LCOV - code coverage report
Current view: top level - kernel/time - timekeeping.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 270 718 37.6 %
Date: 2023-07-19 18:55:55 Functions: 22 59 37.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  *  Kernel timekeeping code and accessor functions. Based on code from
       4             :  *  timer.c, moved in commit 8524070b7982.
       5             :  */
       6             : #include <linux/timekeeper_internal.h>
       7             : #include <linux/module.h>
       8             : #include <linux/interrupt.h>
       9             : #include <linux/percpu.h>
      10             : #include <linux/init.h>
      11             : #include <linux/mm.h>
      12             : #include <linux/nmi.h>
      13             : #include <linux/sched.h>
      14             : #include <linux/sched/loadavg.h>
      15             : #include <linux/sched/clock.h>
      16             : #include <linux/syscore_ops.h>
      17             : #include <linux/clocksource.h>
      18             : #include <linux/jiffies.h>
      19             : #include <linux/time.h>
      20             : #include <linux/timex.h>
      21             : #include <linux/tick.h>
      22             : #include <linux/stop_machine.h>
      23             : #include <linux/pvclock_gtod.h>
      24             : #include <linux/compiler.h>
      25             : #include <linux/audit.h>
      26             : #include <linux/random.h>
      27             : 
      28             : #include "tick-internal.h"
      29             : #include "ntp_internal.h"
      30             : #include "timekeeping_internal.h"
      31             : 
      32             : #define TK_CLEAR_NTP            (1 << 0)
      33             : #define TK_MIRROR               (1 << 1)
      34             : #define TK_CLOCK_WAS_SET        (1 << 2)
      35             : 
      36             : enum timekeeping_adv_mode {
      37             :         /* Update timekeeper when a tick has passed */
      38             :         TK_ADV_TICK,
      39             : 
      40             :         /* Update timekeeper on a direct frequency change */
      41             :         TK_ADV_FREQ
      42             : };
      43             : 
      44             : DEFINE_RAW_SPINLOCK(timekeeper_lock);
      45             : 
      46             : /*
      47             :  * The most important data for readout fits into a single 64 byte
      48             :  * cache line.
      49             :  */
      50             : static struct {
      51             :         seqcount_raw_spinlock_t seq;
      52             :         struct timekeeper       timekeeper;
      53             : } tk_core ____cacheline_aligned = {
      54             :         .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
      55             : };
      56             : 
      57             : static struct timekeeper shadow_timekeeper;
      58             : 
      59             : /* flag for if timekeeping is suspended */
      60             : int __read_mostly timekeeping_suspended;
      61             : 
      62             : /**
      63             :  * struct tk_fast - NMI safe timekeeper
      64             :  * @seq:        Sequence counter for protecting updates. The lowest bit
      65             :  *              is the index for the tk_read_base array
      66             :  * @base:       tk_read_base array. Access is indexed by the lowest bit of
      67             :  *              @seq.
      68             :  *
      69             :  * See @update_fast_timekeeper() below.
      70             :  */
      71             : struct tk_fast {
      72             :         seqcount_latch_t        seq;
      73             :         struct tk_read_base     base[2];
      74             : };
      75             : 
      76             : /* Suspend-time cycles value for halted fast timekeeper. */
      77             : static u64 cycles_at_suspend;
      78             : 
      79           0 : static u64 dummy_clock_read(struct clocksource *cs)
      80             : {
      81           0 :         if (timekeeping_suspended)
      82           0 :                 return cycles_at_suspend;
      83           0 :         return local_clock();
      84             : }
      85             : 
      86             : static struct clocksource dummy_clock = {
      87             :         .read = dummy_clock_read,
      88             : };
      89             : 
      90             : /*
      91             :  * Boot time initialization which allows local_clock() to be utilized
      92             :  * during early boot when clocksources are not available. local_clock()
      93             :  * returns nanoseconds already so no conversion is required, hence mult=1
      94             :  * and shift=0. When the first proper clocksource is installed then
      95             :  * the fast time keepers are updated with the correct values.
      96             :  */
      97             : #define FAST_TK_INIT                                            \
      98             :         {                                                       \
      99             :                 .clock          = &dummy_clock,                     \
     100             :                 .mask           = CLOCKSOURCE_MASK(64),         \
     101             :                 .mult           = 1,                            \
     102             :                 .shift          = 0,                            \
     103             :         }
     104             : 
     105             : static struct tk_fast tk_fast_mono ____cacheline_aligned = {
     106             :         .seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
     107             :         .base[0] = FAST_TK_INIT,
     108             :         .base[1] = FAST_TK_INIT,
     109             : };
     110             : 
     111             : static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
     112             :         .seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
     113             :         .base[0] = FAST_TK_INIT,
     114             :         .base[1] = FAST_TK_INIT,
     115             : };
     116             : 
     117             : static inline void tk_normalize_xtime(struct timekeeper *tk)
     118             : {
     119           1 :         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
     120           0 :                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
     121           0 :                 tk->xtime_sec++;
     122             :         }
     123           1 :         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
     124           0 :                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
     125           0 :                 tk->raw_sec++;
     126             :         }
     127             : }
     128             : 
     129             : static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
     130             : {
     131             :         struct timespec64 ts;
     132             : 
     133          64 :         ts.tv_sec = tk->xtime_sec;
     134          64 :         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
     135             :         return ts;
     136             : }
     137             : 
     138             : static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
     139             : {
     140           1 :         tk->xtime_sec = ts->tv_sec;
     141           1 :         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
     142             : }
     143             : 
     144           0 : static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
     145             : {
     146           0 :         tk->xtime_sec += ts->tv_sec;
     147           0 :         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
     148           0 :         tk_normalize_xtime(tk);
     149           0 : }
     150             : 
     151           1 : static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
     152             : {
     153             :         struct timespec64 tmp;
     154             : 
     155             :         /*
     156             :          * Verify consistency of: offset_real = -wall_to_monotonic
     157             :          * before modifying anything
     158             :          */
     159           1 :         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
     160           1 :                                         -tk->wall_to_monotonic.tv_nsec);
     161           2 :         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
     162           1 :         tk->wall_to_monotonic = wtm;
     163           1 :         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
     164           1 :         tk->offs_real = timespec64_to_ktime(tmp);
     165           2 :         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
     166           1 : }
     167             : 
     168             : static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
     169             : {
     170           0 :         tk->offs_boot = ktime_add(tk->offs_boot, delta);
     171             :         /*
     172             :          * Timespec representation for VDSO update to avoid 64bit division
     173             :          * on every update.
     174             :          */
     175           0 :         tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
     176             : }
     177             : 
     178             : /*
     179             :  * tk_clock_read - atomic clocksource read() helper
     180             :  *
     181             :  * This helper is necessary to use in the read paths because, while the
     182             :  * seqcount ensures we don't return a bad value while structures are updated,
     183             :  * it doesn't protect from potential crashes. There is the possibility that
     184             :  * the tkr's clocksource may change between the read reference, and the
     185             :  * clock reference passed to the read function.  This can cause crashes if
     186             :  * the wrong clocksource is passed to the wrong read function.
     187             :  * This isn't necessary to use when holding the timekeeper_lock or doing
     188             :  * a read of the fast-timekeeper tkrs (which is protected by its own locking
     189             :  * and update logic).
     190             :  */
     191             : static inline u64 tk_clock_read(const struct tk_read_base *tkr)
     192             : {
     193        6665 :         struct clocksource *clock = READ_ONCE(tkr->clock);
     194             : 
     195        6665 :         return clock->read(clock);
     196             : }
     197             : 
     198             : #ifdef CONFIG_DEBUG_TIMEKEEPING
     199             : #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
     200             : 
     201             : static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
     202             : {
     203             : 
     204             :         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
     205             :         const char *name = tk->tkr_mono.clock->name;
     206             : 
     207             :         if (offset > max_cycles) {
     208             :                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
     209             :                                 offset, name, max_cycles);
     210             :                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
     211             :         } else {
     212             :                 if (offset > (max_cycles >> 1)) {
     213             :                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
     214             :                                         offset, name, max_cycles >> 1);
     215             :                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
     216             :                 }
     217             :         }
     218             : 
     219             :         if (tk->underflow_seen) {
     220             :                 if (jiffies - tk->last_warning > WARNING_FREQ) {
     221             :                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
     222             :                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
     223             :                         printk_deferred("         Your kernel is probably still fine.\n");
     224             :                         tk->last_warning = jiffies;
     225             :                 }
     226             :                 tk->underflow_seen = 0;
     227             :         }
     228             : 
     229             :         if (tk->overflow_seen) {
     230             :                 if (jiffies - tk->last_warning > WARNING_FREQ) {
     231             :                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
     232             :                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
     233             :                         printk_deferred("         Your kernel is probably still fine.\n");
     234             :                         tk->last_warning = jiffies;
     235             :                 }
     236             :                 tk->overflow_seen = 0;
     237             :         }
     238             : }
     239             : 
     240             : static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
     241             : {
     242             :         struct timekeeper *tk = &tk_core.timekeeper;
     243             :         u64 now, last, mask, max, delta;
     244             :         unsigned int seq;
     245             : 
     246             :         /*
     247             :          * Since we're called holding a seqcount, the data may shift
     248             :          * under us while we're doing the calculation. This can cause
     249             :          * false positives, since we'd note a problem but throw the
     250             :          * results away. So nest another seqcount here to atomically
     251             :          * grab the points we are checking with.
     252             :          */
     253             :         do {
     254             :                 seq = read_seqcount_begin(&tk_core.seq);
     255             :                 now = tk_clock_read(tkr);
     256             :                 last = tkr->cycle_last;
     257             :                 mask = tkr->mask;
     258             :                 max = tkr->clock->max_cycles;
     259             :         } while (read_seqcount_retry(&tk_core.seq, seq));
     260             : 
     261             :         delta = clocksource_delta(now, last, mask);
     262             : 
     263             :         /*
     264             :          * Try to catch underflows by checking if we are seeing small
     265             :          * mask-relative negative values.
     266             :          */
     267             :         if (unlikely((~delta & mask) < (mask >> 3))) {
     268             :                 tk->underflow_seen = 1;
     269             :                 delta = 0;
     270             :         }
     271             : 
     272             :         /* Cap delta value to the max_cycles values to avoid mult overflows */
     273             :         if (unlikely(delta > max)) {
     274             :                 tk->overflow_seen = 1;
     275             :                 delta = tkr->clock->max_cycles;
     276             :         }
     277             : 
     278             :         return delta;
     279             : }
     280             : #else
     281             : static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
     282             : {
     283             : }
     284             : static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
     285             : {
     286             :         u64 cycle_now, delta;
     287             : 
     288             :         /* read clocksource */
     289        3719 :         cycle_now = tk_clock_read(tkr);
     290             : 
     291             :         /* calculate the delta since the last update_wall_time */
     292        7438 :         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
     293             : 
     294             :         return delta;
     295             : }
     296             : #endif
     297             : 
     298             : /**
     299             :  * tk_setup_internals - Set up internals to use clocksource clock.
     300             :  *
     301             :  * @tk:         The target timekeeper to setup.
     302             :  * @clock:              Pointer to clocksource.
     303             :  *
     304             :  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
     305             :  * pair and interval request.
     306             :  *
     307             :  * Unless you're the timekeeping code, you should not be using this!
