Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * linux/kernel/sys.c
4 : *
5 : * Copyright (C) 1991, 1992 Linus Torvalds
6 : */
7 :
8 : #include <linux/export.h>
9 : #include <linux/mm.h>
10 : #include <linux/mm_inline.h>
11 : #include <linux/utsname.h>
12 : #include <linux/mman.h>
13 : #include <linux/reboot.h>
14 : #include <linux/prctl.h>
15 : #include <linux/highuid.h>
16 : #include <linux/fs.h>
17 : #include <linux/kmod.h>
18 : #include <linux/ksm.h>
19 : #include <linux/perf_event.h>
20 : #include <linux/resource.h>
21 : #include <linux/kernel.h>
22 : #include <linux/workqueue.h>
23 : #include <linux/capability.h>
24 : #include <linux/device.h>
25 : #include <linux/key.h>
26 : #include <linux/times.h>
27 : #include <linux/posix-timers.h>
28 : #include <linux/security.h>
29 : #include <linux/random.h>
30 : #include <linux/suspend.h>
31 : #include <linux/tty.h>
32 : #include <linux/signal.h>
33 : #include <linux/cn_proc.h>
34 : #include <linux/getcpu.h>
35 : #include <linux/task_io_accounting_ops.h>
36 : #include <linux/seccomp.h>
37 : #include <linux/cpu.h>
38 : #include <linux/personality.h>
39 : #include <linux/ptrace.h>
40 : #include <linux/fs_struct.h>
41 : #include <linux/file.h>
42 : #include <linux/mount.h>
43 : #include <linux/gfp.h>
44 : #include <linux/syscore_ops.h>
45 : #include <linux/version.h>
46 : #include <linux/ctype.h>
47 : #include <linux/syscall_user_dispatch.h>
48 :
49 : #include <linux/compat.h>
50 : #include <linux/syscalls.h>
51 : #include <linux/kprobes.h>
52 : #include <linux/user_namespace.h>
53 : #include <linux/time_namespace.h>
54 : #include <linux/binfmts.h>
55 :
56 : #include <linux/sched.h>
57 : #include <linux/sched/autogroup.h>
58 : #include <linux/sched/loadavg.h>
59 : #include <linux/sched/stat.h>
60 : #include <linux/sched/mm.h>
61 : #include <linux/sched/coredump.h>
62 : #include <linux/sched/task.h>
63 : #include <linux/sched/cputime.h>
64 : #include <linux/rcupdate.h>
65 : #include <linux/uidgid.h>
66 : #include <linux/cred.h>
67 :
68 : #include <linux/nospec.h>
69 :
70 : #include <linux/kmsg_dump.h>
71 : /* Move somewhere else to avoid recompiling? */
72 : #include <generated/utsrelease.h>
73 :
74 : #include <linux/uaccess.h>
75 : #include <asm/io.h>
76 : #include <asm/unistd.h>
77 :
78 : #include "uid16.h"
79 :
80 : #ifndef SET_UNALIGN_CTL
81 : # define SET_UNALIGN_CTL(a, b) (-EINVAL)
82 : #endif
83 : #ifndef GET_UNALIGN_CTL
84 : # define GET_UNALIGN_CTL(a, b) (-EINVAL)
85 : #endif
86 : #ifndef SET_FPEMU_CTL
87 : # define SET_FPEMU_CTL(a, b) (-EINVAL)
88 : #endif
89 : #ifndef GET_FPEMU_CTL
90 : # define GET_FPEMU_CTL(a, b) (-EINVAL)
91 : #endif
92 : #ifndef SET_FPEXC_CTL
93 : # define SET_FPEXC_CTL(a, b) (-EINVAL)
94 : #endif
95 : #ifndef GET_FPEXC_CTL
96 : # define GET_FPEXC_CTL(a, b) (-EINVAL)
97 : #endif
98 : #ifndef GET_ENDIAN
99 : # define GET_ENDIAN(a, b) (-EINVAL)
100 : #endif
101 : #ifndef SET_ENDIAN
102 : # define SET_ENDIAN(a, b) (-EINVAL)
103 : #endif
104 : #ifndef GET_TSC_CTL
105 : # define GET_TSC_CTL(a) (-EINVAL)
106 : #endif
107 : #ifndef SET_TSC_CTL
108 : # define SET_TSC_CTL(a) (-EINVAL)
109 : #endif
110 : #ifndef GET_FP_MODE
111 : # define GET_FP_MODE(a) (-EINVAL)
112 : #endif
113 : #ifndef SET_FP_MODE
114 : # define SET_FP_MODE(a,b) (-EINVAL)
115 : #endif
116 : #ifndef SVE_SET_VL
117 : # define SVE_SET_VL(a) (-EINVAL)
118 : #endif
119 : #ifndef SVE_GET_VL
120 : # define SVE_GET_VL() (-EINVAL)
121 : #endif
122 : #ifndef SME_SET_VL
123 : # define SME_SET_VL(a) (-EINVAL)
124 : #endif
125 : #ifndef SME_GET_VL
126 : # define SME_GET_VL() (-EINVAL)
127 : #endif
128 : #ifndef PAC_RESET_KEYS
129 : # define PAC_RESET_KEYS(a, b) (-EINVAL)
130 : #endif
131 : #ifndef PAC_SET_ENABLED_KEYS
132 : # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133 : #endif
134 : #ifndef PAC_GET_ENABLED_KEYS
135 : # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136 : #endif
137 : #ifndef SET_TAGGED_ADDR_CTRL
138 : # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139 : #endif
140 : #ifndef GET_TAGGED_ADDR_CTRL
141 : # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142 : #endif
143 :
144 : /*
145 : * this is where the system-wide overflow UID and GID are defined, for
146 : * architectures that now have 32-bit UID/GID but didn't in the past
147 : */
148 :
149 : int overflowuid = DEFAULT_OVERFLOWUID;
150 : int overflowgid = DEFAULT_OVERFLOWGID;
151 :
152 : EXPORT_SYMBOL(overflowuid);
153 : EXPORT_SYMBOL(overflowgid);
154 :
155 : /*
156 : * the same as above, but for filesystems which can only store a 16-bit
157 : * UID and GID. as such, this is needed on all architectures
158 : */
159 :
160 : int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
161 : int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
162 :
163 : EXPORT_SYMBOL(fs_overflowuid);
164 : EXPORT_SYMBOL(fs_overflowgid);
165 :
166 : /*
167 : * Returns true if current's euid is same as p's uid or euid,
168 : * or has CAP_SYS_NICE to p's user_ns.
169 : *
170 : * Called with rcu_read_lock, creds are safe
171 : */
172 0 : static bool set_one_prio_perm(struct task_struct *p)
173 : {
174 0 : const struct cred *cred = current_cred(), *pcred = __task_cred(p);
175 :
176 0 : if (uid_eq(pcred->uid, cred->euid) ||
177 0 : uid_eq(pcred->euid, cred->euid))
178 : return true;
179 0 : if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
180 : return true;
181 0 : return false;
182 : }
183 :
184 : /*
185 : * set the priority of a task
186 : * - the caller must hold the RCU read lock
187 : */
188 0 : static int set_one_prio(struct task_struct *p, int niceval, int error)
189 : {
190 : int no_nice;
191 :
192 0 : if (!set_one_prio_perm(p)) {
193 : error = -EPERM;
194 : goto out;
195 : }
196 0 : if (niceval < task_nice(p) && !can_nice(p, niceval)) {
197 : error = -EACCES;
198 : goto out;
199 : }
200 0 : no_nice = security_task_setnice(p, niceval);
201 0 : if (no_nice) {
202 : error = no_nice;
203 : goto out;
204 : }
205 0 : if (error == -ESRCH)
206 0 : error = 0;
207 0 : set_user_nice(p, niceval);
208 : out:
209 0 : return error;
210 : }
211 :
212 0 : SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
213 : {
214 : struct task_struct *g, *p;
215 : struct user_struct *user;
216 0 : const struct cred *cred = current_cred();
217 0 : int error = -EINVAL;
218 : struct pid *pgrp;
219 : kuid_t uid;
220 :
221 0 : if (which > PRIO_USER || which < PRIO_PROCESS)
222 : goto out;
223 :
224 : /* normalize: avoid signed division (rounding problems) */
225 0 : error = -ESRCH;
226 0 : if (niceval < MIN_NICE)
227 0 : niceval = MIN_NICE;
228 0 : if (niceval > MAX_NICE)
229 0 : niceval = MAX_NICE;
230 :
231 : rcu_read_lock();
232 0 : switch (which) {
233 : case PRIO_PROCESS:
234 0 : if (who)
235 0 : p = find_task_by_vpid(who);
236 : else
237 0 : p = current;
238 0 : if (p)
239 0 : error = set_one_prio(p, niceval, error);
240 : break;
241 : case PRIO_PGRP:
242 0 : if (who)
243 0 : pgrp = find_vpid(who);
244 : else
245 0 : pgrp = task_pgrp(current);
246 0 : read_lock(&tasklist_lock);
247 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
248 0 : error = set_one_prio(p, niceval, error);
249 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
250 0 : read_unlock(&tasklist_lock);
251 0 : break;
252 : case PRIO_USER:
253 0 : uid = make_kuid(cred->user_ns, who);
254 0 : user = cred->user;
255 0 : if (!who)
256 0 : uid = cred->uid;
257 0 : else if (!uid_eq(uid, cred->uid)) {
258 0 : user = find_user(uid);
259 0 : if (!user)
260 : goto out_unlock; /* No processes for this user */
261 : }
262 0 : for_each_process_thread(g, p) {
263 0 : if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
264 0 : error = set_one_prio(p, niceval, error);
265 : }
266 0 : if (!uid_eq(uid, cred->uid))
267 0 : free_uid(user); /* For find_user() */
268 : break;
269 : }
270 : out_unlock:
271 : rcu_read_unlock();
272 : out:
273 0 : return error;
274 : }
275 :
276 : /*
277 : * Ugh. To avoid negative return values, "getpriority()" will
278 : * not return the normal nice-value, but a negated value that
279 : * has been offset by 20 (ie it returns 40..1 instead of -20..19)
280 : * to stay compatible.
281 : */
282 0 : SYSCALL_DEFINE2(getpriority, int, which, int, who)
283 : {
284 : struct task_struct *g, *p;
285 : struct user_struct *user;
286 0 : const struct cred *cred = current_cred();
287 0 : long niceval, retval = -ESRCH;
288 : struct pid *pgrp;
289 : kuid_t uid;
290 :
291 0 : if (which > PRIO_USER || which < PRIO_PROCESS)
292 : return -EINVAL;
293 :
294 : rcu_read_lock();
295 0 : switch (which) {
296 : case PRIO_PROCESS:
297 0 : if (who)
298 0 : p = find_task_by_vpid(who);
299 : else
300 0 : p = current;
301 0 : if (p) {
302 0 : niceval = nice_to_rlimit(task_nice(p));
303 0 : if (niceval > retval)
304 0 : retval = niceval;
305 : }
306 : break;
307 : case PRIO_PGRP:
308 0 : if (who)
309 0 : pgrp = find_vpid(who);
310 : else
311 0 : pgrp = task_pgrp(current);
312 0 : read_lock(&tasklist_lock);
313 0 : do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
314 0 : niceval = nice_to_rlimit(task_nice(p));
315 0 : if (niceval > retval)
316 0 : retval = niceval;
317 0 : } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
318 0 : read_unlock(&tasklist_lock);
319 0 : break;
320 : case PRIO_USER:
321 0 : uid = make_kuid(cred->user_ns, who);
322 0 : user = cred->user;
323 0 : if (!who)
324 0 : uid = cred->uid;
325 0 : else if (!uid_eq(uid, cred->uid)) {
326 0 : user = find_user(uid);
327 0 : if (!user)
328 : goto out_unlock; /* No processes for this user */
329 : }
330 0 : for_each_process_thread(g, p) {
331 0 : if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
332 0 : niceval = nice_to_rlimit(task_nice(p));
333 0 : if (niceval > retval)
334 0 : retval = niceval;
335 : }
336 : }
337 0 : if (!uid_eq(uid, cred->uid))
338 0 : free_uid(user); /* for find_user() */
339 : break;
340 : }
341 : out_unlock:
342 : rcu_read_unlock();
343 :
344 0 : return retval;
345 : }
346 :
347 : /*
348 : * Unprivileged users may change the real gid to the effective gid
349 : * or vice versa. (BSD-style)
350 : *
351 : * If you set the real gid at all, or set the effective gid to a value not
352 : * equal to the real gid, then the saved gid is set to the new effective gid.
