vtime);
839 :
840 : } while (read_seqcount_retry(&vtime->seqcount, seq));
841 :
842 : return gtime;
843 : }
844 :
845 : /*
846 : * Fetch cputime raw values from fields of task_struct and
847 : * add up the pending nohz execution time since the last
848 : * cputime snapshot.
849 : */
850 : bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
851 : {
852 : struct vtime *vtime = &t->vtime;
853 : unsigned int seq;
854 : u64 delta;
855 : int ret;
856 :
857 : if (!vtime_accounting_enabled()) {
858 : *utime = t->utime;
859 : *stime = t->stime;
860 : return false;
861 : }
862 :
863 : do {
864 : ret = false;
865 : seq = read_seqcount_begin(&vtime->seqcount);
866 :
867 : *utime = t->utime;
868 : *stime = t->stime;
869 :
870 : /* Task is sleeping or idle, nothing to add */
871 : if (vtime->state < VTIME_SYS)
872 : continue;
873 :
874 : ret = true;
875 : delta = vtime_delta(vtime);
876 :
877 : /*
878 : * Task runs either in user (including guest) or kernel space,
879 : * add pending nohz time to the right place.
880 : */
881 : if (vtime->state == VTIME_SYS)
882 : *stime += vtime->stime + delta;
883 : else
884 : *utime += vtime->utime + delta;
885 : } while (read_seqcount_retry(&vtime->seqcount, seq));
886 :
887 : return ret;
888 : }
889 :
890 : static int vtime_state_fetch(struct vtime *vtime, int cpu)
891 : {
892 : int state = READ_ONCE(vtime->state);
893 :
894 : /*
895 : * We raced against a context switch, fetch the
896 : * kcpustat task again.
897 : */
898 : if (vtime->cpu != cpu && vtime->cpu != -1)
899 : return -EAGAIN;
900 :
901 : /*
902 : * Two possible things here:
903 : * 1) We are seeing the scheduling out task (prev) or any past one.
904 : * 2) We are seeing the scheduling in task (next) but it hasn't
905 : * passed though vtime_task_switch() yet so the pending
906 : * cputime of the prev task may not be flushed yet.
907 : *
908 : * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
909 : */
910 : if (state == VTIME_INACTIVE)
911 : return -EAGAIN;
912 :
913 : return state;
914 : }
915 :
916 : static u64 kcpustat_user_vtime(struct vtime *vtime)
917 : {
918 : if (vtime->state == VTIME_USER)
919 : return vtime->utime + vtime_delta(vtime);
920 : else if (vtime->state == VTIME_GUEST)
921 : return vtime->gtime + vtime_delta(vtime);
922 : return 0;
923 : }
924 :
925 : static int kcpustat_field_vtime(u64 *cpustat,
926 : struct task_struct *tsk,
927 : enum cpu_usage_stat usage,
928 : int cpu, u64 *val)
929 : {
930 : struct vtime *vtime = &tsk->vtime;
931 : unsigned int seq;
932 :
933 : do {
934 : int state;
935 :
936 : seq = read_seqcount_begin(&vtime->seqcount);
937 :
938 : state = vtime_state_fetch(vtime, cpu);
939 : if (state < 0)
940 : return state;
941 :
942 : *val = cpustat[usage];
943 :
944 : /*
945 : * Nice VS unnice cputime accounting may be inaccurate if
946 : * the nice value has changed since the last vtime update.
947 : * But proper fix would involve interrupting target on nice
948 : * updates which is a no go on nohz_full (although the scheduler
949 : * may still interrupt the target if rescheduling is needed...)
