LCOV - code coverage report
Current view: top level - kernel/time - posix-timers.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 6 400 1.5 %
Date: 2023-07-19 18:55:55 Functions: 2 66 3.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0+
       2             : /*
       3             :  * 2002-10-15  Posix Clocks & timers
       4             :  *                           by George Anzinger george@mvista.com
       5             :  *                           Copyright (C) 2002 2003 by MontaVista Software.
       6             :  *
       7             :  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
       8             :  *                           Copyright (C) 2004 Boris Hu
       9             :  *
      10             :  * These are all the functions necessary to implement POSIX clocks & timers
      11             :  */
      12             : #include <linux/mm.h>
      13             : #include <linux/interrupt.h>
      14             : #include <linux/slab.h>
      15             : #include <linux/time.h>
      16             : #include <linux/mutex.h>
      17             : #include <linux/sched/task.h>
      18             : 
      19             : #include <linux/uaccess.h>
      20             : #include <linux/list.h>
      21             : #include <linux/init.h>
      22             : #include <linux/compiler.h>
      23             : #include <linux/hash.h>
      24             : #include <linux/posix-clock.h>
      25             : #include <linux/posix-timers.h>
      26             : #include <linux/syscalls.h>
      27             : #include <linux/wait.h>
      28             : #include <linux/workqueue.h>
      29             : #include <linux/export.h>
      30             : #include <linux/hashtable.h>
      31             : #include <linux/compat.h>
      32             : #include <linux/nospec.h>
      33             : #include <linux/time_namespace.h>
      34             : 
      35             : #include "timekeeping.h"
      36             : #include "posix-timers.h"
      37             : 
      38             : /*
      39             :  * Management arrays for POSIX timers. Timers are now kept in static hash table
      40             :  * with 512 entries.
      41             :  * Timer ids are allocated by local routine, which selects proper hash head by
      42             :  * key, constructed from current->signal address and per signal struct counter.
      43             :  * This keeps timer ids unique per process, but now they can intersect between
      44             :  * processes.
      45             :  */
      46             : 
      47             : /*
      48             :  * Lets keep our timers in a slab cache :-)
      49             :  */
      50             : static struct kmem_cache *posix_timers_cache;
      51             : 
      52             : static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
      53             : static DEFINE_SPINLOCK(hash_lock);
      54             : 
      55             : static const struct k_clock * const posix_clocks[];
      56             : static const struct k_clock *clockid_to_kclock(const clockid_t id);
      57             : static const struct k_clock clock_realtime, clock_monotonic;
      58             : 
      59             : /*
      60             :  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
      61             :  * SIGEV values.  Here we put out an error if this assumption fails.
      62             :  */
      63             : #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
      64             :                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
      65             : #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
      66             : #endif
      67             : 
      68             : /*
      69             :  * The timer ID is turned into a timer address by idr_find().
      70             :  * Verifying a valid ID consists of:
      71             :  *
      72             :  * a) checking that idr_find() returns other than -1.
      73             :  * b) checking that the timer id matches the one in the timer itself.
      74             :  * c) that the timer owner is in the callers thread group.
      75             :  */
      76             : 
      77             : /*
      78             :  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
      79             :  *          to implement others.  This structure defines the various
      80             :  *          clocks.
      81             :  *
      82             :  * RESOLUTION: Clock resolution is used to round up timer and interval
      83             :  *          times, NOT to report clock times, which are reported with as
      84             :  *          much resolution as the system can muster.  In some cases this
      85             :  *          resolution may depend on the underlying clock hardware and
      86             :  *          may not be quantifiable until run time, and only then is the
      87             :  *          necessary code is written.  The standard says we should say
      88             :  *          something about this issue in the documentation...
      89             :  *
      90             :  * FUNCTIONS: The CLOCKs structure defines possible functions to
      91             :  *          handle various clock functions.
      92             :  *
      93             :  *          The standard POSIX timer management code assumes the
      94             :  *          following: 1.) The k_itimer struct (sched.h) is used for
      95             :  *          the timer.  2.) The list, it_lock, it_clock, it_id and
      96             :  *          it_pid fields are not modified by timer code.
      97             :  *
      98             :  * Permissions: It is assumed that the clock_settime() function defined
      99             :  *          for each clock will take care of permission checks.  Some
     100             :  *          clocks may be set able by any user (i.e. local process
     101             :  *          clocks) others not.  Currently the only set able clock we
     102             :  *          have is CLOCK_REALTIME and its high res counter part, both of
     103             :  *          which we beg off on and pass to do_sys_settimeofday().
     104             :  */
     105             : static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
     106             : 
     107             : #define lock_timer(tid, flags)                                             \
     108             : ({      struct k_itimer *__timr;                                           \
     109             :         __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
     110             :         __timr;                                                            \
     111             : })
     112             : 
     113             : static int hash(struct signal_struct *sig, unsigned int nr)
     114             : {
     115           0 :         return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
     116             : }
     117             : 
     118             : static struct k_itimer *__posix_timers_find(struct hlist_head *head,
     119             :                                             struct signal_struct *sig,
     120             :                                             timer_t id)
     121             : {
     122             :         struct k_itimer *timer;
     123             : 
     124           0 :         hlist_for_each_entry_rcu(timer, head, t_hash,
     125             :                                  lockdep_is_held(&hash_lock)) {
     126           0 :                 if ((timer->it_signal == sig) && (timer->it_id == id))
     127             :                         return timer;
     128             :         }
     129             :         return NULL;
     130             : }
     131             : 
     132           0 : static struct k_itimer *posix_timer_by_id(timer_t id)
     133             : {
     134           0 :         struct signal_struct *sig = current->signal;
     135           0 :         struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
     136             : 
     137           0 :         return __posix_timers_find(head, sig, id);
     138             : }
     139             : 
     140           0 : static int posix_timer_add(struct k_itimer *timer)
     141             : {
     142           0 :         struct signal_struct *sig = current->signal;
     143           0 :         int first_free_id = sig->posix_timer_id;
     144             :         struct hlist_head *head;
     145           0 :         int ret = -ENOENT;
     146             : 
     147             :         do {
     148           0 :                 spin_lock(&hash_lock);
     149           0 :                 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
     150           0 :                 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
     151           0 :                         hlist_add_head_rcu(&timer->t_hash, head);
     152           0 :                         ret = sig->posix_timer_id;
     153             :                 }
     154           0 :                 if (++sig->posix_timer_id < 0)
     155           0 :                         sig->posix_timer_id = 0;
     156           0 :                 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
     157             :                         /* Loop over all possible ids completed */
     158           0 :                         ret = -EAGAIN;
     159           0 :                 spin_unlock(&hash_lock);
     160           0 :         } while (ret == -ENOENT);
     161           0 :         return ret;
     162             : }
     163             : 
     164             : static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
     165             : {
     166           0 :         spin_unlock_irqrestore(&timr->it_lock, flags);
     167             : }
     168             : 
     169             : /* Get clock_realtime */
     170           0 : static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
     171             : {
     172           0 :         ktime_get_real_ts64(tp);
     173           0 :         return 0;
     174             : }
     175             : 
     176           0 : static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
     177             : {
     178           0 :         return ktime_get_real();