     308             :  */
     309           2 : static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
     310             : {
     311             :         u64 interval;
     312             :         u64 tmp, ntpinterval;
     313             :         struct clocksource *old_clock;
     314             : 
     315           2 :         ++tk->cs_was_changed_seq;
     316           2 :         old_clock = tk->tkr_mono.clock;
     317           2 :         tk->tkr_mono.clock = clock;
     318           2 :         tk->tkr_mono.mask = clock->mask;
     319           4 :         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
     320             : 
     321           2 :         tk->tkr_raw.clock = clock;
     322           2 :         tk->tkr_raw.mask = clock->mask;
     323           2 :         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
     324             : 
     325             :         /* Do the ns -> cycle conversion first, using original mult */
     326           2 :         tmp = NTP_INTERVAL_LENGTH;
     327           2 :         tmp <<= clock->shift;
     328           2 :         ntpinterval = tmp;
     329           2 :         tmp += clock->mult/2;
     330           2 :         do_div(tmp, clock->mult);
     331           2 :         if (tmp == 0)
     332           0 :                 tmp = 1;
     333             : 
     334           2 :         interval = (u64) tmp;
     335           2 :         tk->cycle_interval = interval;
     336             : 
     337             :         /* Go back from cycles -> shifted ns */
     338           2 :         tk->xtime_interval = interval * clock->mult;
     339           2 :         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
     340           2 :         tk->raw_interval = interval * clock->mult;
     341             : 
     342             :          /* if changing clocks, convert xtime_nsec shift units */
     343           2 :         if (old_clock) {
     344           1 :                 int shift_change = clock->shift - old_clock->shift;
     345           1 :                 if (shift_change < 0) {
     346           0 :                         tk->tkr_mono.xtime_nsec >>= -shift_change;
     347           0 :                         tk->tkr_raw.xtime_nsec >>= -shift_change;
     348             :                 } else {
     349           1 :                         tk->tkr_mono.xtime_nsec <<= shift_change;
     350           1 :                         tk->tkr_raw.xtime_nsec <<= shift_change;
     351             :                 }
     352             :         }
     353             : 
     354           2 :         tk->tkr_mono.shift = clock->shift;
     355           2 :         tk->tkr_raw.shift = clock->shift;
     356             : 
     357           2 :         tk->ntp_error = 0;
     358           2 :         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
     359           2 :         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
     360             : 
     361             :         /*
     362             :          * The timekeeper keeps its own mult values for the currently
     363             :          * active clocksource. These value will be adjusted via NTP
     364             :          * to counteract clock drifting.
     365             :          */
     366           2 :         tk->tkr_mono.mult = clock->mult;
     367           2 :         tk->tkr_raw.mult = clock->mult;
     368           2 :         tk->ntp_err_mult = 0;
     369           2 :         tk->skip_second_overflow = 0;
     370           2 : }
     371             : 
     372             : /* Timekeeper helper functions. */
     373             : 
     374             : static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
     375             : {
     376             :         u64 nsec;
     377             : 
     378        3719 :         nsec = delta * tkr->mult + tkr->xtime_nsec;
     379        3719 :         nsec >>= tkr->shift;
     380             : 
     381             :         return nsec;
     382             : }
     383             : 
     384             : static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
     385             : {
     386             :         u64 delta;
     387             : 
     388        3719 :         delta = timekeeping_get_delta(tkr);
     389        7438 :         return timekeeping_delta_to_ns(tkr, delta);
     390             : }
     391             : 
     392             : static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
     393             : {
     394             :         u64 delta;
     395             : 
     396             :         /* calculate the delta since the last update_wall_time */
     397           0 :         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
     398           0 :         return timekeeping_delta_to_ns(tkr, delta);
     399             : }
     400             : 
     401             : /**
     402             :  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
     403             :  * @tkr: Timekeeping readout base from which we take the update
     404             :  * @tkf: Pointer to NMI safe timekeeper
     405             :  *
     406             :  * We want to use this from any context including NMI and tracing /
     407             :  * instrumenting the timekeeping code itself.
     408             :  *
     409             :  * Employ the latch technique; see @raw_write_seqcount_latch.
     410             :  *
     411             :  * So if a NMI hits the update of base[0] then it will use base[1]
     412             :  * which is still consistent. In the worst case this can result is a
     413             :  * slightly wrong timestamp (a few nanoseconds). See
     414             :  * @ktime_get_mono_fast_ns.
     415             :  */
     416        5884 : static void update_fast_timekeeper(const struct tk_read_base *tkr,
     417             :                                    struct tk_fast *tkf)
     418             : {
     419        5884 :         struct tk_read_base *base = tkf->base;
     420             : 
     421             :         /* Force readers off to base[1] */
     422       11768 :         raw_write_seqcount_latch(&tkf->seq);
     423             : 
     424             :         /* Update base[0] */
     425        5884 :         memcpy(base, tkr, sizeof(*base));
     426             : 
     427             :         /* Force readers back to base[0] */
     428       11768 :         raw_write_seqcount_latch(&tkf->seq);
     429             : 
     430             :         /* Update base[1] */
     431        5884 :         memcpy(base + 1, base, sizeof(*base));
     432        5884 : }
     433             : 
     434             : static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
     435             : {
     436           0 :         u64 delta, cycles = tk_clock_read(tkr);
     437             : 
     438           0 :         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
     439           0 :         return timekeeping_delta_to_ns(tkr, delta);
     440             : }
     441             : 
     442             : static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
     443             : {
     444             :         struct tk_read_base *tkr;
     445             :         unsigned int seq;
     446             :         u64 now;
     447             : 
     448             :         do {
     449           0 :                 seq = raw_read_seqcount_latch(&tkf->seq);
     450           0 :                 tkr = tkf->base + (seq & 0x01);
     451           0 :                 now = ktime_to_ns(tkr->base);
     452           0 :                 now += fast_tk_get_delta_ns(tkr);
     453           0 :         } while (read_seqcount_latch_retry(&tkf->seq, seq));
     454             : 
     455             :         return now;
     456             : }
     457             : 
     458             : /**
     459             :  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
     460             :  *
     461             :  * This timestamp is not guaranteed to be monotonic across an update.
     462             :  * The timestamp is calculated by:
     463             :  *
     464             :  *      now = base_mono + clock_delta * slope
     465             :  *
     466             :  * So if the update lowers the slope, readers who are forced to the
     467             :  * not yet updated second array are still using the old steeper slope.
     468             :  *
     469             :  * tmono
     470             :  * ^
     471             :  * |    o  n
     472             :  * |   o n
     473             :  * |  u
     474             :  * | o
     475             :  * |o
     476             :  * |12345678---> reader order
     477             :  *
     478             :  * o = old slope
     479             :  * u = update
     480             :  * n = new slope
     481             :  *
     482             :  * So reader 6 will observe time going backwards versus reader 5.
     483             :  *
     484             :  * While other CPUs are likely to be able to observe that, the only way
     485             :  * for a CPU local observation is when an NMI hits in the middle of
     486             :  * the update. Timestamps taken from that NMI context might be ahead
     487             :  * of the following timestamps. Callers need to be aware of that and
     488             :  * deal with it.
     489             :  */
     490           0 : u64 notrace ktime_get_mono_fast_ns(void)
     491             : {
     492           0 :         return __ktime_get_fast_ns(&tk_fast_mono);
     493             : }
     494             : EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
     495             : 
     496             : /**
     497             :  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
     498             :  *
     499             :  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
     500             :  * conversion factor is not affected by NTP/PTP correction.
     501             :  */
     502           0 : u64 notrace ktime_get_raw_fast_ns(void)
     503             : {
     504           0 :         return __ktime_get_fast_ns(&tk_fast_raw);
     505             : }
     506             : EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
     507             : 
     508             : /**
     509             :  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
     510             :  *
     511             :  * To keep it NMI safe since we're accessing from tracing, we're not using a
     512             :  * separate timekeeper with updates to monotonic clock and boot offset
     513             :  * protected with seqcounts. This has the following minor side effects:
     514             :  *
     515             :  * (1) Its possible that a timestamp be taken after the boot offset is updated
     516             :  * but before the timekeeper is updated. If this happens, the new boot offset
     517             :  * is added to the old timekeeping making the clock appear to update slightly
     518             :  * earlier:
     519             :  *    CPU 0                                        CPU 1
     520             :  *    timekeeping_inject_sleeptime64()
     521             :  *    __timekeeping_inject_sleeptime(tk, delta);
     522             :  *                                                 timestamp();
     523             :  *    timekeeping_update(tk, TK_CLEAR_NTP...);
     524             :  *
     525             :  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
     526             :  * partially updated.  Since the tk->offs_boot update is a rare event, this
     527             :  * should be a rare occurrence which postprocessing should be able to handle.
     528             :  *
     529             :  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
     530             :  * apply as well.
     531             :  */
     532           0 : u64 notrace ktime_get_boot_fast_ns(void)
     533             : {
     534           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     535             : 
     536           0 :         return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
     537             : }
     538             : EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
     539             : 
     540             : /**
     541             :  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
     542             :  *
     543             :  * The same limitations as described for ktime_get_boot_fast_ns() apply. The
     544             :  * mono time and the TAI offset are not read atomically which may yield wrong
     545             :  * readouts. However, an update of the TAI offset is an rare event e.g., caused
     546             :  * by settime or adjtimex with an offset. The user of this function has to deal
     547             :  * with the possibility of wrong timestamps in post processing.
     548             :  */
     549           0 : u64 notrace ktime_get_tai_fast_ns(void)
     550             : {
     551           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     552             : 
     553           0 :         return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
     554             : }
     555             : EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
     556             : 
     557             : static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
     558             : {
     559             :         struct tk_read_base *tkr;
     560             :         u64 basem, baser, delta;
     561             :         unsigned int seq;
     562             : 
     563             :         do {
     564           0 :                 seq = raw_read_seqcount_latch(&tkf->seq);
     565           0 :                 tkr = tkf->base + (seq & 0x01);
     566           0 :                 basem = ktime_to_ns(tkr->base);
     567           0 :                 baser = ktime_to_ns(tkr->base_real);
     568           0 :                 delta = fast_tk_get_delta_ns(tkr);
     569           0 :         } while (read_seqcount_latch_retry(&tkf->seq, seq));
     570             : 
     571           0 :         if (mono)
     572           0 :                 *mono = basem + delta;
     573           0 :         return baser + delta;
     574             : }
     575             : 
     576             : /**
     577             :  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
     578             :  *
     579             :  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
     580             :  */
     581           0 : u64 ktime_get_real_fast_ns(void)
     582             : {
     583           0 :         return __ktime_get_real_fast(&tk_fast_mono, NULL);
     584             : }
     585             : EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
     586             : 
     587             : /**
     588             :  * ktime_get_fast_timestamps: - NMI safe timestamps
     589             :  * @snapshot:   Pointer to timestamp storage
     590             :  *
     591             :  * Stores clock monotonic, boottime and realtime timestamps.
     592             :  *
     593             :  * Boot time is a racy access on 32bit systems if the sleep time injection
     594             :  * happens late during resume and not in timekeeping_resume(). That could
     595             :  * be avoided by expanding struct tk_read_base with boot offset for 32bit
     596             :  * and adding more overhead to the update. As this is a hard to observe
     597             :  * once per resume event which can be filtered with reasonable effort using
     598             :  * the accurate mono/real timestamps, it's probably not worth the trouble.
     599             :  *
     600             :  * Aside of that it might be possible on 32 and 64 bit to observe the
     601             :  * following when the sleep time injection happens late:
     602             :  *
     603             :  * CPU 0                                CPU 1
     604             :  * timekeeping_resume()
     605             :  * ktime_get_fast_timestamps()
     606             :  *      mono, real = __ktime_get_real_fast()
     607             :  *                                      inject_sleep_time()
     608             :  *                                         update boot offset
     609             :  *      boot = mono + bootoffset;
     610             :  *
     611             :  * That means that boot time already has the sleep time adjustment, but
     612             :  * real time does not. On the next readout both are in sync again.
     613             :  *
     614             :  * Preventing this for 64bit is not really feasible without destroying the
     615             :  * careful cache layout of the timekeeper because the sequence count and
     616             :  * struct tk_read_base would then need two cache lines instead of one.
     617             :  *
     618             :  * Access to the time keeper clock source is disabled across the innermost
     619             :  * steps of suspend/resume. The accessors still work, but the timestamps
     620             :  * are frozen until time keeping is resumed which happens very early.
     621             :  *
     622             :  * For regular suspend/resume there is no observable difference vs. sched
     623             :  * clock, but it might affect some of the nasty low level debug printks.
     624             :  *
     625             :  * OTOH, access to sched clock is not guaranteed across suspend/resume on
     626             :  * all systems either so it depends on the hardware in use.
     627             :  *
     628             :  * If that turns out to be a real problem then this could be mitigated by
     629             :  * using sched clock in a similar way as during early boot. But it's not as
     630             :  * trivial as on early boot because it needs some careful protection
     631             :  * against the clock monotonic timestamp jumping backwards on resume.
     632             :  */
     633           0 : void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
     634             : {
     635           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     636             : 
     637           0 :         snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
     638           0 :         snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
     639           0 : }
     640             : 
     641             : /**
     642             :  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
     643             :  * @tk: Timekeeper to snapshot.
