LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 692 1653 41.9 %
Date: 2023-07-19 18:55:55 Functions: 61 130 46.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * kernel/workqueue.c - generic async execution with shared worker pool
       4             :  *
       5             :  * Copyright (C) 2002           Ingo Molnar
       6             :  *
       7             :  *   Derived from the taskqueue/keventd code by:
       8             :  *     David Woodhouse <dwmw2@infradead.org>
       9             :  *     Andrew Morton
      10             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      11             :  *     Theodore Ts'o <tytso@mit.edu>
      12             :  *
      13             :  * Made to use alloc_percpu by Christoph Lameter.
      14             :  *
      15             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      16             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      17             :  *
      18             :  * This is the generic async execution mechanism.  Work items as are
      19             :  * executed in process context.  The worker pool is shared and
      20             :  * automatically managed.  There are two worker pools for each CPU (one for
      21             :  * normal work items and the other for high priority ones) and some extra
      22             :  * pools for workqueues which are not bound to any specific CPU - the
      23             :  * number of these backing pools is dynamic.
      24             :  *
      25             :  * Please read Documentation/core-api/workqueue.rst for details.
      26             :  */
      27             : 
      28             : #include <linux/export.h>
      29             : #include <linux/kernel.h>
      30             : #include <linux/sched.h>
      31             : #include <linux/init.h>
      32             : #include <linux/signal.h>
      33             : #include <linux/completion.h>
      34             : #include <linux/workqueue.h>
      35             : #include <linux/slab.h>
      36             : #include <linux/cpu.h>
      37             : #include <linux/notifier.h>
      38             : #include <linux/kthread.h>
      39             : #include <linux/hardirq.h>
      40             : #include <linux/mempolicy.h>
      41             : #include <linux/freezer.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : #include <linux/sched/isolation.h>
      52             : #include <linux/sched/debug.h>
      53             : #include <linux/nmi.h>
      54             : #include <linux/kvm_para.h>
      55             : 
      56             : #include "workqueue_internal.h"
      57             : 
      58             : enum {
      59             :         /*
      60             :          * worker_pool flags
      61             :          *
      62             :          * A bound pool is either associated or disassociated with its CPU.
      63             :          * While associated (!DISASSOCIATED), all workers are bound to the
      64             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      65             :          * is in effect.
      66             :          *
      67             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      68             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      69             :          * be executing on any CPU.  The pool behaves as an unbound one.
      70             :          *
      71             :          * Note that DISASSOCIATED should be flipped only while holding
      72             :          * wq_pool_attach_mutex to avoid changing binding state while
      73             :          * worker_attach_to_pool() is in progress.
      74             :          */
      75             :         POOL_MANAGER_ACTIVE     = 1 << 0, /* being managed */
      76             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      77             : 
      78             :         /* worker flags */
      79             :         WORKER_DIE              = 1 << 1, /* die die die */
      80             :         WORKER_IDLE             = 1 << 2, /* is idle */
      81             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      82             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      83             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      84             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      85             : 
      86             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      87             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      88             : 
      89             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      90             : 
      91             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      92             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      93             : 
      94             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      95             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      96             : 
      97             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      98             :                                                 /* call for help after 10ms
      99             :                                                    (min two ticks) */
     100             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
     101             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
     102             : 
     103             :         /*
     104             :          * Rescue workers are used only on emergencies and shared by
     105             :          * all cpus.  Give MIN_NICE.
     106             :          */
     107             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     108             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     109             : 
     110             :         WQ_NAME_LEN             = 24,
     111             : };
     112             : 
     113             : /*
     114             :  * Structure fields follow one of the following exclusion rules.
     115             :  *
     116             :  * I: Modifiable by initialization/destruction paths and read-only for
     117             :  *    everyone else.
     118             :  *
     119             :  * P: Preemption protected.  Disabling preemption is enough and should
     120             :  *    only be modified and accessed from the local cpu.
     121             :  *
     122             :  * L: pool->lock protected.  Access with pool->lock held.
     123             :  *
     124             :  * X: During normal operation, modification requires pool->lock and should
     125             :  *    be done only from local cpu.  Either disabling preemption on local
     126             :  *    cpu or grabbing pool->lock is enough for read access.  If
     127             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     128             :  *
     129             :  * A: wq_pool_attach_mutex protected.
     130             :  *
     131             :  * PL: wq_pool_mutex protected.
     132             :  *
     133             :  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
     134             :  *
     135             :  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
     136             :  *
     137             :  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
     138             :  *      RCU for reads.
     139             :  *
     140             :  * WQ: wq->mutex protected.
     141             :  *
     142             :  * WR: wq->mutex protected for writes.  RCU protected for reads.
     143             :  *
     144             :  * MD: wq_mayday_lock protected.
     145             :  *
     146             :  * WD: Used internally by the watchdog.
     147             :  */
     148             : 
     149             : /* struct worker is defined in workqueue_internal.h */
     150             : 
     151             : struct worker_pool {
     152             :         raw_spinlock_t          lock;           /* the pool lock */
     153             :         int                     cpu;            /* I: the associated cpu */
     154             :         int                     node;           /* I: the associated node ID */
     155             :         int                     id;             /* I: pool ID */
     156             :         unsigned int            flags;          /* X: flags */
     157             : 
     158             :         unsigned long           watchdog_ts;    /* L: watchdog timestamp */
     159             :         bool                    cpu_stall;      /* WD: stalled cpu bound pool */
     160             : 
     161             :         /*
     162             :          * The counter is incremented in a process context on the associated CPU
     163             :          * w/ preemption disabled, and decremented or reset in the same context
     164             :          * but w/ pool->lock held. The readers grab pool->lock and are
     165             :          * guaranteed to see if the counter reached zero.
     166             :          */
     167             :         int                     nr_running;
     168             : 
     169             :         struct list_head        worklist;       /* L: list of pending works */
     170             : 
     171             :         int                     nr_workers;     /* L: total number of workers */
     172             :         int                     nr_idle;        /* L: currently idle workers */
     173             : 
     174             :         struct list_head        idle_list;      /* L: list of idle workers */
     175             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     176             :         struct work_struct      idle_cull_work; /* L: worker idle cleanup */
     177             : 
     178             :         struct timer_list       mayday_timer;     /* L: SOS timer for workers */
     179             : 
     180             :         /* a workers is either on busy_hash or idle_list, or the manager */
     181             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     182             :                                                 /* L: hash of busy workers */
     183             : 
     184             :         struct worker           *manager;       /* L: purely informational */
     185             :         struct list_head        workers;        /* A: attached workers */
     186             :         struct list_head        dying_workers;  /* A: workers about to die */
     187             :         struct completion       *detach_completion; /* all workers detached */
     188             : 
     189             :         struct ida              worker_ida;     /* worker IDs for task name */
     190             : 
     191             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     192             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     193             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     194             : 
     195             :         /*
     196             :          * Destruction of pool is RCU protected to allow dereferences
     197             :          * from get_work_pool().
     198             :          */
     199             :         struct rcu_head         rcu;
     200             : };
     201             : 
     202             : /*
     203             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     204             :  * of work_struct->data are used for flags and the remaining high bits
     205             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     206             :  * number of flag bits.
     207             :  */
     208             : struct pool_workqueue {
     209             :         struct worker_pool      *pool;          /* I: the associated pool */
     210             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     211             :         int                     work_color;     /* L: current color */
     212             :         int                     flush_color;    /* L: flushing color */
     213             :         int                     refcnt;         /* L: reference count */
     214             :         int                     nr_in_flight[WORK_NR_COLORS];
     215             :                                                 /* L: nr of in_flight works */
     216             : 
     217             :         /*
     218             :          * nr_active management and WORK_STRUCT_INACTIVE:
     219             :          *
     220             :          * When pwq->nr_active >= max_active, new work item is queued to
     221             :          * pwq->inactive_works instead of pool->worklist and marked with
     222             :          * WORK_STRUCT_INACTIVE.
     223             :          *
     224             :          * All work items marked with WORK_STRUCT_INACTIVE do not participate
     225             :          * in pwq->nr_active and all work items in pwq->inactive_works are
     226             :          * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
     227             :          * work items are in pwq->inactive_works.  Some of them are ready to
     228             :          * run in pool->worklist or worker->scheduled.  Those work itmes are
     229             :          * only struct wq_barrier which is used for flush_work() and should
     230             :          * not participate in pwq->nr_active.  For non-barrier work item, it
     231             :          * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
     232             :          */
     233             :         int                     nr_active;      /* L: nr of active works */
     234             :         int                     max_active;     /* L: max active works */
     235             :         struct list_head        inactive_works; /* L: inactive works */
     236             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     237             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     238             : 
     239             :         /*
     240             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     241             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     242             :          * itself is also RCU protected so that the first pwq can be
     243             :          * determined without grabbing wq->mutex.
     244             :          */
     245             :         struct work_struct      unbound_release_work;
     246             :         struct rcu_head         rcu;
     247             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     248             : 
     249             : /*
     250             :  * Structure used to wait for workqueue flush.
     251             :  */
     252             : struct wq_flusher {
     253             :         struct list_head        list;           /* WQ: list of flushers */
     254             :         int                     flush_color;    /* WQ: flush color waiting for */
     255             :         struct completion       done;           /* flush completion */
     256             : };
     257             : 
     258             : struct wq_device;
     259             : 
     260             : /*
     261             :  * The externally visible workqueue.  It relays the issued work items to
     262             :  * the appropriate worker_pool through its pool_workqueues.
     263             :  */
     264             : struct workqueue_struct {
     265             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     266             :         struct list_head        list;           /* PR: list of all workqueues */
     267             : 
     268             :         struct mutex            mutex;          /* protects this wq */
     269             :         int                     work_color;     /* WQ: current work color */
     270             :         int                     flush_color;    /* WQ: current flush color */
     271             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     272             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     273             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     274             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     275             : 
     276             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     277             :         struct worker           *rescuer;       /* MD: rescue worker */
     278             : 
     279             :         int                     nr_drainers;    /* WQ: drain in progress */
     280             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     281             : 
     282             :         struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
     283             :         struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
     284             : 
     285             : #ifdef CONFIG_SYSFS
     286             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     287             : #endif
     288             : #ifdef CONFIG_LOCKDEP
     289             :         char                    *lock_name;
     290             :         struct lock_class_key   key;
     291             :         struct lockdep_map      lockdep_map;
     292             : #endif
     293             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     294             : 
     295             :         /*
     296             :          * Destruction of workqueue_struct is RCU protected to allow walking
     297             :          * the workqueues list without grabbing wq_pool_mutex.
     298             :          * This is used to dump all workqueues from sysrq.
     299             :          */
     300             :         struct rcu_head         rcu;
     301             : 
     302             :         /* hot fields used during command issue, aligned to cacheline */
     303             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     304             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     305             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
     306             : };
     307             : 
     308             : static struct kmem_cache *pwq_cache;
     309             : 
     310             : static cpumask_var_t *wq_numa_possible_cpumask;
     311             :                                         /* possible CPUs of each node */
     312             : 
     313             : static bool wq_disable_numa;
     314             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     315             : 
     316             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     317             : static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
     318             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     319             : 
     320             : static bool wq_online;                  /* can kworkers be created yet? */
     321             : 
     322             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     323             : 
     324             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     325             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     326             : 
     327             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     328             : static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
     329             : static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
     330             : /* wait for manager to go away */
     331             : static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
     332             : 
     333             : static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
     334             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     335             : 
     336             : /* PL&A: allowable cpus for unbound wqs and work items */
     337             : static cpumask_var_t wq_unbound_cpumask;
     338             : 
     339             : /* CPU where unbound work was last round robin scheduled from this CPU */
     340             : static DEFINE_PER_CPU(int, wq_rr_cpu_last);
     341             : 
     342             : /*
     343             :  * Local execution of unbound work items is no longer guaranteed.  The
     344             :  * following always forces round-robin CPU selection on unbound work items
     345             :  * to uncover usages which depend on it.