     179             : }
     180             : 
     181             : /* Set clock_realtime */
     182           0 : static int posix_clock_realtime_set(const clockid_t which_clock,
     183             :                                     const struct timespec64 *tp)
     184             : {
     185           0 :         return do_sys_settimeofday64(tp, NULL);
     186             : }
     187             : 
     188           0 : static int posix_clock_realtime_adj(const clockid_t which_clock,
     189             :                                     struct __kernel_timex *t)
     190             : {
     191           0 :         return do_adjtimex(t);
     192             : }
     193             : 
     194             : /*
     195             :  * Get monotonic time for posix timers
     196             :  */
     197           0 : static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
     198             : {
     199           0 :         ktime_get_ts64(tp);
     200           0 :         timens_add_monotonic(tp);
     201           0 :         return 0;
     202             : }
     203             : 
     204           0 : static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
     205             : {
     206           0 :         return ktime_get();
     207             : }
     208             : 
     209             : /*
     210             :  * Get monotonic-raw time for posix timers
     211             :  */
     212           0 : static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
     213             : {
     214           0 :         ktime_get_raw_ts64(tp);
     215           0 :         timens_add_monotonic(tp);
     216           0 :         return 0;
     217             : }
     218             : 
     219             : 
     220           0 : static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
     221             : {
     222           0 :         ktime_get_coarse_real_ts64(tp);
     223           0 :         return 0;
     224             : }
     225             : 
     226           0 : static int posix_get_monotonic_coarse(clockid_t which_clock,
     227             :                                                 struct timespec64 *tp)
     228             : {
     229           0 :         ktime_get_coarse_ts64(tp);
     230           0 :         timens_add_monotonic(tp);
     231           0 :         return 0;
     232             : }
     233             : 
     234           0 : static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
     235             : {
     236           0 :         *tp = ktime_to_timespec64(KTIME_LOW_RES);
     237           0 :         return 0;
     238             : }
     239             : 
     240           0 : static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
     241             : {
     242           0 :         ktime_get_boottime_ts64(tp);
     243           0 :         timens_add_boottime(tp);
     244           0 :         return 0;
     245             : }
     246             : 
     247           0 : static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
     248             : {
     249           0 :         return ktime_get_boottime();
     250             : }
     251             : 
     252           0 : static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
     253             : {
     254           0 :         ktime_get_clocktai_ts64(tp);
     255           0 :         return 0;
     256             : }
     257             : 
     258           0 : static ktime_t posix_get_tai_ktime(clockid_t which_clock)
     259             : {
     260           0 :         return ktime_get_clocktai();
     261             : }
     262             : 
     263           0 : static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
     264             : {
     265           0 :         tp->tv_sec = 0;
     266           0 :         tp->tv_nsec = hrtimer_resolution;
     267           0 :         return 0;
     268             : }
     269             : 
     270             : /*
     271             :  * Initialize everything, well, just everything in Posix clocks/timers ;)
     272             :  */
     273           1 : static __init int init_posix_timers(void)
     274             : {
     275           1 :         posix_timers_cache = kmem_cache_create("posix_timers_cache",
     276             :                                         sizeof(struct k_itimer), 0,
     277             :                                         SLAB_PANIC | SLAB_ACCOUNT, NULL);
     278           1 :         return 0;
     279             : }
     280             : __initcall(init_posix_timers);
     281             : 
     282             : /*
     283             :  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
     284             :  * are of type int. Clamp the overrun value to INT_MAX
     285             :  */
     286             : static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
     287             : {
     288           0 :         s64 sum = timr->it_overrun_last + (s64)baseval;
     289             : 
     290           0 :         return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
     291             : }
     292             : 
     293           0 : static void common_hrtimer_rearm(struct k_itimer *timr)
     294             : {
     295           0 :         struct hrtimer *timer = &timr->it.real.timer;
     296             : 
     297           0 :         timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
     298             :                                             timr->it_interval);
     299           0 :         hrtimer_restart(timer);
     300           0 : }
     301             : 
     302             : /*
     303             :  * This function is exported for use by the signal deliver code.  It is
     304             :  * called just prior to the info block being released and passes that
     305             :  * block to us.  It's function is to update the overrun entry AND to
     306             :  * restart the timer.  It should only be called if the timer is to be
     307             :  * restarted (i.e. we have flagged this in the sys_private entry of the
     308             :  * info block).
     309             :  *
     310             :  * To protect against the timer going away while the interrupt is queued,
     311             :  * we require that the it_requeue_pending flag be set.
     312             :  */
     313           0 : void posixtimer_rearm(struct kernel_siginfo *info)
     314             : {
     315             :         struct k_itimer *timr;
     316             :         unsigned long flags;
     317             : 
     318           0 :         timr = lock_timer(info->si_tid, &flags);
     319           0 :         if (!timr)
     320           0 :                 return;
     321             : 
     322           0 :         if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
     323           0 :                 timr->kclock->timer_rearm(timr);
     324             : 
     325           0 :                 timr->it_active = 1;
     326           0 :                 timr->it_overrun_last = timr->it_overrun;
     327           0 :                 timr->it_overrun = -1LL;
     328           0 :                 ++timr->it_requeue_pending;
     329             : 
     330           0 :                 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
     331             :         }
     332             : 
     333           0 :         unlock_timer(timr, flags);
     334             : }
     335             : 
     336           0 : int posix_timer_event(struct k_itimer *timr, int si_private)
     337             : {
     338             :         enum pid_type type;
     339             :         int ret;
     340             :         /*
     341             :          * FIXME: if ->sigq is queued we can race with
     342             :          * dequeue_signal()->posixtimer_rearm().
     343             :          *
     344             :          * If dequeue_signal() sees the "right" value of
     345             :          * si_sys_private it calls posixtimer_rearm().
     346             :          * We re-queue ->sigq and drop ->it_lock().
     347             :          * posixtimer_rearm() locks the timer
     348             :          * and re-schedules it while ->sigq is pending.
     349             :          * Not really bad, but not that we want.
     350             :          */
     351           0 :         timr->sigq->info.si_sys_private = si_private;
     352             : 
     353           0 :         type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
     354           0 :         ret = send_sigqueue(timr->sigq, timr->it_pid, type);
     355             :         /* If we failed to send the signal the timer stops. */
     356           0 :         return ret > 0;
     357             : }
     358             : 
     359             : /*
     360             :  * This function gets called when a POSIX.1b interval timer expires.  It
     361             :  * is used as a callback from the kernel internal timer.  The
     362             :  * run_timer_list code ALWAYS calls with interrupts on.
     363             : 
     364             :  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
     365             :  */
     366           0 : static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
     367             : {
     368             :         struct k_itimer *timr;
     369             :         unsigned long flags;
     370           0 :         int si_private = 0;
     371           0 :         enum hrtimer_restart ret = HRTIMER_NORESTART;
     372             : 
     373           0 :         timr = container_of(timer, struct k_itimer, it.real.timer);
     374           0 :         spin_lock_irqsave(&timr->it_lock, flags);
     375             : 
     376           0 :         timr->it_active = 0;
     377           0 :         if (timr->it_interval != 0)
     378           0 :                 si_private = ++timr->it_requeue_pending;
     379             : 
     380           0 :         if (posix_timer_event(timr, si_private)) {
     381             :                 /*
     382             :                  * signal was not sent because of sig_ignor
     383             :                  * we will not get a call back to restart it AND
     384             :                  * it should be restarted.
