Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 : *
5 : * membarrier system call
6 : */
7 :
8 : /*
9 : * For documentation purposes, here are some membarrier ordering
10 : * scenarios to keep in mind:
11 : *
12 : * A) Userspace thread execution after IPI vs membarrier's memory
13 : * barrier before sending the IPI
14 : *
15 : * Userspace variables:
16 : *
17 : * int x = 0, y = 0;
18 : *
19 : * The memory barrier at the start of membarrier() on CPU0 is necessary in
20 : * order to enforce the guarantee that any writes occurring on CPU0 before
21 : * the membarrier() is executed will be visible to any code executing on
22 : * CPU1 after the IPI-induced memory barrier:
23 : *
24 : * CPU0 CPU1
25 : *
26 : * x = 1
27 : * membarrier():
28 : * a: smp_mb()
29 : * b: send IPI IPI-induced mb
30 : * c: smp_mb()
31 : * r2 = y
32 : * y = 1
33 : * barrier()
34 : * r1 = x
35 : *
36 : * BUG_ON(r1 == 0 && r2 == 0)
37 : *
38 : * The write to y and load from x by CPU1 are unordered by the hardware,
39 : * so it's possible to have "r1 = x" reordered before "y = 1" at any
40 : * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
41 : * can be reordered after (a) (although not after (c)), so we get r1 == 0
42 : * and r2 == 0. This violates the guarantee that membarrier() is
43 : * supposed by provide.
44 : *
45 : * The timing of the memory barrier at (a) has to ensure that it executes
46 : * before the IPI-induced memory barrier on CPU1.
47 : *
48 : * B) Userspace thread execution before IPI vs membarrier's memory
49 : * barrier after completing the IPI
50 : *
51 : * Userspace variables:
52 : *
53 : * int x = 0, y = 0;
54 : *
55 : * The memory barrier at the end of membarrier() on CPU0 is necessary in
56 : * order to enforce the guarantee that any writes occurring on CPU1 before
57 : * the membarrier() is executed will be visible to any code executing on
58 : * CPU0 after the membarrier():
59 : *
60 : * CPU0 CPU1
61 : *
62 : * x = 1
63 : * barrier()
64 : * y = 1
65 : * r2 = y
66 : * membarrier():
67 : * a: smp_mb()
68 : * b: send IPI IPI-induced mb
69 : * c: smp_mb()
70 : * r1 = x
71 : * BUG_ON(r1 == 0 && r2 == 1)
72 : *
73 : * The writes to x and y are unordered by the hardware, so it's possible to
74 : * have "r2 = 1" even though the write to x doesn't execute until (b). If
75 : * the memory barrier at (c) is omitted then "r1 = x" can be reordered
76 : * before (b) (although not before (a)), so we get "r1 = 0". This violates
77 : * the guarantee that membarrier() is supposed to provide.
78 : *
79 : * The timing of the memory barrier at (c) has to ensure that it executes
80 : * after the IPI-induced memory barrier on CPU1.
81 : *
82 : * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
83 : *
84 : * CPU0 CPU1
85 : *
86 : * membarrier():
87 : * a: smp_mb()
88 : * d: switch to kthread (includes mb)
89 : * b: read rq->curr->mm == NULL
90 : * e: switch to user (includes mb)
91 : * c: smp_mb()
92 : *
93 : * Using the scenario from (A), we can show that (a) needs to be paired
94 : * with (e). Using the scenario from (B), we can show that (c) needs to
95 : * be paired with (d).
96 : *
97 : * D) exit_mm vs membarrier
98 : *
99 : * Two thread groups are created, A and B. Thread group B is created by
100 : * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101 : * Let's assume we have a single thread within each thread group (Thread A
102 : * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
103 : *
104 : * CPU0 CPU1
105 : *
106 : * membarrier():
107 : * a: smp_mb()
108 : * exit_mm():
109 : * d: smp_mb()
110 : * e: current->mm = NULL
111 : * b: read rq->curr->mm == NULL
112 : * c: smp_mb()
113 : *
114 : * Using scenario (B), we can show that (c) needs to be paired with (d).