     644             :  *
     645             :  * It generally is unsafe to access the clocksource after timekeeping has been
     646             :  * suspended, so take a snapshot of the readout base of @tk and use it as the
     647             :  * fast timekeeper's readout base while suspended.  It will return the same
     648             :  * number of cycles every time until timekeeping is resumed at which time the
     649             :  * proper readout base for the fast timekeeper will be restored automatically.
     650             :  */
     651           0 : static void halt_fast_timekeeper(const struct timekeeper *tk)
     652             : {
     653             :         static struct tk_read_base tkr_dummy;
     654           0 :         const struct tk_read_base *tkr = &tk->tkr_mono;
     655             : 
     656           0 :         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
     657           0 :         cycles_at_suspend = tk_clock_read(tkr);
     658           0 :         tkr_dummy.clock = &dummy_clock;
     659           0 :         tkr_dummy.base_real = tkr->base + tk->offs_real;
     660           0 :         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
     661             : 
     662           0 :         tkr = &tk->tkr_raw;
     663           0 :         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
     664           0 :         tkr_dummy.clock = &dummy_clock;
     665           0 :         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
     666           0 : }
     667             : 
     668             : static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
     669             : 
     670             : static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
     671             : {
     672        2942 :         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
     673             : }
     674             : 
     675             : /**
     676             :  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
     677             :  * @nb: Pointer to the notifier block to register
     678             :  */
     679           0 : int pvclock_gtod_register_notifier(struct notifier_block *nb)
     680             : {
     681           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     682             :         unsigned long flags;
     683             :         int ret;
     684             : 
     685           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
     686           0 :         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
     687           0 :         update_pvclock_gtod(tk, true);
     688           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
     689             : 
     690           0 :         return ret;
     691             : }
     692             : EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
     693             : 
     694             : /**
     695             :  * pvclock_gtod_unregister_notifier - unregister a pvclock
     696             :  * timedata update listener
     697             :  * @nb: Pointer to the notifier block to unregister
     698             :  */
     699           0 : int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
     700             : {
     701             :         unsigned long flags;
     702             :         int ret;
     703             : 
     704           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
     705           0 :         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
     706           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
     707             : 
     708           0 :         return ret;
     709             : }
     710             : EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
     711             : 
     712             : /*
     713             :  * tk_update_leap_state - helper to update the next_leap_ktime
     714             :  */
     715             : static inline void tk_update_leap_state(struct timekeeper *tk)
     716             : {
     717        2942 :         tk->next_leap_ktime = ntp_get_next_leap();
     718        2942 :         if (tk->next_leap_ktime != KTIME_MAX)
     719             :                 /* Convert to monotonic time */
     720           0 :                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
     721             : }
     722             : 
     723             : /*
     724             :  * Update the ktime_t based scalar nsec members of the timekeeper
     725             :  */
     726             : static inline void tk_update_ktime_data(struct timekeeper *tk)
     727             : {
     728             :         u64 seconds;
     729             :         u32 nsec;
     730             : 
     731             :         /*
     732             :          * The xtime based monotonic readout is:
     733             :          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
     734             :          * The ktime based monotonic readout is:
     735             :          *      nsec = base_mono + now();
     736             :          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
     737             :          */
     738        2942 :         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
     739        2942 :         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
     740        5884 :         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
     741             : 
     742             :         /*
     743             :          * The sum of the nanoseconds portions of xtime and
     744             :          * wall_to_monotonic can be greater/equal one second. Take
     745             :          * this into account before updating tk->ktime_sec.
     746             :          */
     747        2942 :         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
     748        2942 :         if (nsec >= NSEC_PER_SEC)
     749        1464 :                 seconds++;
     750        2942 :         tk->ktime_sec = seconds;
     751             : 
     752             :         /* Update the monotonic raw base */
     753        5884 :         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
     754             : }
     755             : 
     756             : /* must hold timekeeper_lock */
     757        2942 : static void timekeeping_update(struct timekeeper *tk, unsigned int action)
     758             : {
     759        2942 :         if (action & TK_CLEAR_NTP) {
     760           1 :                 tk->ntp_error = 0;
     761           1 :                 ntp_clear();
     762             :         }
     763             : 
     764        5884 :         tk_update_leap_state(tk);
     765        2942 :         tk_update_ktime_data(tk);
     766             : 
     767        2942 :         update_vsyscall(tk);
     768        5884 :         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
     769             : 
     770        2942 :         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
     771        2942 :         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
     772        2942 :         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
     773             : 
     774        2942 :         if (action & TK_CLOCK_WAS_SET)
     775           2 :                 tk->clock_was_set_seq++;
     776             :         /*
     777             :          * The mirroring of the data to the shadow-timekeeper needs
     778             :          * to happen last here to ensure we don't over-write the
     779             :          * timekeeper structure on the next update with stale data
     780             :          */
     781        2942 :         if (action & TK_MIRROR)
     782           2 :                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
     783             :                        sizeof(tk_core.timekeeper));
     784        2942 : }
     785             : 
     786             : /**
     787             :  * timekeeping_forward_now - update clock to the current time
     788             :  * @tk:         Pointer to the timekeeper to update
     789             :  *
     790             :  * Forward the current clock to update its state since the last call to
     791             :  * update_wall_time(). This is useful before significant clock changes,
     792             :  * as it avoids having to deal with this time offset explicitly.
     793             :  */
     794           1 : static void timekeeping_forward_now(struct timekeeper *tk)
     795             : {
     796             :         u64 cycle_now, delta;
     797             : 
     798           2 :         cycle_now = tk_clock_read(&tk->tkr_mono);
     799           2 :         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
     800           1 :         tk->tkr_mono.cycle_last = cycle_now;
     801           1 :         tk->tkr_raw.cycle_last  = cycle_now;
     802             : 
     803           1 :         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
     804           1 :         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
     805             : 
     806           1 :         tk_normalize_xtime(tk);
     807           1 : }
     808             : 
     809             : /**
     810             :  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
     811             :  * @ts:         pointer to the timespec to be set
     812             :  *
     813             :  * Returns the time of day in a timespec64 (WARN if suspended).
     814             :  */
     815           0 : void ktime_get_real_ts64(struct timespec64 *ts)
     816             : {
     817           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     818             :         unsigned int seq;
     819             :         u64 nsecs;
     820             : 
     821           0 :         WARN_ON(timekeeping_suspended);
     822             : 
     823             :         do {
     824           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     825             : 
     826           0 :                 ts->tv_sec = tk->xtime_sec;
     827           0 :                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
     828             : 
     829           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     830             : 
     831             :         ts->tv_nsec = 0;
     832           0 :         timespec64_add_ns(ts, nsecs);
     833           0 : }
     834             : EXPORT_SYMBOL(ktime_get_real_ts64);
     835             : 
     836         393 : ktime_t ktime_get(void)
     837             : {
     838         393 :         struct timekeeper *tk = &tk_core.timekeeper;
     839             :         unsigned int seq;
     840             :         ktime_t base;
     841             :         u64 nsecs;
     842             : 
     843         393 :         WARN_ON(timekeeping_suspended);
     844             : 
     845             :         do {
     846         393 :                 seq = read_seqcount_begin(&tk_core.seq);
     847         393 :                 base = tk->tkr_mono.base;
     848         786 :                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
     849             : 
     850         786 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     851             : 
     852         393 :         return ktime_add_ns(base, nsecs);
     853             : }
     854             : EXPORT_SYMBOL_GPL(ktime_get);
     855             : 
     856           0 : u32 ktime_get_resolution_ns(void)
     857             : {
     858           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     859             :         unsigned int seq;
     860             :         u32 nsecs;
     861             : 
     862           0 :         WARN_ON(timekeeping_suspended);
     863             : 
     864             :         do {
     865           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     866           0 :                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
     867           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     868             : 
     869           0 :         return nsecs;
     870             : }
     871             : EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
     872             : 
     873             : static ktime_t *offsets[TK_OFFS_MAX] = {
     874             :         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
     875             :         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
     876             :         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
     877             : };
     878             : 
     879         383 : ktime_t ktime_get_with_offset(enum tk_offsets offs)
     880             : {
     881         383 :         struct timekeeper *tk = &tk_core.timekeeper;
     882             :         unsigned int seq;
     883         383 :         ktime_t base, *offset = offsets[offs];
     884             :         u64 nsecs;
     885             : 
     886         383 :         WARN_ON(timekeeping_suspended);
     887             : 
     888             :         do {
     889         383 :                 seq = read_seqcount_begin(&tk_core.seq);
     890         383 :                 base = ktime_add(tk->tkr_mono.base, *offset);
     891         766 :                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
     892             : 
     893         766 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     894             : 
     895         383 :         return ktime_add_ns(base, nsecs);
     896             : 
     897             : }
     898             : EXPORT_SYMBOL_GPL(ktime_get_with_offset);
     899             : 
     900           0 : ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
     901             : {
     902           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     903             :         unsigned int seq;
     904           0 :         ktime_t base, *offset = offsets[offs];
     905             :         u64 nsecs;
     906             : 
     907           0 :         WARN_ON(timekeeping_suspended);
     908             : 
     909             :         do {
     910           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     911           0 :                 base = ktime_add(tk->tkr_mono.base, *offset);
     912           0 :                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
     913             : 
     914           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     915             : 
     916           0 :         return ktime_add_ns(base, nsecs);
     917             : }
     918             : EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
     919             : 
     920             : /**
     921             :  * ktime_mono_to_any() - convert monotonic time to any other time
     922             :  * @tmono:      time to convert.
     923             :  * @offs:       which offset to use
     924             :  */
     925           0 : ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
     926             : {
     927           0 :         ktime_t *offset = offsets[offs];
     928             :         unsigned int seq;
     929             :         ktime_t tconv;
     930             : 
     931             :         do {
     932           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     933           0 :                 tconv = ktime_add(tmono, *offset);
     934           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     935             : 
     936           0 :         return tconv;
     937             : }
     938             : EXPORT_SYMBOL_GPL(ktime_mono_to_any);
     939             : 
     940             : /**
     941             :  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
     942             :  */
     943           0 : ktime_t ktime_get_raw(void)
     944             : {
     945           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     946             :         unsigned int seq;
     947             :         ktime_t base;
     948             :         u64 nsecs;
     949             : 
     950             :         do {
     951           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     952           0 :                 base = tk->tkr_raw.base;
     953           0 :                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
     954             : 
     955           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     956             : 
     957           0 :         return ktime_add_ns(base, nsecs);
     958             : }
     959             : EXPORT_SYMBOL_GPL(ktime_get_raw);
     960             : 
     961             : /**
     962             :  * ktime_get_ts64 - get the monotonic clock in timespec64 format
     963             :  * @ts:         pointer to timespec variable
     964             :  *
     965             :  * The function calculates the monotonic clock from the realtime
     966             :  * clock and the wall_to_monotonic offset and stores the result
     967             :  * in normalized timespec64 format in the variable pointed to by @ts.
     968             :  */
     969           0 : void ktime_get_ts64(struct timespec64 *ts)
     970             : {
     971           0 :         struct timekeeper *tk = &tk_core.timekeeper;
     972             :         struct timespec64 tomono;
     973             :         unsigned int seq;
     974             :         u64 nsec;
     975             : 
     976           0 :         WARN_ON(timekeeping_suspended);
     977             : 
     978             :         do {
     979           0 :                 seq = read_seqcount_begin(&tk_core.seq);
     980           0 :                 ts->tv_sec = tk->xtime_sec;
     981           0 :                 nsec = timekeeping_get_ns(&tk->tkr_mono);
     982           0 :                 tomono = tk->wall_to_monotonic;
     983             : 
     984           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
     985             : 
     986           0 :         ts->tv_sec += tomono.tv_sec;
     987             :         ts->tv_nsec = 0;
     988           0 :         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
     989           0 : }
     990             : EXPORT_SYMBOL_GPL(ktime_get_ts64);
     991             : 
     992             : /**
     993             :  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
     994             :  *
     995             :  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
     996             :  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
     997             :  * works on both 32 and 64 bit systems. On 32 bit systems the readout
     998             :  * covers ~136 years of uptime which should be enough to prevent
     999             :  * premature wrap arounds.