353 : *
354 : * This makes it possible for a setgid program to completely drop its
355 : * privileges, which is often a useful assertion to make when you are doing
356 : * a security audit over a program.
357 : *
358 : * The general idea is that a program which uses just setregid() will be
359 : * 100% compatible with BSD. A program which uses just setgid() will be
360 : * 100% compatible with POSIX with saved IDs.
361 : *
362 : * SMP: There are not races, the GIDs are checked only by filesystem
363 : * operations (as far as semantic preservation is concerned).
364 : */
365 : #ifdef CONFIG_MULTIUSER
366 0 : long __sys_setregid(gid_t rgid, gid_t egid)
367 : {
368 0 : struct user_namespace *ns = current_user_ns();
369 : const struct cred *old;
370 : struct cred *new;
371 : int retval;
372 : kgid_t krgid, kegid;
373 :
374 0 : krgid = make_kgid(ns, rgid);
375 0 : kegid = make_kgid(ns, egid);
376 :
377 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
378 : return -EINVAL;
379 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
380 : return -EINVAL;
381 :
382 0 : new = prepare_creds();
383 0 : if (!new)
384 : return -ENOMEM;
385 0 : old = current_cred();
386 :
387 0 : retval = -EPERM;
388 0 : if (rgid != (gid_t) -1) {
389 0 : if (gid_eq(old->gid, krgid) ||
390 0 : gid_eq(old->egid, krgid) ||
391 0 : ns_capable_setid(old->user_ns, CAP_SETGID))
392 0 : new->gid = krgid;
393 : else
394 : goto error;
395 : }
396 0 : if (egid != (gid_t) -1) {
397 0 : if (gid_eq(old->gid, kegid) ||
398 0 : gid_eq(old->egid, kegid) ||
399 0 : gid_eq(old->sgid, kegid) ||
400 0 : ns_capable_setid(old->user_ns, CAP_SETGID))
401 0 : new->egid = kegid;
402 : else
403 : goto error;
404 : }
405 :
406 0 : if (rgid != (gid_t) -1 ||
407 0 : (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
408 0 : new->sgid = new->egid;
409 0 : new->fsgid = new->egid;
410 :
411 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
412 : if (retval < 0)
413 : goto error;
414 :
415 0 : return commit_creds(new);
416 :
417 : error:
418 0 : abort_creds(new);
419 0 : return retval;
420 : }
421 :
422 0 : SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
423 : {
424 0 : return __sys_setregid(rgid, egid);
425 : }
426 :
427 : /*
428 : * setgid() is implemented like SysV w/ SAVED_IDS
429 : *
430 : * SMP: Same implicit races as above.
431 : */
432 0 : long __sys_setgid(gid_t gid)
433 : {
434 0 : struct user_namespace *ns = current_user_ns();
435 : const struct cred *old;
436 : struct cred *new;
437 : int retval;
438 : kgid_t kgid;
439 :
440 0 : kgid = make_kgid(ns, gid);
441 0 : if (!gid_valid(kgid))
442 : return -EINVAL;
443 :
444 0 : new = prepare_creds();
445 0 : if (!new)
446 : return -ENOMEM;
447 0 : old = current_cred();
448 :
449 0 : retval = -EPERM;
450 0 : if (ns_capable_setid(old->user_ns, CAP_SETGID))
451 0 : new->gid = new->egid = new->sgid = new->fsgid = kgid;
452 0 : else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
453 0 : new->egid = new->fsgid = kgid;
454 : else
455 : goto error;
456 :
457 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
458 : if (retval < 0)
459 : goto error;
460 :
461 0 : return commit_creds(new);
462 :
463 : error:
464 0 : abort_creds(new);
465 0 : return retval;
466 : }
467 :
468 0 : SYSCALL_DEFINE1(setgid, gid_t, gid)
469 : {
470 0 : return __sys_setgid(gid);
471 : }
472 :
473 : /*
474 : * change the user struct in a credentials set to match the new UID
475 : */
476 : static int set_user(struct cred *new)
477 : {
478 : struct user_struct *new_user;
479 :
480 0 : new_user = alloc_uid(new->uid);
481 0 : if (!new_user)
482 : return -EAGAIN;
483 :
484 0 : free_uid(new->user);
485 0 : new->user = new_user;
486 : return 0;
487 : }
488 :
489 0 : static void flag_nproc_exceeded(struct cred *new)
490 : {
491 0 : if (new->ucounts == current_ucounts())
492 : return;
493 :
494 : /*
495 : * We don't fail in case of NPROC limit excess here because too many
496 : * poorly written programs don't check set*uid() return code, assuming
497 : * it never fails if called by root. We may still enforce NPROC limit
498 : * for programs doing set*uid()+execve() by harmlessly deferring the
499 : * failure to the execve() stage.
500 : */
501 0 : if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
502 0 : new->user != INIT_USER)
503 0 : current->flags |= PF_NPROC_EXCEEDED;
504 : else
505 0 : current->flags &= ~PF_NPROC_EXCEEDED;
506 : }
507 :
508 : /*
509 : * Unprivileged users may change the real uid to the effective uid
510 : * or vice versa. (BSD-style)
511 : *
512 : * If you set the real uid at all, or set the effective uid to a value not
513 : * equal to the real uid, then the saved uid is set to the new effective uid.
514 : *
515 : * This makes it possible for a setuid program to completely drop its
516 : * privileges, which is often a useful assertion to make when you are doing
517 : * a security audit over a program.
518 : *
519 : * The general idea is that a program which uses just setreuid() will be
520 : * 100% compatible with BSD. A program which uses just setuid() will be
521 : * 100% compatible with POSIX with saved IDs.
522 : */
523 0 : long __sys_setreuid(uid_t ruid, uid_t euid)
524 : {
525 0 : struct user_namespace *ns = current_user_ns();
526 : const struct cred *old;
527 : struct cred *new;
528 : int retval;
529 : kuid_t kruid, keuid;
530 :
531 0 : kruid = make_kuid(ns, ruid);
532 0 : keuid = make_kuid(ns, euid);
533 :
534 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
535 : return -EINVAL;
536 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
537 : return -EINVAL;
538 :
539 0 : new = prepare_creds();
540 0 : if (!new)
541 : return -ENOMEM;
542 0 : old = current_cred();
543 :
544 0 : retval = -EPERM;
545 0 : if (ruid != (uid_t) -1) {
546 0 : new->uid = kruid;
547 0 : if (!uid_eq(old->uid, kruid) &&
548 0 : !uid_eq(old->euid, kruid) &&
549 0 : !ns_capable_setid(old->user_ns, CAP_SETUID))
550 : goto error;
551 : }
552 :
553 0 : if (euid != (uid_t) -1) {
554 0 : new->euid = keuid;
555 0 : if (!uid_eq(old->uid, keuid) &&
556 0 : !uid_eq(old->euid, keuid) &&
557 0 : !uid_eq(old->suid, keuid) &&
558 0 : !ns_capable_setid(old->user_ns, CAP_SETUID))
559 : goto error;
560 : }
561 :
562 0 : if (!uid_eq(new->uid, old->uid)) {
563 0 : retval = set_user(new);
564 0 : if (retval < 0)
565 : goto error;
566 : }
567 0 : if (ruid != (uid_t) -1 ||
568 0 : (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
569 0 : new->suid = new->euid;
570 0 : new->fsuid = new->euid;
571 :
572 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
573 0 : if (retval < 0)
574 : goto error;
575 :
576 0 : retval = set_cred_ucounts(new);
577 0 : if (retval < 0)
578 : goto error;
579 :
580 0 : flag_nproc_exceeded(new);
581 0 : return commit_creds(new);
582 :
583 : error:
584 0 : abort_creds(new);
585 0 : return retval;
586 : }
587 :
588 0 : SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
589 : {
590 0 : return __sys_setreuid(ruid, euid);
591 : }
592 :
593 : /*
594 : * setuid() is implemented like SysV with SAVED_IDS
595 : *
596 : * Note that SAVED_ID's is deficient in that a setuid root program
597 : * like sendmail, for example, cannot set its uid to be a normal
598 : * user and then switch back, because if you're root, setuid() sets
599 : * the saved uid too. If you don't like this, blame the bright people
600 : * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
601 : * will allow a root program to temporarily drop privileges and be able to
602 : * regain them by swapping the real and effective uid.
603 : */
604 0 : long __sys_setuid(uid_t uid)
605 : {
606 0 : struct user_namespace *ns = current_user_ns();
607 : const struct cred *old;
608 : struct cred *new;
609 : int retval;
610 : kuid_t kuid;
611 :
612 0 : kuid = make_kuid(ns, uid);
613 0 : if (!uid_valid(kuid))
614 : return -EINVAL;
615 :
616 0 : new = prepare_creds();
617 0 : if (!new)
618 : return -ENOMEM;
619 0 : old = current_cred();
620 :
621 0 : retval = -EPERM;
622 0 : if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
623 0 : new->suid = new->uid = kuid;
624 0 : if (!uid_eq(kuid, old->uid)) {
625 0 : retval = set_user(new);
626 0 : if (retval < 0)
627 : goto error;
628 : }
629 0 : } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
630 : goto error;
631 : }
632 :
633 0 : new->fsuid = new->euid = kuid;
634 :
635 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
636 0 : if (retval < 0)
637 : goto error;
638 :
639 0 : retval = set_cred_ucounts(new);
640 0 : if (retval < 0)
641 : goto error;
642 :
643 0 : flag_nproc_exceeded(new);
644 0 : return commit_creds(new);
645 :
646 : error:
647 0 : abort_creds(new);
648 0 : return retval;
649 : }
650 :
651 0 : SYSCALL_DEFINE1(setuid, uid_t, uid)
652 : {
653 0 : return __sys_setuid(uid);
654 : }
655 :
656 :
657 : /*
658 : * This function implements a generic ability to update ruid, euid,
659 : * and suid. This allows you to implement the 4.4 compatible seteuid().
660 : */
661 0 : long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
662 : {
663 0 : struct user_namespace *ns = current_user_ns();
664 : const struct cred *old;
665 : struct cred *new;
666 : int retval;
667 : kuid_t kruid, keuid, ksuid;
668 : bool ruid_new, euid_new, suid_new;
669 :
670 0 : kruid = make_kuid(ns, ruid);
671 0 : keuid = make_kuid(ns, euid);
672 0 : ksuid = make_kuid(ns, suid);
673 :
674 : if ((ruid != (uid_t) -1) && !uid_valid(kruid))
675 : return -EINVAL;
676 :
677 : if ((euid != (uid_t) -1) && !uid_valid(keuid))
678 : return -EINVAL;
679 :
680 : if ((suid != (uid_t) -1) && !uid_valid(ksuid))
681 : return -EINVAL;
682 :
683 0 : old = current_cred();
684 :
685 : /* check for no-op */
686 0 : if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
687 0 : (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
688 0 : uid_eq(keuid, old->fsuid))) &&
689 0 : (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
690 : return 0;
691 :
692 0 : ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
693 0 : !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
694 0 : euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
695 0 : !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
696 0 : suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
697 0 : !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
698 0 : if ((ruid_new || euid_new || suid_new) &&
699 0 : !ns_capable_setid(old->user_ns, CAP_SETUID))
700 : return -EPERM;
701 :
702 0 : new = prepare_creds();
703 0 : if (!new)
704 : return -ENOMEM;
705 :
706 0 : if (ruid != (uid_t) -1) {
707 0 : new->uid = kruid;
708 0 : if (!uid_eq(kruid, old->uid)) {
709 0 : retval = set_user(new);
710 0 : if (retval < 0)
711 : goto error;
712 : }
713 : }
714 0 : if (euid != (uid_t) -1)
715 0 : new->euid = keuid;
716 0 : if (suid != (uid_t) -1)
717 0 : new->suid = ksuid;
718 0 : new->fsuid = new->euid;
719 :
720 0 : retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
721 0 : if (retval < 0)
722 : goto error;
723 :
724 0 : retval = set_cred_ucounts(new);
725 0 : if (retval < 0)
726 : goto error;
727 :
728 0 : flag_nproc_exceeded(new);
729 0 : return commit_creds(new);
730 :
731 : error:
732 0 : abort_creds(new);
733 0 : return retval;
734 : }
735 :
736 0 : SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
737 : {
738 0 : return __sys_setresuid(ruid, euid, suid);
739 : }
740 :
741 0 : SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
742 : {
743 0 : const struct cred *cred = current_cred();
744 : int retval;
745 : uid_t ruid, euid, suid;
746 :
747 0 : ruid = from_kuid_munged(cred->user_ns, cred->uid);
748 0 : euid = from_kuid_munged(cred->user_ns, cred->euid);
749 0 : suid = from_kuid_munged(cred->user_ns, cred->suid);
750 :
751 0 : retval = put_user(ruid, ruidp);
752 0 : if (!retval) {
753 0 : retval = put_user(euid, euidp);
754 0 : if (!retval)
755 0 : return put_user(suid, suidp);
756 : }
757 0 : return retval;
758 : }
759 :
760 : /*
761 : * Same as above, but for rgid, egid, sgid.