115 : *
116 : * E) kthread_{use,unuse}_mm vs membarrier
117 : *
118 : * CPU0 CPU1
119 : *
120 : * membarrier():
121 : * a: smp_mb()
122 : * kthread_unuse_mm()
123 : * d: smp_mb()
124 : * e: current->mm = NULL
125 : * b: read rq->curr->mm == NULL
126 : * kthread_use_mm()
127 : * f: current->mm = mm
128 : * g: smp_mb()
129 : * c: smp_mb()
130 : *
131 : * Using the scenario from (A), we can show that (a) needs to be paired
132 : * with (g). Using the scenario from (B), we can show that (c) needs to
133 : * be paired with (d).
134 : */
135 :
136 : /*
137 : * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138 : * except MEMBARRIER_CMD_QUERY.
139 : */
140 : #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141 : #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
142 : (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
143 : | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144 : #else
145 : #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
146 : #endif
147 :
148 : #ifdef CONFIG_RSEQ
149 : #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
150 : (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
151 : | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152 : #else
153 : #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
154 : #endif
155 :
156 : #define MEMBARRIER_CMD_BITMASK \
157 : (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
158 : | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
159 : | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
160 : | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
161 : | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
162 : | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
163 : | MEMBARRIER_CMD_GET_REGISTRATIONS)
164 :
165 : static void ipi_mb(void *info)
166 : {
167 : smp_mb(); /* IPIs should be serializing but paranoid. */
168 : }
169 :
170 : static void ipi_sync_core(void *info)
171 : {
172 : /*
173 : * The smp_mb() in membarrier after all the IPIs is supposed to
174 : * ensure that memory on remote CPUs that occur before the IPI
175 : * become visible to membarrier()'s caller -- see scenario B in
176 : * the big comment at the top of this file.
177 : *
178 : * A sync_core() would provide this guarantee, but
179 : * sync_core_before_usermode() might end up being deferred until
180 : * after membarrier()'s smp_mb().
181 : */
182 : smp_mb(); /* IPIs should be serializing but paranoid. */
183 :
184 : sync_core_before_usermode();
185 : }
186 :
187 : static void ipi_rseq(void *info)
188 : {
189 : /*
190 : * Ensure that all stores done by the calling thread are visible
191 : * to the current task before the current task resumes. We could
192 : * probably optimize this away on most architectures, but by the
193 : * time we've already sent an IPI, the cost of the extra smp_mb()
194 : * is negligible.
195 : */
196 : smp_mb();
197 : rseq_preempt(current);
198 : }
199 :
200 : static void ipi_sync_rq_state(void *info)
201 : {
202 : struct mm_struct *mm = (struct mm_struct *) info;
203 :
204 : if (current->mm != mm)
205 : return;
206 : this_cpu_write(runqueues.membarrier_state,
207 : atomic_read(&mm->membarrier_state));
208 : /*
209 : * Issue a memory barrier after setting
210 : * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
211 : * guarantee that no memory access following registration is reordered
212 : * before registration.
213 : */
214 : smp_mb();
215 : }
216 :
217 0 : void membarrier_exec_mmap(struct mm_struct *mm)
218 : {
219 : /*
220 : * Issue a memory barrier before clearing membarrier_state to
221 : * guarantee that no memory access prior to exec is reordered after
222 : * clearing this state.
223 : */
224 0 : smp_mb();
225 0 : atomic_set(&mm->membarrier_state, 0);
226 : /*
227 : * Keep the runqueue membarrier_state in sync with this mm
228 : * membarrier_state.
229 : */
230 0 : this_cpu_write(runqueues.membarrier_state, 0);
231 0 : }
232 :
233 0 : void membarrier_update_current_mm(struct mm_struct *next_mm)
234 : {
235 0 : struct rq *rq = this_rq();
236 0 : int membarrier_state = 0;
237 :
238 0 : if (next_mm)
239 0 : membarrier_state = atomic_read(&next_mm->membarrier_state);
240 0 : if (READ_ONCE(rq->membarrier_state) == membarrier_state)
241 : return;
242 0 : WRITE_ONCE(rq->membarrier_state, membarrier_state);
243 : }
244 :
245 : static int membarrier_global_expedited(void)
246 : {
247 : int cpu;
248 : cpumask_var_t tmpmask;
249 :
250 : if (num_online_cpus() == 1)
251 : return 0;
252 :
253 : /*
254 : * Matches memory barriers around rq->curr modification in
255 : * scheduler.
256 : */
257 : smp_mb(); /* system call entry is not a mb. */
258 :
259 : if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
260 : return -ENOMEM;
261 :
262 : cpus_read_lock();
263 : rcu_read_lock();
264 : for_each_online_cpu(cpu) {
265 : struct task_struct *p;
266 :
267 : /*
268 : * Skipping the current CPU is OK even through we can be
269 : * migrated at any point. The current CPU, at the point
270 : * where we read raw_smp_processor_id(), is ensured to
271 : * be in program order with respect to the caller
272 : * thread. Therefore, we can skip this CPU from the
273 : * iteration.