    1000             :  */
    1001          10 : time64_t ktime_get_seconds(void)
    1002             : {
    1003          10 :         struct timekeeper *tk = &tk_core.timekeeper;
    1004             : 
    1005          10 :         WARN_ON(timekeeping_suspended);
    1006          10 :         return tk->ktime_sec;
    1007             : }
    1008             : EXPORT_SYMBOL_GPL(ktime_get_seconds);
    1009             : 
    1010             : /**
    1011             :  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
    1012             :  *
    1013             :  * Returns the wall clock seconds since 1970.
    1014             :  *
    1015             :  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
    1016             :  * 32bit systems the access must be protected with the sequence
    1017             :  * counter to provide "atomic" access to the 64bit tk->xtime_sec
    1018             :  * value.
    1019             :  */
    1020           0 : time64_t ktime_get_real_seconds(void)
    1021             : {
    1022           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1023             :         time64_t seconds;
    1024             :         unsigned int seq;
    1025             : 
    1026             :         if (IS_ENABLED(CONFIG_64BIT))
    1027           0 :                 return tk->xtime_sec;
    1028             : 
    1029             :         do {
    1030             :                 seq = read_seqcount_begin(&tk_core.seq);
    1031             :                 seconds = tk->xtime_sec;
    1032             : 
    1033             :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1034             : 
    1035             :         return seconds;
    1036             : }
    1037             : EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
    1038             : 
    1039             : /**
    1040             :  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
    1041             :  * but without the sequence counter protect. This internal function
    1042             :  * is called just when timekeeping lock is already held.
    1043             :  */
    1044           0 : noinstr time64_t __ktime_get_real_seconds(void)
    1045             : {
    1046           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1047             : 
    1048           0 :         return tk->xtime_sec;
    1049             : }
    1050             : 
    1051             : /**
    1052             :  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
    1053             :  * @systime_snapshot:   pointer to struct receiving the system time snapshot
    1054             :  */
    1055           0 : void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
    1056             : {
    1057           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1058             :         unsigned int seq;
    1059             :         ktime_t base_raw;
    1060             :         ktime_t base_real;
    1061             :         u64 nsec_raw;
    1062             :         u64 nsec_real;
    1063             :         u64 now;
    1064             : 
    1065           0 :         WARN_ON_ONCE(timekeeping_suspended);
    1066             : 
    1067             :         do {
    1068           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    1069           0 :                 now = tk_clock_read(&tk->tkr_mono);
    1070           0 :                 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
    1071           0 :                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
    1072           0 :                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
    1073           0 :                 base_real = ktime_add(tk->tkr_mono.base,
    1074             :                                       tk_core.timekeeper.offs_real);
    1075           0 :                 base_raw = tk->tkr_raw.base;
    1076           0 :                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
    1077           0 :                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
    1078           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1079             : 
    1080           0 :         systime_snapshot->cycles = now;
    1081           0 :         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
    1082           0 :         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
    1083           0 : }
    1084             : EXPORT_SYMBOL_GPL(ktime_get_snapshot);
    1085             : 
    1086             : /* Scale base by mult/div checking for overflow */
    1087           0 : static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
    1088             : {
    1089             :         u64 tmp, rem;
    1090             : 
    1091           0 :         tmp = div64_u64_rem(*base, div, &rem);
    1092             : 
    1093           0 :         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
    1094           0 :             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
    1095             :                 return -EOVERFLOW;
    1096           0 :         tmp *= mult;
    1097             : 
    1098           0 :         rem = div64_u64(rem * mult, div);
    1099           0 :         *base = tmp + rem;
    1100           0 :         return 0;
    1101             : }
    1102             : 
    1103             : /**
    1104             :  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
    1105             :  * @history:                    Snapshot representing start of history
    1106             :  * @partial_history_cycles:     Cycle offset into history (fractional part)
    1107             :  * @total_history_cycles:       Total history length in cycles
    1108             :  * @discontinuity:              True indicates clock was set on history period
    1109             :  * @ts:                         Cross timestamp that should be adjusted using
    1110             :  *      partial/total ratio
    1111             :  *
    1112             :  * Helper function used by get_device_system_crosststamp() to correct the
    1113             :  * crosstimestamp corresponding to the start of the current interval to the
    1114             :  * system counter value (timestamp point) provided by the driver. The
    1115             :  * total_history_* quantities are the total history starting at the provided
    1116             :  * reference point and ending at the start of the current interval. The cycle
    1117             :  * count between the driver timestamp point and the start of the current
    1118             :  * interval is partial_history_cycles.
    1119             :  */
    1120           0 : static int adjust_historical_crosststamp(struct system_time_snapshot *history,
    1121             :                                          u64 partial_history_cycles,
    1122             :                                          u64 total_history_cycles,
    1123             :                                          bool discontinuity,
    1124             :                                          struct system_device_crosststamp *ts)
    1125             : {
    1126           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1127             :         u64 corr_raw, corr_real;
    1128             :         bool interp_forward;
    1129             :         int ret;
    1130             : 
    1131           0 :         if (total_history_cycles == 0 || partial_history_cycles == 0)
    1132             :                 return 0;
    1133             : 
    1134             :         /* Interpolate shortest distance from beginning or end of history */
    1135           0 :         interp_forward = partial_history_cycles > total_history_cycles / 2;
    1136           0 :         partial_history_cycles = interp_forward ?
    1137           0 :                 total_history_cycles - partial_history_cycles :
    1138             :                 partial_history_cycles;
    1139             : 
    1140             :         /*
    1141             :          * Scale the monotonic raw time delta by:
    1142             :          *      partial_history_cycles / total_history_cycles
    1143             :          */
    1144           0 :         corr_raw = (u64)ktime_to_ns(
    1145           0 :                 ktime_sub(ts->sys_monoraw, history->raw));
    1146           0 :         ret = scale64_check_overflow(partial_history_cycles,
    1147             :                                      total_history_cycles, &corr_raw);
    1148           0 :         if (ret)
    1149             :                 return ret;
    1150             : 
    1151             :         /*
    1152             :          * If there is a discontinuity in the history, scale monotonic raw
    1153             :          *      correction by:
    1154             :          *      mult(real)/mult(raw) yielding the realtime correction
    1155             :          * Otherwise, calculate the realtime correction similar to monotonic
    1156             :          *      raw calculation
    1157             :          */
    1158           0 :         if (discontinuity) {
    1159           0 :                 corr_real = mul_u64_u32_div
    1160             :                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
    1161             :         } else {
    1162           0 :                 corr_real = (u64)ktime_to_ns(
    1163           0 :                         ktime_sub(ts->sys_realtime, history->real));
    1164           0 :                 ret = scale64_check_overflow(partial_history_cycles,
    1165             :                                              total_history_cycles, &corr_real);
    1166           0 :                 if (ret)
    1167             :                         return ret;
    1168             :         }
    1169             : 
    1170             :         /* Fixup monotonic raw and real time time values */
    1171           0 :         if (interp_forward) {
    1172           0 :                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
    1173           0 :                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
    1174             :         } else {
    1175           0 :                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
    1176           0 :                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
    1177             :         }
    1178             : 
    1179             :         return 0;
    1180             : }
    1181             : 
    1182             : /*
    1183             :  * cycle_between - true if test occurs chronologically between before and after
    1184             :  */
    1185             : static bool cycle_between(u64 before, u64 test, u64 after)
    1186             : {
    1187           0 :         if (test > before && test < after)
    1188             :                 return true;
    1189           0 :         if (test < before && before > after)
    1190             :                 return true;
    1191             :         return false;
    1192             : }
    1193             : 
    1194             : /**
    1195             :  * get_device_system_crosststamp - Synchronously capture system/device timestamp
    1196             :  * @get_time_fn:        Callback to get simultaneous device time and
    1197             :  *      system counter from the device driver
    1198             :  * @ctx:                Context passed to get_time_fn()
    1199             :  * @history_begin:      Historical reference point used to interpolate system
    1200             :  *      time when counter provided by the driver is before the current interval
    1201             :  * @xtstamp:            Receives simultaneously captured system and device time
    1202             :  *
    1203             :  * Reads a timestamp from a device and correlates it to system time
    1204             :  */
    1205           0 : int get_device_system_crosststamp(int (*get_time_fn)
    1206             :                                   (ktime_t *device_time,
    1207             :                                    struct system_counterval_t *sys_counterval,
    1208             :                                    void *ctx),
    1209             :                                   void *ctx,
    1210             :                                   struct system_time_snapshot *history_begin,
    1211             :                                   struct system_device_crosststamp *xtstamp)
    1212             : {
    1213             :         struct system_counterval_t system_counterval;
    1214           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1215             :         u64 cycles, now, interval_start;
    1216           0 :         unsigned int clock_was_set_seq = 0;
    1217             :         ktime_t base_real, base_raw;
    1218             :         u64 nsec_real, nsec_raw;
    1219             :         u8 cs_was_changed_seq;
    1220             :         unsigned int seq;
    1221             :         bool do_interp;
    1222             :         int ret;
    1223             : 
    1224             :         do {
    1225           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    1226             :                 /*
    1227             :                  * Try to synchronously capture device time and a system
    1228             :                  * counter value calling back into the device driver
    1229             :                  */
    1230           0 :                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
    1231           0 :                 if (ret)
    1232             :                         return ret;
    1233             : 
    1234             :                 /*
    1235             :                  * Verify that the clocksource associated with the captured
    1236             :                  * system counter value is the same as the currently installed
    1237             :                  * timekeeper clocksource
    1238             :                  */
    1239           0 :                 if (tk->tkr_mono.clock != system_counterval.cs)
    1240             :                         return -ENODEV;
    1241           0 :                 cycles = system_counterval.cycles;
    1242             : 
    1243             :                 /*
    1244             :                  * Check whether the system counter value provided by the
    1245             :                  * device driver is on the current timekeeping interval.
    1246             :                  */
    1247           0 :                 now = tk_clock_read(&tk->tkr_mono);
    1248           0 :                 interval_start = tk->tkr_mono.cycle_last;
    1249           0 :                 if (!cycle_between(interval_start, cycles, now)) {
    1250           0 :                         clock_was_set_seq = tk->clock_was_set_seq;
    1251           0 :                         cs_was_changed_seq = tk->cs_was_changed_seq;
    1252           0 :                         cycles = interval_start;
    1253           0 :                         do_interp = true;
    1254             :                 } else {
    1255             :                         do_interp = false;
    1256             :                 }
    1257             : 
    1258           0 :                 base_real = ktime_add(tk->tkr_mono.base,
    1259             :                                       tk_core.timekeeper.offs_real);
    1260           0 :                 base_raw = tk->tkr_raw.base;
    1261             : 
    1262           0 :                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
    1263             :                                                      system_counterval.cycles);
    1264           0 :                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
    1265             :                                                     system_counterval.cycles);
    1266           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1267             : 
    1268           0 :         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
    1269           0 :         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
    1270             : 
    1271             :         /*
    1272             :          * Interpolate if necessary, adjusting back from the start of the
    1273             :          * current interval
    1274             :          */
    1275           0 :         if (do_interp) {
    1276             :                 u64 partial_history_cycles, total_history_cycles;
    1277             :                 bool discontinuity;
    1278             : 
    1279             :                 /*
    1280             :                  * Check that the counter value occurs after the provided
    1281             :                  * history reference and that the history doesn't cross a
    1282             :                  * clocksource change
    1283             :                  */
    1284           0 :                 if (!history_begin ||
    1285           0 :                     !cycle_between(history_begin->cycles,
    1286           0 :                                    system_counterval.cycles, cycles) ||
    1287           0 :                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
    1288             :                         return -EINVAL;
    1289           0 :                 partial_history_cycles = cycles - system_counterval.cycles;
    1290           0 :                 total_history_cycles = cycles - history_begin->cycles;
    1291           0 :                 discontinuity =
    1292           0 :                         history_begin->clock_was_set_seq != clock_was_set_seq;
    1293             : 
    1294           0 :                 ret = adjust_historical_crosststamp(history_begin,
    1295             :                                                     partial_history_cycles,
    1296             :                                                     total_history_cycles,
    1297             :                                                     discontinuity, xtstamp);
    1298           0 :                 if (ret)
    1299             :                         return ret;
    1300             :         }
    1301             : 
    1302             :         return 0;
    1303             : }
    1304             : EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
    1305             : 
    1306             : /**
    1307             :  * do_settimeofday64 - Sets the time of day.