762 : */
763 0 : long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
764 : {
765 0 : struct user_namespace *ns = current_user_ns();
766 : const struct cred *old;
767 : struct cred *new;
768 : int retval;
769 : kgid_t krgid, kegid, ksgid;
770 : bool rgid_new, egid_new, sgid_new;
771 :
772 0 : krgid = make_kgid(ns, rgid);
773 0 : kegid = make_kgid(ns, egid);
774 0 : ksgid = make_kgid(ns, sgid);
775 :
776 : if ((rgid != (gid_t) -1) && !gid_valid(krgid))
777 : return -EINVAL;
778 : if ((egid != (gid_t) -1) && !gid_valid(kegid))
779 : return -EINVAL;
780 : if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
781 : return -EINVAL;
782 :
783 0 : old = current_cred();
784 :
785 : /* check for no-op */
786 0 : if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
787 0 : (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
788 0 : gid_eq(kegid, old->fsgid))) &&
789 0 : (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
790 : return 0;
791 :
792 0 : rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
793 0 : !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
794 0 : egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
795 0 : !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
796 0 : sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
797 0 : !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
798 0 : if ((rgid_new || egid_new || sgid_new) &&
799 0 : !ns_capable_setid(old->user_ns, CAP_SETGID))
800 : return -EPERM;
801 :
802 0 : new = prepare_creds();
803 0 : if (!new)
804 : return -ENOMEM;
805 :
806 0 : if (rgid != (gid_t) -1)
807 0 : new->gid = krgid;
808 0 : if (egid != (gid_t) -1)
809 0 : new->egid = kegid;
810 0 : if (sgid != (gid_t) -1)
811 0 : new->sgid = ksgid;
812 0 : new->fsgid = new->egid;
813 :
814 0 : retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
815 : if (retval < 0)
816 : goto error;
817 :
818 0 : return commit_creds(new);
819 :
820 : error:
821 : abort_creds(new);
822 : return retval;
823 : }
824 :
825 0 : SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
826 : {
827 0 : return __sys_setresgid(rgid, egid, sgid);
828 : }
829 :
830 0 : SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
831 : {
832 0 : const struct cred *cred = current_cred();
833 : int retval;
834 : gid_t rgid, egid, sgid;
835 :
836 0 : rgid = from_kgid_munged(cred->user_ns, cred->gid);
837 0 : egid = from_kgid_munged(cred->user_ns, cred->egid);
838 0 : sgid = from_kgid_munged(cred->user_ns, cred->sgid);
839 :
840 0 : retval = put_user(rgid, rgidp);
841 0 : if (!retval) {
842 0 : retval = put_user(egid, egidp);
843 0 : if (!retval)
844 0 : retval = put_user(sgid, sgidp);
845 : }
846 :
847 0 : return retval;
848 : }
849 :
850 :
851 : /*
852 : * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
853 : * is used for "access()" and for the NFS daemon (letting nfsd stay at
854 : * whatever uid it wants to). It normally shadows "euid", except when
855 : * explicitly set by setfsuid() or for access..
856 : */
857 0 : long __sys_setfsuid(uid_t uid)
858 : {
859 : const struct cred *old;
860 : struct cred *new;
861 : uid_t old_fsuid;
862 : kuid_t kuid;
863 :
864 0 : old = current_cred();
865 0 : old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
866 :
867 0 : kuid = make_kuid(old->user_ns, uid);
868 0 : if (!uid_valid(kuid))
869 0 : return old_fsuid;
870 :
871 0 : new = prepare_creds();
872 0 : if (!new)
873 0 : return old_fsuid;
874 :
875 0 : if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
876 0 : uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
877 0 : ns_capable_setid(old->user_ns, CAP_SETUID)) {
878 0 : if (!uid_eq(kuid, old->fsuid)) {
879 0 : new->fsuid = kuid;
880 0 : if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
881 : goto change_okay;
882 : }
883 : }
884 :
885 0 : abort_creds(new);
886 0 : return old_fsuid;
887 :
888 : change_okay:
889 0 : commit_creds(new);
890 0 : return old_fsuid;
891 : }
892 :
893 0 : SYSCALL_DEFINE1(setfsuid, uid_t, uid)
894 : {
895 0 : return __sys_setfsuid(uid);
896 : }
897 :
898 : /*
899 : * Samma på svenska..
900 : */
901 0 : long __sys_setfsgid(gid_t gid)
902 : {
903 : const struct cred *old;
904 : struct cred *new;
905 : gid_t old_fsgid;
906 : kgid_t kgid;
907 :
908 0 : old = current_cred();
909 0 : old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
910 :
911 0 : kgid = make_kgid(old->user_ns, gid);
912 0 : if (!gid_valid(kgid))
913 0 : return old_fsgid;
914 :
915 0 : new = prepare_creds();
916 0 : if (!new)
917 0 : return old_fsgid;
918 :
919 0 : if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
920 0 : gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
921 0 : ns_capable_setid(old->user_ns, CAP_SETGID)) {
922 0 : if (!gid_eq(kgid, old->fsgid)) {
923 0 : new->fsgid = kgid;
924 0 : if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
925 : goto change_okay;
926 : }
927 : }
928 :
929 0 : abort_creds(new);
930 0 : return old_fsgid;
931 :
932 : change_okay:
933 0 : commit_creds(new);
934 0 : return old_fsgid;
935 : }
936 :
937 0 : SYSCALL_DEFINE1(setfsgid, gid_t, gid)
938 : {
939 0 : return __sys_setfsgid(gid);
940 : }
941 : #endif /* CONFIG_MULTIUSER */
942 :
943 : /**
944 : * sys_getpid - return the thread group id of the current process
945 : *
946 : * Note, despite the name, this returns the tgid not the pid. The tgid and
947 : * the pid are identical unless CLONE_THREAD was specified on clone() in
948 : * which case the tgid is the same in all threads of the same group.
949 : *
950 : * This is SMP safe as current->tgid does not change.
951 : */
952 0 : SYSCALL_DEFINE0(getpid)
953 : {
954 0 : return task_tgid_vnr(current);
955 : }
956 :
957 : /* Thread ID - the internal kernel "pid" */
958 0 : SYSCALL_DEFINE0(gettid)
959 : {
960 0 : return task_pid_vnr(current);
961 : }
962 :
963 : /*
964 : * Accessing ->real_parent is not SMP-safe, it could
965 : * change from under us. However, we can use a stale
966 : * value of ->real_parent under rcu_read_lock(), see
967 : * release_task()->call_rcu(delayed_put_task_struct).
968 : */
969 0 : SYSCALL_DEFINE0(getppid)
970 : {
971 : int pid;
972 :
973 : rcu_read_lock();
974 0 : pid = task_tgid_vnr(rcu_dereference(current->real_parent));
975 : rcu_read_unlock();
976 :
977 0 : return pid;
978 : }
979 :
980 0 : SYSCALL_DEFINE0(getuid)
981 : {
982 : /* Only we change this so SMP safe */
983 0 : return from_kuid_munged(current_user_ns(), current_uid());
984 : }
985 :
986 0 : SYSCALL_DEFINE0(geteuid)
987 : {
988 : /* Only we change this so SMP safe */
989 0 : return from_kuid_munged(current_user_ns(), current_euid());
990 : }
991 :
992 0 : SYSCALL_DEFINE0(getgid)
993 : {
994 : /* Only we change this so SMP safe */
995 0 : return from_kgid_munged(current_user_ns(), current_gid());
996 : }
997 :
998 0 : SYSCALL_DEFINE0(getegid)
999 : {
1000 : /* Only we change this so SMP safe */
1001 0 : return from_kgid_munged(current_user_ns(), current_egid());
1002 : }
1003 :
1004 0 : static void do_sys_times(struct tms *tms)
1005 : {
1006 : u64 tgutime, tgstime, cutime, cstime;
1007 :
1008 0 : thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1009 0 : cutime = current->signal->cutime;
1010 0 : cstime = current->signal->cstime;
1011 0 : tms->tms_utime = nsec_to_clock_t(tgutime);
1012 0 : tms->tms_stime = nsec_to_clock_t(tgstime);
1013 0 : tms->tms_cutime = nsec_to_clock_t(cutime);
1014 0 : tms->tms_cstime = nsec_to_clock_t(cstime);
1015 0 : }
1016 :
1017 0 : SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1018 : {
1019 0 : if (tbuf) {
1020 : struct tms tmp;
1021 :
1022 0 : do_sys_times(&tmp);
1023 0 : if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1024 0 : return -EFAULT;
1025 : }
1026 : force_successful_syscall_return();
1027 0 : return (long) jiffies_64_to_clock_t(get_jiffies_64());
1028 : }
1029 :
1030 : #ifdef CONFIG_COMPAT
1031 : static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1032 : {
1033 : return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1034 : }
1035 :
1036 : COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1037 : {
1038 : if (tbuf) {
1039 : struct tms tms;
1040 : struct compat_tms tmp;
1041 :
1042 : do_sys_times(&tms);
1043 : /* Convert our struct tms to the compat version. */
1044 : tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1045 : tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1046 : tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1047 : tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1048 : if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1049 : return -EFAULT;
1050 : }
1051 : force_successful_syscall_return();
1052 : return compat_jiffies_to_clock_t(jiffies);
1053 : }
1054 : #endif
1055 :
1056 : /*
1057 : * This needs some heavy checking ...
1058 : * I just haven't the stomach for it. I also don't fully
1059 : * understand sessions/pgrp etc. Let somebody who does explain it.
1060 : *
1061 : * OK, I think I have the protection semantics right.... this is really
1062 : * only important on a multi-user system anyway, to make sure one user
1063 : * can't send a signal to a process owned by another. -TYT, 12/12/91
1064 : *
1065 : * !PF_FORKNOEXEC check to conform completely to POSIX.