274 : */
275 : if (cpu == raw_smp_processor_id())
276 : continue;
277 :
278 : if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
279 : MEMBARRIER_STATE_GLOBAL_EXPEDITED))
280 : continue;
281 :
282 : /*
283 : * Skip the CPU if it runs a kernel thread which is not using
284 : * a task mm.
285 : */
286 : p = rcu_dereference(cpu_rq(cpu)->curr);
287 : if (!p->mm)
288 : continue;
289 :
290 : __cpumask_set_cpu(cpu, tmpmask);
291 : }
292 : rcu_read_unlock();
293 :
294 : preempt_disable();
295 : smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
296 : preempt_enable();
297 :
298 : free_cpumask_var(tmpmask);
299 : cpus_read_unlock();
300 :
301 : /*
302 : * Memory barrier on the caller thread _after_ we finished
303 : * waiting for the last IPI. Matches memory barriers around
304 : * rq->curr modification in scheduler.
305 : */
306 : smp_mb(); /* exit from system call is not a mb */
307 : return 0;
308 : }
309 :
310 0 : static int membarrier_private_expedited(int flags, int cpu_id)
311 : {
312 : cpumask_var_t tmpmask;
313 0 : struct mm_struct *mm = current->mm;
314 0 : smp_call_func_t ipi_func = ipi_mb;
315 :
316 0 : if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
317 : if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
318 : return -EINVAL;
319 : if (!(atomic_read(&mm->membarrier_state) &
320 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
321 : return -EPERM;
322 : ipi_func = ipi_sync_core;
323 0 : } else if (flags == MEMBARRIER_FLAG_RSEQ) {
324 : if (!IS_ENABLED(CONFIG_RSEQ))
325 : return -EINVAL;
326 : if (!(atomic_read(&mm->membarrier_state) &
327 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
328 : return -EPERM;
329 : ipi_func = ipi_rseq;
330 : } else {
331 0 : WARN_ON_ONCE(flags);
332 0 : if (!(atomic_read(&mm->membarrier_state) &
333 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
334 : return -EPERM;
335 : }
336 :
337 : if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
338 0 : (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
339 : return 0;
340 :
341 : /*
342 : * Matches memory barriers around rq->curr modification in
343 : * scheduler.
344 : */
345 : smp_mb(); /* system call entry is not a mb. */
346 :
347 : if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
348 : return -ENOMEM;
349 :
350 : cpus_read_lock();
351 :
352 : if (cpu_id >= 0) {
353 : struct task_struct *p;
354 :
355 : if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
356 : goto out;
357 : rcu_read_lock();
358 : p = rcu_dereference(cpu_rq(cpu_id)->curr);
359 : if (!p || p->mm != mm) {
360 : rcu_read_unlock();
361 : goto out;
362 : }
363 : rcu_read_unlock();
364 : } else {
365 : int cpu;
366 :
367 : rcu_read_lock();
368 : for_each_online_cpu(cpu) {
369 : struct task_struct *p;
370 :
371 : p = rcu_dereference(cpu_rq(cpu)->curr);
372 : if (p && p->mm == mm)
373 : __cpumask_set_cpu(cpu, tmpmask);
374 : }
375 : rcu_read_unlock();
376 : }
377 :
378 : if (cpu_id >= 0) {
379 : /*
380 : * smp_call_function_single() will call ipi_func() if cpu_id
381 : * is the calling CPU.
382 : */
383 : smp_call_function_single(cpu_id, ipi_func, NULL, 1);
384 : } else {
385 : /*
386 : * For regular membarrier, we can save a few cycles by
387 : * skipping the current cpu -- we're about to do smp_mb()
388 : * below, and if we migrate to a different cpu, this cpu
389 : * and the new cpu will execute a full barrier in the
390 : * scheduler.
391 : *
392 : * For SYNC_CORE, we do need a barrier on the current cpu --
393 : * otherwise, if we are migrated and replaced by a different
394 : * task in the same mm just before, during, or after
395 : * membarrier, we will end up with some thread in the mm
396 : * running without a core sync.