    1308             :  * @ts:     pointer to the timespec64 variable containing the new time
    1309             :  *
    1310             :  * Sets the time of day to the new time and update NTP and notify hrtimers
    1311             :  */
    1312           0 : int do_settimeofday64(const struct timespec64 *ts)
    1313             : {
    1314           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1315             :         struct timespec64 ts_delta, xt;
    1316             :         unsigned long flags;
    1317           0 :         int ret = 0;
    1318             : 
    1319           0 :         if (!timespec64_valid_settod(ts))
    1320             :                 return -EINVAL;
    1321             : 
    1322           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1323           0 :         write_seqcount_begin(&tk_core.seq);
    1324             : 
    1325           0 :         timekeeping_forward_now(tk);
    1326             : 
    1327           0 :         xt = tk_xtime(tk);
    1328           0 :         ts_delta = timespec64_sub(*ts, xt);
    1329             : 
    1330           0 :         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
    1331             :                 ret = -EINVAL;
    1332             :                 goto out;
    1333             :         }
    1334             : 
    1335           0 :         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
    1336             : 
    1337             :         tk_set_xtime(tk, ts);
    1338             : out:
    1339           0 :         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
    1340             : 
    1341           0 :         write_seqcount_end(&tk_core.seq);
    1342           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1343             : 
    1344             :         /* Signal hrtimers about time change */
    1345           0 :         clock_was_set(CLOCK_SET_WALL);
    1346             : 
    1347           0 :         if (!ret) {
    1348           0 :                 audit_tk_injoffset(ts_delta);
    1349           0 :                 add_device_randomness(ts, sizeof(*ts));
    1350             :         }
    1351             : 
    1352             :         return ret;
    1353             : }
    1354             : EXPORT_SYMBOL(do_settimeofday64);
    1355             : 
    1356             : /**
    1357             :  * timekeeping_inject_offset - Adds or subtracts from the current time.
    1358             :  * @ts:         Pointer to the timespec variable containing the offset
    1359             :  *
    1360             :  * Adds or subtracts an offset value from the current time.
    1361             :  */
    1362           0 : static int timekeeping_inject_offset(const struct timespec64 *ts)
    1363             : {
    1364           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1365             :         unsigned long flags;
    1366             :         struct timespec64 tmp;
    1367           0 :         int ret = 0;
    1368             : 
    1369           0 :         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
    1370             :                 return -EINVAL;
    1371             : 
    1372           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1373           0 :         write_seqcount_begin(&tk_core.seq);
    1374             : 
    1375           0 :         timekeeping_forward_now(tk);
    1376             : 
    1377             :         /* Make sure the proposed value is valid */
    1378           0 :         tmp = timespec64_add(tk_xtime(tk), *ts);
    1379           0 :         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
    1380           0 :             !timespec64_valid_settod(&tmp)) {
    1381             :                 ret = -EINVAL;
    1382             :                 goto error;
    1383             :         }
    1384             : 
    1385           0 :         tk_xtime_add(tk, ts);
    1386           0 :         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
    1387             : 
    1388             : error: /* even if we error out, we forwarded the time, so call update */
    1389           0 :         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
    1390             : 
    1391           0 :         write_seqcount_end(&tk_core.seq);
    1392           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1393             : 
    1394             :         /* Signal hrtimers about time change */
    1395           0 :         clock_was_set(CLOCK_SET_WALL);
    1396             : 
    1397           0 :         return ret;
    1398             : }
    1399             : 
    1400             : /*
    1401             :  * Indicates if there is an offset between the system clock and the hardware
    1402             :  * clock/persistent clock/rtc.
    1403             :  */
    1404             : int persistent_clock_is_local;
    1405             : 
    1406             : /*
    1407             :  * Adjust the time obtained from the CMOS to be UTC time instead of
    1408             :  * local time.
    1409             :  *
    1410             :  * This is ugly, but preferable to the alternatives.  Otherwise we
    1411             :  * would either need to write a program to do it in /etc/rc (and risk
    1412             :  * confusion if the program gets run more than once; it would also be
    1413             :  * hard to make the program warp the clock precisely n hours)  or
    1414             :  * compile in the timezone information into the kernel.  Bad, bad....
    1415             :  *
    1416             :  *                                              - TYT, 1992-01-01
    1417             :  *
    1418             :  * The best thing to do is to keep the CMOS clock in universal time (UTC)
    1419             :  * as real UNIX machines always do it. This avoids all headaches about
    1420             :  * daylight saving times and warping kernel clocks.
    1421             :  */
    1422           0 : void timekeeping_warp_clock(void)
    1423             : {
    1424           0 :         if (sys_tz.tz_minuteswest != 0) {
    1425             :                 struct timespec64 adjust;
    1426             : 
    1427           0 :                 persistent_clock_is_local = 1;
    1428           0 :                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
    1429           0 :                 adjust.tv_nsec = 0;
    1430           0 :                 timekeeping_inject_offset(&adjust);
    1431             :         }
    1432           0 : }
    1433             : 
    1434             : /*
    1435             :  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
    1436             :  */
    1437             : static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
    1438             : {
    1439           0 :         tk->tai_offset = tai_offset;
    1440           0 :         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
    1441             : }
    1442             : 
    1443             : /*
    1444             :  * change_clocksource - Swaps clocksources if a new one is available
    1445             :  *
    1446             :  * Accumulates current time interval and initializes new clocksource
    1447             :  */
    1448           1 : static int change_clocksource(void *data)
    1449             : {
    1450           1 :         struct timekeeper *tk = &tk_core.timekeeper;
    1451           1 :         struct clocksource *new, *old = NULL;
    1452             :         unsigned long flags;
    1453           1 :         bool change = false;
    1454             : 
    1455           1 :         new = (struct clocksource *) data;
    1456             : 
    1457             :         /*
    1458             :          * If the cs is in module, get a module reference. Succeeds
    1459             :          * for built-in code (owner == NULL) as well.
    1460             :          */
    1461           1 :         if (try_module_get(new->owner)) {
    1462           1 :                 if (!new->enable || new->enable(new) == 0)
    1463             :                         change = true;
    1464             :                 else
    1465           0 :                         module_put(new->owner);
    1466             :         }
    1467             : 
    1468           1 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1469           2 :         write_seqcount_begin(&tk_core.seq);
    1470             : 
    1471           1 :         timekeeping_forward_now(tk);
    1472             : 
    1473           1 :         if (change) {
    1474           1 :                 old = tk->tkr_mono.clock;
    1475           1 :                 tk_setup_internals(tk, new);
    1476             :         }
    1477             : 
    1478           1 :         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
    1479             : 
    1480           2 :         write_seqcount_end(&tk_core.seq);
    1481           2 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1482             : 
    1483           1 :         if (old) {
    1484           1 :                 if (old->disable)
    1485           0 :                         old->disable(old);
    1486             : 
    1487           1 :                 module_put(old->owner);
    1488             :         }
    1489             : 
    1490           1 :         return 0;
    1491             : }
    1492             : 
    1493             : /**
    1494             :  * timekeeping_notify - Install a new clock source
    1495             :  * @clock:              pointer to the clock source
    1496             :  *
    1497             :  * This function is called from clocksource.c after a new, better clock
    1498             :  * source has been registered. The caller holds the clocksource_mutex.
    1499             :  */
    1500           1 : int timekeeping_notify(struct clocksource *clock)
    1501             : {
    1502           1 :         struct timekeeper *tk = &tk_core.timekeeper;
    1503             : 
    1504           1 :         if (tk->tkr_mono.clock == clock)
    1505             :                 return 0;
    1506           1 :         stop_machine(change_clocksource, clock, NULL);
    1507             :         tick_clock_notify();
    1508           1 :         return tk->tkr_mono.clock == clock ? 0 : -1;
    1509             : }
    1510             : 
    1511             : /**
    1512             :  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
    1513             :  * @ts:         pointer to the timespec64 to be set
    1514             :  *
    1515             :  * Returns the raw monotonic time (completely un-modified by ntp)
    1516             :  */
    1517           0 : void ktime_get_raw_ts64(struct timespec64 *ts)
    1518             : {
    1519           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1520             :         unsigned int seq;
    1521             :         u64 nsecs;
    1522             : 
    1523             :         do {
    1524           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    1525           0 :                 ts->tv_sec = tk->raw_sec;
    1526           0 :                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
    1527             : 
    1528           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1529             : 
    1530             :         ts->tv_nsec = 0;
    1531           0 :         timespec64_add_ns(ts, nsecs);
    1532           0 : }
    1533             : EXPORT_SYMBOL(ktime_get_raw_ts64);
    1534             : 
    1535             : 
    1536             : /**
    1537             :  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
    1538             :  */
    1539           0 : int timekeeping_valid_for_hres(void)
    1540             : {
    1541           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1542             :         unsigned int seq;
    1543             :         int ret;
    1544             : 
    1545             :         do {
    1546           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    1547             : 
    1548           0 :                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
    1549             : 
    1550           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1551             : 
    1552           0 :         return ret;
    1553             : }
    1554             : 
    1555             : /**
    1556             :  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
    1557             :  */
    1558           0 : u64 timekeeping_max_deferment(void)
    1559             : {
    1560           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1561             :         unsigned int seq;
    1562             :         u64 ret;
    1563             : 
    1564             :         do {
    1565           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    1566             : 
    1567           0 :                 ret = tk->tkr_mono.clock->max_idle_ns;
    1568             : 
    1569           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    1570             : 
    1571           0 :         return ret;
    1572             : }
    1573             : 
    1574             : /**
    1575             :  * read_persistent_clock64 -  Return time from the persistent clock.
    1576             :  * @ts: Pointer to the storage for the readout value
    1577             :  *
    1578             :  * Weak dummy function for arches that do not yet support it.
    1579             :  * Reads the time from the battery backed persistent clock.
    1580             :  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
    1581             :  *
    1582             :  *  XXX - Do be sure to remove it once all arches implement it.
    1583             :  */
    1584           0 : void __weak read_persistent_clock64(struct timespec64 *ts)
    1585             : {
    1586           0 :         ts->tv_sec = 0;
    1587           0 :         ts->tv_nsec = 0;
    1588           0 : }
    1589             : 
    1590             : /**
    1591             :  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
    1592             :  *                                        from the boot.
    1593             :  * @wall_time:    current time as returned by persistent clock
    1594             :  * @boot_offset:  offset that is defined as wall_time - boot_time
    1595             :  *
    1596             :  * Weak dummy function for arches that do not yet support it.
    1597             :  *
    1598             :  * The default function calculates offset based on the current value of
    1599             :  * local_clock(). This way architectures that support sched_clock() but don't
    1600             :  * support dedicated boot time clock will provide the best estimate of the
    1601             :  * boot time.
    1602             :  */
    1603             : void __weak __init
    1604           1 : read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
    1605             :                                      struct timespec64 *boot_offset)
    1606             : {
    1607           1 :         read_persistent_clock64(wall_time);
    1608           1 :         *boot_offset = ns_to_timespec64(local_clock());
    1609           1 : }
    1610             : 
    1611             : /*
    1612             :  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
    1613             :  *
    1614             :  * The flag starts of false and is only set when a suspend reaches
    1615             :  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
    1616             :  * timekeeper clocksource is not stopping across suspend and has been
    1617             :  * used to update sleep time. If the timekeeper clocksource has stopped
    1618             :  * then the flag stays true and is used by the RTC resume code to decide
    1619             :  * whether sleeptime must be injected and if so the flag gets false then.
    1620             :  *
    1621             :  * If a suspend fails before reaching timekeeping_resume() then the flag
    1622             :  * stays false and prevents erroneous sleeptime injection.