     385             :                  */
     386           0 :                 if (timr->it_interval != 0) {
     387           0 :                         ktime_t now = hrtimer_cb_get_time(timer);
     388             : 
     389             :                         /*
     390             :                          * FIXME: What we really want, is to stop this
     391             :                          * timer completely and restart it in case the
     392             :                          * SIG_IGN is removed. This is a non trivial
     393             :                          * change which involves sighand locking
     394             :                          * (sigh !), which we don't want to do late in
     395             :                          * the release cycle.
     396             :                          *
     397             :                          * For now we just let timers with an interval
     398             :                          * less than a jiffie expire every jiffie to
     399             :                          * avoid softirq starvation in case of SIG_IGN
     400             :                          * and a very small interval, which would put
     401             :                          * the timer right back on the softirq pending
     402             :                          * list. By moving now ahead of time we trick
     403             :                          * hrtimer_forward() to expire the timer
     404             :                          * later, while we still maintain the overrun
     405             :                          * accuracy, but have some inconsistency in
     406             :                          * the timer_gettime() case. This is at least
     407             :                          * better than a starved softirq. A more
     408             :                          * complex fix which solves also another related
     409             :                          * inconsistency is already in the pipeline.
     410             :                          */
     411             : #ifdef CONFIG_HIGH_RES_TIMERS
     412             :                         {
     413             :                                 ktime_t kj = NSEC_PER_SEC / HZ;
     414             : 
     415             :                                 if (timr->it_interval < kj)
     416             :                                         now = ktime_add(now, kj);
     417             :                         }
     418             : #endif
     419           0 :                         timr->it_overrun += hrtimer_forward(timer, now,
     420             :                                                             timr->it_interval);
     421           0 :                         ret = HRTIMER_RESTART;
     422           0 :                         ++timr->it_requeue_pending;
     423           0 :                         timr->it_active = 1;
     424             :                 }
     425             :         }
     426             : 
     427           0 :         unlock_timer(timr, flags);
     428           0 :         return ret;
     429             : }
     430             : 
     431           0 : static struct pid *good_sigevent(sigevent_t * event)
     432             : {
     433           0 :         struct pid *pid = task_tgid(current);
     434             :         struct task_struct *rtn;
     435             : 
     436           0 :         switch (event->sigev_notify) {
     437             :         case SIGEV_SIGNAL | SIGEV_THREAD_ID:
     438           0 :                 pid = find_vpid(event->sigev_notify_thread_id);
     439           0 :                 rtn = pid_task(pid, PIDTYPE_PID);
     440           0 :                 if (!rtn || !same_thread_group(rtn, current))
     441             :                         return NULL;
     442             :                 fallthrough;
     443             :         case SIGEV_SIGNAL:
     444             :         case SIGEV_THREAD:
     445           0 :                 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
     446             :                         return NULL;
     447             :                 fallthrough;
     448             :         case SIGEV_NONE:
     449             :                 return pid;
     450             :         default:
     451             :                 return NULL;
     452             :         }
     453             : }
     454             : 
     455           0 : static struct k_itimer * alloc_posix_timer(void)
     456             : {
     457             :         struct k_itimer *tmr;
     458           0 :         tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
     459           0 :         if (!tmr)
     460             :                 return tmr;
     461           0 :         if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
     462           0 :                 kmem_cache_free(posix_timers_cache, tmr);
     463           0 :                 return NULL;
     464             :         }
     465           0 :         clear_siginfo(&tmr->sigq->info);
     466           0 :         return tmr;
     467             : }
     468             : 
     469           0 : static void k_itimer_rcu_free(struct rcu_head *head)
     470             : {
     471           0 :         struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
     472             : 
     473           0 :         kmem_cache_free(posix_timers_cache, tmr);
     474           0 : }
     475             : 
     476             : #define IT_ID_SET       1
     477             : #define IT_ID_NOT_SET   0
     478           0 : static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
     479             : {
     480           0 :         if (it_id_set) {
     481             :                 unsigned long flags;
     482           0 :                 spin_lock_irqsave(&hash_lock, flags);
     483           0 :                 hlist_del_rcu(&tmr->t_hash);
     484             :                 spin_unlock_irqrestore(&hash_lock, flags);
     485             :         }
     486           0 :         put_pid(tmr->it_pid);
     487           0 :         sigqueue_free(tmr->sigq);
     488           0 :         call_rcu(&tmr->rcu, k_itimer_rcu_free);
     489           0 : }
     490             : 
     491           0 : static int common_timer_create(struct k_itimer *new_timer)
     492             : {
     493           0 :         hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
     494           0 :         return 0;
     495             : }
     496             : 
     497             : /* Create a POSIX.1b interval timer. */
     498           0 : static int do_timer_create(clockid_t which_clock, struct sigevent *event,
     499             :                            timer_t __user *created_timer_id)
     500             : {
     501           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
     502             :         struct k_itimer *new_timer;
     503             :         int error, new_timer_id;
     504           0 :         int it_id_set = IT_ID_NOT_SET;
     505             : 
     506           0 :         if (!kc)
     507             :                 return -EINVAL;
     508           0 :         if (!kc->timer_create)
     509             :                 return -EOPNOTSUPP;
     510             : 
     511           0 :         new_timer = alloc_posix_timer();
     512           0 :         if (unlikely(!new_timer))
     513             :                 return -EAGAIN;
     514             : 
     515           0 :         spin_lock_init(&new_timer->it_lock);
     516           0 :         new_timer_id = posix_timer_add(new_timer);
     517           0 :         if (new_timer_id < 0) {
     518             :                 error = new_timer_id;
     519             :                 goto out;
     520             :         }
     521             : 
     522           0 :         it_id_set = IT_ID_SET;
     523           0 :         new_timer->it_id = (timer_t) new_timer_id;
     524           0 :         new_timer->it_clock = which_clock;
     525           0 :         new_timer->kclock = kc;
     526           0 :         new_timer->it_overrun = -1LL;
     527             : 
     528           0 :         if (event) {
     529             :                 rcu_read_lock();
     530           0 :                 new_timer->it_pid = get_pid(good_sigevent(event));
     531             :                 rcu_read_unlock();
     532           0 :                 if (!new_timer->it_pid) {
     533             :                         error = -EINVAL;
     534             :                         goto out;
     535             :                 }
     536           0 :                 new_timer->it_sigev_notify     = event->sigev_notify;
     537           0 :                 new_timer->sigq->info.si_signo = event->sigev_signo;
     538           0 :                 new_timer->sigq->info.si_value = event->sigev_value;
     539             :         } else {
     540           0 :                 new_timer->it_sigev_notify     = SIGEV_SIGNAL;
     541           0 :                 new_timer->sigq->info.si_signo = SIGALRM;
     542           0 :                 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
     543           0 :                 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
     544           0 :                 new_timer->it_pid = get_pid(task_tgid(current));
     545             :         }
     546             : 
     547           0 :         new_timer->sigq->info.si_tid   = new_timer->it_id;
     548           0 :         new_timer->sigq->info.si_code  = SI_TIMER;
     549             : 
     550           0 :         if (copy_to_user(created_timer_id,
     551             :                          &new_timer_id, sizeof (new_timer_id))) {
     552             :                 error = -EFAULT;
     553             :                 goto out;
     554             :         }
     555             : 
     556           0 :         error = kc->timer_create(new_timer);
     557           0 :         if (error)
     558             :                 goto out;
     559             : 
     560           0 :         spin_lock_irq(&current->sighand->siglock);
     561           0 :         new_timer->it_signal = current->signal;
     562           0 :         list_add(&new_timer->list, &current->signal->posix_timers);
     563           0 :         spin_unlock_irq(&current->sighand->siglock);
     564             : 
     565           0 :         return 0;
     566             :         /*
     567             :          * In the case of the timer belonging to another task, after
     568             :          * the task is unlocked, the timer is owned by the other task
     569             :          * and may cease to exist at any time.  Don't use or modify
     570             :          * new_timer after the unlock call.
