Line data Source code
1 : #ifdef CONFIG_SMP 2 : #include "sched-pelt.h" 3 : 4 : int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); 5 : int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); 6 : int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); 7 : int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); 8 : int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); 9 : 10 : #ifdef CONFIG_SCHED_THERMAL_PRESSURE 11 : int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); 12 : 13 : static inline u64 thermal_load_avg(struct rq *rq) 14 : { 15 : return READ_ONCE(rq->avg_thermal.load_avg); 16 : } 17 : #else 18 : static inline int 19 : update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) 20 : { 21 : return 0; 22 : } 23 : 24 : static inline u64 thermal_load_avg(struct rq *rq) 25 : { 26 : return 0; 27 : } 28 : #endif 29 : 30 : #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 31 : int update_irq_load_avg(struct rq *rq, u64 running); 32 : #else 33 : static inline int 34 : update_irq_load_avg(struct rq *rq, u64 running) 35 : { 36 : return 0; 37 : } 38 : #endif 39 : 40 : #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024) 41 : 42 : static inline u32 get_pelt_divider(struct sched_avg *avg) 43 : { 44 : return PELT_MIN_DIVIDER + avg->period_contrib; 45 : } 46 : 47 : static inline void cfs_se_util_change(struct sched_avg *avg) 48 : { 49 : unsigned int enqueued; 50 : 51 : if (!sched_feat(UTIL_EST)) 52 : return; 53 : 54 : /* Avoid store if the flag has been already reset */ 55 : enqueued = avg->util_est.enqueued; 56 : if (!(enqueued & UTIL_AVG_UNCHANGED)) 57 : return; 58 : 59 : /* Reset flag to report util_avg has been updated */ 60 : enqueued &= ~UTIL_AVG_UNCHANGED; 61 : WRITE_ONCE(avg->util_est.enqueued, enqueued); 62 : } 63 : 64 : static inline u64 rq_clock_pelt(struct rq *rq) 65 : { 66 : lockdep_assert_rq_held(rq); 67 : assert_clock_updated(rq); 68 : 69 : return rq->clock_pelt - rq->lost_idle_time; 70 : } 71 : 72 : /* The rq is idle, we can sync to clock_task */ 73 : static inline void _update_idle_rq_clock_pelt(struct rq *rq) 74 : { 75 : rq->clock_pelt = rq_clock_task(rq); 76 : 77 : u64_u32_store(rq->clock_idle, rq_clock(rq)); 78 : /* Paired with smp_rmb in migrate_se_pelt_lag() */ 79 : smp_wmb(); 80 : u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq)); 81 : } 82 : 83 : /* 84 : * The clock_pelt scales the time to reflect the effective amount of 85 : * computation done during the running delta time but then sync back to 86 : * clock_task when rq is idle. 87 : * 88 : * 89 : * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 90 : * @ max capacity ------******---------------******--------------- 91 : * @ half capacity ------************---------************--------- 92 : * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 93 : * 94 : */ 95 : static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) 96 : { 97 : if (unlikely(is_idle_task(rq->curr))) { 98 : _update_idle_rq_clock_pelt(rq); 99 : return; 100 : } 101 : 102 : /* 103 : * When a rq runs at a lower compute capacity, it will need 104 : * more time to do the same amount of work than at max 105 : * capacity. In order to be invariant, we scale the delta to 106 : * reflect how much work has been really done. 107 : * Running longer results in stealing idle time that will 108 : * disturb the load signal compared to max capacity. This 109 : * stolen idle time will be automatically reflected when the 110 : * rq will be idle and the clock will be synced with 111 : * rq_clock_task. 112 : */ 113 : 114 : /* 115 : * Scale the elapsed time to reflect the real amount of 116 : * computation 117 : */ 118 : delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); 119 : delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); 120 : 121 : rq->clock_pelt += delta; 122 : } 123 : 124 : /* 125 : * When rq becomes idle, we have to check if it has lost idle time 126 : * because it was fully busy. A rq is fully used when the /Sum util_sum 127 : * is greater or equal to: 128 : * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; 129 : * For optimization and computing rounding purpose, we don't take into account 130 : * the position in the current window (period_contrib) and we use the higher 131 : * bound of util_sum to decide. 132 : */ 133 : static inline void update_idle_rq_clock_pelt(struct rq *rq) 134 : { 135 : u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; 136 : u32 util_sum = rq->cfs.avg.util_sum; 137 : util_sum += rq->avg_rt.util_sum; 138 : util_sum += rq->avg_dl.util_sum; 139 : 140 : /* 141 : * Reflecting stolen time makes sense only if the idle 142 : * phase would be present at max capacity. As soon as the 143 : * utilization of a rq has reached the maximum value, it is 144 : * considered as an always running rq without idle time to 145 : * steal. This potential idle time is considered as lost in 146 : * this case. We keep track of this lost idle time compare to 147 : * rq's clock_task. 148 : */ 149 : if (util_sum >= divider) 150 : rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; 151 : 152 : _update_idle_rq_clock_pelt(rq); 153 : } 154 : 155 : #ifdef CONFIG_CFS_BANDWIDTH 156 : static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) 157 : { 158 : u64 throttled; 159 : 160 : if (unlikely(cfs_rq->throttle_count)) 161 : throttled = U64_MAX; 162 : else 163 : throttled = cfs_rq->throttled_clock_pelt_time; 164 : 165 : u64_u32_store(cfs_rq->throttled_pelt_idle, throttled); 166 : } 167 : 168 : /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 169 : static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) 170 : { 171 : if (unlikely(cfs_rq->throttle_count)) 172 : return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time; 173 : 174 : return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time; 175 : } 176 : #else 177 : static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } 178 : static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) 179 : { 180 : return rq_clock_pelt(rq_of(cfs_rq)); 181 : } 182 : #endif 183 : 184 : #else 185 : 186 : static inline int 187 : update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 188 : { 189 : return 0; 190 : } 191 : 192 : static inline int 193 : update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 194 : { 195 : return 0; 196 : } 197 : 198 : static inline int 199 : update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 200 : { 201 : return 0; 202 : } 203 : 204 : static inline int 205 : update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) 206 : { 207 : return 0; 208 : } 209 : 210 : static inline u64 thermal_load_avg(struct rq *rq) 211 : { 212 : return 0; 213 : } 214 : 215 : static inline int 216 : update_irq_load_avg(struct rq *rq, u64 running) 217 : { 218 : return 0; 219 : } 220 : 221 : static inline u64 rq_clock_pelt(struct rq *rq) 222 : { 223 0 : return rq_clock_task(rq); 224 : } 225 : 226 : static inline void 227 : update_rq_clock_pelt(struct rq *rq, s64 delta) { } 228 : 229 : static inline void 230 : update_idle_rq_clock_pelt(struct rq *rq) { } 231 : 232 : static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } 233 : #endif 234 : 235 :