    1623             :  */
    1624             : static bool suspend_timing_needed;
    1625             : 
    1626             : /* Flag for if there is a persistent clock on this platform */
    1627             : static bool persistent_clock_exists;
    1628             : 
    1629             : /*
    1630             :  * timekeeping_init - Initializes the clocksource and common timekeeping values
    1631             :  */
    1632           1 : void __init timekeeping_init(void)
    1633             : {
    1634             :         struct timespec64 wall_time, boot_offset, wall_to_mono;
    1635           1 :         struct timekeeper *tk = &tk_core.timekeeper;
    1636             :         struct clocksource *clock;
    1637             :         unsigned long flags;
    1638             : 
    1639           1 :         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
    1640           2 :         if (timespec64_valid_settod(&wall_time) &&
    1641           1 :             timespec64_to_ns(&wall_time) > 0) {
    1642           1 :                 persistent_clock_exists = true;
    1643           0 :         } else if (timespec64_to_ns(&wall_time) != 0) {
    1644           0 :                 pr_warn("Persistent clock returned invalid value");
    1645           0 :                 wall_time = (struct timespec64){0};
    1646             :         }
    1647             : 
    1648           1 :         if (timespec64_compare(&wall_time, &boot_offset) < 0)
    1649           0 :                 boot_offset = (struct timespec64){0};
    1650             : 
    1651             :         /*
    1652             :          * We want set wall_to_mono, so the following is true:
    1653             :          * wall time + wall_to_mono = boot time
    1654             :          */
    1655             :         wall_to_mono = timespec64_sub(boot_offset, wall_time);
    1656             : 
    1657           1 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1658           2 :         write_seqcount_begin(&tk_core.seq);
    1659           1 :         ntp_init();
    1660             : 
    1661           1 :         clock = clocksource_default_clock();
    1662           1 :         if (clock->enable)
    1663           0 :                 clock->enable(clock);
    1664           1 :         tk_setup_internals(tk, clock);
    1665             : 
    1666           1 :         tk_set_xtime(tk, &wall_time);
    1667           1 :         tk->raw_sec = 0;
    1668             : 
    1669           1 :         tk_set_wall_to_mono(tk, wall_to_mono);
    1670             : 
    1671           1 :         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
    1672             : 
    1673           2 :         write_seqcount_end(&tk_core.seq);
    1674           2 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1675           1 : }
    1676             : 
    1677             : /* time in seconds when suspend began for persistent clock */
    1678             : static struct timespec64 timekeeping_suspend_time;
    1679             : 
    1680             : /**
    1681             :  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
    1682             :  * @tk:         Pointer to the timekeeper to be updated
    1683             :  * @delta:      Pointer to the delta value in timespec64 format
    1684             :  *
    1685             :  * Takes a timespec offset measuring a suspend interval and properly
    1686             :  * adds the sleep offset to the timekeeping variables.
    1687             :  */
    1688           0 : static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
    1689             :                                            const struct timespec64 *delta)
    1690             : {
    1691           0 :         if (!timespec64_valid_strict(delta)) {
    1692           0 :                 printk_deferred(KERN_WARNING
    1693             :                                 "__timekeeping_inject_sleeptime: Invalid "
    1694             :                                 "sleep delta value!\n");
    1695           0 :                 return;
    1696             :         }
    1697           0 :         tk_xtime_add(tk, delta);
    1698           0 :         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
    1699           0 :         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
    1700             :         tk_debug_account_sleep_time(delta);
    1701             : }
    1702             : 
    1703             : #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
    1704             : /*
    1705             :  * We have three kinds of time sources to use for sleep time
    1706             :  * injection, the preference order is:
    1707             :  * 1) non-stop clocksource
    1708             :  * 2) persistent clock (ie: RTC accessible when irqs are off)
    1709             :  * 3) RTC
    1710             :  *
    1711             :  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
    1712             :  * If system has neither 1) nor 2), 3) will be used finally.
    1713             :  *
    1714             :  *
    1715             :  * If timekeeping has injected sleeptime via either 1) or 2),
    1716             :  * 3) becomes needless, so in this case we don't need to call
    1717             :  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
    1718             :  * means.
    1719             :  */
    1720             : bool timekeeping_rtc_skipresume(void)
    1721             : {
    1722             :         return !suspend_timing_needed;
    1723             : }
    1724             : 
    1725             : /*
    1726             :  * 1) can be determined whether to use or not only when doing
    1727             :  * timekeeping_resume() which is invoked after rtc_suspend(),
    1728             :  * so we can't skip rtc_suspend() surely if system has 1).
    1729             :  *
    1730             :  * But if system has 2), 2) will definitely be used, so in this
    1731             :  * case we don't need to call rtc_suspend(), and this is what
    1732             :  * timekeeping_rtc_skipsuspend() means.
    1733             :  */
    1734             : bool timekeeping_rtc_skipsuspend(void)
    1735             : {
    1736             :         return persistent_clock_exists;
    1737             : }
    1738             : 
    1739             : /**
    1740             :  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
    1741             :  * @delta: pointer to a timespec64 delta value
    1742             :  *
    1743             :  * This hook is for architectures that cannot support read_persistent_clock64
    1744             :  * because their RTC/persistent clock is only accessible when irqs are enabled.
    1745             :  * and also don't have an effective nonstop clocksource.
    1746             :  *
    1747             :  * This function should only be called by rtc_resume(), and allows
    1748             :  * a suspend offset to be injected into the timekeeping values.
    1749             :  */
    1750             : void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
    1751             : {
    1752             :         struct timekeeper *tk = &tk_core.timekeeper;
    1753             :         unsigned long flags;
    1754             : 
    1755             :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1756             :         write_seqcount_begin(&tk_core.seq);
    1757             : 
    1758             :         suspend_timing_needed = false;
    1759             : 
    1760             :         timekeeping_forward_now(tk);
    1761             : 
    1762             :         __timekeeping_inject_sleeptime(tk, delta);
    1763             : 
    1764             :         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
    1765             : 
    1766             :         write_seqcount_end(&tk_core.seq);
    1767             :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1768             : 
    1769             :         /* Signal hrtimers about time change */
    1770             :         clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
    1771             : }
    1772             : #endif
    1773             : 
    1774             : /**
    1775             :  * timekeeping_resume - Resumes the generic timekeeping subsystem.
    1776             :  */
    1777           0 : void timekeeping_resume(void)
    1778             : {
    1779           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1780           0 :         struct clocksource *clock = tk->tkr_mono.clock;
    1781             :         unsigned long flags;
    1782             :         struct timespec64 ts_new, ts_delta;
    1783             :         u64 cycle_now, nsec;
    1784           0 :         bool inject_sleeptime = false;
    1785             : 
    1786           0 :         read_persistent_clock64(&ts_new);
    1787             : 
    1788           0 :         clockevents_resume();
    1789           0 :         clocksource_resume();
    1790             : 
    1791           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1792           0 :         write_seqcount_begin(&tk_core.seq);
    1793             : 
    1794             :         /*
    1795             :          * After system resumes, we need to calculate the suspended time and
    1796             :          * compensate it for the OS time. There are 3 sources that could be
    1797             :          * used: Nonstop clocksource during suspend, persistent clock and rtc
    1798             :          * device.
    1799             :          *
    1800             :          * One specific platform may have 1 or 2 or all of them, and the
    1801             :          * preference will be:
    1802             :          *      suspend-nonstop clocksource -> persistent clock -> rtc
    1803             :          * The less preferred source will only be tried if there is no better
    1804             :          * usable source. The rtc part is handled separately in rtc core code.
    1805             :          */
    1806           0 :         cycle_now = tk_clock_read(&tk->tkr_mono);
    1807           0 :         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
    1808           0 :         if (nsec > 0) {
    1809           0 :                 ts_delta = ns_to_timespec64(nsec);
    1810           0 :                 inject_sleeptime = true;
    1811           0 :         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
    1812           0 :                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
    1813           0 :                 inject_sleeptime = true;
    1814             :         }
    1815             : 
    1816           0 :         if (inject_sleeptime) {
    1817           0 :                 suspend_timing_needed = false;
    1818           0 :                 __timekeeping_inject_sleeptime(tk, &ts_delta);
    1819             :         }
    1820             : 
    1821             :         /* Re-base the last cycle value */
    1822           0 :         tk->tkr_mono.cycle_last = cycle_now;
    1823           0 :         tk->tkr_raw.cycle_last  = cycle_now;
    1824             : 
    1825           0 :         tk->ntp_error = 0;
    1826           0 :         timekeeping_suspended = 0;
    1827           0 :         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
    1828           0 :         write_seqcount_end(&tk_core.seq);
    1829           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1830             : 
    1831             :         touch_softlockup_watchdog();
    1832             : 
    1833             :         /* Resume the clockevent device(s) and hrtimers */
    1834           0 :         tick_resume();
    1835             :         /* Notify timerfd as resume is equivalent to clock_was_set() */
    1836           0 :         timerfd_resume();
    1837           0 : }
    1838             : 
    1839           0 : int timekeeping_suspend(void)
    1840             : {
    1841           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    1842             :         unsigned long flags;
    1843             :         struct timespec64               delta, delta_delta;
    1844             :         static struct timespec64        old_delta;
    1845             :         struct clocksource *curr_clock;
    1846             :         u64 cycle_now;
    1847             : 
    1848           0 :         read_persistent_clock64(&timekeeping_suspend_time);
    1849             : 
    1850             :         /*
    1851             :          * On some systems the persistent_clock can not be detected at
    1852             :          * timekeeping_init by its return value, so if we see a valid
    1853             :          * value returned, update the persistent_clock_exists flag.
    1854             :          */
    1855           0 :         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
    1856           0 :                 persistent_clock_exists = true;
    1857             : 
    1858           0 :         suspend_timing_needed = true;
    1859             : 
    1860           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    1861           0 :         write_seqcount_begin(&tk_core.seq);
    1862           0 :         timekeeping_forward_now(tk);
    1863           0 :         timekeeping_suspended = 1;
    1864             : 
    1865             :         /*
    1866             :          * Since we've called forward_now, cycle_last stores the value
    1867             :          * just read from the current clocksource. Save this to potentially
    1868             :          * use in suspend timing.
    1869             :          */
    1870           0 :         curr_clock = tk->tkr_mono.clock;
    1871           0 :         cycle_now = tk->tkr_mono.cycle_last;
    1872           0 :         clocksource_start_suspend_timing(curr_clock, cycle_now);
    1873             : 
    1874           0 :         if (persistent_clock_exists) {
    1875             :                 /*
    1876             :                  * To avoid drift caused by repeated suspend/resumes,
    1877             :                  * which each can add ~1 second drift error,
    1878             :                  * try to compensate so the difference in system time
    1879             :                  * and persistent_clock time stays close to constant.
    1880             :                  */
    1881           0 :                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
    1882             :                 delta_delta = timespec64_sub(delta, old_delta);
    1883           0 :                 if (abs(delta_delta.tv_sec) >= 2) {
    1884             :                         /*
    1885             :                          * if delta_delta is too large, assume time correction
    1886             :                          * has occurred and set old_delta to the current delta.
    1887             :                          */
    1888           0 :                         old_delta = delta;
    1889             :                 } else {
    1890             :                         /* Otherwise try to adjust old_system to compensate */
    1891           0 :                         timekeeping_suspend_time =
    1892             :                                 timespec64_add(timekeeping_suspend_time, delta_delta);
    1893             :                 }
    1894             :         }
    1895             : 
    1896           0 :         timekeeping_update(tk, TK_MIRROR);
    1897           0 :         halt_fast_timekeeper(tk);
    1898           0 :         write_seqcount_end(&tk_core.seq);
    1899           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    1900             : 
    1901           0 :         tick_suspend();
    1902           0 :         clocksource_suspend();
    1903           0 :         clockevents_suspend();
    1904             : 
    1905           0 :         return 0;
    1906             : }
    1907             : 
    1908             : /* sysfs resume/suspend bits for timekeeping */
    1909             : static struct syscore_ops timekeeping_syscore_ops = {
    1910             :         .resume         = timekeeping_resume,
    1911             :         .suspend        = timekeeping_suspend,
    1912             : };
    1913             : 
    1914           1 : static int __init timekeeping_init_ops(void)
    1915             : {
    1916           1 :         register_syscore_ops(&timekeeping_syscore_ops);
    1917           1 :         return 0;
    1918             : }
    1919             : device_initcall(timekeeping_init_ops);
    1920             : 
    1921             : /*
    1922             :  * Apply a multiplier adjustment to the timekeeper
    1923             :  */
    1924             : static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
    1925             :                                                          s64 offset,
    1926             :                                                          s32 mult_adj)
    1927             : {
    1928        2940 :         s64 interval = tk->cycle_interval;
    1929             : 
    1930        2940 :         if (mult_adj == 0) {
    1931             :                 return;
    1932           0 :         } else if (mult_adj == -1) {
    1933           0 :                 interval = -interval;
    1934           0 :                 offset = -offset;
    1935           0 :         } else if (mult_adj != 1) {
    1936           0 :                 interval *= mult_adj;
    1937           0 :                 offset *= mult_adj;
    1938             :         }
    1939             : 
    1940             :         /*
    1941             :          * So the following can be confusing.