397 : *
398 : * For RSEQ, don't rseq_preempt() the caller. User code
399 : * is not supposed to issue syscalls at all from inside an
400 : * rseq critical section.
401 : */
402 : if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
403 : preempt_disable();
404 : smp_call_function_many(tmpmask, ipi_func, NULL, true);
405 : preempt_enable();
406 : } else {
407 : on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
408 : }
409 : }
410 :
411 : out:
412 : if (cpu_id < 0)
413 : free_cpumask_var(tmpmask);
414 : cpus_read_unlock();
415 :
416 : /*
417 : * Memory barrier on the caller thread _after_ we finished
418 : * waiting for the last IPI. Matches memory barriers around
419 : * rq->curr modification in scheduler.
420 : */
421 : smp_mb(); /* exit from system call is not a mb */
422 :
423 : return 0;
424 : }
425 :
426 : static int sync_runqueues_membarrier_state(struct mm_struct *mm)
427 : {
428 0 : int membarrier_state = atomic_read(&mm->membarrier_state);
429 : cpumask_var_t tmpmask;
430 : int cpu;
431 :
432 0 : if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
433 0 : this_cpu_write(runqueues.membarrier_state, membarrier_state);
434 :
435 : /*
436 : * For single mm user, we can simply issue a memory barrier
437 : * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
438 : * mm and in the current runqueue to guarantee that no memory
439 : * access following registration is reordered before
440 : * registration.
441 : */
442 0 : smp_mb();
443 : return 0;
444 : }
445 :
446 : if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
447 : return -ENOMEM;
448 :
449 : /*
450 : * For mm with multiple users, we need to ensure all future
451 : * scheduler executions will observe @mm's new membarrier
452 : * state.
453 : */
454 : synchronize_rcu();
455 :
456 : /*
457 : * For each cpu runqueue, if the task's mm match @mm, ensure that all
458 : * @mm's membarrier state set bits are also set in the runqueue's
459 : * membarrier state. This ensures that a runqueue scheduling
460 : * between threads which are users of @mm has its membarrier state
461 : * updated.
462 : */
463 : cpus_read_lock();
464 : rcu_read_lock();
465 : for_each_online_cpu(cpu) {
466 : struct rq *rq = cpu_rq(cpu);
467 : struct task_struct *p;
468 :
469 : p = rcu_dereference(rq->curr);
470 : if (p && p->mm == mm)
471 : __cpumask_set_cpu(cpu, tmpmask);
472 : }
473 : rcu_read_unlock();
474 :
475 : on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
476 :
477 : free_cpumask_var(tmpmask);
478 : cpus_read_unlock();
479 :
480 : return 0;
481 : }
482 :
483 0 : static int membarrier_register_global_expedited(void)
484 : {
485 0 : struct task_struct *p = current;
486 0 : struct mm_struct *mm = p->mm;
487 : int ret;
488 :
489 0 : if (atomic_read(&mm->membarrier_state) &
490 : MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
491 : return 0;
492 0 : atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
493 0 : ret = sync_runqueues_membarrier_state(mm);
494 : if (ret)
495 : return ret;
496 0 : atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
497 : &mm->membarrier_state);
498 :
499 0 : return 0;
500 : }
501 :
502 0 : static int membarrier_register_private_expedited(int flags)
503 : {
504 0 : struct task_struct *p = current;
505 0 : struct mm_struct *mm = p->mm;
506 0 : int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
507 0 : set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
508 : ret;
509 :
510 0 : if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
511 : if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
512 : return -EINVAL;
513 : ready_state =
514 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
515 0 : } else if (flags == MEMBARRIER_FLAG_RSEQ) {
516 : if (!IS_ENABLED(CONFIG_RSEQ))
517 : return -EINVAL;
518 : ready_state =
519 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
520 : } else {
521 0 : WARN_ON_ONCE(flags);
522 : }
523 :
524 : /*
525 : * We need to consider threads belonging to different thread
526 : * groups, which use the same mm. (CLONE_VM but not
527 : * CLONE_THREAD).