     571             :          */
     572             : out:
     573           0 :         release_posix_timer(new_timer, it_id_set);
     574           0 :         return error;
     575             : }
     576             : 
     577           0 : SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
     578             :                 struct sigevent __user *, timer_event_spec,
     579             :                 timer_t __user *, created_timer_id)
     580             : {
     581           0 :         if (timer_event_spec) {
     582             :                 sigevent_t event;
     583             : 
     584           0 :                 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
     585             :                         return -EFAULT;
     586           0 :                 return do_timer_create(which_clock, &event, created_timer_id);
     587             :         }
     588           0 :         return do_timer_create(which_clock, NULL, created_timer_id);
     589             : }
     590             : 
     591             : #ifdef CONFIG_COMPAT
     592             : COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
     593             :                        struct compat_sigevent __user *, timer_event_spec,
     594             :                        timer_t __user *, created_timer_id)
     595             : {
     596             :         if (timer_event_spec) {
     597             :                 sigevent_t event;
     598             : 
     599             :                 if (get_compat_sigevent(&event, timer_event_spec))
     600             :                         return -EFAULT;
     601             :                 return do_timer_create(which_clock, &event, created_timer_id);
     602             :         }
     603             :         return do_timer_create(which_clock, NULL, created_timer_id);
     604             : }
     605             : #endif
     606             : 
     607             : /*
     608             :  * Locking issues: We need to protect the result of the id look up until
     609             :  * we get the timer locked down so it is not deleted under us.  The
     610             :  * removal is done under the idr spinlock so we use that here to bridge
     611             :  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
     612             :  * be release with out holding the timer lock.
     613             :  */
     614           0 : static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
     615             : {
     616             :         struct k_itimer *timr;
     617             : 
     618             :         /*
     619             :          * timer_t could be any type >= int and we want to make sure any
     620             :          * @timer_id outside positive int range fails lookup.
     621             :          */
     622           0 :         if ((unsigned long long)timer_id > INT_MAX)
     623             :                 return NULL;
     624             : 
     625             :         rcu_read_lock();
     626           0 :         timr = posix_timer_by_id(timer_id);
     627           0 :         if (timr) {
     628           0 :                 spin_lock_irqsave(&timr->it_lock, *flags);
     629           0 :                 if (timr->it_signal == current->signal) {
     630             :                         rcu_read_unlock();
     631           0 :                         return timr;
     632             :                 }
     633           0 :                 spin_unlock_irqrestore(&timr->it_lock, *flags);
     634             :         }
     635             :         rcu_read_unlock();
     636             : 
     637           0 :         return NULL;
     638             : }
     639             : 
     640           0 : static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
     641             : {
     642           0 :         struct hrtimer *timer = &timr->it.real.timer;
     643             : 
     644           0 :         return __hrtimer_expires_remaining_adjusted(timer, now);
     645             : }
     646             : 
     647           0 : static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
     648             : {
     649           0 :         struct hrtimer *timer = &timr->it.real.timer;
     650             : 
     651           0 :         return hrtimer_forward(timer, now, timr->it_interval);
     652             : }
     653             : 
     654             : /*
     655             :  * Get the time remaining on a POSIX.1b interval timer.  This function
     656             :  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
     657             :  * mess with irq.
     658             :  *
     659             :  * We have a couple of messes to clean up here.  First there is the case
     660             :  * of a timer that has a requeue pending.  These timers should appear to
     661             :  * be in the timer list with an expiry as if we were to requeue them
     662             :  * now.
     663             :  *
     664             :  * The second issue is the SIGEV_NONE timer which may be active but is
     665             :  * not really ever put in the timer list (to save system resources).
     666             :  * This timer may be expired, and if so, we will do it here.  Otherwise
     667             :  * it is the same as a requeue pending timer WRT to what we should
     668             :  * report.
     669             :  */
     670           0 : void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
     671             : {
     672           0 :         const struct k_clock *kc = timr->kclock;
     673             :         ktime_t now, remaining, iv;
     674             :         bool sig_none;
     675             : 
     676           0 :         sig_none = timr->it_sigev_notify == SIGEV_NONE;
     677           0 :         iv = timr->it_interval;
     678             : 
     679             :         /* interval timer ? */
     680           0 :         if (iv) {
     681           0 :                 cur_setting->it_interval = ktime_to_timespec64(iv);
     682           0 :         } else if (!timr->it_active) {
     683             :                 /*
     684             :                  * SIGEV_NONE oneshot timers are never queued. Check them
     685             :                  * below.
     686             :                  */
     687           0 :                 if (!sig_none)
     688             :                         return;
     689             :         }
     690             : 
     691           0 :         now = kc->clock_get_ktime(timr->it_clock);
     692             : 
     693             :         /*
     694             :          * When a requeue is pending or this is a SIGEV_NONE timer move the
     695             :          * expiry time forward by intervals, so expiry is > now.
     696             :          */
     697           0 :         if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
     698           0 :                 timr->it_overrun += kc->timer_forward(timr, now);
     699             : 
     700           0 :         remaining = kc->timer_remaining(timr, now);
     701             :         /* Return 0 only, when the timer is expired and not pending */
     702           0 :         if (remaining <= 0) {
     703             :                 /*
     704             :                  * A single shot SIGEV_NONE timer must return 0, when
     705             :                  * it is expired !