1066 : */
1067 0 : SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1068 : {
1069 : struct task_struct *p;
1070 0 : struct task_struct *group_leader = current->group_leader;
1071 : struct pid *pgrp;
1072 : int err;
1073 :
1074 0 : if (!pid)
1075 0 : pid = task_pid_vnr(group_leader);
1076 0 : if (!pgid)
1077 0 : pgid = pid;
1078 0 : if (pgid < 0)
1079 : return -EINVAL;
1080 : rcu_read_lock();
1081 :
1082 : /* From this point forward we keep holding onto the tasklist lock
1083 : * so that our parent does not change from under us. -DaveM
1084 : */
1085 0 : write_lock_irq(&tasklist_lock);
1086 :
1087 0 : err = -ESRCH;
1088 0 : p = find_task_by_vpid(pid);
1089 0 : if (!p)
1090 : goto out;
1091 :
1092 0 : err = -EINVAL;
1093 0 : if (!thread_group_leader(p))
1094 : goto out;
1095 :
1096 0 : if (same_thread_group(p->real_parent, group_leader)) {
1097 0 : err = -EPERM;
1098 0 : if (task_session(p) != task_session(group_leader))
1099 : goto out;
1100 0 : err = -EACCES;
1101 0 : if (!(p->flags & PF_FORKNOEXEC))
1102 : goto out;
1103 : } else {
1104 0 : err = -ESRCH;
1105 0 : if (p != group_leader)
1106 : goto out;
1107 : }
1108 :
1109 0 : err = -EPERM;
1110 0 : if (p->signal->leader)
1111 : goto out;
1112 :
1113 0 : pgrp = task_pid(p);
1114 0 : if (pgid != pid) {
1115 : struct task_struct *g;
1116 :
1117 0 : pgrp = find_vpid(pgid);
1118 0 : g = pid_task(pgrp, PIDTYPE_PGID);
1119 0 : if (!g || task_session(g) != task_session(group_leader))
1120 : goto out;
1121 : }
1122 :
1123 0 : err = security_task_setpgid(p, pgid);
1124 : if (err)
1125 : goto out;
1126 :
1127 0 : if (task_pgrp(p) != pgrp)
1128 0 : change_pid(p, PIDTYPE_PGID, pgrp);
1129 :
1130 : err = 0;
1131 : out:
1132 : /* All paths lead to here, thus we are safe. -DaveM */
1133 0 : write_unlock_irq(&tasklist_lock);
1134 : rcu_read_unlock();
1135 0 : return err;
1136 : }
1137 :
1138 0 : static int do_getpgid(pid_t pid)
1139 : {
1140 : struct task_struct *p;
1141 : struct pid *grp;
1142 : int retval;
1143 :
1144 : rcu_read_lock();
1145 0 : if (!pid)
1146 0 : grp = task_pgrp(current);
1147 : else {
1148 0 : retval = -ESRCH;
1149 0 : p = find_task_by_vpid(pid);
1150 0 : if (!p)
1151 : goto out;
1152 0 : grp = task_pgrp(p);
1153 0 : if (!grp)
1154 : goto out;
1155 :
1156 : retval = security_task_getpgid(p);
1157 : if (retval)
1158 : goto out;
1159 : }
1160 0 : retval = pid_vnr(grp);
1161 : out:
1162 : rcu_read_unlock();
1163 0 : return retval;
1164 : }
1165 :
1166 0 : SYSCALL_DEFINE1(getpgid, pid_t, pid)
1167 : {
1168 0 : return do_getpgid(pid);
1169 : }
1170 :
1171 : #ifdef __ARCH_WANT_SYS_GETPGRP
1172 :
1173 0 : SYSCALL_DEFINE0(getpgrp)
1174 : {
1175 0 : return do_getpgid(0);
1176 : }
1177 :
1178 : #endif
1179 :
1180 0 : SYSCALL_DEFINE1(getsid, pid_t, pid)
1181 : {
1182 : struct task_struct *p;
1183 : struct pid *sid;
1184 : int retval;
1185 :
1186 : rcu_read_lock();
1187 0 : if (!pid)
1188 0 : sid = task_session(current);
1189 : else {
1190 0 : retval = -ESRCH;
1191 0 : p = find_task_by_vpid(pid);
1192 0 : if (!p)
1193 : goto out;
1194 0 : sid = task_session(p);
1195 0 : if (!sid)
1196 : goto out;
1197 :
1198 : retval = security_task_getsid(p);
1199 : if (retval)
1200 : goto out;
1201 : }
1202 0 : retval = pid_vnr(sid);
1203 : out:
1204 : rcu_read_unlock();
1205 0 : return retval;
1206 : }
1207 :
1208 0 : static void set_special_pids(struct pid *pid)
1209 : {
1210 0 : struct task_struct *curr = current->group_leader;
1211 :
1212 0 : if (task_session(curr) != pid)
1213 0 : change_pid(curr, PIDTYPE_SID, pid);
1214 :
1215 0 : if (task_pgrp(curr) != pid)
1216 0 : change_pid(curr, PIDTYPE_PGID, pid);
1217 0 : }
1218 :
1219 0 : int ksys_setsid(void)
1220 : {
1221 0 : struct task_struct *group_leader = current->group_leader;
1222 0 : struct pid *sid = task_pid(group_leader);
1223 0 : pid_t session = pid_vnr(sid);
1224 0 : int err = -EPERM;
1225 :
1226 0 : write_lock_irq(&tasklist_lock);
1227 : /* Fail if I am already a session leader */
1228 0 : if (group_leader->signal->leader)
1229 : goto out;
1230 :
1231 : /* Fail if a process group id already exists that equals the
1232 : * proposed session id.
1233 : */
1234 0 : if (pid_task(sid, PIDTYPE_PGID))
1235 : goto out;
1236 :
1237 0 : group_leader->signal->leader = 1;
1238 0 : set_special_pids(sid);
1239 :
1240 0 : proc_clear_tty(group_leader);
1241 :
1242 0 : err = session;
1243 : out:
1244 0 : write_unlock_irq(&tasklist_lock);
1245 : if (err > 0) {
1246 : proc_sid_connector(group_leader);
1247 : sched_autogroup_create_attach(group_leader);
1248 : }
1249 0 : return err;
1250 : }
1251 :
1252 0 : SYSCALL_DEFINE0(setsid)
1253 : {
1254 0 : return ksys_setsid();
1255 : }
1256 :
1257 : DECLARE_RWSEM(uts_sem);
1258 :
1259 : #ifdef COMPAT_UTS_MACHINE
1260 : #define override_architecture(name) \
1261 : (personality(current->personality) == PER_LINUX32 && \
1262 : copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1263 : sizeof(COMPAT_UTS_MACHINE)))
1264 : #else
1265 : #define override_architecture(name) 0
1266 : #endif
1267 :
1268 : /*
1269 : * Work around broken programs that cannot handle "Linux 3.0".
1270 : * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1271 : * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1272 : * 2.6.60.
1273 : */
1274 0 : static int override_release(char __user *release, size_t len)
1275 : {
1276 0 : int ret = 0;
1277 :
1278 0 : if (current->personality & UNAME26) {
1279 0 : const char *rest = UTS_RELEASE;
1280 0 : char buf[65] = { 0 };
1281 0 : int ndots = 0;
1282 : unsigned v;
1283 : size_t copy;
1284 :
1285 0 : while (*rest) {
1286 0 : if (*rest == '.' && ++ndots >= 3)
1287 : break;
1288 0 : if (!isdigit(*rest) && *rest != '.')
1289 : break;
1290 0 : rest++;
1291 : }
1292 0 : v = LINUX_VERSION_PATCHLEVEL + 60;
1293 0 : copy = clamp_t(size_t, len, 1, sizeof(buf));
1294 0 : copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1295 0 : ret = copy_to_user(release, buf, copy + 1);
1296 : }
1297 0 : return ret;
1298 : }
1299 :
1300 0 : SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1301 : {
1302 : struct new_utsname tmp;
1303 :
1304 0 : down_read(&uts_sem);
1305 0 : memcpy(&tmp, utsname(), sizeof(tmp));
1306 0 : up_read(&uts_sem);
1307 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1308 : return -EFAULT;
1309 :
1310 0 : if (override_release(name->release, sizeof(name->release)))
1311 : return -EFAULT;
1312 : if (override_architecture(name))
1313 : return -EFAULT;
1314 0 : return 0;
1315 : }
1316 :
1317 : #ifdef __ARCH_WANT_SYS_OLD_UNAME
1318 : /*
1319 : * Old cruft
1320 : */
1321 0 : SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1322 : {
1323 : struct old_utsname tmp;
1324 :
1325 0 : if (!name)
1326 : return -EFAULT;
1327 :
1328 0 : down_read(&uts_sem);
1329 0 : memcpy(&tmp, utsname(), sizeof(tmp));
1330 0 : up_read(&uts_sem);
1331 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1332 : return -EFAULT;
1333 :
1334 0 : if (override_release(name->release, sizeof(name->release)))
1335 : return -EFAULT;
1336 : if (override_architecture(name))
1337 : return -EFAULT;
1338 0 : return 0;
1339 : }
1340 :
1341 0 : SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1342 : {
1343 : struct oldold_utsname tmp;
1344 :
1345 0 : if (!name)
1346 : return -EFAULT;
1347 :
1348 0 : memset(&tmp, 0, sizeof(tmp));
1349 :
1350 0 : down_read(&uts_sem);
1351 0 : memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1352 0 : memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1353 0 : memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1354 0 : memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1355 0 : memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1356 0 : up_read(&uts_sem);
1357 0 : if (copy_to_user(name, &tmp, sizeof(tmp)))
1358 : return -EFAULT;
1359 :
1360 : if (override_architecture(name))
1361 : return -EFAULT;
1362 0 : if (override_release(name->release, sizeof(name->release)))
1363 : return -EFAULT;
1364 0 : return 0;
1365 : }
1366 : #endif
1367 :
1368 0 : SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1369 : {
1370 : int errno;
1371 : char tmp[__NEW_UTS_LEN];
1372 :
1373 0 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1374 : return -EPERM;
1375 :
1376 0 : if (len < 0 || len > __NEW_UTS_LEN)
1377 : return -EINVAL;
1378 0 : errno = -EFAULT;
1379 0 : if (!copy_from_user(tmp, name, len)) {
1380 : struct new_utsname *u;
1381 :
1382 0 : add_device_randomness(tmp, len);
1383 0 : down_write(&uts_sem);
1384 0 : u = utsname();
1385 0 : memcpy(u->nodename, tmp, len);
1386 0 : memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1387 0 : errno = 0;
1388 0 : uts_proc_notify(UTS_PROC_HOSTNAME);
1389 0 : up_write(&uts_sem);
1390 : }
1391 0 : return errno;
1392 : }
1393 :
1394 : #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1395 :
1396 0 : SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1397 : {
1398 : int i;
1399 : struct new_utsname *u;
1400 : char tmp[__NEW_UTS_LEN + 1];
1401 :
1402 0 : if (len < 0)
1403 : return -EINVAL;
1404 0 : down_read(&uts_sem);
1405 0 : u = utsname();
1406 0 : i = 1 + strlen(u->nodename);
1407 0 : if (i > len)
1408 0 : i = len;
1409 0 : memcpy(tmp, u->nodename, i);
1410 0 : up_read(&uts_sem);
1411 0 : if (copy_to_user(name, tmp, i))
1412 : return -EFAULT;
1413 0 : return 0;
1414 : }
1415 :
1416 : #endif
1417 :
1418 : /*
1419 : * Only setdomainname; getdomainname can be implemented by calling
1420 : * uname()
1421 : */
1422 0 : SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1423 : {
1424 : int errno;
1425 : char tmp[__NEW_UTS_LEN];
1426 :
1427 0 : if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1428 : return -EPERM;
1429 0 : if (len < 0 || len > __NEW_UTS_LEN)
1430 : return -EINVAL;
1431 :
1432 0 : errno = -EFAULT;
1433 0 : if (!copy_from_user(tmp, name, len)) {
1434 : struct new_utsname *u;
1435 :
1436 0 : add_device_randomness(tmp, len);
1437 0 : down_write(&uts_sem);
1438 0 : u = utsname();
1439 0 : memcpy(u->domainname, tmp, len);
1440 0 : memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1441 0 : errno = 0;
1442 0 : uts_proc_notify(UTS_PROC_DOMAINNAME);
1443 0 : up_write(&uts_sem);
1444 : }
1445 0 : return errno;
1446 : }
1447 :
1448 : /* make sure you are allowed to change @tsk limits before calling this */
1449 0 : static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1450 : struct rlimit *new_rlim, struct rlimit *old_rlim)
1451 : {
1452 : struct rlimit *rlim;
1453 0 : int retval = 0;
1454 :
1455 0 : if (resource >= RLIM_NLIMITS)
1456 : return -EINVAL;
1457 0 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1458 :
1459 0 : if (new_rlim) {
1460 0 : if (new_rlim->rlim_cur > new_rlim->rlim_max)
1461 : return -EINVAL;
1462 0 : if (resource == RLIMIT_NOFILE &&
1463 0 : new_rlim->rlim_max > sysctl_nr_open)
1464 : return -EPERM;
1465 : }
1466 :
1467 : /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1468 0 : rlim = tsk->signal->rlim + resource;
1469 0 : task_lock(tsk->group_leader);
1470 0 : if (new_rlim) {
1471 : /*
1472 : * Keep the capable check against init_user_ns until cgroups can
1473 : * contain all limits.
1474 : */
1475 0 : if (new_rlim->rlim_max > rlim->rlim_max &&
1476 0 : !capable(CAP_SYS_RESOURCE))
1477 0 : retval = -EPERM;
1478 0 : if (!retval)
1479 0 : retval = security_task_setrlimit(tsk, resource, new_rlim);
1480 : }
1481 0 : if (!retval) {
1482 0 : if (old_rlim)
1483 0 : *old_rlim = *rlim;
1484 0 : if (new_rlim)
1485 0 : *rlim = *new_rlim;
1486 : }
1487 0 : task_unlock(tsk->group_leader);
1488 :
1489 : /*
1490 : * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1491 : * infinite. In case of RLIM_INFINITY the posix CPU timer code
1492 : * ignores the rlimit.
1493 : */
1494 0 : if (!retval && new_rlim && resource == RLIMIT_CPU &&
1495 0 : new_rlim->rlim_cur != RLIM_INFINITY &&
1496 : IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1497 : /*
1498 : * update_rlimit_cpu can fail if the task is exiting, but there
1499 : * may be other tasks in the thread group that are not exiting,
1500 : * and they need their cpu timers adjusted.
1501 : *
1502 : * The group_leader is the last task to be released, so if we
1503 : * cannot update_rlimit_cpu on it, then the entire process is
1504 : * exiting and we do not need to update at all.