     346             :  */
     347             : #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
     348             : static bool wq_debug_force_rr_cpu = true;
     349             : #else
     350             : static bool wq_debug_force_rr_cpu = false;
     351             : #endif
     352             : module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
     353             : 
     354             : /* the per-cpu worker pools */
     355             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
     356             : 
     357             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     358             : 
     359             : /* PL: hash of all unbound pools keyed by pool->attrs */
     360             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     361             : 
     362             : /* I: attributes used when instantiating standard unbound pools on demand */
     363             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     364             : 
     365             : /* I: attributes used when instantiating ordered pools on demand */
     366             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     367             : 
     368             : struct workqueue_struct *system_wq __read_mostly;
     369             : EXPORT_SYMBOL(system_wq);
     370             : struct workqueue_struct *system_highpri_wq __read_mostly;
     371             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     372             : struct workqueue_struct *system_long_wq __read_mostly;
     373             : EXPORT_SYMBOL_GPL(system_long_wq);
     374             : struct workqueue_struct *system_unbound_wq __read_mostly;
     375             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     376             : struct workqueue_struct *system_freezable_wq __read_mostly;
     377             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     378             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     379             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     380             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     381             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     382             : 
     383             : static int worker_thread(void *__worker);
     384             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
     385             : static void show_pwq(struct pool_workqueue *pwq);
     386             : static void show_one_worker_pool(struct worker_pool *pool);
     387             : 
     388             : #define CREATE_TRACE_POINTS
     389             : #include <trace/events/workqueue.h>
     390             : 
     391             : #define assert_rcu_or_pool_mutex()                                      \
     392             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     393             :                          !lockdep_is_held(&wq_pool_mutex),          \
     394             :                          "RCU or wq_pool_mutex should be held")
     395             : 
     396             : #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
     397             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     398             :                          !lockdep_is_held(&wq->mutex) &&         \
     399             :                          !lockdep_is_held(&wq_pool_mutex),          \
     400             :                          "RCU, wq->mutex or wq_pool_mutex should be held")
     401             : 
     402             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     403             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     404             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     405             :              (pool)++)
     406             : 
     407             : /**
     408             :  * for_each_pool - iterate through all worker_pools in the system
     409             :  * @pool: iteration cursor
     410             :  * @pi: integer used for iteration
     411             :  *
     412             :  * This must be called either with wq_pool_mutex held or RCU read
     413             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     414             :  * caller is responsible for guaranteeing that the pool stays online.
     415             :  *
     416             :  * The if/else clause exists only for the lockdep assertion and can be
     417             :  * ignored.
     418             :  */
     419             : #define for_each_pool(pool, pi)                                         \
     420             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     421             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     422             :                 else
     423             : 
     424             : /**
     425             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     426             :  * @worker: iteration cursor
     427             :  * @pool: worker_pool to iterate workers of
     428             :  *
     429             :  * This must be called with wq_pool_attach_mutex.
     430             :  *
     431             :  * The if/else clause exists only for the lockdep assertion and can be
     432             :  * ignored.
     433             :  */
     434             : #define for_each_pool_worker(worker, pool)                              \
     435             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     436             :                 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
     437             :                 else
     438             : 
     439             : /**
     440             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     441             :  * @pwq: iteration cursor
     442             :  * @wq: the target workqueue
     443             :  *
     444             :  * This must be called either with wq->mutex held or RCU read locked.
     445             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     446             :  * responsible for guaranteeing that the pwq stays online.
     447             :  *
     448             :  * The if/else clause exists only for the lockdep assertion and can be
     449             :  * ignored.
     450             :  */
     451             : #define for_each_pwq(pwq, wq)                                           \
     452             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,           \
     453             :                                  lockdep_is_held(&(wq->mutex)))
     454             : 
     455             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     456             : 
     457             : static const struct debug_obj_descr work_debug_descr;
     458             : 
     459             : static void *work_debug_hint(void *addr)
     460             : {
     461             :         return ((struct work_struct *) addr)->func;
     462             : }
     463             : 
     464             : static bool work_is_static_object(void *addr)
     465             : {
     466             :         struct work_struct *work = addr;
     467             : 
     468             :         return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
     469             : }
     470             : 
     471             : /*
     472             :  * fixup_init is called when:
     473             :  * - an active object is initialized
     474             :  */
     475             : static bool work_fixup_init(void *addr, enum debug_obj_state state)
     476             : {
     477             :         struct work_struct *work = addr;
     478             : 
     479             :         switch (state) {
     480             :         case ODEBUG_STATE_ACTIVE:
     481             :                 cancel_work_sync(work);
     482             :                 debug_object_init(work, &work_debug_descr);
     483             :                 return true;
     484             :         default:
     485             :                 return false;
     486             :         }
     487             : }
     488             : 
     489             : /*
     490             :  * fixup_free is called when:
     491             :  * - an active object is freed
     492             :  */
     493             : static bool work_fixup_free(void *addr, enum debug_obj_state state)
     494             : {
     495             :         struct work_struct *work = addr;
     496             : 
     497             :         switch (state) {
     498             :         case ODEBUG_STATE_ACTIVE:
     499             :                 cancel_work_sync(work);
     500             :                 debug_object_free(work, &work_debug_descr);
     501             :                 return true;
     502             :         default:
     503             :                 return false;
     504             :         }
     505             : }
     506             : 
     507             : static const struct debug_obj_descr work_debug_descr = {
     508             :         .name           = "work_struct",
     509             :         .debug_hint     = work_debug_hint,
     510             :         .is_static_object = work_is_static_object,
     511             :         .fixup_init     = work_fixup_init,
     512             :         .fixup_free     = work_fixup_free,
     513             : };
     514             : 
     515             : static inline void debug_work_activate(struct work_struct *work)
     516             : {
     517             :         debug_object_activate(work, &work_debug_descr);
     518             : }
     519             : 
     520             : static inline void debug_work_deactivate(struct work_struct *work)
     521             : {
     522             :         debug_object_deactivate(work, &work_debug_descr);
     523             : }
     524             : 
     525             : void __init_work(struct work_struct *work, int onstack)
     526             : {
     527             :         if (onstack)
     528             :                 debug_object_init_on_stack(work, &work_debug_descr);
     529             :         else
     530             :                 debug_object_init(work, &work_debug_descr);
     531             : }
     532             : EXPORT_SYMBOL_GPL(__init_work);
     533             : 
     534             : void destroy_work_on_stack(struct work_struct *work)
     535             : {
     536             :         debug_object_free(work, &work_debug_descr);
     537             : }
     538             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     539             : 
     540             : void destroy_delayed_work_on_stack(struct delayed_work *work)
     541             : {
     542             :         destroy_timer_on_stack(&work->timer);
     543             :         debug_object_free(&work->work, &work_debug_descr);
     544             : }
     545             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     546             : 
     547             : #else
     548             : static inline void debug_work_activate(struct work_struct *work) { }
     549             : static inline void debug_work_deactivate(struct work_struct *work) { }
     550             : #endif
     551             : 
     552             : /**
     553             :  * worker_pool_assign_id - allocate ID and assign it to @pool
     554             :  * @pool: the pool pointer of interest
     555             :  *
     556             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     557             :  * successfully, -errno on failure.
     558             :  */
     559             : static int worker_pool_assign_id(struct worker_pool *pool)
     560             : {
     561             :         int ret;
     562             : 
     563             :         lockdep_assert_held(&wq_pool_mutex);
     564             : 
     565           3 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     566             :                         GFP_KERNEL);
     567           3 :         if (ret >= 0) {
     568           3 :                 pool->id = ret;
     569             :                 return 0;
     570             :         }
     571             :         return ret;
     572             : }
     573             : 
     574             : /**
     575             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     576             :  * @wq: the target workqueue
     577             :  * @node: the node ID
     578             :  *
     579             :  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
     580             :  * read locked.
     581             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     582             :  * responsible for guaranteeing that the pwq stays online.
     583             :  *
     584             :  * Return: The unbound pool_workqueue for @node.
     585             :  */
     586             : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     587             :                                                   int node)
     588             : {
     589             :         assert_rcu_or_wq_mutex_or_pool_mutex(wq);
     590             : 
     591             :         /*
     592             :          * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
     593             :          * delayed item is pending.  The plan is to keep CPU -> NODE
     594             :          * mapping valid and stable across CPU on/offlines.  Once that
     595             :          * happens, this workaround can be removed.
     596             :          */
     597             :         if (unlikely(node == NUMA_NO_NODE))
     598             :                 return wq->dfl_pwq;
     599             : 
     600          33 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     601             : }
     602             : 
     603             : static unsigned int work_color_to_flags(int color)
     604             : {
     605          86 :         return color << WORK_STRUCT_COLOR_SHIFT;
     606             : }
     607             : 
     608             : static int get_work_color(unsigned long work_data)
     609             : {
     610         174 :         return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
     611             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     612             : }
     613             : 
     614             : static int work_next_color(int color)
     615             : {
     616           0 :         return (color + 1) % WORK_NR_COLORS;
     617             : }
     618             : 
     619             : /*
     620             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     621             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     622             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     623             :  *
     624             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     625             :  * and clear_work_data() can be used to set the pwq, pool or clear
     626             :  * work->data.  These functions should only be called while the work is
     627             :  * owned - ie. while the PENDING bit is set.
     628             :  *
     629             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     630             :  * corresponding to a work.  Pool is available once the work has been
     631             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     632             :  * available only while the work item is queued.
     633             :  *
     634             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     635             :  * canceled.  While being canceled, a work item may have its PENDING set
     636             :  * but stay off timer and worklist for arbitrarily long and nobody should
     637             :  * try to steal the PENDING bit.
     638             :  */
     639         210 : static inline void set_work_data(struct work_struct *work, unsigned long data,
     640             :                                  unsigned long flags)
     641             : {
     642         420 :         WARN_ON_ONCE(!work_pending(work));
     643         420 :         atomic_long_set(&work->data, data | flags | work_static(work));
     644         210 : }
     645             : 
     646             : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     647             :                          unsigned long extra_flags)
     648             : {
     649          86 :         set_work_data(work, (unsigned long)pwq,
     650             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     651             : }
     652             : 
     653             : static void set_work_pool_and_keep_pending(struct work_struct *work,
     654             :                                            int pool_id)
     655             : {
     656           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     657             :                       WORK_STRUCT_PENDING);
     658             : }
     659             : 
     660             : static void set_work_pool_and_clear_pending(struct work_struct *work,
     661             :                                             int pool_id)
     662             : {
     663             :         /*
     664             :          * The following wmb is paired with the implied mb in
     665             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     666             :          * here are visible to and precede any updates by the next PENDING
     667             :          * owner.
     668             :          */
     669         124 :         smp_wmb();
     670         124 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     671             :         /*
     672             :          * The following mb guarantees that previous clear of a PENDING bit
     673             :          * will not be reordered with any speculative LOADS or STORES from
     674             :          * work->current_func, which is executed afterwards.  This possible
     675             :          * reordering can lead to a missed execution on attempt to queue
     676             :          * the same @work.  E.g. consider this case:
     677             :          *
     678             :          *   CPU#0                         CPU#1
     679             :          *   ----------------------------  --------------------------------
     680             :          *
     681             :          * 1  STORE event_indicated
     682             :          * 2  queue_work_on() {
     683             :          * 3    test_and_set_bit(PENDING)
     684             :          * 4 }                             set_..._and_clear_pending() {
     685             :          * 5                                 set_work_data() # clear bit
     686             :          * 6                                 smp_mb()
     687             :          * 7                               work->current_func() {
     688             :          * 8                                  LOAD event_indicated
     689             :          *                                 }
     690             :          *
     691             :          * Without an explicit full barrier speculative LOAD on line 8 can
     692             :          * be executed before CPU#0 does STORE on line 1.  If that happens,
     693             :          * CPU#0 observes the PENDING bit is still set and new execution of
     694             :          * a @work is not queued in a hope, that CPU#1 will eventually
     695             :          * finish the queued @work.  Meanwhile CPU#1 does not see
     696             :          * event_indicated is set, because speculative LOAD was executed
     697             :          * before actual STORE.