     706             :                  */
     707           0 :                 if (!sig_none)
     708           0 :                         cur_setting->it_value.tv_nsec = 1;
     709             :         } else {
     710           0 :                 cur_setting->it_value = ktime_to_timespec64(remaining);
     711             :         }
     712             : }
     713             : 
     714             : /* Get the time remaining on a POSIX.1b interval timer. */
     715           0 : static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
     716             : {
     717             :         struct k_itimer *timr;
     718             :         const struct k_clock *kc;
     719             :         unsigned long flags;
     720           0 :         int ret = 0;
     721             : 
     722           0 :         timr = lock_timer(timer_id, &flags);
     723           0 :         if (!timr)
     724             :                 return -EINVAL;
     725             : 
     726           0 :         memset(setting, 0, sizeof(*setting));
     727           0 :         kc = timr->kclock;
     728           0 :         if (WARN_ON_ONCE(!kc || !kc->timer_get))
     729             :                 ret = -EINVAL;
     730             :         else
     731           0 :                 kc->timer_get(timr, setting);
     732             : 
     733           0 :         unlock_timer(timr, flags);
     734           0 :         return ret;
     735             : }
     736             : 
     737             : /* Get the time remaining on a POSIX.1b interval timer. */
     738           0 : SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
     739             :                 struct __kernel_itimerspec __user *, setting)
     740             : {
     741             :         struct itimerspec64 cur_setting;
     742             : 
     743           0 :         int ret = do_timer_gettime(timer_id, &cur_setting);
     744           0 :         if (!ret) {
     745           0 :                 if (put_itimerspec64(&cur_setting, setting))
     746           0 :                         ret = -EFAULT;
     747             :         }
     748           0 :         return ret;
     749             : }
     750             : 
     751             : #ifdef CONFIG_COMPAT_32BIT_TIME
     752             : 
     753             : SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
     754             :                 struct old_itimerspec32 __user *, setting)
     755             : {
     756             :         struct itimerspec64 cur_setting;
     757             : 
     758             :         int ret = do_timer_gettime(timer_id, &cur_setting);
     759             :         if (!ret) {
     760             :                 if (put_old_itimerspec32(&cur_setting, setting))
     761             :                         ret = -EFAULT;
     762             :         }
     763             :         return ret;
     764             : }
     765             : 
     766             : #endif
     767             : 
     768             : /*
     769             :  * Get the number of overruns of a POSIX.1b interval timer.  This is to
     770             :  * be the overrun of the timer last delivered.  At the same time we are
     771             :  * accumulating overruns on the next timer.  The overrun is frozen when
     772             :  * the signal is delivered, either at the notify time (if the info block
     773             :  * is not queued) or at the actual delivery time (as we are informed by
     774             :  * the call back to posixtimer_rearm().  So all we need to do is
     775             :  * to pick up the frozen overrun.
     776             :  */
     777           0 : SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
     778             : {
     779             :         struct k_itimer *timr;
     780             :         int overrun;
     781             :         unsigned long flags;
     782             : 
     783           0 :         timr = lock_timer(timer_id, &flags);
     784           0 :         if (!timr)
     785             :                 return -EINVAL;
     786             : 
     787           0 :         overrun = timer_overrun_to_int(timr, 0);
     788           0 :         unlock_timer(timr, flags);
     789             : 
     790           0 :         return overrun;
     791             : }
     792             : 
     793           0 : static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
     794             :                                bool absolute, bool sigev_none)
     795             : {
     796           0 :         struct hrtimer *timer = &timr->it.real.timer;
     797             :         enum hrtimer_mode mode;
     798             : 
     799           0 :         mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
     800             :         /*
     801             :          * Posix magic: Relative CLOCK_REALTIME timers are not affected by
     802             :          * clock modifications, so they become CLOCK_MONOTONIC based under the
     803             :          * hood. See hrtimer_init(). Update timr->kclock, so the generic
     804             :          * functions which use timr->kclock->clock_get_*() work.
     805             :          *
     806             :          * Note: it_clock stays unmodified, because the next timer_set() might
     807             :          * use ABSTIME, so it needs to switch back.
     808             :          */
     809           0 :         if (timr->it_clock == CLOCK_REALTIME)
     810           0 :                 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
     811             : 
     812           0 :         hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
     813           0 :         timr->it.real.timer.function = posix_timer_fn;
     814             : 
     815           0 :         if (!absolute)
     816           0 :                 expires = ktime_add_safe(expires, timer->base->get_time());
     817           0 :         hrtimer_set_expires(timer, expires);
     818             : 
     819           0 :         if (!sigev_none)
     820             :                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
     821           0 : }
     822             : 
     823           0 : static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
     824             : {
     825           0 :         return hrtimer_try_to_cancel(&timr->it.real.timer);
     826             : }
     827             : 
     828           0 : static void common_timer_wait_running(struct k_itimer *timer)
     829             : {
     830           0 :         hrtimer_cancel_wait_running(&timer->it.real.timer);
     831           0 : }
     832             : 
     833             : /*
     834             :  * On PREEMPT_RT this prevent priority inversion against softirq kthread in
     835             :  * case it gets preempted while executing a timer callback. See comments in
     836             :  * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
     837             :  * cpu_relax().
     838             :  */
     839           0 : static struct k_itimer *timer_wait_running(struct k_itimer *timer,
     840             :                                            unsigned long *flags)
     841             : {
     842           0 :         const struct k_clock *kc = READ_ONCE(timer->kclock);
     843           0 :         timer_t timer_id = READ_ONCE(timer->it_id);
     844             : 
     845             :         /* Prevent kfree(timer) after dropping the lock */
     846             :         rcu_read_lock();
     847           0 :         unlock_timer(timer, *flags);
     848             : 
     849             :         /*
     850             :          * kc->timer_wait_running() might drop RCU lock. So @timer
     851             :          * cannot be touched anymore after the function returns!
     852             :          */
     853           0 :         if (!WARN_ON_ONCE(!kc->timer_wait_running))
     854           0 :                 kc->timer_wait_running(timer);
     855             : 
     856             :         rcu_read_unlock();
     857             :         /* Relock the timer. It might be not longer hashed. */
     858           0 :         return lock_timer(timer_id, flags);
     859             : }
     860             : 
     861             : /* Set a POSIX.1b interval timer. */
     862           0 : int common_timer_set(struct k_itimer *timr, int flags,
     863             :                      struct itimerspec64 *new_setting,
     864             :                      struct itimerspec64 *old_setting)
     865             : {
     866           0 :         const struct k_clock *kc = timr->kclock;
     867             :         bool sigev_none;
     868             :         ktime_t expires;
     869             : 
     870           0 :         if (old_setting)
     871           0 :                 common_timer_get(timr, old_setting);
     872             : 
     873             :         /* Prevent rearming by clearing the interval */
     874           0 :         timr->it_interval = 0;
     875             :         /*
     876             :          * Careful here. On SMP systems the timer expiry function could be
     877             :          * active and spinning on timr->it_lock.
     878             :          */
     879           0 :         if (kc->timer_try_to_cancel(timr) < 0)
     880             :                 return TIMER_RETRY;
     881             : 
     882           0 :         timr->it_active = 0;
     883           0 :         timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
     884             :                 ~REQUEUE_PENDING;
     885           0 :         timr->it_overrun_last = 0;
     886             : 
     887             :         /* Switch off the timer when it_value is zero */
     888           0 :         if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
     889             :                 return 0;
     890             : 
     891           0 :         timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
     892           0 :         expires = timespec64_to_ktime(new_setting->it_value);
     893           0 :         if (flags & TIMER_ABSTIME)
     894             :                 expires = timens_ktime_to_host(timr->it_clock, expires);
     895           0 :         sigev_none = timr->it_sigev_notify == SIGEV_NONE;
     896             : 
     897           0 :         kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
     898           0 :         timr->it_active = !sigev_none;
     899           0 :         return 0;
     900             : }
     901             : 
     902           0 : static int do_timer_settime(timer_t timer_id, int tmr_flags,
     903             :                             struct itimerspec64 *new_spec64,
     904             :                             struct itimerspec64 *old_spec64)
     905             : {
     906             :         const struct k_clock *kc;
     907             :         struct k_itimer *timr;
     908             :         unsigned long flags;
     909           0 :         int error = 0;
     910             : 
     911           0 :         if (!timespec64_valid(&new_spec64->it_interval) ||
     912           0 :             !timespec64_valid(&new_spec64->it_value))
     913             :                 return -EINVAL;
     914             : 
     915           0 :         if (old_spec64)
     916           0 :                 memset(old_spec64, 0, sizeof(*old_spec64));
     917             : 
     918           0 :         timr = lock_timer(timer_id, &flags);
     919             : retry:
     920           0 :         if (!timr)
     921             :                 return -EINVAL;
     922             : 
     923           0 :         kc = timr->kclock;
     924           0 :         if (WARN_ON_ONCE(!kc || !kc->timer_set))
     925             :                 error = -EINVAL;
     926             :         else
     927           0 :                 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
     928             : 
     929           0 :         if (error == TIMER_RETRY) {
     930             :                 // We already got the old time...