1505 : */
1506 0 : update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1507 : }
1508 :
1509 : return retval;
1510 : }
1511 :
1512 0 : SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1513 : {
1514 : struct rlimit value;
1515 : int ret;
1516 :
1517 0 : ret = do_prlimit(current, resource, NULL, &value);
1518 0 : if (!ret)
1519 0 : ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1520 :
1521 0 : return ret;
1522 : }
1523 :
1524 : #ifdef CONFIG_COMPAT
1525 :
1526 : COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1527 : struct compat_rlimit __user *, rlim)
1528 : {
1529 : struct rlimit r;
1530 : struct compat_rlimit r32;
1531 :
1532 : if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1533 : return -EFAULT;
1534 :
1535 : if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1536 : r.rlim_cur = RLIM_INFINITY;
1537 : else
1538 : r.rlim_cur = r32.rlim_cur;
1539 : if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1540 : r.rlim_max = RLIM_INFINITY;
1541 : else
1542 : r.rlim_max = r32.rlim_max;
1543 : return do_prlimit(current, resource, &r, NULL);
1544 : }
1545 :
1546 : COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1547 : struct compat_rlimit __user *, rlim)
1548 : {
1549 : struct rlimit r;
1550 : int ret;
1551 :
1552 : ret = do_prlimit(current, resource, NULL, &r);
1553 : if (!ret) {
1554 : struct compat_rlimit r32;
1555 : if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1556 : r32.rlim_cur = COMPAT_RLIM_INFINITY;
1557 : else
1558 : r32.rlim_cur = r.rlim_cur;
1559 : if (r.rlim_max > COMPAT_RLIM_INFINITY)
1560 : r32.rlim_max = COMPAT_RLIM_INFINITY;
1561 : else
1562 : r32.rlim_max = r.rlim_max;
1563 :
1564 : if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1565 : return -EFAULT;
1566 : }
1567 : return ret;
1568 : }
1569 :
1570 : #endif
1571 :
1572 : #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1573 :
1574 : /*
1575 : * Back compatibility for getrlimit. Needed for some apps.
1576 : */
1577 0 : SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1578 : struct rlimit __user *, rlim)
1579 : {
1580 : struct rlimit x;
1581 0 : if (resource >= RLIM_NLIMITS)
1582 : return -EINVAL;
1583 :
1584 0 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1585 0 : task_lock(current->group_leader);
1586 0 : x = current->signal->rlim[resource];
1587 0 : task_unlock(current->group_leader);
1588 0 : if (x.rlim_cur > 0x7FFFFFFF)
1589 0 : x.rlim_cur = 0x7FFFFFFF;
1590 0 : if (x.rlim_max > 0x7FFFFFFF)
1591 0 : x.rlim_max = 0x7FFFFFFF;
1592 0 : return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1593 : }
1594 :
1595 : #ifdef CONFIG_COMPAT
1596 : COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1597 : struct compat_rlimit __user *, rlim)
1598 : {
1599 : struct rlimit r;
1600 :
1601 : if (resource >= RLIM_NLIMITS)
1602 : return -EINVAL;
1603 :
1604 : resource = array_index_nospec(resource, RLIM_NLIMITS);
1605 : task_lock(current->group_leader);
1606 : r = current->signal->rlim[resource];
1607 : task_unlock(current->group_leader);
1608 : if (r.rlim_cur > 0x7FFFFFFF)
1609 : r.rlim_cur = 0x7FFFFFFF;
1610 : if (r.rlim_max > 0x7FFFFFFF)
1611 : r.rlim_max = 0x7FFFFFFF;
1612 :
1613 : if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1614 : put_user(r.rlim_max, &rlim->rlim_max))
1615 : return -EFAULT;
1616 : return 0;
1617 : }
1618 : #endif
1619 :
1620 : #endif
1621 :
1622 : static inline bool rlim64_is_infinity(__u64 rlim64)
1623 : {
1624 : #if BITS_PER_LONG < 64
1625 : return rlim64 >= ULONG_MAX;
1626 : #else
1627 : return rlim64 == RLIM64_INFINITY;
1628 : #endif
1629 : }
1630 :
1631 : static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1632 : {
1633 0 : if (rlim->rlim_cur == RLIM_INFINITY)
1634 0 : rlim64->rlim_cur = RLIM64_INFINITY;
1635 : else
1636 0 : rlim64->rlim_cur = rlim->rlim_cur;
1637 0 : if (rlim->rlim_max == RLIM_INFINITY)
1638 0 : rlim64->rlim_max = RLIM64_INFINITY;
1639 : else
1640 0 : rlim64->rlim_max = rlim->rlim_max;
1641 : }
1642 :
1643 : static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1644 : {
1645 0 : if (rlim64_is_infinity(rlim64->rlim_cur))
1646 0 : rlim->rlim_cur = RLIM_INFINITY;
1647 : else
1648 0 : rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1649 0 : if (rlim64_is_infinity(rlim64->rlim_max))
1650 0 : rlim->rlim_max = RLIM_INFINITY;
1651 : else
1652 0 : rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1653 : }
1654 :
1655 : /* rcu lock must be held */
1656 0 : static int check_prlimit_permission(struct task_struct *task,
1657 : unsigned int flags)
1658 : {
1659 0 : const struct cred *cred = current_cred(), *tcred;
1660 : bool id_match;
1661 :
1662 0 : if (current == task)
1663 : return 0;
1664 :
1665 0 : tcred = __task_cred(task);
1666 0 : id_match = (uid_eq(cred->uid, tcred->euid) &&
1667 0 : uid_eq(cred->uid, tcred->suid) &&
1668 0 : uid_eq(cred->uid, tcred->uid) &&
1669 0 : gid_eq(cred->gid, tcred->egid) &&
1670 0 : gid_eq(cred->gid, tcred->sgid) &&
1671 0 : gid_eq(cred->gid, tcred->gid));
1672 0 : if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1673 : return -EPERM;
1674 :
1675 : return security_task_prlimit(cred, tcred, flags);
1676 : }
1677 :
1678 0 : SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1679 : const struct rlimit64 __user *, new_rlim,
1680 : struct rlimit64 __user *, old_rlim)
1681 : {
1682 : struct rlimit64 old64, new64;
1683 : struct rlimit old, new;
1684 : struct task_struct *tsk;
1685 0 : unsigned int checkflags = 0;
1686 : int ret;
1687 :
1688 : if (old_rlim)
1689 : checkflags |= LSM_PRLIMIT_READ;
1690 :
1691 0 : if (new_rlim) {
1692 0 : if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1693 : return -EFAULT;
1694 0 : rlim64_to_rlim(&new64, &new);
1695 0 : checkflags |= LSM_PRLIMIT_WRITE;
1696 : }
1697 :
1698 : rcu_read_lock();
1699 0 : tsk = pid ? find_task_by_vpid(pid) : current;
1700 0 : if (!tsk) {
1701 : rcu_read_unlock();
1702 0 : return -ESRCH;
1703 : }
1704 0 : ret = check_prlimit_permission(tsk, checkflags);
1705 0 : if (ret) {
1706 : rcu_read_unlock();
1707 0 : return ret;
1708 : }
1709 0 : get_task_struct(tsk);
1710 : rcu_read_unlock();
1711 :
1712 0 : ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1713 : old_rlim ? &old : NULL);
1714 :
1715 0 : if (!ret && old_rlim) {
1716 0 : rlim_to_rlim64(&old, &old64);
1717 0 : if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1718 0 : ret = -EFAULT;
1719 : }
1720 :
1721 0 : put_task_struct(tsk);
1722 0 : return ret;
1723 : }
1724 :
1725 0 : SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1726 : {
1727 : struct rlimit new_rlim;
1728 :
1729 0 : if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1730 : return -EFAULT;
1731 0 : return do_prlimit(current, resource, &new_rlim, NULL);
1732 : }
1733 :
1734 : /*
1735 : * It would make sense to put struct rusage in the task_struct,
1736 : * except that would make the task_struct be *really big*. After
1737 : * task_struct gets moved into malloc'ed memory, it would
1738 : * make sense to do this. It will make moving the rest of the information
1739 : * a lot simpler! (Which we're not doing right now because we're not
1740 : * measuring them yet).
1741 : *
1742 : * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1743 : * races with threads incrementing their own counters. But since word
1744 : * reads are atomic, we either get new values or old values and we don't
1745 : * care which for the sums. We always take the siglock to protect reading
1746 : * the c* fields from p->signal from races with exit.c updating those
1747 : * fields when reaping, so a sample either gets all the additions of a
1748 : * given child after it's reaped, or none so this sample is before reaping.
1749 : *
1750 : * Locking:
1751 : * We need to take the siglock for CHILDEREN, SELF and BOTH
1752 : * for the cases current multithreaded, non-current single threaded
1753 : * non-current multithreaded. Thread traversal is now safe with
1754 : * the siglock held.
1755 : * Strictly speaking, we donot need to take the siglock if we are current and
1756 : * single threaded, as no one else can take our signal_struct away, no one
1757 : * else can reap the children to update signal->c* counters, and no one else
1758 : * can race with the signal-> fields. If we do not take any lock, the
1759 : * signal-> fields could be read out of order while another thread was just
1760 : * exiting. So we should place a read memory barrier when we avoid the lock.
1761 : * On the writer side, write memory barrier is implied in __exit_signal
1762 : * as __exit_signal releases the siglock spinlock after updating the signal->
1763 : * fields. But we don't do this yet to keep things simple.
1764 : *
1765 : */
1766 :
1767 : static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1768 : {
1769 0 : r->ru_nvcsw += t->nvcsw;
1770 0 : r->ru_nivcsw += t->nivcsw;
1771 0 : r->ru_minflt += t->min_flt;
1772 0 : r->ru_majflt += t->maj_flt;
1773 0 : r->ru_inblock += task_io_get_inblock(t);
1774 0 : r->ru_oublock += task_io_get_oublock(t);
1775 : }
1776 :
1777 0 : void getrusage(struct task_struct *p, int who, struct rusage *r)
1778 : {
1779 : struct task_struct *t;
1780 : unsigned long flags;
1781 : u64 tgutime, tgstime, utime, stime;
1782 0 : unsigned long maxrss = 0;
1783 :
1784 0 : memset((char *)r, 0, sizeof (*r));
1785 0 : utime = stime = 0;
1786 :
1787 0 : if (who == RUSAGE_THREAD) {
1788 0 : task_cputime_adjusted(current, &utime, &stime);
1789 0 : accumulate_thread_rusage(p, r);
1790 0 : maxrss = p->signal->maxrss;
1791 0 : goto out;
1792 : }
1793 :
1794 0 : if (!lock_task_sighand(p, &flags))
1795 0 : return;
1796 :
1797 0 : switch (who) {
1798 : case RUSAGE_BOTH:
1799 : case RUSAGE_CHILDREN:
1800 0 : utime = p->signal->cutime;
1801 0 : stime = p->signal->cstime;
1802 0 : r->ru_nvcsw = p->signal->cnvcsw;
1803 0 : r->ru_nivcsw = p->signal->cnivcsw;
1804 0 : r->ru_minflt = p->signal->cmin_flt;
1805 0 : r->ru_majflt = p->signal->cmaj_flt;
1806 0 : r->ru_inblock = p->signal->cinblock;
1807 0 : r->ru_oublock = p->signal->coublock;
1808 0 : maxrss = p->signal->cmaxrss;
1809 :
1810 0 : if (who == RUSAGE_CHILDREN)
1811 : break;
1812 : fallthrough;
1813 :
1814 : case RUSAGE_SELF:
1815 0 : thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1816 0 : utime += tgutime;
1817 0 : stime += tgstime;
1818 0 : r->ru_nvcsw += p->signal->nvcsw;
1819 0 : r->ru_nivcsw += p->signal->nivcsw;
1820 0 : r->ru_minflt += p->signal->min_flt;
1821 0 : r->ru_majflt += p->signal->maj_flt;
1822 0 : r->ru_inblock += p->signal->inblock;
1823 0 : r->ru_oublock += p->signal->oublock;
1824 0 : if (maxrss < p->signal->maxrss)
1825 0 : maxrss = p->signal->maxrss;
1826 0 : t = p;
1827 : do {
1828 0 : accumulate_thread_rusage(t, r);
1829 0 : } while_each_thread(p, t);
1830 : break;
1831 :
1832 : default:
1833 0 : BUG();
1834 : }
1835 0 : unlock_task_sighand(p, &flags);
1836 :
1837 : out:
1838 0 : r->ru_utime = ns_to_kernel_old_timeval(utime);
1839 0 : r->ru_stime = ns_to_kernel_old_timeval(stime);
1840 :
1841 0 : if (who != RUSAGE_CHILDREN) {
1842 0 : struct mm_struct *mm = get_task_mm(p);
1843 :
1844 0 : if (mm) {
1845 0 : setmax_mm_hiwater_rss(&maxrss, mm);
1846 0 : mmput(mm);
1847 : }
1848 : }
1849 0 : r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1850 : }
1851 :
1852 0 : SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1853 : {
1854 : struct rusage r;
1855 :
1856 0 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1857 : who != RUSAGE_THREAD)
1858 : return -EINVAL;
1859 :
1860 0 : getrusage(current, who, &r);
1861 0 : return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1862 : }
1863 :
1864 : #ifdef CONFIG_COMPAT
1865 : COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1866 : {
1867 : struct rusage r;
1868 :
1869 : if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1870 : who != RUSAGE_THREAD)
1871 : return -EINVAL;
1872 :
1873 : getrusage(current, who, &r);
1874 : return put_compat_rusage(&r, ru);
1875 : }
1876 : #endif
1877 :
1878 0 : SYSCALL_DEFINE1(umask, int, mask)
1879 : {
1880 0 : mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1881 0 : return mask;
1882 : }
1883 :
1884 0 : static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1885 : {
1886 : struct fd exe;
1887 : struct inode *inode;
1888 : int err;
1889 :
1890 0 : exe = fdget(fd);
1891 0 : if (!exe.file)
1892 : return -EBADF;
1893 :
1894 0 : inode = file_inode(exe.file);
1895 :
1896 : /*
1897 : * Because the original mm->exe_file points to executable file, make
1898 : * sure that this one is executable as well, to avoid breaking an
1899 : * overall picture.