     698             :          */
     699         124 :         smp_mb();
     700             : }
     701             : 
     702             : static void clear_work_data(struct work_struct *work)
     703             : {
     704           0 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     705           0 :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     706             : }
     707             : 
     708             : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     709             : {
     710         180 :         unsigned long data = atomic_long_read(&work->data);
     711             : 
     712          90 :         if (data & WORK_STRUCT_PWQ)
     713          88 :                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
     714             :         else
     715             :                 return NULL;
     716             : }
     717             : 
     718             : /**
     719             :  * get_work_pool - return the worker_pool a given work was associated with
     720             :  * @work: the work item of interest
     721             :  *
     722             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     723             :  * access under RCU read lock.  As such, this function should be
     724             :  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
     725             :  *
     726             :  * All fields of the returned pool are accessible as long as the above
     727             :  * mentioned locking is in effect.  If the returned pool needs to be used
     728             :  * beyond the critical section, the caller is responsible for ensuring the
     729             :  * returned pool is and stays online.
     730             :  *
     731             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     732             :  */
     733         110 : static struct worker_pool *get_work_pool(struct work_struct *work)
     734             : {
     735         220 :         unsigned long data = atomic_long_read(&work->data);
     736             :         int pool_id;
     737             : 
     738             :         assert_rcu_or_pool_mutex();
     739             : 
     740         110 :         if (data & WORK_STRUCT_PWQ)
     741           2 :                 return ((struct pool_workqueue *)
     742           4 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
     743             : 
     744         108 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     745         108 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     746             :                 return NULL;
     747             : 
     748          58 :         return idr_find(&worker_pool_idr, pool_id);
     749             : }
     750             : 
     751             : /**
     752             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     753             :  * @work: the work item of interest
     754             :  *
     755             :  * Return: The worker_pool ID @work was last associated with.
     756             :  * %WORK_OFFQ_POOL_NONE if none.
     757             :  */
     758             : static int get_work_pool_id(struct work_struct *work)
     759             : {
     760          76 :         unsigned long data = atomic_long_read(&work->data);
     761             : 
     762          38 :         if (data & WORK_STRUCT_PWQ)
     763           0 :                 return ((struct pool_workqueue *)
     764           0 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
     765             : 
     766          38 :         return data >> WORK_OFFQ_POOL_SHIFT;
     767             : }
     768             : 
     769           0 : static void mark_work_canceling(struct work_struct *work)
     770             : {
     771           0 :         unsigned long pool_id = get_work_pool_id(work);
     772             : 
     773           0 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     774           0 :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     775           0 : }
     776             : 
     777             : static bool work_is_canceling(struct work_struct *work)
     778             : {
     779           0 :         unsigned long data = atomic_long_read(&work->data);
     780             : 
     781           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     782             : }
     783             : 
     784             : /*
     785             :  * Policy functions.  These define the policies on how the global worker
     786             :  * pools are managed.  Unless noted otherwise, these functions assume that
     787             :  * they're being called with pool->lock held.
     788             :  */
     789             : 
     790             : static bool __need_more_worker(struct worker_pool *pool)
     791             : {
     792             :         return !pool->nr_running;
     793             : }
     794             : 
     795             : /*
     796             :  * Need to wake up a worker?  Called from anything but currently
     797             :  * running workers.
     798             :  *
     799             :  * Note that, because unbound workers never contribute to nr_running, this
     800             :  * function will always return %true for unbound pools as long as the
     801             :  * worklist isn't empty.
     802             :  */
     803             : static bool need_more_worker(struct worker_pool *pool)
     804             : {
     805         356 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     806             : }
     807             : 
     808             : /* Can I start working?  Called from busy but !running workers. */
     809             : static bool may_start_working(struct worker_pool *pool)
     810             : {
     811             :         return pool->nr_idle;
     812             : }
     813             : 
     814             : /* Do I need to keep working?  Called from currently running workers. */
     815             : static bool keep_working(struct worker_pool *pool)
     816             : {
     817         168 :         return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
     818             : }
     819             : 
     820             : /* Do we need a new worker?  Called from manager. */
     821             : static bool need_to_create_worker(struct worker_pool *pool)
     822             : {
     823           2 :         return need_more_worker(pool) && !may_start_working(pool);
     824             : }
     825             : 
     826             : /* Do we have too many workers and should some go away? */
     827             : static bool too_many_workers(struct worker_pool *pool)
     828             : {
     829          93 :         bool managing = pool->flags & POOL_MANAGER_ACTIVE;
     830          93 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     831          93 :         int nr_busy = pool->nr_workers - nr_idle;
     832             : 
     833          93 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     834             : }
     835             : 
     836             : /*
     837             :  * Wake up functions.
     838             :  */
     839             : 
     840             : /* Return the first idle worker.  Called with pool->lock held. */
     841             : static struct worker *first_idle_worker(struct worker_pool *pool)
     842             : {
     843         172 :         if (unlikely(list_empty(&pool->idle_list)))
     844             :                 return NULL;
     845             : 
     846          86 :         return list_first_entry(&pool->idle_list, struct worker, entry);
     847             : }
     848             : 
     849             : /**
     850             :  * wake_up_worker - wake up an idle worker
     851             :  * @pool: worker pool to wake worker from
     852             :  *
     853             :  * Wake up the first idle worker of @pool.
     854             :  *
     855             :  * CONTEXT:
     856             :  * raw_spin_lock_irq(pool->lock).
     857             :  */
     858             : static void wake_up_worker(struct worker_pool *pool)
     859             : {
     860          86 :         struct worker *worker = first_idle_worker(pool);
     861             : 
     862          86 :         if (likely(worker))
     863          86 :                 wake_up_process(worker->task);
     864             : }
     865             : 
     866             : /**
     867             :  * wq_worker_running - a worker is running again
     868             :  * @task: task waking up
     869             :  *
     870             :  * This function is called when a worker returns from schedule()
     871             :  */
     872          85 : void wq_worker_running(struct task_struct *task)
     873             : {
     874          85 :         struct worker *worker = kthread_data(task);
     875             : 
     876          85 :         if (!worker->sleeping)
     877             :                 return;
     878             : 
     879             :         /*
     880             :          * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
     881             :          * and the nr_running increment below, we may ruin the nr_running reset
     882             :          * and leave with an unexpected pool->nr_running == 1 on the newly unbound
     883             :          * pool. Protect against such race.
     884             :          */
     885           0 :         preempt_disable();
     886           0 :         if (!(worker->flags & WORKER_NOT_RUNNING))
     887           0 :                 worker->pool->nr_running++;
     888           0 :         preempt_enable();
     889           0 :         worker->sleeping = 0;
     890             : }
     891             : 
     892             : /**
     893             :  * wq_worker_sleeping - a worker is going to sleep
     894             :  * @task: task going to sleep
     895             :  *
     896             :  * This function is called from schedule() when a busy worker is
     897             :  * going to sleep.
     898             :  */
     899          94 : void wq_worker_sleeping(struct task_struct *task)
     900             : {
     901          94 :         struct worker *worker = kthread_data(task);
     902             :         struct worker_pool *pool;
     903             : 
     904             :         /*
     905             :          * Rescuers, which may not have all the fields set up like normal
     906             :          * workers, also reach here, let's not access anything before
     907             :          * checking NOT_RUNNING.
     908             :          */
     909          94 :         if (worker->flags & WORKER_NOT_RUNNING)
     910             :                 return;
     911             : 
     912           0 :         pool = worker->pool;
     913             : 
     914             :         /* Return if preempted before wq_worker_running() was reached */
     915           0 :         if (worker->sleeping)
     916             :                 return;
     917             : 
     918           0 :         worker->sleeping = 1;
     919           0 :         raw_spin_lock_irq(&pool->lock);
     920             : 
     921             :         /*
     922             :          * Recheck in case unbind_workers() preempted us. We don't
     923             :          * want to decrement nr_running after the worker is unbound
     924             :          * and nr_running has been reset.
     925             :          */
     926           0 :         if (worker->flags & WORKER_NOT_RUNNING) {
     927           0 :                 raw_spin_unlock_irq(&pool->lock);
     928           0 :                 return;
     929             :         }
     930             : 
     931           0 :         pool->nr_running--;
     932           0 :         if (need_more_worker(pool))
     933             :                 wake_up_worker(pool);
     934           0 :         raw_spin_unlock_irq(&pool->lock);
     935             : }
     936             : 
     937             : /**
     938             :  * wq_worker_last_func - retrieve worker's last work function
     939             :  * @task: Task to retrieve last work function of.
     940             :  *
     941             :  * Determine the last function a worker executed. This is called from
     942             :  * the scheduler to get a worker's last known identity.
     943             :  *
     944             :  * CONTEXT:
     945             :  * raw_spin_lock_irq(rq->lock)
     946             :  *
     947             :  * This function is called during schedule() when a kworker is going
     948             :  * to sleep. It's used by psi to identify aggregation workers during
     949             :  * dequeuing, to allow periodic aggregation to shut-off when that
     950             :  * worker is the last task in the system or cgroup to go to sleep.
     951             :  *
     952             :  * As this function doesn't involve any workqueue-related locking, it
     953             :  * only returns stable values when called from inside the scheduler's
     954             :  * queuing and dequeuing paths, when @task, which must be a kworker,
     955             :  * is guaranteed to not be processing any works.
     956             :  *
     957             :  * Return:
     958             :  * The last work function %current executed as a worker, NULL if it
     959             :  * hasn't executed any work yet.
     960             :  */
     961           0 : work_func_t wq_worker_last_func(struct task_struct *task)
     962             : {
     963           0 :         struct worker *worker = kthread_data(task);
     964             : 
     965           0 :         return worker->last_func;
     966             : }
     967             : 
     968             : /**
     969             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     970             :  * @worker: self
     971             :  * @flags: flags to set
     972             :  *
     973             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     974             :  *
     975             :  * CONTEXT:
     976             :  * raw_spin_lock_irq(pool->lock)
     977             :  */
     978          83 : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     979             : {
     980          83 :         struct worker_pool *pool = worker->pool;
     981             : 
     982         166 :         WARN_ON_ONCE(worker->task != current);
     983             : 
     984             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     985         166 :         if ((flags & WORKER_NOT_RUNNING) &&
     986          83 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     987          50 :                 pool->nr_running--;
     988             :         }
     989             : 
     990          83 :         worker->flags |= flags;
     991          83 : }
     992             : 
     993             : /**
     994             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     995             :  * @worker: self
     996             :  * @flags: flags to clear
     997             :  *
     998             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     999             :  *
    1000             :  * CONTEXT:
    1001             :  * raw_spin_lock_irq(pool->lock)
    1002             :  */
    1003         171 : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
    1004             : {
    1005         171 :         struct worker_pool *pool = worker->pool;
    1006         171 :         unsigned int oflags = worker->flags;
    1007             : 
    1008         342 :         WARN_ON_ONCE(worker->task != current);
    1009             : 
    1010         171 :         worker->flags &= ~flags;
    1011             : 
    1012             :         /*
    1013             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
    1014             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
    1015             :          * of multiple flags, not a single flag.
    1016             :          */
    1017         171 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
    1018          83 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
    1019          50 :                         pool->nr_running++;
    1020         171 : }
    1021             : 
    1022             : /**
    1023             :  * find_worker_executing_work - find worker which is executing a work
    1024             :  * @pool: pool of interest
    1025             :  * @work: work to find worker for
    1026             :  *
    1027             :  * Find a worker which is executing @work on @pool by searching
    1028             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
    1029             :  * to match, its current execution should match the address of @work and
    1030             :  * its work function.  This is to avoid unwanted dependency between
    1031             :  * unrelated work executions through a work item being recycled while still
    1032             :  * being executed.