    1942             :          *
    1943             :          * To keep things simple, lets assume mult_adj == 1 for now.
    1944             :          *
    1945             :          * When mult_adj != 1, remember that the interval and offset values
    1946             :          * have been appropriately scaled so the math is the same.
    1947             :          *
    1948             :          * The basic idea here is that we're increasing the multiplier
    1949             :          * by one, this causes the xtime_interval to be incremented by
    1950             :          * one cycle_interval. This is because:
    1951             :          *      xtime_interval = cycle_interval * mult
    1952             :          * So if mult is being incremented by one:
    1953             :          *      xtime_interval = cycle_interval * (mult + 1)
    1954             :          * Its the same as:
    1955             :          *      xtime_interval = (cycle_interval * mult) + cycle_interval
    1956             :          * Which can be shortened to:
    1957             :          *      xtime_interval += cycle_interval
    1958             :          *
    1959             :          * So offset stores the non-accumulated cycles. Thus the current
    1960             :          * time (in shifted nanoseconds) is:
    1961             :          *      now = (offset * adj) + xtime_nsec
    1962             :          * Now, even though we're adjusting the clock frequency, we have
    1963             :          * to keep time consistent. In other words, we can't jump back
    1964             :          * in time, and we also want to avoid jumping forward in time.
    1965             :          *
    1966             :          * So given the same offset value, we need the time to be the same
    1967             :          * both before and after the freq adjustment.
    1968             :          *      now = (offset * adj_1) + xtime_nsec_1
    1969             :          *      now = (offset * adj_2) + xtime_nsec_2
    1970             :          * So:
    1971             :          *      (offset * adj_1) + xtime_nsec_1 =
    1972             :          *              (offset * adj_2) + xtime_nsec_2
    1973             :          * And we know:
    1974             :          *      adj_2 = adj_1 + 1
    1975             :          * So:
    1976             :          *      (offset * adj_1) + xtime_nsec_1 =
    1977             :          *              (offset * (adj_1+1)) + xtime_nsec_2
    1978             :          *      (offset * adj_1) + xtime_nsec_1 =
    1979             :          *              (offset * adj_1) + offset + xtime_nsec_2
    1980             :          * Canceling the sides:
    1981             :          *      xtime_nsec_1 = offset + xtime_nsec_2
    1982             :          * Which gives us:
    1983             :          *      xtime_nsec_2 = xtime_nsec_1 - offset
    1984             :          * Which simplifies to:
    1985             :          *      xtime_nsec -= offset
    1986             :          */
    1987           0 :         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
    1988             :                 /* NTP adjustment caused clocksource mult overflow */
    1989           0 :                 WARN_ON_ONCE(1);
    1990             :                 return;
    1991             :         }
    1992             : 
    1993           0 :         tk->tkr_mono.mult += mult_adj;
    1994           0 :         tk->xtime_interval += interval;
    1995           0 :         tk->tkr_mono.xtime_nsec -= offset;
    1996             : }
    1997             : 
    1998             : /*
    1999             :  * Adjust the timekeeper's multiplier to the correct frequency
    2000             :  * and also to reduce the accumulated error value.
    2001             :  */
    2002        2940 : static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
    2003             : {
    2004             :         u32 mult;
    2005             : 
    2006             :         /*
    2007             :          * Determine the multiplier from the current NTP tick length.
    2008             :          * Avoid expensive division when the tick length doesn't change.
    2009             :          */
    2010        2940 :         if (likely(tk->ntp_tick == ntp_tick_length())) {
    2011        2940 :                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
    2012             :         } else {
    2013           0 :                 tk->ntp_tick = ntp_tick_length();
    2014           0 :                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
    2015           0 :                                  tk->xtime_remainder, tk->cycle_interval);
    2016             :         }
    2017             : 
    2018             :         /*
    2019             :          * If the clock is behind the NTP time, increase the multiplier by 1
    2020             :          * to catch up with it. If it's ahead and there was a remainder in the
    2021             :          * tick division, the clock will slow down. Otherwise it will stay
    2022             :          * ahead until the tick length changes to a non-divisible value.
    2023             :          */
    2024        2940 :         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
    2025        2940 :         mult += tk->ntp_err_mult;
    2026             : 
    2027        5880 :         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
    2028             : 
    2029        2940 :         if (unlikely(tk->tkr_mono.clock->maxadj &&
    2030             :                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
    2031             :                         > tk->tkr_mono.clock->maxadj))) {
    2032           0 :                 printk_once(KERN_WARNING
    2033             :                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
    2034             :                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
    2035             :                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
    2036             :         }
    2037             : 
    2038             :         /*
    2039             :          * It may be possible that when we entered this function, xtime_nsec
    2040             :          * was very small.  Further, if we're slightly speeding the clocksource
    2041             :          * in the code above, its possible the required corrective factor to
    2042             :          * xtime_nsec could cause it to underflow.
    2043             :          *
    2044             :          * Now, since we have already accumulated the second and the NTP
    2045             :          * subsystem has been notified via second_overflow(), we need to skip
    2046             :          * the next update.
    2047             :          */
    2048        2940 :         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
    2049           0 :                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
    2050           0 :                                                         tk->tkr_mono.shift;
    2051           0 :                 tk->xtime_sec--;
    2052           0 :                 tk->skip_second_overflow = 1;
    2053             :         }
    2054        2940 : }
    2055             : 
    2056             : /*
    2057             :  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
    2058             :  *
    2059             :  * Helper function that accumulates the nsecs greater than a second
    2060             :  * from the xtime_nsec field to the xtime_secs field.
    2061             :  * It also calls into the NTP code to handle leapsecond processing.
    2062             :  */
    2063        5880 : static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
    2064             : {
    2065        5880 :         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
    2066        5880 :         unsigned int clock_set = 0;
    2067             : 
    2068       11789 :         while (tk->tkr_mono.xtime_nsec >= nsecps) {
    2069             :                 int leap;
    2070             : 
    2071          29 :                 tk->tkr_mono.xtime_nsec -= nsecps;
    2072          29 :                 tk->xtime_sec++;
    2073             : 
    2074             :                 /*
    2075             :                  * Skip NTP update if this second was accumulated before,
    2076             :                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
    2077             :                  */
    2078          29 :                 if (unlikely(tk->skip_second_overflow)) {
    2079           0 :                         tk->skip_second_overflow = 0;
    2080           0 :                         continue;
    2081             :                 }
    2082             : 
    2083             :                 /* Figure out if its a leap sec and apply if needed */
    2084          29 :                 leap = second_overflow(tk->xtime_sec);
    2085          29 :                 if (unlikely(leap)) {
    2086             :                         struct timespec64 ts;
    2087             : 
    2088           0 :                         tk->xtime_sec += leap;
    2089             : 
    2090           0 :                         ts.tv_sec = leap;
    2091           0 :                         ts.tv_nsec = 0;
    2092           0 :                         tk_set_wall_to_mono(tk,
    2093             :                                 timespec64_sub(tk->wall_to_monotonic, ts));
    2094             : 
    2095           0 :                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
    2096             : 
    2097           0 :                         clock_set = TK_CLOCK_WAS_SET;
    2098             :                 }
    2099             :         }
    2100        5880 :         return clock_set;
    2101             : }
    2102             : 
    2103             : /*
    2104             :  * logarithmic_accumulation - shifted accumulation of cycles
    2105             :  *
    2106             :  * This functions accumulates a shifted interval of cycles into
    2107             :  * a shifted interval nanoseconds. Allows for O(log) accumulation
    2108             :  * loop.
    2109             :  *
    2110             :  * Returns the unconsumed cycles.
    2111             :  */
    2112        5865 : static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
    2113             :                                     u32 shift, unsigned int *clock_set)
    2114             : {
    2115        5865 :         u64 interval = tk->cycle_interval << shift;
    2116             :         u64 snsec_per_sec;
    2117             : 
    2118             :         /* If the offset is smaller than a shifted interval, do nothing */
    2119        5865 :         if (offset < interval)
    2120             :                 return offset;
    2121             : 
    2122             :         /* Accumulate one shifted interval */
    2123        2940 :         offset -= interval;
    2124        2940 :         tk->tkr_mono.cycle_last += interval;
    2125        2940 :         tk->tkr_raw.cycle_last  += interval;
    2126             : 
    2127        2940 :         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
    2128        2940 :         *clock_set |= accumulate_nsecs_to_secs(tk);
    2129             : 
    2130             :         /* Accumulate raw time */
    2131        2940 :         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
    2132        2940 :         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
    2133        5909 :         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
    2134          29 :                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
    2135          29 :                 tk->raw_sec++;
    2136             :         }
    2137             : 
    2138             :         /* Accumulate error between NTP and clock interval */
    2139        2940 :         tk->ntp_error += tk->ntp_tick << shift;
    2140        5880 :         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
    2141        2940 :                                                 (tk->ntp_error_shift + shift);
    2142             : 
    2143        2940 :         return offset;
    2144             : }
    2145             : 
    2146             : /*
    2147             :  * timekeeping_advance - Updates the timekeeper to the current time and
    2148             :  * current NTP tick length
    2149             :  */
    2150        2943 : static bool timekeeping_advance(enum timekeeping_adv_mode mode)
    2151             : {
    2152        2943 :         struct timekeeper *real_tk = &tk_core.timekeeper;
    2153        2943 :         struct timekeeper *tk = &shadow_timekeeper;
    2154             :         u64 offset;
    2155        2943 :         int shift = 0, maxshift;
    2156        2943 :         unsigned int clock_set = 0;
    2157             :         unsigned long flags;
    2158             : 
    2159        2943 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    2160             : 
    2161             :         /* Make sure we're fully resumed: */
    2162        2943 :         if (unlikely(timekeeping_suspended))
    2163             :                 goto out;
    2164             : 
    2165        8829 :         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
    2166             :                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
    2167             : 
    2168             :         /* Check if there's really nothing to do */
    2169        2943 :         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
    2170             :                 goto out;
    2171             : 
    2172             :         /* Do some additional sanity checking */
    2173        2940 :         timekeeping_check_update(tk, offset);
    2174             : 
    2175             :         /*
    2176             :          * With NO_HZ we may have to accumulate many cycle_intervals
    2177             :          * (think "ticks") worth of time at once. To do this efficiently,
    2178             :          * we calculate the largest doubling multiple of cycle_intervals
    2179             :          * that is smaller than the offset.  We then accumulate that
    2180             :          * chunk in one go, and then try to consume the next smaller
    2181             :          * doubled multiple.
    2182             :          */
    2183        8820 :         shift = ilog2(offset) - ilog2(tk->cycle_interval);
    2184        2940 :         shift = max(0, shift);
    2185             :         /* Bound shift to one less than what overflows tick_length */
    2186        5880 :         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
    2187        2940 :         shift = min(shift, maxshift);
    2188       11745 :         while (offset >= tk->cycle_interval) {
    2189        5865 :                 offset = logarithmic_accumulation(tk, offset, shift,
    2190             :                                                         &clock_set);
    2191        5865 :                 if (offset < tk->cycle_interval<<shift)
    2192        5865 :                         shift--;
    2193             :         }
    2194             : 
    2195             :         /* Adjust the multiplier to correct NTP error */
    2196        2940 :         timekeeping_adjust(tk, offset);
    2197             : 
    2198             :         /*
    2199             :          * Finally, make sure that after the rounding
    2200             :          * xtime_nsec isn't larger than NSEC_PER_SEC
    2201             :          */
    2202        2940 :         clock_set |= accumulate_nsecs_to_secs(tk);
    2203             : 
    2204        5880 :         write_seqcount_begin(&tk_core.seq);
    2205             :         /*
    2206             :          * Update the real timekeeper.
    2207             :          *
    2208             :          * We could avoid this memcpy by switching pointers, but that
    2209             :          * requires changes to all other timekeeper usage sites as
    2210             :          * well, i.e. move the timekeeper pointer getter into the
    2211             :          * spinlocked/seqcount protected sections. And we trade this
    2212             :          * memcpy under the tk_core.seq against one before we start
    2213             :          * updating.