1900 : */
1901 0 : err = -EACCES;
1902 0 : if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1903 : goto exit;
1904 :
1905 0 : err = file_permission(exe.file, MAY_EXEC);
1906 0 : if (err)
1907 : goto exit;
1908 :
1909 0 : err = replace_mm_exe_file(mm, exe.file);
1910 : exit:
1911 0 : fdput(exe);
1912 : return err;
1913 : }
1914 :
1915 : /*
1916 : * Check arithmetic relations of passed addresses.
1917 : *
1918 : * WARNING: we don't require any capability here so be very careful
1919 : * in what is allowed for modification from userspace.
1920 : */
1921 0 : static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1922 : {
1923 0 : unsigned long mmap_max_addr = TASK_SIZE;
1924 0 : int error = -EINVAL, i;
1925 :
1926 : static const unsigned char offsets[] = {
1927 : offsetof(struct prctl_mm_map, start_code),
1928 : offsetof(struct prctl_mm_map, end_code),
1929 : offsetof(struct prctl_mm_map, start_data),
1930 : offsetof(struct prctl_mm_map, end_data),
1931 : offsetof(struct prctl_mm_map, start_brk),
1932 : offsetof(struct prctl_mm_map, brk),
1933 : offsetof(struct prctl_mm_map, start_stack),
1934 : offsetof(struct prctl_mm_map, arg_start),
1935 : offsetof(struct prctl_mm_map, arg_end),
1936 : offsetof(struct prctl_mm_map, env_start),
1937 : offsetof(struct prctl_mm_map, env_end),
1938 : };
1939 :
1940 : /*
1941 : * Make sure the members are not somewhere outside
1942 : * of allowed address space.
1943 : */
1944 0 : for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1945 0 : u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1946 :
1947 0 : if ((unsigned long)val >= mmap_max_addr ||
1948 0 : (unsigned long)val < mmap_min_addr)
1949 : goto out;
1950 : }
1951 :
1952 : /*
1953 : * Make sure the pairs are ordered.
1954 : */
1955 : #define __prctl_check_order(__m1, __op, __m2) \
1956 : ((unsigned long)prctl_map->__m1 __op \
1957 : (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1958 0 : error = __prctl_check_order(start_code, <, end_code);
1959 0 : error |= __prctl_check_order(start_data,<=, end_data);
1960 0 : error |= __prctl_check_order(start_brk, <=, brk);
1961 0 : error |= __prctl_check_order(arg_start, <=, arg_end);
1962 0 : error |= __prctl_check_order(env_start, <=, env_end);
1963 0 : if (error)
1964 : goto out;
1965 : #undef __prctl_check_order
1966 :
1967 0 : error = -EINVAL;
1968 :
1969 : /*
1970 : * Neither we should allow to override limits if they set.
1971 : */
1972 0 : if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1973 : prctl_map->start_brk, prctl_map->end_data,
1974 : prctl_map->start_data))
1975 : goto out;
1976 :
1977 0 : error = 0;
1978 : out:
1979 0 : return error;
1980 : }
1981 :
1982 : #ifdef CONFIG_CHECKPOINT_RESTORE
1983 : static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1984 : {
1985 : struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1986 : unsigned long user_auxv[AT_VECTOR_SIZE];
1987 : struct mm_struct *mm = current->mm;
1988 : int error;
1989 :
1990 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1991 : BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1992 :
1993 : if (opt == PR_SET_MM_MAP_SIZE)
1994 : return put_user((unsigned int)sizeof(prctl_map),
1995 : (unsigned int __user *)addr);
1996 :
1997 : if (data_size != sizeof(prctl_map))
1998 : return -EINVAL;
1999 :
2000 : if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2001 : return -EFAULT;
2002 :
2003 : error = validate_prctl_map_addr(&prctl_map);
2004 : if (error)
2005 : return error;
2006 :
2007 : if (prctl_map.auxv_size) {
2008 : /*
2009 : * Someone is trying to cheat the auxv vector.
2010 : */
2011 : if (!prctl_map.auxv ||
2012 : prctl_map.auxv_size > sizeof(mm->saved_auxv))
2013 : return -EINVAL;
2014 :
2015 : memset(user_auxv, 0, sizeof(user_auxv));
2016 : if (copy_from_user(user_auxv,
2017 : (const void __user *)prctl_map.auxv,
2018 : prctl_map.auxv_size))
2019 : return -EFAULT;
2020 :
2021 : /* Last entry must be AT_NULL as specification requires */
2022 : user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2023 : user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2024 : }
2025 :
2026 : if (prctl_map.exe_fd != (u32)-1) {
2027 : /*
2028 : * Check if the current user is checkpoint/restore capable.
2029 : * At the time of this writing, it checks for CAP_SYS_ADMIN
2030 : * or CAP_CHECKPOINT_RESTORE.
2031 : * Note that a user with access to ptrace can masquerade an
2032 : * arbitrary program as any executable, even setuid ones.
2033 : * This may have implications in the tomoyo subsystem.
2034 : */
2035 : if (!checkpoint_restore_ns_capable(current_user_ns()))
2036 : return -EPERM;
2037 :
2038 : error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2039 : if (error)
2040 : return error;
2041 : }
2042 :
2043 : /*
2044 : * arg_lock protects concurrent updates but we still need mmap_lock for
2045 : * read to exclude races with sys_brk.
2046 : */
2047 : mmap_read_lock(mm);
2048 :
2049 : /*
2050 : * We don't validate if these members are pointing to
2051 : * real present VMAs because application may have correspond
2052 : * VMAs already unmapped and kernel uses these members for statistics
2053 : * output in procfs mostly, except
2054 : *
2055 : * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2056 : * for VMAs when updating these members so anything wrong written
2057 : * here cause kernel to swear at userspace program but won't lead
2058 : * to any problem in kernel itself
2059 : */
2060 :
2061 : spin_lock(&mm->arg_lock);
2062 : mm->start_code = prctl_map.start_code;
2063 : mm->end_code = prctl_map.end_code;
2064 : mm->start_data = prctl_map.start_data;
2065 : mm->end_data = prctl_map.end_data;
2066 : mm->start_brk = prctl_map.start_brk;
2067 : mm->brk = prctl_map.brk;
2068 : mm->start_stack = prctl_map.start_stack;
2069 : mm->arg_start = prctl_map.arg_start;
2070 : mm->arg_end = prctl_map.arg_end;
2071 : mm->env_start = prctl_map.env_start;
2072 : mm->env_end = prctl_map.env_end;
2073 : spin_unlock(&mm->arg_lock);
2074 :
2075 : /*
2076 : * Note this update of @saved_auxv is lockless thus
2077 : * if someone reads this member in procfs while we're
2078 : * updating -- it may get partly updated results. It's
2079 : * known and acceptable trade off: we leave it as is to
2080 : * not introduce additional locks here making the kernel
2081 : * more complex.
2082 : */
2083 : if (prctl_map.auxv_size)
2084 : memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2085 :
2086 : mmap_read_unlock(mm);
2087 : return 0;
2088 : }
2089 : #endif /* CONFIG_CHECKPOINT_RESTORE */
2090 :
2091 0 : static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2092 : unsigned long len)
2093 : {
2094 : /*
2095 : * This doesn't move the auxiliary vector itself since it's pinned to
2096 : * mm_struct, but it permits filling the vector with new values. It's
2097 : * up to the caller to provide sane values here, otherwise userspace
2098 : * tools which use this vector might be unhappy.
2099 : */
2100 0 : unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2101 :
2102 0 : if (len > sizeof(user_auxv))
2103 : return -EINVAL;
2104 :
2105 0 : if (copy_from_user(user_auxv, (const void __user *)addr, len))
2106 : return -EFAULT;
2107 :
2108 : /* Make sure the last entry is always AT_NULL */
2109 0 : user_auxv[AT_VECTOR_SIZE - 2] = 0;
2110 0 : user_auxv[AT_VECTOR_SIZE - 1] = 0;
2111 :
2112 : BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2113 :
2114 0 : task_lock(current);
2115 0 : memcpy(mm->saved_auxv, user_auxv, len);
2116 0 : task_unlock(current);
2117 :
2118 0 : return 0;
2119 : }
2120 :
2121 0 : static int prctl_set_mm(int opt, unsigned long addr,
2122 : unsigned long arg4, unsigned long arg5)
2123 : {
2124 0 : struct mm_struct *mm = current->mm;
2125 0 : struct prctl_mm_map prctl_map = {
2126 : .auxv = NULL,
2127 : .auxv_size = 0,
2128 : .exe_fd = -1,
2129 : };
2130 : struct vm_area_struct *vma;
2131 : int error;
2132 :
2133 0 : if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2134 0 : opt != PR_SET_MM_MAP &&
2135 : opt != PR_SET_MM_MAP_SIZE)))
2136 : return -EINVAL;
2137 :
2138 : #ifdef CONFIG_CHECKPOINT_RESTORE
2139 : if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2140 : return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2141 : #endif
2142 :
2143 0 : if (!capable(CAP_SYS_RESOURCE))
2144 : return -EPERM;
2145 :
2146 0 : if (opt == PR_SET_MM_EXE_FILE)
2147 0 : return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2148 :
2149 0 : if (opt == PR_SET_MM_AUXV)
2150 0 : return prctl_set_auxv(mm, addr, arg4);
2151 :
2152 0 : if (addr >= TASK_SIZE || addr < mmap_min_addr)
2153 : return -EINVAL;
2154 :
2155 0 : error = -EINVAL;
2156 :
2157 : /*
2158 : * arg_lock protects concurrent updates of arg boundaries, we need
2159 : * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2160 : * validation.
2161 : */
2162 0 : mmap_read_lock(mm);
2163 0 : vma = find_vma(mm, addr);
2164 :
2165 0 : spin_lock(&mm->arg_lock);
2166 0 : prctl_map.start_code = mm->start_code;
2167 0 : prctl_map.end_code = mm->end_code;
2168 0 : prctl_map.start_data = mm->start_data;
2169 0 : prctl_map.end_data = mm->end_data;
2170 0 : prctl_map.start_brk = mm->start_brk;
2171 0 : prctl_map.brk = mm->brk;
2172 0 : prctl_map.start_stack = mm->start_stack;
2173 0 : prctl_map.arg_start = mm->arg_start;
2174 0 : prctl_map.arg_end = mm->arg_end;
2175 0 : prctl_map.env_start = mm->env_start;
2176 0 : prctl_map.env_end = mm->env_end;
2177 :
2178 0 : switch (opt) {
2179 : case PR_SET_MM_START_CODE:
2180 0 : prctl_map.start_code = addr;
2181 0 : break;
2182 : case PR_SET_MM_END_CODE:
2183 0 : prctl_map.end_code = addr;
2184 0 : break;
2185 : case PR_SET_MM_START_DATA:
2186 0 : prctl_map.start_data = addr;
2187 0 : break;
2188 : case PR_SET_MM_END_DATA:
2189 0 : prctl_map.end_data = addr;
2190 0 : break;
2191 : case PR_SET_MM_START_STACK:
2192 0 : prctl_map.start_stack = addr;
2193 0 : break;
2194 : case PR_SET_MM_START_BRK:
2195 0 : prctl_map.start_brk = addr;
2196 0 : break;
2197 : case PR_SET_MM_BRK:
2198 0 : prctl_map.brk = addr;
2199 0 : break;
2200 : case PR_SET_MM_ARG_START:
2201 0 : prctl_map.arg_start = addr;
2202 0 : break;
2203 : case PR_SET_MM_ARG_END:
2204 0 : prctl_map.arg_end = addr;
2205 0 : break;
2206 : case PR_SET_MM_ENV_START:
2207 0 : prctl_map.env_start = addr;
2208 0 : break;
2209 : case PR_SET_MM_ENV_END:
2210 0 : prctl_map.env_end = addr;
2211 0 : break;
2212 : default:
2213 : goto out;
2214 : }
2215 :
2216 0 : error = validate_prctl_map_addr(&prctl_map);
2217 0 : if (error)
2218 : goto out;
2219 :
2220 : switch (opt) {
2221 : /*
2222 : * If command line arguments and environment
2223 : * are placed somewhere else on stack, we can
2224 : * set them up here, ARG_START/END to setup
2225 : * command line arguments and ENV_START/END
2226 : * for environment.