    1033             :  *
    1034             :  * This is a bit tricky.  A work item may be freed once its execution
    1035             :  * starts and nothing prevents the freed area from being recycled for
    1036             :  * another work item.  If the same work item address ends up being reused
    1037             :  * before the original execution finishes, workqueue will identify the
    1038             :  * recycled work item as currently executing and make it wait until the
    1039             :  * current execution finishes, introducing an unwanted dependency.
    1040             :  *
    1041             :  * This function checks the work item address and work function to avoid
    1042             :  * false positives.  Note that this isn't complete as one may construct a
    1043             :  * work function which can introduce dependency onto itself through a
    1044             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
    1045             :  * foot that badly, there's only so much we can do, and if such deadlock
    1046             :  * actually occurs, it should be easy to locate the culprit work function.
    1047             :  *
    1048             :  * CONTEXT:
    1049             :  * raw_spin_lock_irq(pool->lock).
    1050             :  *
    1051             :  * Return:
    1052             :  * Pointer to worker which is executing @work if found, %NULL
    1053             :  * otherwise.
    1054             :  */
    1055             : static struct worker *find_worker_executing_work(struct worker_pool *pool,
    1056             :                                                  struct work_struct *work)
    1057             : {
    1058             :         struct worker *worker;
    1059             : 
    1060         176 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
    1061             :                                (unsigned long)work)
    1062           0 :                 if (worker->current_work == work &&
    1063           0 :                     worker->current_func == work->func)
    1064             :                         return worker;
    1065             : 
    1066             :         return NULL;
    1067             : }
    1068             : 
    1069             : /**
    1070             :  * move_linked_works - move linked works to a list
    1071             :  * @work: start of series of works to be scheduled
    1072             :  * @head: target list to append @work to
    1073             :  * @nextp: out parameter for nested worklist walking
    1074             :  *
    1075             :  * Schedule linked works starting from @work to @head.  Work series to
    1076             :  * be scheduled starts at @work and includes any consecutive work with
    1077             :  * WORK_STRUCT_LINKED set in its predecessor.
    1078             :  *
    1079             :  * If @nextp is not NULL, it's updated to point to the next work of
    1080             :  * the last scheduled work.  This allows move_linked_works() to be
    1081             :  * nested inside outer list_for_each_entry_safe().
    1082             :  *
    1083             :  * CONTEXT:
    1084             :  * raw_spin_lock_irq(pool->lock).
    1085             :  */
    1086             : static void move_linked_works(struct work_struct *work, struct list_head *head,
    1087             :                               struct work_struct **nextp)
    1088             : {
    1089             :         struct work_struct *n;
    1090             : 
    1091             :         /*
    1092             :          * Linked worklist will always end before the end of the list,
    1093             :          * use NULL for list head.
    1094             :          */
    1095           4 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
    1096           8 :                 list_move_tail(&work->entry, head);
    1097           4 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
    1098             :                         break;
    1099             :         }
    1100             : 
    1101             :         /*
    1102             :          * If we're already inside safe list traversal and have moved
    1103             :          * multiple works to the scheduled queue, the next position
    1104             :          * needs to be updated.
    1105             :          */
    1106             :         if (nextp)
    1107             :                 *nextp = n;
    1108             : }
    1109             : 
    1110             : /**
    1111             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1112             :  * @pwq: pool_workqueue to get
    1113             :  *
    1114             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1115             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1116             :  */
    1117          86 : static void get_pwq(struct pool_workqueue *pwq)
    1118             : {
    1119             :         lockdep_assert_held(&pwq->pool->lock);
    1120          86 :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1121          86 :         pwq->refcnt++;
    1122          86 : }
    1123             : 
    1124             : /**
    1125             :  * put_pwq - put a pool_workqueue reference
    1126             :  * @pwq: pool_workqueue to put
    1127             :  *
    1128             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1129             :  * destruction.  The caller should be holding the matching pool->lock.
    1130             :  */
    1131          86 : static void put_pwq(struct pool_workqueue *pwq)
    1132             : {
    1133             :         lockdep_assert_held(&pwq->pool->lock);
    1134          86 :         if (likely(--pwq->refcnt))
    1135             :                 return;
    1136           0 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1137             :                 return;
    1138             :         /*
    1139             :          * @pwq can't be released under pool->lock, bounce to
    1140             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1141             :          * pool->lock as this path is taken only for unbound workqueues and
    1142             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1143             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1144             :          * subclass of 1 in get_unbound_pool().
    1145             :          */
    1146           0 :         schedule_work(&pwq->unbound_release_work);
    1147             : }
    1148             : 
    1149             : /**
    1150             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1151             :  * @pwq: pool_workqueue to put (can be %NULL)
    1152             :  *
    1153             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1154             :  */
    1155           6 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1156             : {
    1157           6 :         if (pwq) {
    1158             :                 /*
    1159             :                  * As both pwqs and pools are RCU protected, the
    1160             :                  * following lock operations are safe.
    1161             :                  */
    1162           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    1163           0 :                 put_pwq(pwq);
    1164           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    1165             :         }
    1166           6 : }
    1167             : 
    1168           0 : static void pwq_activate_inactive_work(struct work_struct *work)
    1169             : {
    1170           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    1171             : 
    1172           0 :         trace_workqueue_activate_work(work);
    1173           0 :         if (list_empty(&pwq->pool->worklist))
    1174           0 :                 pwq->pool->watchdog_ts = jiffies;
    1175           0 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1176           0 :         __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
    1177           0 :         pwq->nr_active++;
    1178           0 : }
    1179             : 
    1180             : static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
    1181             : {
    1182           0 :         struct work_struct *work = list_first_entry(&pwq->inactive_works,
    1183             :                                                     struct work_struct, entry);
    1184             : 
    1185           0 :         pwq_activate_inactive_work(work);
    1186             : }
    1187             : 
    1188             : /**
    1189             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1190             :  * @pwq: pwq of interest
    1191             :  * @work_data: work_data of work which left the queue
    1192             :  *
    1193             :  * A work either has completed or is removed from pending queue,
    1194             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1195             :  *
    1196             :  * CONTEXT:
    1197             :  * raw_spin_lock_irq(pool->lock).
    1198             :  */
    1199          86 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
    1200             : {
    1201          86 :         int color = get_work_color(work_data);
    1202             : 
    1203          86 :         if (!(work_data & WORK_STRUCT_INACTIVE)) {
    1204          84 :                 pwq->nr_active--;
    1205         168 :                 if (!list_empty(&pwq->inactive_works)) {
    1206             :                         /* one down, submit an inactive one */
    1207           0 :                         if (pwq->nr_active < pwq->max_active)
    1208           0 :                                 pwq_activate_first_inactive(pwq);
    1209             :                 }
    1210             :         }
    1211             : 
    1212          86 :         pwq->nr_in_flight[color]--;
    1213             : 
    1214             :         /* is flush in progress and are we at the flushing tip? */
    1215          86 :         if (likely(pwq->flush_color != color))
    1216             :                 goto out_put;
    1217             : 
    1218             :         /* are there still in-flight works? */
    1219           0 :         if (pwq->nr_in_flight[color])
    1220             :                 goto out_put;
    1221             : 
    1222             :         /* this pwq is done, clear flush_color */
    1223           0 :         pwq->flush_color = -1;
    1224             : 
    1225             :         /*
    1226             :          * If this was the last pwq, wake up the first flusher.  It
    1227             :          * will handle the rest.
    1228             :          */
    1229           0 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1230           0 :                 complete(&pwq->wq->first_flusher->done);
    1231             : out_put:
    1232          86 :         put_pwq(pwq);
    1233          86 : }
    1234             : 
    1235             : /**
    1236             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1237             :  * @work: work item to steal
    1238             :  * @is_dwork: @work is a delayed_work
    1239             :  * @flags: place to store irq state
    1240             :  *
    1241             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1242             :  * stable state - idle, on timer or on worklist.
    1243             :  *
    1244             :  * Return:
    1245             :  *
    1246             :  *  ========    ================================================================
    1247             :  *  1           if @work was pending and we successfully stole PENDING
    1248             :  *  0           if @work was idle and we claimed PENDING
    1249             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1250             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1251             :  *              for arbitrarily long
    1252             :  *  ========    ================================================================
    1253             :  *
    1254             :  * Note:
    1255             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1256             :  * interrupted while holding PENDING and @work off queue, irq must be
    1257             :  * disabled on entry.  This, combined with delayed_work->timer being
    1258             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1259             :  *
    1260             :  * On successful return, >= 0, irq is disabled and the caller is
    1261             :  * responsible for releasing it using local_irq_restore(*@flags).
    1262             :  *
    1263             :  * This function is safe to call from any context including IRQ handler.
    1264             :  */
    1265          38 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1266             :                                unsigned long *flags)
    1267             : {
    1268             :         struct worker_pool *pool;
    1269             :         struct pool_workqueue *pwq;
    1270             : 
    1271          38 :         local_irq_save(*flags);
    1272             : 
    1273             :         /* try to steal the timer if it exists */
    1274          38 :         if (is_dwork) {
    1275          38 :                 struct delayed_work *dwork = to_delayed_work(work);
    1276             : 
    1277             :                 /*
    1278             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1279             :                  * guaranteed that the timer is not queued anywhere and not
    1280             :                  * running on the local CPU.
    1281             :                  */
    1282          76 :                 if (likely(del_timer(&dwork->timer)))
    1283             :                         return 1;
    1284             :         }
    1285             : 
    1286             :         /* try to claim PENDING the normal way */
    1287          76 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1288             :                 return 0;
    1289             : 
    1290             :         rcu_read_lock();
    1291             :         /*
    1292             :          * The queueing is in progress, or it is already queued. Try to
    1293             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1294             :          */
    1295           0 :         pool = get_work_pool(work);
    1296           0 :         if (!pool)
    1297             :                 goto fail;
    1298             : 
    1299           0 :         raw_spin_lock(&pool->lock);
    1300             :         /*
    1301             :          * work->data is guaranteed to point to pwq only while the work
    1302             :          * item is queued on pwq->wq, and both updating work->data to point
    1303             :          * to pwq on queueing and to pool on dequeueing are done under
    1304             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1305             :          * points to pwq which is associated with a locked pool, the work
    1306             :          * item is currently queued on that pool.
    1307             :          */
    1308           0 :         pwq = get_work_pwq(work);
    1309           0 :         if (pwq && pwq->pool == pool) {
    1310           0 :                 debug_work_deactivate(work);
    1311             : 
    1312             :                 /*
    1313             :                  * A cancelable inactive work item must be in the
    1314             :                  * pwq->inactive_works since a queued barrier can't be
    1315             :                  * canceled (see the comments in insert_wq_barrier()).
    1316             :                  *
    1317             :                  * An inactive work item cannot be grabbed directly because
    1318             :                  * it might have linked barrier work items which, if left
    1319             :                  * on the inactive_works list, will confuse pwq->nr_active
    1320             :                  * management later on and cause stall.  Make sure the work
    1321             :                  * item is activated before grabbing.
    1322             :                  */
    1323           0 :                 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
    1324           0 :                         pwq_activate_inactive_work(work);
    1325             : 
    1326           0 :                 list_del_init(&work->entry);
    1327           0 :                 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
    1328             : 
    1329             :                 /* work->data points to pwq iff queued, point to pool */
    1330           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1331             : 
    1332           0 :                 raw_spin_unlock(&pool->lock);
    1333             :                 rcu_read_unlock();
    1334           0 :                 return 1;
    1335             :         }
    1336           0 :         raw_spin_unlock(&pool->lock);
    1337             : fail:
    1338             :         rcu_read_unlock();
    1339           0 :         local_irq_restore(*flags);
    1340           0 :         if (work_is_canceling(work))
    1341             :                 return -ENOENT;
    1342             :         cpu_relax();
    1343           0 :         return -EAGAIN;
    1344             : }
    1345             : 
    1346             : /**
    1347             :  * insert_work - insert a work into a pool
    1348             :  * @pwq: pwq @work belongs to
    1349             :  * @work: work to insert
    1350             :  * @head: insertion point
    1351             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1352             :  *
    1353             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1354             :  * work_struct flags.