     931           0 :                 old_spec64 = NULL;
     932             :                 /* Unlocks and relocks the timer if it still exists */
     933           0 :                 timr = timer_wait_running(timr, &flags);
     934           0 :                 goto retry;
     935             :         }
     936           0 :         unlock_timer(timr, flags);
     937             : 
     938           0 :         return error;
     939             : }
     940             : 
     941             : /* Set a POSIX.1b interval timer */
     942           0 : SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
     943             :                 const struct __kernel_itimerspec __user *, new_setting,
     944             :                 struct __kernel_itimerspec __user *, old_setting)
     945             : {
     946             :         struct itimerspec64 new_spec, old_spec;
     947           0 :         struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
     948           0 :         int error = 0;
     949             : 
     950           0 :         if (!new_setting)
     951             :                 return -EINVAL;
     952             : 
     953           0 :         if (get_itimerspec64(&new_spec, new_setting))
     954             :                 return -EFAULT;
     955             : 
     956           0 :         error = do_timer_settime(timer_id, flags, &new_spec, rtn);
     957           0 :         if (!error && old_setting) {
     958           0 :                 if (put_itimerspec64(&old_spec, old_setting))
     959           0 :                         error = -EFAULT;
     960             :         }
     961           0 :         return error;
     962             : }
     963             : 
     964             : #ifdef CONFIG_COMPAT_32BIT_TIME
     965             : SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
     966             :                 struct old_itimerspec32 __user *, new,
     967             :                 struct old_itimerspec32 __user *, old)
     968             : {
     969             :         struct itimerspec64 new_spec, old_spec;
     970             :         struct itimerspec64 *rtn = old ? &old_spec : NULL;
     971             :         int error = 0;
     972             : 
     973             :         if (!new)
     974             :                 return -EINVAL;
     975             :         if (get_old_itimerspec32(&new_spec, new))
     976             :                 return -EFAULT;
     977             : 
     978             :         error = do_timer_settime(timer_id, flags, &new_spec, rtn);
     979             :         if (!error && old) {
     980             :                 if (put_old_itimerspec32(&old_spec, old))
     981             :                         error = -EFAULT;
     982             :         }
     983             :         return error;
     984             : }
     985             : #endif
     986             : 
     987           0 : int common_timer_del(struct k_itimer *timer)
     988             : {
     989           0 :         const struct k_clock *kc = timer->kclock;
     990             : 
     991           0 :         timer->it_interval = 0;
     992           0 :         if (kc->timer_try_to_cancel(timer) < 0)
     993             :                 return TIMER_RETRY;
     994           0 :         timer->it_active = 0;
     995           0 :         return 0;
     996             : }
     997             : 
     998           0 : static inline int timer_delete_hook(struct k_itimer *timer)
     999             : {
    1000           0 :         const struct k_clock *kc = timer->kclock;
    1001             : 
    1002           0 :         if (WARN_ON_ONCE(!kc || !kc->timer_del))
    1003             :                 return -EINVAL;
    1004           0 :         return kc->timer_del(timer);
    1005             : }
    1006             : 
    1007             : /* Delete a POSIX.1b interval timer. */
    1008           0 : SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
    1009             : {
    1010             :         struct k_itimer *timer;
    1011             :         unsigned long flags;
    1012             : 
    1013           0 :         timer = lock_timer(timer_id, &flags);
    1014             : 
    1015             : retry_delete:
    1016           0 :         if (!timer)
    1017             :                 return -EINVAL;
    1018             : 
    1019           0 :         if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
    1020             :                 /* Unlocks and relocks the timer if it still exists */
    1021           0 :                 timer = timer_wait_running(timer, &flags);
    1022           0 :                 goto retry_delete;
    1023             :         }
    1024             : 
    1025           0 :         spin_lock(&current->sighand->siglock);
    1026           0 :         list_del(&timer->list);
    1027           0 :         spin_unlock(&current->sighand->siglock);
    1028             :         /*
    1029             :          * This keeps any tasks waiting on the spin lock from thinking
    1030             :          * they got something (see the lock code above).
    1031             :          */
    1032           0 :         timer->it_signal = NULL;
    1033             : 
    1034           0 :         unlock_timer(timer, flags);
    1035           0 :         release_posix_timer(timer, IT_ID_SET);
    1036           0 :         return 0;
    1037             : }
    1038             : 
    1039             : /*
    1040             :  * return timer owned by the process, used by exit_itimers
    1041             :  */
    1042           0 : static void itimer_delete(struct k_itimer *timer)
    1043             : {
    1044             : retry_delete:
    1045           0 :         spin_lock_irq(&timer->it_lock);
    1046             : 
    1047           0 :         if (timer_delete_hook(timer) == TIMER_RETRY) {
    1048           0 :                 spin_unlock_irq(&timer->it_lock);
    1049             :                 goto retry_delete;
    1050             :         }
    1051           0 :         list_del(&timer->list);
    1052             : 
    1053           0 :         spin_unlock_irq(&timer->it_lock);
    1054           0 :         release_posix_timer(timer, IT_ID_SET);
    1055           0 : }
    1056             : 
    1057             : /*
    1058             :  * This is called by do_exit or de_thread, only when nobody else can
    1059             :  * modify the signal->posix_timers list. Yet we need sighand->siglock
    1060             :  * to prevent the race with /proc/pid/timers.