2227 : */
2228 : case PR_SET_MM_START_STACK:
2229 : case PR_SET_MM_ARG_START:
2230 : case PR_SET_MM_ARG_END:
2231 : case PR_SET_MM_ENV_START:
2232 : case PR_SET_MM_ENV_END:
2233 0 : if (!vma) {
2234 : error = -EFAULT;
2235 : goto out;
2236 : }
2237 : }
2238 :
2239 0 : mm->start_code = prctl_map.start_code;
2240 0 : mm->end_code = prctl_map.end_code;
2241 0 : mm->start_data = prctl_map.start_data;
2242 0 : mm->end_data = prctl_map.end_data;
2243 0 : mm->start_brk = prctl_map.start_brk;
2244 0 : mm->brk = prctl_map.brk;
2245 0 : mm->start_stack = prctl_map.start_stack;
2246 0 : mm->arg_start = prctl_map.arg_start;
2247 0 : mm->arg_end = prctl_map.arg_end;
2248 0 : mm->env_start = prctl_map.env_start;
2249 0 : mm->env_end = prctl_map.env_end;
2250 :
2251 0 : error = 0;
2252 : out:
2253 0 : spin_unlock(&mm->arg_lock);
2254 0 : mmap_read_unlock(mm);
2255 0 : return error;
2256 : }
2257 :
2258 : #ifdef CONFIG_CHECKPOINT_RESTORE
2259 : static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2260 : {
2261 : return put_user(me->clear_child_tid, tid_addr);
2262 : }
2263 : #else
2264 : static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2265 : {
2266 : return -EINVAL;
2267 : }
2268 : #endif
2269 :
2270 0 : static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2271 : {
2272 : /*
2273 : * If task has has_child_subreaper - all its descendants
2274 : * already have these flag too and new descendants will
2275 : * inherit it on fork, skip them.
2276 : *
2277 : * If we've found child_reaper - skip descendants in
2278 : * it's subtree as they will never get out pidns.
2279 : */
2280 0 : if (p->signal->has_child_subreaper ||
2281 0 : is_child_reaper(task_pid(p)))
2282 : return 0;
2283 :
2284 0 : p->signal->has_child_subreaper = 1;
2285 0 : return 1;
2286 : }
2287 :
2288 0 : int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2289 : {
2290 0 : return -EINVAL;
2291 : }
2292 :
2293 0 : int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2294 : unsigned long ctrl)
2295 : {
2296 0 : return -EINVAL;
2297 : }
2298 :
2299 : #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2300 :
2301 : #ifdef CONFIG_ANON_VMA_NAME
2302 :
2303 : #define ANON_VMA_NAME_MAX_LEN 80
2304 : #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2305 :
2306 : static inline bool is_valid_name_char(char ch)
2307 : {
2308 : /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2309 : return ch > 0x1f && ch < 0x7f &&
2310 : !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2311 : }
2312 :
2313 : static int prctl_set_vma(unsigned long opt, unsigned long addr,
2314 : unsigned long size, unsigned long arg)
2315 : {
2316 : struct mm_struct *mm = current->mm;
2317 : const char __user *uname;
2318 : struct anon_vma_name *anon_name = NULL;
2319 : int error;
2320 :
2321 : switch (opt) {
2322 : case PR_SET_VMA_ANON_NAME:
2323 : uname = (const char __user *)arg;
2324 : if (uname) {
2325 : char *name, *pch;
2326 :
2327 : name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2328 : if (IS_ERR(name))
2329 : return PTR_ERR(name);
2330 :
2331 : for (pch = name; *pch != '\0'; pch++) {
2332 : if (!is_valid_name_char(*pch)) {
2333 : kfree(name);
2334 : return -EINVAL;
2335 : }
2336 : }
2337 : /* anon_vma has its own copy */
2338 : anon_name = anon_vma_name_alloc(name);
2339 : kfree(name);
2340 : if (!anon_name)
2341 : return -ENOMEM;
2342 :
2343 : }
2344 :
2345 : mmap_write_lock(mm);
2346 : error = madvise_set_anon_name(mm, addr, size, anon_name);
2347 : mmap_write_unlock(mm);
2348 : anon_vma_name_put(anon_name);
2349 : break;
2350 : default:
2351 : error = -EINVAL;
2352 : }
2353 :
2354 : return error;
2355 : }
2356 :
2357 : #else /* CONFIG_ANON_VMA_NAME */
2358 : static int prctl_set_vma(unsigned long opt, unsigned long start,
2359 : unsigned long size, unsigned long arg)
2360 : {
2361 : return -EINVAL;
2362 : }
2363 : #endif /* CONFIG_ANON_VMA_NAME */
2364 :
2365 0 : static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2366 : unsigned long arg4, unsigned long arg5)
2367 : {
2368 0 : if (arg3 || arg4 || arg5)
2369 : return -EINVAL;
2370 :
2371 0 : if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN))
2372 : return -EINVAL;
2373 :
2374 0 : if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2375 0 : set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2376 0 : else if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2377 : return -EPERM; /* Cannot unset the flag */
2378 :
2379 : return 0;
2380 : }
2381 :
2382 : static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2383 : unsigned long arg4, unsigned long arg5)
2384 : {
2385 0 : if (arg2 || arg3 || arg4 || arg5)
2386 : return -EINVAL;
2387 :
2388 0 : return test_bit(MMF_HAS_MDWE, ¤t->mm->flags) ?
2389 0 : PR_MDWE_REFUSE_EXEC_GAIN : 0;
2390 : }
2391 :
2392 0 : static int prctl_get_auxv(void __user *addr, unsigned long len)
2393 : {
2394 0 : struct mm_struct *mm = current->mm;
2395 0 : unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2396 :
2397 0 : if (size && copy_to_user(addr, mm->saved_auxv, size))
2398 : return -EFAULT;
2399 : return sizeof(mm->saved_auxv);
2400 : }
2401 :
2402 0 : SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2403 : unsigned long, arg4, unsigned long, arg5)
2404 : {
2405 0 : struct task_struct *me = current;
2406 : unsigned char comm[sizeof(me->comm)];
2407 : long error;
2408 :
2409 0 : error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2410 0 : if (error != -ENOSYS)
2411 : return error;
2412 :
2413 0 : error = 0;
2414 0 : switch (option) {
2415 : case PR_SET_PDEATHSIG:
2416 0 : if (!valid_signal(arg2)) {
2417 : error = -EINVAL;
2418 : break;
2419 : }
2420 0 : me->pdeath_signal = arg2;
2421 0 : break;
2422 : case PR_GET_PDEATHSIG:
2423 0 : error = put_user(me->pdeath_signal, (int __user *)arg2);
2424 0 : break;
2425 : case PR_GET_DUMPABLE:
2426 0 : error = get_dumpable(me->mm);
2427 0 : break;
2428 : case PR_SET_DUMPABLE:
2429 0 : if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2430 : error = -EINVAL;
2431 : break;
2432 : }
2433 0 : set_dumpable(me->mm, arg2);
2434 0 : break;
2435 :
2436 : case PR_SET_UNALIGN:
2437 : error = SET_UNALIGN_CTL(me, arg2);
2438 : break;
2439 : case PR_GET_UNALIGN:
2440 : error = GET_UNALIGN_CTL(me, arg2);
2441 : break;
2442 : case PR_SET_FPEMU:
2443 : error = SET_FPEMU_CTL(me, arg2);
2444 : break;
2445 : case PR_GET_FPEMU:
2446 : error = GET_FPEMU_CTL(me, arg2);
2447 : break;
2448 : case PR_SET_FPEXC:
2449 : error = SET_FPEXC_CTL(me, arg2);
2450 : break;
2451 : case PR_GET_FPEXC:
2452 : error = GET_FPEXC_CTL(me, arg2);
2453 : break;
2454 : case PR_GET_TIMING:
2455 0 : error = PR_TIMING_STATISTICAL;
2456 0 : break;
2457 : case PR_SET_TIMING:
2458 0 : if (arg2 != PR_TIMING_STATISTICAL)
2459 0 : error = -EINVAL;
2460 : break;
2461 : case PR_SET_NAME:
2462 0 : comm[sizeof(me->comm) - 1] = 0;
2463 0 : if (strncpy_from_user(comm, (char __user *)arg2,
2464 : sizeof(me->comm) - 1) < 0)
2465 : return -EFAULT;
2466 : set_task_comm(me, comm);
2467 : proc_comm_connector(me);
2468 : break;
2469 : case PR_GET_NAME:
2470 0 : get_task_comm(comm, me);
2471 0 : if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2472 : return -EFAULT;
2473 : break;
2474 : case PR_GET_ENDIAN:
2475 : error = GET_ENDIAN(me, arg2);
2476 : break;
2477 : case PR_SET_ENDIAN:
2478 : error = SET_ENDIAN(me, arg2);
2479 : break;
2480 : case PR_GET_SECCOMP:
2481 0 : error = prctl_get_seccomp();
2482 0 : break;
2483 : case PR_SET_SECCOMP:
2484 0 : error = prctl_set_seccomp(arg2, (char __user *)arg3);
2485 0 : break;
2486 : case PR_GET_TSC:
2487 : error = GET_TSC_CTL(arg2);
2488 : break;
2489 : case PR_SET_TSC:
2490 : error = SET_TSC_CTL(arg2);
2491 : break;
2492 : case PR_TASK_PERF_EVENTS_DISABLE:
2493 : error = perf_event_task_disable();
2494 : break;
2495 : case PR_TASK_PERF_EVENTS_ENABLE:
2496 : error = perf_event_task_enable();
2497 : break;
2498 : case PR_GET_TIMERSLACK:
2499 0 : if (current->timer_slack_ns > ULONG_MAX)
2500 : error = ULONG_MAX;
2501 : else
2502 0 : error = current->timer_slack_ns;
2503 : break;
2504 : case PR_SET_TIMERSLACK:
2505 0 : if (arg2 <= 0)
2506 0 : current->timer_slack_ns =
2507 0 : current->default_timer_slack_ns;
2508 : else
2509 0 : current->timer_slack_ns = arg2;
2510 : break;
2511 : case PR_MCE_KILL:
2512 0 : if (arg4 | arg5)
2513 : return -EINVAL;
2514 0 : switch (arg2) {
2515 : case PR_MCE_KILL_CLEAR:
2516 0 : if (arg3 != 0)
2517 : return -EINVAL;
2518 0 : current->flags &= ~PF_MCE_PROCESS;
2519 0 : break;
2520 : case PR_MCE_KILL_SET:
2521 0 : current->flags |= PF_MCE_PROCESS;
2522 0 : if (arg3 == PR_MCE_KILL_EARLY)
2523 0 : current->flags |= PF_MCE_EARLY;
2524 0 : else if (arg3 == PR_MCE_KILL_LATE)
2525 0 : current->flags &= ~PF_MCE_EARLY;
2526 0 : else if (arg3 == PR_MCE_KILL_DEFAULT)
2527 0 : current->flags &=
2528 : ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2529 : else
2530 : return -EINVAL;
2531 : break;
2532 : case PR_GET_AUXV:
2533 : if (arg4 || arg5)
2534 : return -EINVAL;
2535 0 : error = prctl_get_auxv((void __user *)arg2, arg3);
2536 0 : break;
2537 : default:
2538 : return -EINVAL;
2539 : }
2540 : break;
2541 : case PR_MCE_KILL_GET:
2542 0 : if (arg2 | arg3 | arg4 | arg5)
2543 : return -EINVAL;
2544 0 : if (current->flags & PF_MCE_PROCESS)
2545 0 : error = (current->flags & PF_MCE_EARLY) ?