    2214             :          */
    2215        2940 :         timekeeping_update(tk, clock_set);
    2216        2940 :         memcpy(real_tk, tk, sizeof(*tk));
    2217             :         /* The memcpy must come last. Do not put anything here! */
    2218        5880 :         write_seqcount_end(&tk_core.seq);
    2219             : out:
    2220        5886 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    2221             : 
    2222        2943 :         return !!clock_set;
    2223             : }
    2224             : 
    2225             : /**
    2226             :  * update_wall_time - Uses the current clocksource to increment the wall time
    2227             :  *
    2228             :  */
    2229        2943 : void update_wall_time(void)
    2230             : {
    2231        2943 :         if (timekeeping_advance(TK_ADV_TICK))
    2232           0 :                 clock_was_set_delayed();
    2233        2943 : }
    2234             : 
    2235             : /**
    2236             :  * getboottime64 - Return the real time of system boot.
    2237             :  * @ts:         pointer to the timespec64 to be set
    2238             :  *
    2239             :  * Returns the wall-time of boot in a timespec64.
    2240             :  *
    2241             :  * This is based on the wall_to_monotonic offset and the total suspend
    2242             :  * time. Calls to settimeofday will affect the value returned (which
    2243             :  * basically means that however wrong your real time clock is at boot time,
    2244             :  * you get the right time here).
    2245             :  */
    2246           0 : void getboottime64(struct timespec64 *ts)
    2247             : {
    2248           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    2249           0 :         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
    2250             : 
    2251           0 :         *ts = ktime_to_timespec64(t);
    2252           0 : }
    2253             : EXPORT_SYMBOL_GPL(getboottime64);
    2254             : 
    2255          64 : void ktime_get_coarse_real_ts64(struct timespec64 *ts)
    2256             : {
    2257          64 :         struct timekeeper *tk = &tk_core.timekeeper;
    2258             :         unsigned int seq;
    2259             : 
    2260             :         do {
    2261          64 :                 seq = read_seqcount_begin(&tk_core.seq);
    2262             : 
    2263          64 :                 *ts = tk_xtime(tk);
    2264         128 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    2265          64 : }
    2266             : EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
    2267             : 
    2268           0 : void ktime_get_coarse_ts64(struct timespec64 *ts)
    2269             : {
    2270           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    2271             :         struct timespec64 now, mono;
    2272             :         unsigned int seq;
    2273             : 
    2274             :         do {
    2275           0 :                 seq = read_seqcount_begin(&tk_core.seq);
    2276             : 
    2277           0 :                 now = tk_xtime(tk);
    2278           0 :                 mono = tk->wall_to_monotonic;
    2279           0 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    2280             : 
    2281           0 :         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
    2282           0 :                                 now.tv_nsec + mono.tv_nsec);
    2283           0 : }
    2284             : EXPORT_SYMBOL(ktime_get_coarse_ts64);
    2285             : 
    2286             : /*
    2287             :  * Must hold jiffies_lock
    2288             :  */
    2289        2943 : void do_timer(unsigned long ticks)
    2290             : {
    2291        2943 :         jiffies_64 += ticks;
    2292        2943 :         calc_global_load();
    2293        2943 : }
    2294             : 
    2295             : /**
    2296             :  * ktime_get_update_offsets_now - hrtimer helper
    2297             :  * @cwsseq:     pointer to check and store the clock was set sequence number
    2298             :  * @offs_real:  pointer to storage for monotonic -> realtime offset
    2299             :  * @offs_boot:  pointer to storage for monotonic -> boottime offset
    2300             :  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
    2301             :  *
    2302             :  * Returns current monotonic time and updates the offsets if the
    2303             :  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
    2304             :  * different.
    2305             :  *
    2306             :  * Called from hrtimer_interrupt() or retrigger_next_event()
    2307             :  */
    2308        2943 : ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
    2309             :                                      ktime_t *offs_boot, ktime_t *offs_tai)
    2310             : {
    2311        2943 :         struct timekeeper *tk = &tk_core.timekeeper;
    2312             :         unsigned int seq;
    2313             :         ktime_t base;
    2314             :         u64 nsecs;
    2315             : 
    2316             :         do {
    2317        2943 :                 seq = read_seqcount_begin(&tk_core.seq);
    2318             : 
    2319        2943 :                 base = tk->tkr_mono.base;
    2320        5886 :                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
    2321        2943 :                 base = ktime_add_ns(base, nsecs);
    2322             : 
    2323        2943 :                 if (*cwsseq != tk->clock_was_set_seq) {
    2324           2 :                         *cwsseq = tk->clock_was_set_seq;
    2325           2 :                         *offs_real = tk->offs_real;
    2326           2 :                         *offs_boot = tk->offs_boot;
    2327           2 :                         *offs_tai = tk->offs_tai;
    2328             :                 }
    2329             : 
    2330             :                 /* Handle leapsecond insertion adjustments */
    2331        2943 :                 if (unlikely(base >= tk->next_leap_ktime))
    2332           0 :                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
    2333             : 
    2334        5886 :         } while (read_seqcount_retry(&tk_core.seq, seq));
    2335             : 
    2336        2943 :         return base;
    2337             : }
    2338             : 
    2339             : /*
    2340             :  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
    2341             :  */
    2342           0 : static int timekeeping_validate_timex(const struct __kernel_timex *txc)
    2343             : {
    2344           0 :         if (txc->modes & ADJ_ADJTIME) {
    2345             :                 /* singleshot must not be used with any other mode bits */
    2346           0 :                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
    2347             :                         return -EINVAL;
    2348           0 :                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
    2349           0 :                     !capable(CAP_SYS_TIME))
    2350             :                         return -EPERM;
    2351             :         } else {
    2352             :                 /* In order to modify anything, you gotta be super-user! */
    2353           0 :                 if (txc->modes && !capable(CAP_SYS_TIME))
    2354             :                         return -EPERM;
    2355             :                 /*
    2356             :                  * if the quartz is off by more than 10% then
    2357             :                  * something is VERY wrong!
    2358             :                  */
    2359           0 :                 if (txc->modes & ADJ_TICK &&
    2360           0 :                     (txc->tick <  900000/USER_HZ ||
    2361             :                      txc->tick > 1100000/USER_HZ))
    2362             :                         return -EINVAL;
    2363             :         }
    2364             : 
    2365           0 :         if (txc->modes & ADJ_SETOFFSET) {
    2366             :                 /* In order to inject time, you gotta be super-user! */
    2367           0 :                 if (!capable(CAP_SYS_TIME))
    2368             :                         return -EPERM;
    2369             : 
    2370             :                 /*
    2371             :                  * Validate if a timespec/timeval used to inject a time
    2372             :                  * offset is valid.  Offsets can be positive or negative, so
    2373             :                  * we don't check tv_sec. The value of the timeval/timespec
    2374             :                  * is the sum of its fields,but *NOTE*:
    2375             :                  * The field tv_usec/tv_nsec must always be non-negative and
    2376             :                  * we can't have more nanoseconds/microseconds than a second.
    2377             :                  */
    2378           0 :                 if (txc->time.tv_usec < 0)
    2379             :                         return -EINVAL;
    2380             : 
    2381           0 :                 if (txc->modes & ADJ_NANO) {
    2382           0 :                         if (txc->time.tv_usec >= NSEC_PER_SEC)
    2383             :                                 return -EINVAL;
    2384             :                 } else {
    2385           0 :                         if (txc->time.tv_usec >= USEC_PER_SEC)
    2386             :                                 return -EINVAL;
    2387             :                 }
    2388             :         }
    2389             : 
    2390             :         /*
    2391             :          * Check for potential multiplication overflows that can
    2392             :          * only happen on 64-bit systems:
    2393             :          */
    2394           0 :         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
    2395           0 :                 if (LLONG_MIN / PPM_SCALE > txc->freq)
    2396             :                         return -EINVAL;
    2397           0 :                 if (LLONG_MAX / PPM_SCALE < txc->freq)
    2398             :                         return -EINVAL;
    2399             :         }
    2400             : 
    2401           0 :         return 0;
    2402             : }
    2403             : 
    2404             : /**
    2405             :  * random_get_entropy_fallback - Returns the raw clock source value,
    2406             :  * used by random.c for platforms with no valid random_get_entropy().
    2407             :  */
    2408        3872 : unsigned long random_get_entropy_fallback(void)
    2409             : {
    2410        3872 :         struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
    2411        3872 :         struct clocksource *clock = READ_ONCE(tkr->clock);
    2412             : 
    2413        3872 :         if (unlikely(timekeeping_suspended || !clock))
    2414             :                 return 0;
    2415        3872 :         return clock->read(clock);
    2416             : }
    2417             : EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
    2418             : 
    2419             : /**
    2420             :  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
    2421             :  */
    2422           0 : int do_adjtimex(struct __kernel_timex *txc)
    2423             : {
    2424           0 :         struct timekeeper *tk = &tk_core.timekeeper;
    2425             :         struct audit_ntp_data ad;
    2426           0 :         bool clock_set = false;
    2427             :         struct timespec64 ts;
    2428             :         unsigned long flags;
    2429             :         s32 orig_tai, tai;
    2430             :         int ret;
    2431             : 
    2432             :         /* Validate the data before disabling interrupts */
    2433           0 :         ret = timekeeping_validate_timex(txc);
    2434           0 :         if (ret)
    2435             :                 return ret;
    2436           0 :         add_device_randomness(txc, sizeof(*txc));
    2437             : 
    2438           0 :         if (txc->modes & ADJ_SETOFFSET) {
    2439             :                 struct timespec64 delta;
    2440           0 :                 delta.tv_sec  = txc->time.tv_sec;
    2441           0 :                 delta.tv_nsec = txc->time.tv_usec;
    2442           0 :                 if (!(txc->modes & ADJ_NANO))
    2443           0 :                         delta.tv_nsec *= 1000;
    2444           0 :                 ret = timekeeping_inject_offset(&delta);
    2445           0 :                 if (ret)
    2446           0 :                         return ret;
    2447             : 
    2448           0 :                 audit_tk_injoffset(delta);
    2449             :         }
    2450             : 
    2451           0 :         audit_ntp_init(&ad);
    2452             : 
    2453           0 :         ktime_get_real_ts64(&ts);
    2454           0 :         add_device_randomness(&ts, sizeof(ts));
    2455             : 
    2456           0 :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    2457           0 :         write_seqcount_begin(&tk_core.seq);
    2458             : 
    2459           0 :         orig_tai = tai = tk->tai_offset;
    2460           0 :         ret = __do_adjtimex(txc, &ts, &tai, &ad);
    2461             : 
    2462           0 :         if (tai != orig_tai) {
    2463           0 :                 __timekeeping_set_tai_offset(tk, tai);
    2464           0 :                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
    2465           0 :                 clock_set = true;
    2466             :         }
    2467           0 :         tk_update_leap_state(tk);
    2468             : 
    2469           0 :         write_seqcount_end(&tk_core.seq);
    2470           0 :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    2471             : 
    2472           0 :         audit_ntp_log(&ad);
    2473             : 
    2474             :         /* Update the multiplier immediately if frequency was set directly */
    2475           0 :         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
    2476           0 :                 clock_set |= timekeeping_advance(TK_ADV_FREQ);
    2477             : 
    2478           0 :         if (clock_set)
    2479           0 :                 clock_was_set(CLOCK_REALTIME);
    2480             : 
    2481             :         ntp_notify_cmos_timer();
    2482             : 
    2483             :         return ret;
    2484             : }
    2485             : 
    2486             : #ifdef CONFIG_NTP_PPS
    2487             : /**
    2488             :  * hardpps() - Accessor function to NTP __hardpps function
    2489             :  */
    2490             : void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
    2491             : {
    2492             :         unsigned long flags;
    2493             : 
    2494             :         raw_spin_lock_irqsave(&timekeeper_lock, flags);
    2495             :         write_seqcount_begin(&tk_core.seq);
    2496             : 
    2497             :         __hardpps(phase_ts, raw_ts);
    2498             : 
    2499             :         write_seqcount_end(&tk_core.seq);
    2500             :         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
    2501             : }
    2502             : EXPORT_SYMBOL(hardpps);
    2503             : #endif /* CONFIG_NTP_PPS */

Generated by: LCOV version 1.14