528 : */
529 0 : if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
530 : return 0;
531 0 : if (flags & MEMBARRIER_FLAG_SYNC_CORE)
532 0 : set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
533 0 : if (flags & MEMBARRIER_FLAG_RSEQ)
534 0 : set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
535 0 : atomic_or(set_state, &mm->membarrier_state);
536 0 : ret = sync_runqueues_membarrier_state(mm);
537 : if (ret)
538 : return ret;
539 0 : atomic_or(ready_state, &mm->membarrier_state);
540 :
541 0 : return 0;
542 : }
543 :
544 0 : static int membarrier_get_registrations(void)
545 : {
546 0 : struct task_struct *p = current;
547 0 : struct mm_struct *mm = p->mm;
548 0 : int registrations_mask = 0, membarrier_state, i;
549 : static const int states[] = {
550 : MEMBARRIER_STATE_GLOBAL_EXPEDITED |
551 : MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
552 : MEMBARRIER_STATE_PRIVATE_EXPEDITED |
553 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
554 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE |
555 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY,
556 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ |
557 : MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY
558 : };
559 : static const int registration_cmds[] = {
560 : MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED,
561 : MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED,
562 : MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE,
563 : MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ
564 : };
565 : BUILD_BUG_ON(ARRAY_SIZE(states) != ARRAY_SIZE(registration_cmds));
566 :
567 0 : membarrier_state = atomic_read(&mm->membarrier_state);
568 0 : for (i = 0; i < ARRAY_SIZE(states); ++i) {
569 0 : if (membarrier_state & states[i]) {
570 0 : registrations_mask |= registration_cmds[i];
571 0 : membarrier_state &= ~states[i];
572 : }
573 : }
574 0 : WARN_ON_ONCE(membarrier_state != 0);
575 0 : return registrations_mask;
576 : }
577 :
578 : /**
579 : * sys_membarrier - issue memory barriers on a set of threads
580 : * @cmd: Takes command values defined in enum membarrier_cmd.
581 : * @flags: Currently needs to be 0 for all commands other than
582 : * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
583 : * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
584 : * contains the CPU on which to interrupt (= restart)
585 : * the RSEQ critical section.
586 : * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
587 : * RSEQ CS should be interrupted (@cmd must be
588 : * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
589 : *
590 : * If this system call is not implemented, -ENOSYS is returned. If the
591 : * command specified does not exist, not available on the running
592 : * kernel, or if the command argument is invalid, this system call
593 : * returns -EINVAL. For a given command, with flags argument set to 0,
594 : * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
595 : * always return the same value until reboot. In addition, it can return
596 : * -ENOMEM if there is not enough memory available to perform the system
597 : * call.
598 : *
599 : * All memory accesses performed in program order from each targeted thread
600 : * is guaranteed to be ordered with respect to sys_membarrier(). If we use
601 : * the semantic "barrier()" to represent a compiler barrier forcing memory
602 : * accesses to be performed in program order across the barrier, and
603 : * smp_mb() to represent explicit memory barriers forcing full memory
604 : * ordering across the barrier, we have the following ordering table for
605 : * each pair of barrier(), sys_membarrier() and smp_mb():
606 : *
607 : * The pair ordering is detailed as (O: ordered, X: not ordered):
608 : *
609 : * barrier() smp_mb() sys_membarrier()
610 : * barrier() X X O
611 : * smp_mb() X O O
612 : * sys_membarrier() O O O
613 : */
614 0 : SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
615 : {
616 0 : switch (cmd) {
617 : case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
618 0 : if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
619 : return -EINVAL;
620 : break;
621 : default:
622 0 : if (unlikely(flags))
623 : return -EINVAL;
624 : }
625 :
626 : if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
627 : cpu_id = -1;
628 :
629 0 : switch (cmd) {
630 : case MEMBARRIER_CMD_QUERY:
631 : {
632 : int cmd_mask = MEMBARRIER_CMD_BITMASK;
633 :
634 : if (tick_nohz_full_enabled())
635 : cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
636 : return cmd_mask;
637 : }
638 : case MEMBARRIER_CMD_GLOBAL:
639 : /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
640 : if (tick_nohz_full_enabled())
641 : return -EINVAL;
642 : if (num_online_cpus() > 1)
643 : synchronize_rcu();
644 : return 0;
645 : case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
646 : return membarrier_global_expedited();
647 : case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
648 0 : return membarrier_register_global_expedited();
649 : case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
650 0 : return membarrier_private_expedited(0, cpu_id);
651 : case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
652 0 : return membarrier_register_private_expedited(0);
653 : case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
654 0 : return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
655 : case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
656 0 : return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
657 : case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
658 0 : return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
659 : case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
660 0 : return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
661 : case MEMBARRIER_CMD_GET_REGISTRATIONS:
662 0 : return membarrier_get_registrations();
663 : default:
664 : return -EINVAL;
665 : }
666 : }
|