    1061             :  */
    1062         367 : void exit_itimers(struct task_struct *tsk)
    1063             : {
    1064             :         struct list_head timers;
    1065             :         struct k_itimer *tmr;
    1066             : 
    1067         734 :         if (list_empty(&tsk->signal->posix_timers))
    1068         367 :                 return;
    1069             : 
    1070           0 :         spin_lock_irq(&tsk->sighand->siglock);
    1071           0 :         list_replace_init(&tsk->signal->posix_timers, &timers);
    1072           0 :         spin_unlock_irq(&tsk->sighand->siglock);
    1073             : 
    1074           0 :         while (!list_empty(&timers)) {
    1075           0 :                 tmr = list_first_entry(&timers, struct k_itimer, list);
    1076           0 :                 itimer_delete(tmr);
    1077             :         }
    1078             : }
    1079             : 
    1080           0 : SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
    1081             :                 const struct __kernel_timespec __user *, tp)
    1082             : {
    1083           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1084             :         struct timespec64 new_tp;
    1085             : 
    1086           0 :         if (!kc || !kc->clock_set)
    1087             :                 return -EINVAL;
    1088             : 
    1089           0 :         if (get_timespec64(&new_tp, tp))
    1090             :                 return -EFAULT;
    1091             : 
    1092           0 :         return kc->clock_set(which_clock, &new_tp);
    1093             : }
    1094             : 
    1095           0 : SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
    1096             :                 struct __kernel_timespec __user *, tp)
    1097             : {
    1098           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1099             :         struct timespec64 kernel_tp;
    1100             :         int error;
    1101             : 
    1102           0 :         if (!kc)
    1103             :                 return -EINVAL;
    1104             : 
    1105           0 :         error = kc->clock_get_timespec(which_clock, &kernel_tp);
    1106             : 
    1107           0 :         if (!error && put_timespec64(&kernel_tp, tp))
    1108           0 :                 error = -EFAULT;
    1109             : 
    1110           0 :         return error;
    1111             : }
    1112             : 
    1113           0 : int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
    1114             : {
    1115           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1116             : 
    1117           0 :         if (!kc)
    1118             :                 return -EINVAL;
    1119           0 :         if (!kc->clock_adj)
    1120             :                 return -EOPNOTSUPP;
    1121             : 
    1122           0 :         return kc->clock_adj(which_clock, ktx);
    1123             : }
    1124             : 
    1125           0 : SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
    1126             :                 struct __kernel_timex __user *, utx)
    1127             : {
    1128             :         struct __kernel_timex ktx;
    1129             :         int err;
    1130             : 
    1131           0 :         if (copy_from_user(&ktx, utx, sizeof(ktx)))
    1132             :                 return -EFAULT;
    1133             : 
    1134           0 :         err = do_clock_adjtime(which_clock, &ktx);
    1135             : 
    1136           0 :         if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
    1137             :                 return -EFAULT;
    1138             : 
    1139           0 :         return err;
    1140             : }
    1141             : 
    1142           0 : SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
    1143             :                 struct __kernel_timespec __user *, tp)
    1144             : {
    1145           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1146             :         struct timespec64 rtn_tp;
    1147             :         int error;
    1148             : 
    1149           0 :         if (!kc)
    1150             :                 return -EINVAL;
    1151             : 
    1152           0 :         error = kc->clock_getres(which_clock, &rtn_tp);
    1153             : 
    1154           0 :         if (!error && tp && put_timespec64(&rtn_tp, tp))
    1155           0 :                 error = -EFAULT;
    1156             : 
    1157           0 :         return error;
    1158             : }
    1159             : 
    1160             : #ifdef CONFIG_COMPAT_32BIT_TIME
    1161             : 
    1162             : SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
    1163             :                 struct old_timespec32 __user *, tp)
    1164             : {
    1165             :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1166             :         struct timespec64 ts;
    1167             : 
    1168             :         if (!kc || !kc->clock_set)
    1169             :                 return -EINVAL;
    1170             : 
    1171             :         if (get_old_timespec32(&ts, tp))
    1172             :                 return -EFAULT;
    1173             : 
    1174             :         return kc->clock_set(which_clock, &ts);
    1175             : }
    1176             : 
    1177             : SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
    1178             :                 struct old_timespec32 __user *, tp)
    1179             : {
    1180             :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1181             :         struct timespec64 ts;
    1182             :         int err;
    1183             : 
    1184             :         if (!kc)
    1185             :                 return -EINVAL;
    1186             : 
    1187             :         err = kc->clock_get_timespec(which_clock, &ts);
    1188             : 
    1189             :         if (!err && put_old_timespec32(&ts, tp))
    1190             :                 err = -EFAULT;
    1191             : 
    1192             :         return err;
    1193             : }
    1194             : 
    1195             : SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
    1196             :                 struct old_timex32 __user *, utp)
    1197             : {
    1198             :         struct __kernel_timex ktx;
    1199             :         int err;
    1200             : 
    1201             :         err = get_old_timex32(&ktx, utp);
    1202             :         if (err)
    1203             :                 return err;
    1204             : 
    1205             :         err = do_clock_adjtime(which_clock, &ktx);
    1206             : 
    1207             :         if (err >= 0 && put_old_timex32(utp, &ktx))
    1208             :                 return -EFAULT;
    1209             : 
    1210             :         return err;
    1211             : }
    1212             : 
    1213             : SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
    1214             :                 struct old_timespec32 __user *, tp)
    1215             : {
    1216             :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1217             :         struct timespec64 ts;
    1218             :         int err;
    1219             : 
    1220             :         if (!kc)
    1221             :                 return -EINVAL;
    1222             : 
    1223             :         err = kc->clock_getres(which_clock, &ts);
    1224             :         if (!err && tp && put_old_timespec32(&ts, tp))
    1225             :                 return -EFAULT;
    1226             : 
    1227             :         return err;
    1228             : }
    1229             : 
    1230             : #endif
    1231             : 
    1232             : /*
    1233             :  * nanosleep for monotonic and realtime clocks
    1234             :  */
    1235           0 : static int common_nsleep(const clockid_t which_clock, int flags,
    1236             :                          const struct timespec64 *rqtp)
    1237             : {
    1238           0 :         ktime_t texp = timespec64_to_ktime(*rqtp);
    1239             : 
    1240           0 :         return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
    1241             :                                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
    1242             :                                  which_clock);
    1243             : }
    1244             : 
    1245           0 : static int common_nsleep_timens(const clockid_t which_clock, int flags,
    1246             :                          const struct timespec64 *rqtp)
    1247             : {
    1248           0 :         ktime_t texp = timespec64_to_ktime(*rqtp);
    1249             : 
    1250           0 :         if (flags & TIMER_ABSTIME)
    1251             :                 texp = timens_ktime_to_host(which_clock, texp);
    1252             : 
    1253           0 :         return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
    1254             :                                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
    1255             :                                  which_clock);
    1256             : }
    1257             : 
    1258           0 : SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
    1259             :                 const struct __kernel_timespec __user *, rqtp,
    1260             :                 struct __kernel_timespec __user *, rmtp)
    1261             : {
    1262           0 :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1263             :         struct timespec64 t;
    1264             : 
    1265           0 :         if (!kc)
    1266             :                 return -EINVAL;
    1267           0 :         if (!kc->nsleep)