    1355             :  *
    1356             :  * CONTEXT:
    1357             :  * raw_spin_lock_irq(pool->lock).
    1358             :  */
    1359          86 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1360             :                         struct list_head *head, unsigned int extra_flags)
    1361             : {
    1362          86 :         struct worker_pool *pool = pwq->pool;
    1363             : 
    1364             :         /* record the work call stack in order to print it in KASAN reports */
    1365          86 :         kasan_record_aux_stack_noalloc(work);
    1366             : 
    1367             :         /* we own @work, set data and link */
    1368         172 :         set_work_pwq(work, pwq, extra_flags);
    1369         172 :         list_add_tail(&work->entry, head);
    1370          86 :         get_pwq(pwq);
    1371             : 
    1372          86 :         if (__need_more_worker(pool))
    1373             :                 wake_up_worker(pool);
    1374          86 : }
    1375             : 
    1376             : /*
    1377             :  * Test whether @work is being queued from another work executing on the
    1378             :  * same workqueue.
    1379             :  */
    1380             : static bool is_chained_work(struct workqueue_struct *wq)
    1381             : {
    1382             :         struct worker *worker;
    1383             : 
    1384           0 :         worker = current_wq_worker();
    1385             :         /*
    1386             :          * Return %true iff I'm a worker executing a work item on @wq.  If
    1387             :          * I'm @worker, it's safe to dereference it without locking.
    1388             :          */
    1389           0 :         return worker && worker->current_pwq->wq == wq;
    1390             : }
    1391             : 
    1392             : /*
    1393             :  * When queueing an unbound work item to a wq, prefer local CPU if allowed
    1394             :  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
    1395             :  * avoid perturbing sensitive tasks.
    1396             :  */
    1397          33 : static int wq_select_unbound_cpu(int cpu)
    1398             : {
    1399             :         int new_cpu;
    1400             : 
    1401          33 :         if (likely(!wq_debug_force_rr_cpu)) {
    1402          33 :                 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
    1403             :                         return cpu;
    1404             :         } else {
    1405           0 :                 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
    1406             :         }
    1407             : 
    1408           0 :         if (cpumask_empty(wq_unbound_cpumask))
    1409             :                 return cpu;
    1410             : 
    1411           0 :         new_cpu = __this_cpu_read(wq_rr_cpu_last);
    1412           0 :         new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
    1413           0 :         if (unlikely(new_cpu >= nr_cpu_ids)) {
    1414           0 :                 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
    1415           0 :                 if (unlikely(new_cpu >= nr_cpu_ids))
    1416             :                         return cpu;
    1417             :         }
    1418           0 :         __this_cpu_write(wq_rr_cpu_last, new_cpu);
    1419             : 
    1420           0 :         return new_cpu;
    1421             : }
    1422             : 
    1423          84 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1424             :                          struct work_struct *work)
    1425             : {
    1426             :         struct pool_workqueue *pwq;
    1427             :         struct worker_pool *last_pool;
    1428             :         struct list_head *worklist;
    1429             :         unsigned int work_flags;
    1430          84 :         unsigned int req_cpu = cpu;
    1431             : 
    1432             :         /*
    1433             :          * While a work item is PENDING && off queue, a task trying to
    1434             :          * steal the PENDING will busy-loop waiting for it to either get
    1435             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1436             :          * happen with IRQ disabled.
    1437             :          */
    1438             :         lockdep_assert_irqs_disabled();
    1439             : 
    1440             : 
    1441             :         /*
    1442             :          * For a draining wq, only works from the same workqueue are
    1443             :          * allowed. The __WQ_DESTROYING helps to spot the issue that
    1444             :          * queues a new work item to a wq after destroy_workqueue(wq).
    1445             :          */
    1446          84 :         if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
    1447             :                      WARN_ON_ONCE(!is_chained_work(wq))))
    1448             :                 return;
    1449             :         rcu_read_lock();
    1450             : retry:
    1451             :         /* pwq which will be used unless @work is executing elsewhere */
    1452          84 :         if (wq->flags & WQ_UNBOUND) {
    1453          33 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1454          33 :                         cpu = wq_select_unbound_cpu(raw_smp_processor_id());
    1455          33 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1456             :         } else {
    1457          51 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1458          51 :                         cpu = raw_smp_processor_id();
    1459          51 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1460             :         }
    1461             : 
    1462             :         /*
    1463             :          * If @work was previously on a different pool, it might still be
    1464             :          * running there, in which case the work needs to be queued on that
    1465             :          * pool to guarantee non-reentrancy.
    1466             :          */
    1467          84 :         last_pool = get_work_pool(work);
    1468          84 :         if (last_pool && last_pool != pwq->pool) {
    1469             :                 struct worker *worker;
    1470             : 
    1471           0 :                 raw_spin_lock(&last_pool->lock);
    1472             : 
    1473           0 :                 worker = find_worker_executing_work(last_pool, work);
    1474             : 
    1475           0 :                 if (worker && worker->current_pwq->wq == wq) {
    1476             :                         pwq = worker->current_pwq;
    1477             :                 } else {
    1478             :                         /* meh... not running there, queue here */
    1479           0 :                         raw_spin_unlock(&last_pool->lock);
    1480           0 :                         raw_spin_lock(&pwq->pool->lock);
    1481             :                 }
    1482             :         } else {
    1483          84 :                 raw_spin_lock(&pwq->pool->lock);
    1484             :         }
    1485             : 
    1486             :         /*
    1487             :          * pwq is determined and locked.  For unbound pools, we could have
    1488             :          * raced with pwq release and it could already be dead.  If its
    1489             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1490             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1491             :          * work items are executing on it, so the retrying is guaranteed to
    1492             :          * make forward-progress.
    1493             :          */
    1494          84 :         if (unlikely(!pwq->refcnt)) {
    1495           0 :                 if (wq->flags & WQ_UNBOUND) {
    1496           0 :                         raw_spin_unlock(&pwq->pool->lock);
    1497             :                         cpu_relax();
    1498             :                         goto retry;
    1499             :                 }
    1500             :                 /* oops */
    1501           0 :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1502             :                           wq->name, cpu);
    1503             :         }
    1504             : 
    1505             :         /* pwq determined, queue */
    1506          84 :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1507             : 
    1508         168 :         if (WARN_ON(!list_empty(&work->entry)))
    1509             :                 goto out;
    1510             : 
    1511          84 :         pwq->nr_in_flight[pwq->work_color]++;
    1512         168 :         work_flags = work_color_to_flags(pwq->work_color);
    1513             : 
    1514          84 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1515          84 :                 trace_workqueue_activate_work(work);
    1516          84 :                 pwq->nr_active++;
    1517          84 :                 worklist = &pwq->pool->worklist;
    1518          84 :                 if (list_empty(worklist))
    1519          83 :                         pwq->pool->watchdog_ts = jiffies;
    1520             :         } else {
    1521           0 :                 work_flags |= WORK_STRUCT_INACTIVE;
    1522           0 :                 worklist = &pwq->inactive_works;
    1523             :         }
    1524             : 
    1525          84 :         debug_work_activate(work);
    1526          84 :         insert_work(pwq, work, worklist, work_flags);
    1527             : 
    1528             : out:
    1529          84 :         raw_spin_unlock(&pwq->pool->lock);
    1530             :         rcu_read_unlock();
    1531             : }
    1532             : 
    1533             : /**
    1534             :  * queue_work_on - queue work on specific cpu
    1535             :  * @cpu: CPU number to execute work on
    1536             :  * @wq: workqueue to use
    1537             :  * @work: work to queue
    1538             :  *
    1539             :  * We queue the work to a specific CPU, the caller must ensure it
    1540             :  * can't go away.  Callers that fail to ensure that the specified
    1541             :  * CPU cannot go away will execute on a randomly chosen CPU.
    1542             :  *
    1543             :  * Return: %false if @work was already on a queue, %true otherwise.
    1544             :  */
    1545          76 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1546             :                    struct work_struct *work)
    1547             : {
    1548          76 :         bool ret = false;
    1549             :         unsigned long flags;
    1550             : 
    1551          76 :         local_irq_save(flags);
    1552             : 
    1553         152 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1554          75 :                 __queue_work(cpu, wq, work);
    1555          75 :                 ret = true;
    1556             :         }
    1557             : 
    1558         152 :         local_irq_restore(flags);
    1559          76 :         return ret;
    1560             : }
    1561             : EXPORT_SYMBOL(queue_work_on);
    1562             : 
    1563             : /**
    1564             :  * workqueue_select_cpu_near - Select a CPU based on NUMA node
    1565             :  * @node: NUMA node ID that we want to select a CPU from
    1566             :  *
    1567             :  * This function will attempt to find a "random" cpu available on a given
    1568             :  * node. If there are no CPUs available on the given node it will return
    1569             :  * WORK_CPU_UNBOUND indicating that we should just schedule to any
    1570             :  * available CPU if we need to schedule this work.
    1571             :  */
    1572             : static int workqueue_select_cpu_near(int node)
    1573             : {
    1574             :         int cpu;
    1575             : 
    1576             :         /* No point in doing this if NUMA isn't enabled for workqueues */
    1577           0 :         if (!wq_numa_enabled)
    1578             :                 return WORK_CPU_UNBOUND;
    1579             : 
    1580             :         /* Delay binding to CPU if node is not valid or online */
    1581           0 :         if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
    1582             :                 return WORK_CPU_UNBOUND;
    1583             : 
    1584             :         /* Use local node/cpu if we are already there */
    1585             :         cpu = raw_smp_processor_id();
    1586             :         if (node == cpu_to_node(cpu))
    1587             :                 return cpu;
    1588             : 
    1589             :         /* Use "random" otherwise know as "first" online CPU of node */
    1590             :         cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
    1591             : 
    1592             :         /* If CPU is valid return that, otherwise just defer */
    1593             :         return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
    1594             : }
    1595             : 
    1596             : /**
    1597             :  * queue_work_node - queue work on a "random" cpu for a given NUMA node
    1598             :  * @node: NUMA node that we are targeting the work for
    1599             :  * @wq: workqueue to use
    1600             :  * @work: work to queue
    1601             :  *
    1602             :  * We queue the work to a "random" CPU within a given NUMA node. The basic
    1603             :  * idea here is to provide a way to somehow associate work with a given
    1604             :  * NUMA node.
    1605             :  *
    1606             :  * This function will only make a best effort attempt at getting this onto
    1607             :  * the right NUMA node. If no node is requested or the requested node is
    1608             :  * offline then we just fall back to standard queue_work behavior.
    1609             :  *
    1610             :  * Currently the "random" CPU ends up being the first available CPU in the
    1611             :  * intersection of cpu_online_mask and the cpumask of the node, unless we
    1612             :  * are running on the node. In that case we just use the current CPU.
    1613             :  *
    1614             :  * Return: %false if @work was already on a queue, %true otherwise.
    1615             :  */
    1616           0 : bool queue_work_node(int node, struct workqueue_struct *wq,
    1617             :                      struct work_struct *work)
    1618             : {
    1619             :         unsigned long flags;
    1620           0 :         bool ret = false;
    1621             : 
    1622             :         /*
    1623             :          * This current implementation is specific to unbound workqueues.
    1624             :          * Specifically we only return the first available CPU for a given
    1625             :          * node instead of cycling through individual CPUs within the node.
    1626             :          *
    1627             :          * If this is used with a per-cpu workqueue then the logic in
    1628             :          * workqueue_select_cpu_near would need to be updated to allow for
    1629             :          * some round robin type logic.