2546 0 : PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2547 : else
2548 : error = PR_MCE_KILL_DEFAULT;
2549 : break;
2550 : case PR_SET_MM:
2551 0 : error = prctl_set_mm(arg2, arg3, arg4, arg5);
2552 0 : break;
2553 : case PR_GET_TID_ADDRESS:
2554 : error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2555 : break;
2556 : case PR_SET_CHILD_SUBREAPER:
2557 0 : me->signal->is_child_subreaper = !!arg2;
2558 0 : if (!arg2)
2559 : break;
2560 :
2561 0 : walk_process_tree(me, propagate_has_child_subreaper, NULL);
2562 0 : break;
2563 : case PR_GET_CHILD_SUBREAPER:
2564 0 : error = put_user(me->signal->is_child_subreaper,
2565 : (int __user *)arg2);
2566 0 : break;
2567 : case PR_SET_NO_NEW_PRIVS:
2568 0 : if (arg2 != 1 || arg3 || arg4 || arg5)
2569 : return -EINVAL;
2570 :
2571 0 : task_set_no_new_privs(current);
2572 : break;
2573 : case PR_GET_NO_NEW_PRIVS:
2574 0 : if (arg2 || arg3 || arg4 || arg5)
2575 : return -EINVAL;
2576 0 : return task_no_new_privs(current) ? 1 : 0;
2577 : case PR_GET_THP_DISABLE:
2578 0 : if (arg2 || arg3 || arg4 || arg5)
2579 : return -EINVAL;
2580 0 : error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2581 : break;
2582 : case PR_SET_THP_DISABLE:
2583 0 : if (arg3 || arg4 || arg5)
2584 : return -EINVAL;
2585 0 : if (mmap_write_lock_killable(me->mm))
2586 : return -EINTR;
2587 0 : if (arg2)
2588 0 : set_bit(MMF_DISABLE_THP, &me->mm->flags);
2589 : else
2590 0 : clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2591 0 : mmap_write_unlock(me->mm);
2592 : break;
2593 : case PR_MPX_ENABLE_MANAGEMENT:
2594 : case PR_MPX_DISABLE_MANAGEMENT:
2595 : /* No longer implemented: */
2596 : return -EINVAL;
2597 : case PR_SET_FP_MODE:
2598 : error = SET_FP_MODE(me, arg2);
2599 : break;
2600 : case PR_GET_FP_MODE:
2601 : error = GET_FP_MODE(me);
2602 : break;
2603 : case PR_SVE_SET_VL:
2604 : error = SVE_SET_VL(arg2);
2605 : break;
2606 : case PR_SVE_GET_VL:
2607 : error = SVE_GET_VL();
2608 : break;
2609 : case PR_SME_SET_VL:
2610 : error = SME_SET_VL(arg2);
2611 : break;
2612 : case PR_SME_GET_VL:
2613 : error = SME_GET_VL();
2614 : break;
2615 : case PR_GET_SPECULATION_CTRL:
2616 0 : if (arg3 || arg4 || arg5)
2617 : return -EINVAL;
2618 0 : error = arch_prctl_spec_ctrl_get(me, arg2);
2619 0 : break;
2620 : case PR_SET_SPECULATION_CTRL:
2621 0 : if (arg4 || arg5)
2622 : return -EINVAL;
2623 0 : error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2624 0 : break;
2625 : case PR_PAC_RESET_KEYS:
2626 0 : if (arg3 || arg4 || arg5)
2627 : return -EINVAL;
2628 : error = PAC_RESET_KEYS(me, arg2);
2629 : break;
2630 : case PR_PAC_SET_ENABLED_KEYS:
2631 0 : if (arg4 || arg5)
2632 : return -EINVAL;
2633 : error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2634 : break;
2635 : case PR_PAC_GET_ENABLED_KEYS:
2636 0 : if (arg2 || arg3 || arg4 || arg5)
2637 : return -EINVAL;
2638 : error = PAC_GET_ENABLED_KEYS(me);
2639 : break;
2640 : case PR_SET_TAGGED_ADDR_CTRL:
2641 0 : if (arg3 || arg4 || arg5)
2642 : return -EINVAL;
2643 : error = SET_TAGGED_ADDR_CTRL(arg2);
2644 : break;
2645 : case PR_GET_TAGGED_ADDR_CTRL:
2646 0 : if (arg2 || arg3 || arg4 || arg5)
2647 : return -EINVAL;
2648 : error = GET_TAGGED_ADDR_CTRL();
2649 : break;
2650 : case PR_SET_IO_FLUSHER:
2651 0 : if (!capable(CAP_SYS_RESOURCE))
2652 : return -EPERM;
2653 :
2654 0 : if (arg3 || arg4 || arg5)
2655 : return -EINVAL;
2656 :
2657 0 : if (arg2 == 1)
2658 0 : current->flags |= PR_IO_FLUSHER;
2659 0 : else if (!arg2)
2660 0 : current->flags &= ~PR_IO_FLUSHER;
2661 : else
2662 : return -EINVAL;
2663 : break;
2664 : case PR_GET_IO_FLUSHER:
2665 0 : if (!capable(CAP_SYS_RESOURCE))
2666 : return -EPERM;
2667 :
2668 0 : if (arg2 || arg3 || arg4 || arg5)
2669 : return -EINVAL;
2670 :
2671 0 : error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2672 0 : break;
2673 : case PR_SET_SYSCALL_USER_DISPATCH:
2674 : error = set_syscall_user_dispatch(arg2, arg3, arg4,
2675 : (char __user *) arg5);
2676 : break;
2677 : #ifdef CONFIG_SCHED_CORE
2678 : case PR_SCHED_CORE:
2679 : error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2680 : break;
2681 : #endif
2682 : case PR_SET_MDWE:
2683 0 : error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2684 0 : break;
2685 : case PR_GET_MDWE:
2686 0 : error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2687 0 : break;
2688 : case PR_SET_VMA:
2689 : error = prctl_set_vma(arg2, arg3, arg4, arg5);
2690 : break;
2691 : #ifdef CONFIG_KSM
2692 : case PR_SET_MEMORY_MERGE:
2693 : if (arg3 || arg4 || arg5)
2694 : return -EINVAL;
2695 : if (mmap_write_lock_killable(me->mm))
2696 : return -EINTR;
2697 :
2698 : if (arg2)
2699 : error = ksm_enable_merge_any(me->mm);
2700 : else
2701 : error = ksm_disable_merge_any(me->mm);
2702 : mmap_write_unlock(me->mm);
2703 : break;
2704 : case PR_GET_MEMORY_MERGE:
2705 : if (arg2 || arg3 || arg4 || arg5)
2706 : return -EINVAL;
2707 :
2708 : error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2709 : break;
2710 : #endif
2711 : default:
2712 : error = -EINVAL;
2713 : break;
2714 : }
2715 : return error;
2716 : }
2717 :
2718 0 : SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2719 : struct getcpu_cache __user *, unused)
2720 : {
2721 0 : int err = 0;
2722 0 : int cpu = raw_smp_processor_id();
2723 :
2724 0 : if (cpup)
2725 0 : err |= put_user(cpu, cpup);
2726 0 : if (nodep)
2727 0 : err |= put_user(cpu_to_node(cpu), nodep);
2728 0 : return err ? -EFAULT : 0;
2729 : }
2730 :
2731 : /**
2732 : * do_sysinfo - fill in sysinfo struct
2733 : * @info: pointer to buffer to fill
2734 : */
2735 0 : static int do_sysinfo(struct sysinfo *info)
2736 : {
2737 : unsigned long mem_total, sav_total;
2738 : unsigned int mem_unit, bitcount;
2739 : struct timespec64 tp;
2740 :
2741 0 : memset(info, 0, sizeof(struct sysinfo));
2742 :
2743 0 : ktime_get_boottime_ts64(&tp);
2744 0 : timens_add_boottime(&tp);
2745 0 : info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2746 :
2747 0 : get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2748 :
2749 0 : info->procs = nr_threads;
2750 :
2751 0 : si_meminfo(info);
2752 0 : si_swapinfo(info);
2753 :
2754 : /*
2755 : * If the sum of all the available memory (i.e. ram + swap)
2756 : * is less than can be stored in a 32 bit unsigned long then
2757 : * we can be binary compatible with 2.2.x kernels. If not,
2758 : * well, in that case 2.2.x was broken anyways...
2759 : *
2760 : * -Erik Andersen <andersee@debian.org>
2761 : */
2762 :
2763 0 : mem_total = info->totalram + info->totalswap;
2764 0 : if (mem_total < info->totalram || mem_total < info->totalswap)
2765 : goto out;
2766 0 : bitcount = 0;
2767 0 : mem_unit = info->mem_unit;
2768 0 : while (mem_unit > 1) {
2769 0 : bitcount++;
2770 0 : mem_unit >>= 1;
2771 0 : sav_total = mem_total;
2772 0 : mem_total <<= 1;
2773 0 : if (mem_total < sav_total)
2774 : goto out;
2775 : }
2776 :
2777 : /*
2778 : * If mem_total did not overflow, multiply all memory values by
2779 : * info->mem_unit and set it to 1. This leaves things compatible
2780 : * with 2.2.x, and also retains compatibility with earlier 2.4.x
2781 : * kernels...
2782 : */
2783 :
2784 0 : info->mem_unit = 1;
2785 0 : info->totalram <<= bitcount;
2786 0 : info->freeram <<= bitcount;
2787 0 : info->sharedram <<= bitcount;
2788 0 : info->bufferram <<= bitcount;
2789 0 : info->totalswap <<= bitcount;
2790 0 : info->freeswap <<= bitcount;
2791 0 : info->totalhigh <<= bitcount;
2792 0 : info->freehigh <<= bitcount;
2793 :
2794 : out:
2795 0 : return 0;
2796 : }
2797 :
2798 0 : SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2799 : {
2800 : struct sysinfo val;
2801 :
2802 0 : do_sysinfo(&val);
2803 :
2804 0 : if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2805 : return -EFAULT;
2806 :
2807 0 : return 0;
2808 : }
2809 :
2810 : #ifdef CONFIG_COMPAT
2811 : struct compat_sysinfo {
2812 : s32 uptime;
2813 : u32 loads[3];
2814 : u32 totalram;
2815 : u32 freeram;
2816 : u32 sharedram;
2817 : u32 bufferram;
2818 : u32 totalswap;
2819 : u32 freeswap;
2820 : u16 procs;
2821 : u16 pad;
2822 : u32 totalhigh;
2823 : u32 freehigh;
2824 : u32 mem_unit;
2825 : char _f[20-2*sizeof(u32)-sizeof(int)];
2826 : };
2827 :
2828 : COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2829 : {
2830 : struct sysinfo s;
2831 : struct compat_sysinfo s_32;
2832 :
2833 : do_sysinfo(&s);
2834 :
2835 : /* Check to see if any memory value is too large for 32-bit and scale
2836 : * down if needed
2837 : */
2838 : if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2839 : int bitcount = 0;
2840 :
2841 : while (s.mem_unit < PAGE_SIZE) {
2842 : s.mem_unit <<= 1;
2843 : bitcount++;
2844 : }
2845 :
2846 : s.totalram >>= bitcount;
2847 : s.freeram >>= bitcount;
2848 : s.sharedram >>= bitcount;
2849 : s.bufferram >>= bitcount;
2850 : s.totalswap >>= bitcount;
2851 : s.freeswap >>= bitcount;
2852 : s.totalhigh >>= bitcount;
2853 : s.freehigh >>= bitcount;
2854 : }
2855 :
2856 : memset(&s_32, 0, sizeof(s_32));
2857 : s_32.uptime = s.uptime;
2858 : s_32.loads[0] = s.loads[0];
2859 : s_32.loads[1] = s.loads[1];
2860 : s_32.loads[2] = s.loads[2];
2861 : s_32.totalram = s.totalram;
2862 : s_32.freeram = s.freeram;
2863 : s_32.sharedram = s.sharedram;
2864 : s_32.bufferram = s.bufferram;
2865 : s_32.totalswap = s.totalswap;
2866 : s_32.freeswap = s.freeswap;
2867 : s_32.procs = s.procs;
2868 : s_32.totalhigh = s.totalhigh;
2869 : s_32.freehigh = s.freehigh;
2870 : s_32.mem_unit = s.mem_unit;
2871 : if (copy_to_user(info, &s_32, sizeof(s_32)))
2872 : return -EFAULT;
2873 : return 0;
2874 : }
2875 : #endif /* CONFIG_COMPAT */
|