    1268             :                 return -EOPNOTSUPP;
    1269             : 
    1270           0 :         if (get_timespec64(&t, rqtp))
    1271             :                 return -EFAULT;
    1272             : 
    1273           0 :         if (!timespec64_valid(&t))
    1274             :                 return -EINVAL;
    1275           0 :         if (flags & TIMER_ABSTIME)
    1276           0 :                 rmtp = NULL;
    1277           0 :         current->restart_block.fn = do_no_restart_syscall;
    1278           0 :         current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
    1279           0 :         current->restart_block.nanosleep.rmtp = rmtp;
    1280             : 
    1281           0 :         return kc->nsleep(which_clock, flags, &t);
    1282             : }
    1283             : 
    1284             : #ifdef CONFIG_COMPAT_32BIT_TIME
    1285             : 
    1286             : SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
    1287             :                 struct old_timespec32 __user *, rqtp,
    1288             :                 struct old_timespec32 __user *, rmtp)
    1289             : {
    1290             :         const struct k_clock *kc = clockid_to_kclock(which_clock);
    1291             :         struct timespec64 t;
    1292             : 
    1293             :         if (!kc)
    1294             :                 return -EINVAL;
    1295             :         if (!kc->nsleep)
    1296             :                 return -EOPNOTSUPP;
    1297             : 
    1298             :         if (get_old_timespec32(&t, rqtp))
    1299             :                 return -EFAULT;
    1300             : 
    1301             :         if (!timespec64_valid(&t))
    1302             :                 return -EINVAL;
    1303             :         if (flags & TIMER_ABSTIME)
    1304             :                 rmtp = NULL;
    1305             :         current->restart_block.fn = do_no_restart_syscall;
    1306             :         current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
    1307             :         current->restart_block.nanosleep.compat_rmtp = rmtp;
    1308             : 
    1309             :         return kc->nsleep(which_clock, flags, &t);
    1310             : }
    1311             : 
    1312             : #endif
    1313             : 
    1314             : static const struct k_clock clock_realtime = {
    1315             :         .clock_getres           = posix_get_hrtimer_res,
    1316             :         .clock_get_timespec     = posix_get_realtime_timespec,
    1317             :         .clock_get_ktime        = posix_get_realtime_ktime,
    1318             :         .clock_set              = posix_clock_realtime_set,
    1319             :         .clock_adj              = posix_clock_realtime_adj,
    1320             :         .nsleep                 = common_nsleep,
    1321             :         .timer_create           = common_timer_create,
    1322             :         .timer_set              = common_timer_set,
    1323             :         .timer_get              = common_timer_get,
    1324             :         .timer_del              = common_timer_del,
    1325             :         .timer_rearm            = common_hrtimer_rearm,
    1326             :         .timer_forward          = common_hrtimer_forward,
    1327             :         .timer_remaining        = common_hrtimer_remaining,
    1328             :         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
    1329             :         .timer_wait_running     = common_timer_wait_running,
    1330             :         .timer_arm              = common_hrtimer_arm,
    1331             : };
    1332             : 
    1333             : static const struct k_clock clock_monotonic = {
    1334             :         .clock_getres           = posix_get_hrtimer_res,
    1335             :         .clock_get_timespec     = posix_get_monotonic_timespec,
    1336             :         .clock_get_ktime        = posix_get_monotonic_ktime,
    1337             :         .nsleep                 = common_nsleep_timens,
    1338             :         .timer_create           = common_timer_create,
    1339             :         .timer_set              = common_timer_set,
    1340             :         .timer_get              = common_timer_get,
    1341             :         .timer_del              = common_timer_del,
    1342             :         .timer_rearm            = common_hrtimer_rearm,
    1343             :         .timer_forward          = common_hrtimer_forward,
    1344             :         .timer_remaining        = common_hrtimer_remaining,
    1345             :         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
    1346             :         .timer_wait_running     = common_timer_wait_running,
    1347             :         .timer_arm              = common_hrtimer_arm,
    1348             : };
    1349             : 
    1350             : static const struct k_clock clock_monotonic_raw = {
    1351             :         .clock_getres           = posix_get_hrtimer_res,
    1352             :         .clock_get_timespec     = posix_get_monotonic_raw,
    1353             : };
    1354             : 
    1355             : static const struct k_clock clock_realtime_coarse = {
    1356             :         .clock_getres           = posix_get_coarse_res,
    1357             :         .clock_get_timespec     = posix_get_realtime_coarse,
    1358             : };
    1359             : 
    1360             : static const struct k_clock clock_monotonic_coarse = {
    1361             :         .clock_getres           = posix_get_coarse_res,
    1362             :         .clock_get_timespec     = posix_get_monotonic_coarse,
    1363             : };
    1364             : 
    1365             : static const struct k_clock clock_tai = {
    1366             :         .clock_getres           = posix_get_hrtimer_res,
    1367             :         .clock_get_ktime        = posix_get_tai_ktime,
    1368             :         .clock_get_timespec     = posix_get_tai_timespec,
    1369             :         .nsleep                 = common_nsleep,
    1370             :         .timer_create           = common_timer_create,
    1371             :         .timer_set              = common_timer_set,
    1372             :         .timer_get              = common_timer_get,
    1373             :         .timer_del              = common_timer_del,
    1374             :         .timer_rearm            = common_hrtimer_rearm,
    1375             :         .timer_forward          = common_hrtimer_forward,
    1376             :         .timer_remaining        = common_hrtimer_remaining,
    1377             :         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
    1378             :         .timer_wait_running     = common_timer_wait_running,
    1379             :         .timer_arm              = common_hrtimer_arm,
    1380             : };
    1381             : 
    1382             : static const struct k_clock clock_boottime = {
    1383             :         .clock_getres           = posix_get_hrtimer_res,
    1384             :         .clock_get_ktime        = posix_get_boottime_ktime,
    1385             :         .clock_get_timespec     = posix_get_boottime_timespec,
    1386             :         .nsleep                 = common_nsleep_timens,
    1387             :         .timer_create           = common_timer_create,
    1388             :         .timer_set              = common_timer_set,
    1389             :         .timer_get              = common_timer_get,
    1390             :         .timer_del              = common_timer_del,
    1391             :         .timer_rearm            = common_hrtimer_rearm,
    1392             :         .timer_forward          = common_hrtimer_forward,
    1393             :         .timer_remaining        = common_hrtimer_remaining,
    1394             :         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
    1395             :         .timer_wait_running     = common_timer_wait_running,
    1396             :         .timer_arm              = common_hrtimer_arm,
    1397             : };
    1398             : 
    1399             : static const struct k_clock * const posix_clocks[] = {
    1400             :         [CLOCK_REALTIME]                = &clock_realtime,
    1401             :         [CLOCK_MONOTONIC]               = &clock_monotonic,
    1402             :         [CLOCK_PROCESS_CPUTIME_ID]      = &clock_process,
    1403             :         [CLOCK_THREAD_CPUTIME_ID]       = &clock_thread,
    1404             :         [CLOCK_MONOTONIC_RAW]           = &clock_monotonic_raw,
    1405             :         [CLOCK_REALTIME_COARSE]         = &clock_realtime_coarse,
    1406             :         [CLOCK_MONOTONIC_COARSE]        = &clock_monotonic_coarse,
    1407             :         [CLOCK_BOOTTIME]                = &clock_boottime,
    1408             :         [CLOCK_REALTIME_ALARM]          = &alarm_clock,
    1409             :         [CLOCK_BOOTTIME_ALARM]          = &alarm_clock,
    1410             :         [CLOCK_TAI]                     = &clock_tai,
    1411             : };
    1412             : 
    1413             : static const struct k_clock *clockid_to_kclock(const clockid_t id)
    1414             : {
    1415           0 :         clockid_t idx = id;
    1416             : 
    1417           0 :         if (id < 0) {
    1418           0 :                 return (id & CLOCKFD_MASK) == CLOCKFD ?
    1419           0 :                         &clock_posix_dynamic : &clock_posix_cpu;
    1420             :         }
    1421             : 
    1422           0 :         if (id >= ARRAY_SIZE(posix_clocks))
    1423             :                 return NULL;
    1424             : 
    1425           0 :         return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
    1426             : }

Generated by: LCOV version 1.14