950 : */
951 : switch (usage) {
952 : case CPUTIME_SYSTEM:
953 : if (state == VTIME_SYS)
954 : *val += vtime->stime + vtime_delta(vtime);
955 : break;
956 : case CPUTIME_USER:
957 : if (task_nice(tsk) <= 0)
958 : *val += kcpustat_user_vtime(vtime);
959 : break;
960 : case CPUTIME_NICE:
961 : if (task_nice(tsk) > 0)
962 : *val += kcpustat_user_vtime(vtime);
963 : break;
964 : case CPUTIME_GUEST:
965 : if (state == VTIME_GUEST && task_nice(tsk) <= 0)
966 : *val += vtime->gtime + vtime_delta(vtime);
967 : break;
968 : case CPUTIME_GUEST_NICE:
969 : if (state == VTIME_GUEST && task_nice(tsk) > 0)
970 : *val += vtime->gtime + vtime_delta(vtime);
971 : break;
972 : default:
973 : break;
974 : }
975 : } while (read_seqcount_retry(&vtime->seqcount, seq));
976 :
977 : return 0;
978 : }
979 :
980 : u64 kcpustat_field(struct kernel_cpustat *kcpustat,
981 : enum cpu_usage_stat usage, int cpu)
982 : {
983 : u64 *cpustat = kcpustat->cpustat;
984 : u64 val = cpustat[usage];
985 : struct rq *rq;
986 : int err;
987 :
988 : if (!vtime_accounting_enabled_cpu(cpu))
989 : return val;
990 :
991 : rq = cpu_rq(cpu);
992 :
993 : for (;;) {
994 : struct task_struct *curr;
995 :
996 : rcu_read_lock();
997 : curr = rcu_dereference(rq->curr);
998 : if (WARN_ON_ONCE(!curr)) {
999 : rcu_read_unlock();
1000 : return cpustat[usage];
1001 : }
1002 :
1003 : err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1004 : rcu_read_unlock();
1005 :
1006 : if (!err)
1007 : return val;
1008 :
1009 : cpu_relax();
1010 : }
1011 : }
1012 : EXPORT_SYMBOL_GPL(kcpustat_field);
1013 :
1014 : static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1015 : const struct kernel_cpustat *src,
1016 : struct task_struct *tsk, int cpu)
1017 : {
1018 : struct vtime *vtime = &tsk->vtime;
1019 : unsigned int seq;
1020 :
1021 : do {
1022 : u64 *cpustat;
1023 : u64 delta;
1024 : int state;
1025 :
1026 : seq = read_seqcount_begin(&vtime->seqcount);
1027 :
1028 : state = vtime_state_fetch(vtime, cpu);
1029 : if (state < 0)
1030 : return state;
1031 :
1032 : *dst = *src;
1033 : cpustat = dst->cpustat;
1034 :
1035 : /* Task is sleeping, dead or idle, nothing to add */
1036 : if (state < VTIME_SYS)
1037 : continue;
1038 :
1039 : delta = vtime_delta(vtime);
1040 :
1041 : /*
1042 : * Task runs either in user (including guest) or kernel space,
1043 : * add pending nohz time to the right place.
1044 : */
1045 : if (state == VTIME_SYS) {
1046 : cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1047 : } else if (state == VTIME_USER) {
1048 : if (task_nice(tsk) > 0)
1049 : cpustat[CPUTIME_NICE] += vtime->utime + delta;
1050 : else
1051 : cpustat[CPUTIME_USER] += vtime->utime + delta;
1052 : } else {
1053 : WARN_ON_ONCE(state != VTIME_GUEST);
1054 : if (task_nice(tsk) > 0) {
1055 : cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1056 : cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1057 : } else {
1058 : cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1059 : cpustat[CPUTIME_USER] += vtime->gtime + delta;
1060 : }
1061 : }
1062 : } while (read_seqcount_retry(&vtime->seqcount, seq));
1063 :
1064 : return 0;
1065 : }
1066 :
1067 : void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1068 : {
1069 : const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1070 : struct rq *rq;
1071 : int err;
1072 :
1073 : if (!vtime_accounting_enabled_cpu(cpu)) {
1074 : *dst = *src;
1075 : return;
1076 : }
1077 :
1078 : rq = cpu_rq(cpu);
1079 :
1080 : for (;;) {
1081 : struct task_struct *curr;
1082 :
1083 : rcu_read_lock();
1084 : curr = rcu_dereference(rq->curr);
1085 : if (WARN_ON_ONCE(!curr)) {
1086 : rcu_read_unlock();
1087 : *dst = *src;
1088 : return;
1089 : }
1090 :
1091 : err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1092 : rcu_read_unlock();
1093 :
1094 : if (!err)
1095 : return;
1096 :
1097 : cpu_relax();
1098 : }
1099 : }
1100 : EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1101 :
1102 : #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
|