    1630             :          */
    1631           0 :         WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
    1632             : 
    1633           0 :         local_irq_save(flags);
    1634             : 
    1635           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1636           0 :                 int cpu = workqueue_select_cpu_near(node);
    1637             : 
    1638           0 :                 __queue_work(cpu, wq, work);
    1639           0 :                 ret = true;
    1640             :         }
    1641             : 
    1642           0 :         local_irq_restore(flags);
    1643           0 :         return ret;
    1644             : }
    1645             : EXPORT_SYMBOL_GPL(queue_work_node);
    1646             : 
    1647           9 : void delayed_work_timer_fn(struct timer_list *t)
    1648             : {
    1649           9 :         struct delayed_work *dwork = from_timer(dwork, t, timer);
    1650             : 
    1651             :         /* should have been called from irqsafe timer with irq already off */
    1652           9 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1653           9 : }
    1654             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1655             : 
    1656          11 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1657             :                                 struct delayed_work *dwork, unsigned long delay)
    1658             : {
    1659          11 :         struct timer_list *timer = &dwork->timer;
    1660          11 :         struct work_struct *work = &dwork->work;
    1661             : 
    1662          11 :         WARN_ON_ONCE(!wq);
    1663          11 :         WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
    1664          11 :         WARN_ON_ONCE(timer_pending(timer));
    1665          22 :         WARN_ON_ONCE(!list_empty(&work->entry));
    1666             : 
    1667             :         /*
    1668             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1669             :          * both optimization and correctness.  The earliest @timer can
    1670             :          * expire is on the closest next tick and delayed_work users depend
    1671             :          * on that there's no such delay when @delay is 0.
    1672             :          */
    1673          11 :         if (!delay) {
    1674           0 :                 __queue_work(cpu, wq, &dwork->work);
    1675           0 :                 return;
    1676             :         }
    1677             : 
    1678          11 :         dwork->wq = wq;
    1679          11 :         dwork->cpu = cpu;
    1680          11 :         timer->expires = jiffies + delay;
    1681             : 
    1682          11 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1683           0 :                 add_timer_on(timer, cpu);
    1684             :         else
    1685          11 :                 add_timer(timer);
    1686             : }
    1687             : 
    1688             : /**
    1689             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1690             :  * @cpu: CPU number to execute work on
    1691             :  * @wq: workqueue to use
    1692             :  * @dwork: work to queue
    1693             :  * @delay: number of jiffies to wait before queueing
    1694             :  *
    1695             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1696             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1697             :  * execution.
    1698             :  */
    1699          11 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1700             :                            struct delayed_work *dwork, unsigned long delay)
    1701             : {
    1702          11 :         struct work_struct *work = &dwork->work;
    1703          11 :         bool ret = false;
    1704             :         unsigned long flags;
    1705             : 
    1706             :         /* read the comment in __queue_work() */
    1707          11 :         local_irq_save(flags);
    1708             : 
    1709          22 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1710          11 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1711          11 :                 ret = true;
    1712             :         }
    1713             : 
    1714          22 :         local_irq_restore(flags);
    1715          11 :         return ret;
    1716             : }
    1717             : EXPORT_SYMBOL(queue_delayed_work_on);
    1718             : 
    1719             : /**
    1720             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1721             :  * @cpu: CPU number to execute work on
    1722             :  * @wq: workqueue to use
    1723             :  * @dwork: work to queue
    1724             :  * @delay: number of jiffies to wait before queueing
    1725             :  *
    1726             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1727             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1728             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1729             :  * current state.
    1730             :  *
    1731             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1732             :  * pending and its timer was modified.
    1733             :  *
    1734             :  * This function is safe to call from any context including IRQ handler.
    1735             :  * See try_to_grab_pending() for details.
    1736             :  */
    1737           0 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1738             :                          struct delayed_work *dwork, unsigned long delay)
    1739             : {
    1740             :         unsigned long flags;
    1741             :         int ret;
    1742             : 
    1743             :         do {
    1744           0 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1745           0 :         } while (unlikely(ret == -EAGAIN));
    1746             : 
    1747           0 :         if (likely(ret >= 0)) {
    1748           0 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1749           0 :                 local_irq_restore(flags);
    1750             :         }
    1751             : 
    1752             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1753           0 :         return ret;
    1754             : }
    1755             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1756             : 
    1757           0 : static void rcu_work_rcufn(struct rcu_head *rcu)
    1758             : {
    1759           0 :         struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
    1760             : 
    1761             :         /* read the comment in __queue_work() */
    1762             :         local_irq_disable();
    1763           0 :         __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
    1764             :         local_irq_enable();
    1765           0 : }
    1766             : 
    1767             : /**
    1768             :  * queue_rcu_work - queue work after a RCU grace period
    1769             :  * @wq: workqueue to use
    1770             :  * @rwork: work to queue
    1771             :  *
    1772             :  * Return: %false if @rwork was already pending, %true otherwise.  Note
    1773             :  * that a full RCU grace period is guaranteed only after a %true return.
    1774             :  * While @rwork is guaranteed to be executed after a %false return, the
    1775             :  * execution may happen before a full RCU grace period has passed.
    1776             :  */
    1777           0 : bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
    1778             : {
    1779           0 :         struct work_struct *work = &rwork->work;
    1780             : 
    1781           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1782           0 :                 rwork->wq = wq;
    1783           0 :                 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
    1784           0 :                 return true;
    1785             :         }
    1786             : 
    1787             :         return false;
    1788             : }
    1789             : EXPORT_SYMBOL(queue_rcu_work);
    1790             : 
    1791             : /**
    1792             :  * worker_enter_idle - enter idle state
    1793             :  * @worker: worker which is entering idle state
    1794             :  *
    1795             :  * @worker is entering idle state.  Update stats and idle timer if
    1796             :  * necessary.
    1797             :  *
    1798             :  * LOCKING:
    1799             :  * raw_spin_lock_irq(pool->lock).
    1800             :  */
    1801          93 : static void worker_enter_idle(struct worker *worker)
    1802             : {
    1803          93 :         struct worker_pool *pool = worker->pool;
    1804             : 
    1805         186 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1806         186 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1807             :                          (worker->hentry.next || worker->hentry.pprev)))
    1808             :                 return;
    1809             : 
    1810             :         /* can't use worker_set_flags(), also called from create_worker() */
    1811          93 :         worker->flags |= WORKER_IDLE;
    1812          93 :         pool->nr_idle++;
    1813          93 :         worker->last_active = jiffies;
    1814             : 
    1815             :         /* idle_list is LIFO */
    1816         186 :         list_add(&worker->entry, &pool->idle_list);
    1817             : 
    1818         186 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    1819           0 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    1820             : 
    1821             :         /* Sanity check nr_running. */
    1822          93 :         WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
    1823             : }
    1824             : 
    1825             : /**
    1826             :  * worker_leave_idle - leave idle state
    1827             :  * @worker: worker which is leaving idle state
    1828             :  *
    1829             :  * @worker is leaving idle state.  Update stats.
    1830             :  *
    1831             :  * LOCKING:
    1832             :  * raw_spin_lock_irq(pool->lock).
    1833             :  */
    1834          88 : static void worker_leave_idle(struct worker *worker)
    1835             : {
    1836          88 :         struct worker_pool *pool = worker->pool;
    1837             : 
    1838          88 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    1839             :                 return;
    1840          88 :         worker_clr_flags(worker, WORKER_IDLE);
    1841          88 :         pool->nr_idle--;
    1842          88 :         list_del_init(&worker->entry);
    1843             : }
    1844             : 
    1845           9 : static struct worker *alloc_worker(int node)
    1846             : {
    1847             :         struct worker *worker;
    1848             : 
    1849           9 :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    1850           9 :         if (worker) {
    1851          18 :                 INIT_LIST_HEAD(&worker->entry);
    1852          18 :                 INIT_LIST_HEAD(&worker->scheduled);
    1853          18 :                 INIT_LIST_HEAD(&worker->node);
    1854             :                 /* on creation a worker is in !idle && prep state */
    1855           9 :                 worker->flags = WORKER_PREP;
    1856             :         }
    1857           9 :         return worker;
    1858             : }
    1859             : 
    1860             : /**
    1861             :  * worker_attach_to_pool() - attach a worker to a pool
    1862             :  * @worker: worker to be attached
    1863             :  * @pool: the target pool
    1864             :  *
    1865             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    1866             :  * cpu-binding of @worker are kept coordinated with the pool across
    1867             :  * cpu-[un]hotplugs.
    1868             :  */
    1869           5 : static void worker_attach_to_pool(struct worker *worker,
    1870             :                                    struct worker_pool *pool)
    1871             : {
    1872           5 :         mutex_lock(&wq_pool_attach_mutex);
    1873             : 
    1874             :         /*
    1875             :          * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
    1876             :          * stable across this function.  See the comments above the flag
    1877             :          * definition for details.
    1878             :          */
    1879           5 :         if (pool->flags & POOL_DISASSOCIATED)
    1880           2 :                 worker->flags |= WORKER_UNBOUND;
    1881             :         else
    1882           3 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    1883             : 
    1884           5 :         if (worker->rescue_wq)
    1885           0 :                 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    1886             : 
    1887          10 :         list_add_tail(&worker->node, &pool->workers);
    1888           5 :         worker->pool = pool;
    1889             : 
    1890           5 :         mutex_unlock(&wq_pool_attach_mutex);
    1891           5 : }
    1892             : 
    1893             : /**
    1894             :  * worker_detach_from_pool() - detach a worker from its pool
    1895             :  * @worker: worker which is attached to its pool
    1896             :  *
    1897             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    1898             :  * caller worker shouldn't access to the pool after detached except it has
    1899             :  * other reference to the pool.
    1900             :  */
    1901           0 : static void worker_detach_from_pool(struct worker *worker)
    1902             : {
    1903           0 :         struct worker_pool *pool = worker->pool;
    1904           0 :         struct completion *detach_completion = NULL;
    1905             : 
    1906           0 :         mutex_lock(&wq_pool_attach_mutex);
    1907             : 
    1908           0 :         kthread_set_per_cpu(worker->task, -1);
    1909           0 :         list_del(&worker->node);
    1910           0 :         worker->pool = NULL;
    1911             : 
    1912           0 :         if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
    1913           0 :                 detach_completion = pool->detach_completion;
    1914           0 :         mutex_unlock(&wq_pool_attach_mutex);
    1915             : 
    1916             :         /* clear leftover flags without pool->lock after it is detached */
    1917           0 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    1918             : 
    1919           0 :         if (detach_completion)
    1920           0 :                 complete(detach_completion);
    1921           0 : }
    1922             : 
    1923             : /**
    1924             :  * create_worker - create a new workqueue worker
    1925             :  * @pool: pool the new worker will belong to
    1926             :  *
    1927             :  * Create and start a new worker which is attached to @pool.
    1928             :  *
    1929             :  * CONTEXT:
    1930             :  * Might sleep.  Does GFP_KERNEL allocations.
    1931             :  *
    1932             :  * Return:
    1933             :  * Pointer to the newly created worker.
    1934             :  */
    1935           5 : static struct worker *create_worker(struct worker_pool *pool)
    1936             : {
    1937             :         struct worker *worker;
    1938             :         int id;
    1939             :         char id_buf[16];
    1940             : 
    1941             :         /* ID is needed to determine kthread name */
    1942          10 :         id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
    1943           5 :         if (id < 0) {
    1944           0 :                 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
    1945             :                             ERR_PTR(id));
    1946             :                 return NULL;
    1947             :         }
    1948             : 
    1949           5 :         worker = alloc_worker(pool->node);
    1950           5 :         if (!worker) {
    1951           0 :                 pr_err_once("workqueue: Failed to allocate a worker\n");
    1952             :                 goto fail;
    1953             :         }
    1954             : 
    1955           5 :         worker->id = id;
    1956             : 
    1957           5 :         if (pool->cpu >= 0)
    1958           3 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    1959           3 :                          pool->attrs->nice < 0  ? "H" : "");
    1960             :         else
    1961           2 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    1962             : 
    1963           5 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    1964             :                                               "kworker/%s", id_buf);
    1965          10 :         if (IS_ERR(worker->task)) {
    1966           0 :                 if (PTR_ERR(worker->task) == -EINTR) {
    1967           0 :                         pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
    1968             :                                id_buf);
    1969             :                 } else {
    1970           0 :                         pr_err_once("workqueue: Failed to create a worker thread: %pe",
    1971             :                                     worker->task);
    1972             :                 }
    1973             :                 goto fail;
    1974             :         }
    1975             : 
    1976           5 :         set_user_nice(worker->task, pool->attrs->nice);
    1977           5 :         kthread_bind_mask(worker->task, pool->attrs->cpumask);
    1978             : 
    1979             :         /* successful, attach the worker to the pool */
    1980           5 :         worker_attach_to_pool(worker, pool);
    1981             : 
    1982             :         /* start the newly created worker */
    1983           5 :         raw_spin_lock_irq(&pool->lock);
    1984           5 :         worker->pool->nr_workers++;
    1985           5 :         worker_enter_idle(worker);
    1986           5 :         wake_up_process(worker->task);
    1987           5 :         raw_spin_unlock_irq(&pool->lock);
    1988             : 
    1989           5 :         return worker;
    1990             : 
    1991             : fail:
    1992           0 :         ida_free(&pool->worker_ida, id);
    1993           0 :         kfree(worker);
    1994           0 :         return NULL;
    1995             : }
    1996             : 
    1997           0 : static void unbind_worker(struct worker *worker)
    1998             : {
    1999             :         lockdep_assert_held(&wq_pool_attach_mutex);
    2000             : 
    2001           0 :         kthread_set_per_cpu(worker->task, -1);
    2002           0 :         if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
    2003           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
    2004             :         else
    2005           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
    2006           0 : }
    2007             : 
    2008           0 : static void wake_dying_workers(struct list_head *cull_list)
    2009             : {
    2010             :         struct worker *worker, *tmp;
    2011             : 
    2012           0 :         list_for_each_entry_safe(worker, tmp, cull_list, entry) {
    2013           0 :                 list_del_init(&worker->entry);
    2014           0 :                 unbind_worker(worker);
    2015             :                 /*
    2016             :                  * If the worker was somehow already running, then it had to be
    2017             :                  * in pool->idle_list when set_worker_dying() happened or we
    2018             :                  * wouldn't have gotten here.
    2019             :                  *
    2020             :                  * Thus, the worker must either have observed the WORKER_DIE
    2021             :                  * flag, or have set its state to TASK_IDLE. Either way, the
    2022             :                  * below will be observed by the worker and is safe to do
    2023             :                  * outside of pool->lock.
    2024             :                  */
    2025           0 :                 wake_up_process(worker->task);
    2026             :         }
    2027           0 : }
    2028             : 
    2029             : /**
    2030             :  * set_worker_dying - Tag a worker for destruction
    2031             :  * @worker: worker to be destroyed
    2032             :  * @list: transfer worker away from its pool->idle_list and into list
    2033             :  *
    2034             :  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
    2035             :  * should be idle.
    2036             :  *
    2037             :  * CONTEXT:
    2038             :  * raw_spin_lock_irq(pool->lock).
    2039             :  */
    2040           0 : static void set_worker_dying(struct worker *worker, struct list_head *list)
    2041             : {
    2042           0 :         struct worker_pool *pool = worker->pool;
    2043             : 
    2044             :         lockdep_assert_held(&pool->lock);
    2045             :         lockdep_assert_held(&wq_pool_attach_mutex);
    2046             : 
    2047             :         /* sanity check frenzy */
    2048           0 :         if (WARN_ON(worker->current_work) ||
    2049           0 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    2050           0 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    2051             :                 return;
    2052             : 
    2053           0 :         pool->nr_workers--;
    2054           0 :         pool->nr_idle--;
    2055             : 
    2056           0 :         worker->flags |= WORKER_DIE;
    2057             : 
    2058           0 :         list_move(&worker->entry, list);
    2059           0 :         list_move(&worker->node, &pool->dying_workers);
    2060             : }
    2061             : 
    2062             : /**
    2063             :  * idle_worker_timeout - check if some idle workers can now be deleted.
    2064             :  * @t: The pool's idle_timer that just expired
    2065             :  *
    2066             :  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
    2067             :  * worker_leave_idle(), as a worker flicking between idle and active while its
    2068             :  * pool is at the too_many_workers() tipping point would cause too much timer
    2069             :  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
    2070             :  * it expire and re-evaluate things from there.
    2071             :  */
    2072           0 : static void idle_worker_timeout(struct timer_list *t)
    2073             : {
    2074           0 :         struct worker_pool *pool = from_timer(pool, t, idle_timer);
    2075           0 :         bool do_cull = false;
    2076             : 
    2077           0 :         if (work_pending(&pool->idle_cull_work))
    2078             :                 return;
    2079             : 
    2080           0 :         raw_spin_lock_irq(&pool->lock);
    2081             : 
    2082           0 :         if (too_many_workers(pool)) {
    2083             :                 struct worker *worker;
    2084             :                 unsigned long expires;
    2085             : 
    2086             :                 /* idle_list is kept in LIFO order, check the last one */
    2087           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2088           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2089           0 :                 do_cull = !time_before(jiffies, expires);
    2090             : 
    2091           0 :                 if (!do_cull)
    2092           0 :                         mod_timer(&pool->idle_timer, expires);
    2093             :         }
    2094           0 :         raw_spin_unlock_irq(&pool->lock);
    2095             : 
    2096           0 :         if (do_cull)
    2097           0 :                 queue_work(system_unbound_wq, &pool->idle_cull_work);
    2098             : }
    2099             : 
    2100             : /**
    2101             :  * idle_cull_fn - cull workers that have been idle for too long.
    2102             :  * @work: the pool's work for handling these idle workers
    2103             :  *
    2104             :  * This goes through a pool's idle workers and gets rid of those that have been
    2105             :  * idle for at least IDLE_WORKER_TIMEOUT seconds.
    2106             :  *
    2107             :  * We don't want to disturb isolated CPUs because of a pcpu kworker being
    2108             :  * culled, so this also resets worker affinity. This requires a sleepable
    2109             :  * context, hence the split between timer callback and work item.
    2110             :  */
    2111           0 : static void idle_cull_fn(struct work_struct *work)
    2112             : {
    2113           0 :         struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
    2114             :         struct list_head cull_list;
    2115             : 
    2116           0 :         INIT_LIST_HEAD(&cull_list);
    2117             :         /*
    2118             :          * Grabbing wq_pool_attach_mutex here ensures an already-running worker
    2119             :          * cannot proceed beyong worker_detach_from_pool() in its self-destruct
    2120             :          * path. This is required as a previously-preempted worker could run after
    2121             :          * set_worker_dying() has happened but before wake_dying_workers() did.
    2122             :          */
    2123           0 :         mutex_lock(&wq_pool_attach_mutex);
    2124           0 :         raw_spin_lock_irq(&pool->lock);
    2125             : 
    2126           0 :         while (too_many_workers(pool)) {
    2127             :                 struct worker *worker;
    2128             :                 unsigned long expires;
    2129             : 
    2130           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2131           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2132             : 
    2133           0 :                 if (time_before(jiffies, expires)) {
    2134           0 :                         mod_timer(&pool->idle_timer, expires);
    2135           0 :                         break;
    2136             :                 }
    2137             : 
    2138           0 :                 set_worker_dying(worker, &cull_list);
    2139             :         }
    2140             : 
    2141           0 :         raw_spin_unlock_irq(&pool->lock);
    2142           0 :         wake_dying_workers(&cull_list);
    2143           0 :         mutex_unlock(&wq_pool_attach_mutex);
    2144           0 : }
    2145             : 
    2146           0 : static void send_mayday(struct work_struct *work)
    2147             : {
    2148           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2149           0 :         struct workqueue_struct *wq = pwq->wq;
    2150             : 
    2151             :         lockdep_assert_held(&wq_mayday_lock);
    2152             : 
    2153           0 :         if (!wq->rescuer)
    2154             :                 return;
    2155             : 
    2156             :         /* mayday mayday mayday */
    2157           0 :         if (list_empty(&pwq->mayday_node)) {
    2158             :                 /*
    2159             :                  * If @pwq is for an unbound wq, its base ref may be put at
    2160             :                  * any time due to an attribute change.  Pin @pwq until the
    2161             :                  * rescuer is done with it.
    2162             :                  */
    2163           0 :                 get_pwq(pwq);
    2164           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    2165           0 :                 wake_up_process(wq->rescuer->task);
    2166             :         }
    2167             : }
    2168             : 
    2169           0 : static void pool_mayday_timeout(struct timer_list *t)
    2170             : {
    2171           0 :         struct worker_pool *pool = from_timer(pool, t, mayday_timer);
    2172             :         struct work_struct *work;
    2173             : 
    2174           0 :         raw_spin_lock_irq(&pool->lock);
    2175           0 :         raw_spin_lock(&wq_mayday_lock);             /* for wq->maydays */
    2176             : 
    2177           0 :         if (need_to_create_worker(pool)) {
    2178             :                 /*
    2179             :                  * We've been trying to create a new worker but
    2180             :                  * haven't been successful.  We might be hitting an
    2181             :                  * allocation deadlock.  Send distress signals to
    2182             :                  * rescuers.
    2183             :                  */
    2184           0 :                 list_for_each_entry(work, &pool->worklist, entry)
    2185           0 :                         send_mayday(work);
    2186             :         }
    2187             : 
    2188           0 :         raw_spin_unlock(&wq_mayday_lock);
    2189           0 :         raw_spin_unlock_irq(&pool->lock);
    2190             : 
    2191           0 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    2192           0 : }
    2193             : 
    2194             : /**
    2195             :  * maybe_create_worker - create a new worker if necessary
    2196             :  * @pool: pool to create a new worker for
    2197             :  *
    2198             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    2199             :  * have at least one idle worker on return from this function.  If
    2200             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    2201             :  * sent to all rescuers with works scheduled on @pool to resolve
    2202             :  * possible allocation deadlock.
    2203             :  *
    2204             :  * On return, need_to_create_worker() is guaranteed to be %false and
    2205             :  * may_start_working() %true.
    2206             :  *
    2207             :  * LOCKING:
    2208             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2209             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    2210             :  * manager.
    2211             :  */
    2212           2 : static void maybe_create_worker(struct worker_pool *pool)
    2213             : __releases(&pool->lock)
    2214             : __acquires(&pool->lock)
    2215             : {
    2216             : restart:
    2217           2 :         raw_spin_unlock_irq(&pool->lock);
    2218             : 
    2219             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    2220           2 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    2221             : 
    2222             :         while (true) {
    2223           2 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    2224             :                         break;
    2225             : 
    2226           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    2227             : 
    2228           0 :                 if (!need_to_create_worker(pool))
    2229             :                         break;
    2230             :         }
    2231             : 
    2232           4 :         del_timer_sync(&pool->mayday_timer);
    2233           2 :         raw_spin_lock_irq(&pool->lock);
    2234             :         /*
    2235             :          * This is necessary even after a new worker was just successfully
    2236             :          * created as @pool->lock was dropped and the new worker might have
    2237             :          * already become busy.
    2238             :          */
    2239           2 :         if (need_to_create_worker(pool))
    2240             :                 goto restart;
    2241           2 : }
    2242             : 
    2243             : /**
    2244             :  * manage_workers - manage worker pool
    2245             :  * @worker: self
    2246             :  *
    2247             :  * Assume the manager role and manage the worker pool @worker belongs
    2248             :  * to.  At any given time, there can be only zero or one manager per
    2249             :  * pool.  The exclusion is handled automatically by this function.
    2250             :  *
    2251             :  * The caller can safely start processing works on false return.  On
    2252             :  * true return, it's guaranteed that need_to_create_worker() is false
    2253             :  * and may_start_working() is true.
    2254             :  *
    2255             :  * CONTEXT:
    2256             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2257             :  * multiple times.  Does GFP_KERNEL allocations.
    2258             :  *
    2259             :  * Return:
    2260             :  * %false if the pool doesn't need management and the caller can safely
    2261             :  * start processing works, %true if management function was performed and
    2262             :  * the conditions that the caller verified before calling the function may
    2263             :  * no longer be true.
    2264             :  */
    2265           2 : static bool manage_workers(struct worker *worker)
    2266             : {
    2267           2 :         struct worker_pool *pool = worker->pool;
    2268             : 
    2269           2 :         if (pool->flags & POOL_MANAGER_ACTIVE)
    2270             :                 return false;
    2271             : 
    2272           2 :         pool->flags |= POOL_MANAGER_ACTIVE;
    2273           2 :         pool->manager = worker;
    2274             : 
    2275           2 :         maybe_create_worker(pool);
    2276             : 
    2277           2 :         pool->manager = NULL;
    2278           2 :         pool->flags &= ~POOL_MANAGER_ACTIVE;
    2279           2 :         rcuwait_wake_up(&manager_wait);
    2280           2 :         return true;
    2281             : }
    2282             : 
    2283             : /**
    2284             :  * process_one_work - process single work
    2285             :  * @worker: self
    2286             :  * @work: work to process
    2287             :  *
    2288             :  * Process @work.  This function contains all the logics necessary to
    2289             :  * process a single work including synchronization against and
    2290             :  * interaction with other workers on the same cpu, queueing and
    2291             :  * flushing.  As long as context requirement is met, any worker can
    2292             :  * call this function to process a work.
    2293             :  *
    2294             :  * CONTEXT:
    2295             :  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
    2296             :  */
    2297          86 : static void process_one_work(struct worker *worker, struct work_struct *work)
    2298             : __releases(&pool->lock)
    2299             : __acquires(&pool->lock)
    2300             : {
    2301          86 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2302          86 :         struct worker_pool *pool = worker->pool;
    2303          86 :         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    2304             :         unsigned long work_data;
    2305             :         struct worker *collision;
    2306             : #ifdef CONFIG_LOCKDEP
    2307             :         /*
    2308             :          * It is permissible to free the struct work_struct from
    2309             :          * inside the function that is called from it, this we need to
    2310             :          * take into account for lockdep too.  To avoid bogus "held
    2311             :          * lock freed" warnings as well as problems when looking into
    2312             :          * work->lockdep_map, make a copy and use that here.
    2313             :          */
    2314             :         struct lockdep_map lockdep_map;
    2315             : 
    2316             :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    2317             : #endif
    2318             :         /* ensure we're on the correct CPU */
    2319          86 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    2320             :                      raw_smp_processor_id() != pool->cpu);
    2321             : 
    2322             :         /*
    2323             :          * A single work shouldn't be executed concurrently by
    2324             :          * multiple workers on a single cpu.  Check whether anyone is
    2325             :          * already processing the work.  If so, defer the work to the
    2326             :          * currently executing one.
    2327             :          */
    2328          86 :         collision = find_worker_executing_work(pool, work);
    2329          86 :         if (unlikely(collision)) {
    2330           0 :                 move_linked_works(work, &collision->scheduled, NULL);
    2331             :                 return;
    2332             :         }
    2333             : 
    2334             :         /* claim and dequeue */
    2335          86 :         debug_work_deactivate(work);
    2336         172 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    2337          86 :         worker->current_work = work;
    2338          86 :         worker->current_func = work->func;
    2339          86 :         worker->current_pwq = pwq;
    2340          86 :         work_data = *work_data_bits(work);
    2341          86 :         worker->current_color = get_work_color(work_data);
    2342             : 
    2343             :         /*
    2344             :          * Record wq name for cmdline and debug reporting, may get
    2345             :          * overridden through set_worker_desc().
    2346             :          */
    2347          86 :         strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
    2348             : 
    2349         172 :         list_del_init(&work->entry);
    2350             : 
    2351             :         /*
    2352             :          * CPU intensive works don't participate in concurrency management.
    2353             :          * They're the scheduler's responsibility.  This takes @worker out
    2354             :          * of concurrency management and the next code block will chain
    2355             :          * execution of the pending work items.
    2356             :          */
    2357          86 :         if (unlikely(cpu_intensive))
    2358           0 :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    2359             : 
    2360             :         /*
    2361             :          * Wake up another worker if necessary.  The condition is always
    2362             :          * false for normal per-cpu workers since nr_running would always
    2363             :          * be >= 1 at this point.  This is used to chain execution of the
    2364             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    2365             :          * UNBOUND and CPU_INTENSIVE ones.
    2366             :          */
    2367          86 :         if (need_more_worker(pool))
    2368             :                 wake_up_worker(pool);
    2369             : 
    2370             :         /*
    2371             :          * Record the last pool and clear PENDING which should be the last
    2372             :          * update to @work.  Also, do this inside @pool->lock so that
    2373             :          * PENDING and queued state changes happen together while IRQ is
    2374             :          * disabled.
    2375             :          */
    2376         172 :         set_work_pool_and_clear_pending(work, pool->id);
    2377             : 
    2378          86 :         raw_spin_unlock_irq(&pool->lock);
    2379             : 
    2380             :         lock_map_acquire(&pwq->wq->lockdep_map);
    2381             :         lock_map_acquire(&lockdep_map);
    2382             :         /*
    2383             :          * Strictly speaking we should mark the invariant state without holding
    2384             :          * any locks, that is, before these two lock_map_acquire()'s.
    2385             :          *
    2386             :          * However, that would result in:
    2387             :          *
    2388             :          *   A(W1)
    2389             :          *   WFC(C)
    2390             :          *              A(W1)
    2391             :          *              C(C)
    2392             :          *
    2393             :          * Which would create W1->C->W1 dependencies, even though there is no
    2394             :          * actual deadlock possible. There are two solutions, using a
    2395             :          * read-recursive acquire on the work(queue) 'locks', but this will then
    2396             :          * hit the lockdep limitation on recursive locks, or simply discard
    2397             :          * these locks.
    2398             :          *
    2399             :          * AFAICT there is no possible deadlock scenario between the
    2400             :          * flush_work() and complete() primitives (except for single-threaded
    2401             :          * workqueues), so hiding them isn't a problem.
    2402             :          */
    2403          86 :         lockdep_invariant_state(true);
    2404          86 :         trace_workqueue_execute_start(work);
    2405          86 :         worker->current_func(work);
    2406             :         /*
    2407             :          * While we must be careful to not use "work" after this, the trace
    2408             :          * point will only record its address.
    2409             :          */
    2410          86 :         trace_workqueue_execute_end(work, worker->current_func);
    2411             :         lock_map_release(&lockdep_map);
    2412             :         lock_map_release(&pwq->wq->lockdep_map);
    2413             : 
    2414          86 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2415           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2416             :                        "     last function: %ps\n",
    2417             :                        current->comm, preempt_count(), task_pid_nr(current),
    2418             :                        worker->current_func);
    2419           0 :                 debug_show_held_locks(current);
    2420           0 :                 dump_stack();
    2421             :         }
    2422             : 
    2423             :         /*
    2424             :          * The following prevents a kworker from hogging CPU on !PREEMPTION
    2425             :          * kernels, where a requeueing work item waiting for something to
    2426             :          * happen could deadlock with stop_machine as such work item could
    2427             :          * indefinitely requeue itself while all other CPUs are trapped in
    2428             :          * stop_machine. At the same time, report a quiescent RCU state so
    2429             :          * the same condition doesn't freeze RCU.
    2430             :          */
    2431          86 :         cond_resched();
    2432             : 
    2433          86 :         raw_spin_lock_irq(&pool->lock);
    2434             : 
    2435             :         /* clear cpu intensive status */
    2436          86 :         if (unlikely(cpu_intensive))
    2437           0 :                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2438             : 
    2439             :         /* tag the worker for identification in schedule() */
    2440          86 :         worker->last_func = worker->current_func;
    2441             : 
    2442             :         /* we're done with it, release */
    2443         172 :         hash_del(&worker->hentry);
    2444          86 :         worker->current_work = NULL;
    2445          86 :         worker->current_func = NULL;
    2446          86 :         worker->current_pwq = NULL;
    2447          86 :         worker->current_color = INT_MAX;
    2448          86 :         pwq_dec_nr_in_flight(pwq, work_data);
    2449             : }
    2450             : 
    2451             : /**
    2452             :  * process_scheduled_works - process scheduled works
    2453             :  * @worker: self
    2454             :  *
    2455             :  * Process all scheduled works.  Please note that the scheduled list
    2456             :  * may change while processing a work, so this function repeatedly
    2457             :  * fetches a work from the top and executes it.
    2458             :  *
    2459             :  * CONTEXT:
    2460             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2461             :  * multiple times.
    2462             :  */
    2463             : static void process_scheduled_works(struct worker *worker)
    2464             : {
    2465          12 :         while (!list_empty(&worker->scheduled)) {
    2466           4 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2467             :                                                 struct work_struct, entry);
    2468           4 :                 process_one_work(worker, work);
    2469             :         }
    2470             : }
    2471             : 
    2472           9 : static void set_pf_worker(bool val)
    2473             : {
    2474           9 :         mutex_lock(&wq_pool_attach_mutex);
    2475           9 :         if (val)
    2476           9 :                 current->flags |= PF_WQ_WORKER;
    2477             :         else
    2478           0 :                 current->flags &= ~PF_WQ_WORKER;
    2479           9 :         mutex_unlock(&wq_pool_attach_mutex);
    2480           9 : }
    2481             : 
    2482             : /**
    2483             :  * worker_thread - the worker thread function
    2484             :  * @__worker: self
    2485             :  *
    2486             :  * The worker thread function.  All workers belong to a worker_pool -
    2487             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2488             :  * work items regardless of their specific target workqueue.  The only
    2489             :  * exception is work items which belong to workqueues with a rescuer which
    2490             :  * will be explained in rescuer_thread().
    2491             :  *
    2492             :  * Return: 0
    2493             :  */
    2494           5 : static int worker_thread(void *__worker)
    2495             : {
    2496           5 :         struct worker *worker = __worker;
    2497           5 :         struct worker_pool *pool = worker->pool;
    2498             : 
    2499             :         /* tell the scheduler that this is a workqueue worker */
    2500           5 :         set_pf_worker(true);
    2501             : woke_up:
    2502          88 :         raw_spin_lock_irq(&pool->lock);
    2503             : 
    2504             :         /* am I supposed to die? */
    2505          88 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2506           0 :                 raw_spin_unlock_irq(&pool->lock);
    2507           0 :                 set_pf_worker(false);
    2508             : 
    2509           0 :                 set_task_comm(worker->task, "kworker/dying");
    2510           0 :                 ida_free(&pool->worker_ida, worker->id);
    2511           0 :                 worker_detach_from_pool(worker);
    2512           0 :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2513           0 :                 kfree(worker);
    2514           0 :                 return 0;
    2515             :         }
    2516             : 
    2517          88 :         worker_leave_idle(worker);
    2518             : recheck:
    2519             :         /* no more worker necessary? */
    2520          90 :         if (!need_more_worker(pool))
    2521             :                 goto sleep;
    2522             : 
    2523             :         /* do we need to manage? */
    2524          85 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2525             :                 goto recheck;
    2526             : 
    2527             :         /*
    2528             :          * ->scheduled list can only be filled while a worker is
    2529             :          * preparing to process a work or actually processing it.
    2530             :          * Make sure nobody diddled with it while I was sleeping.
    2531             :          */
    2532         166 :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2533             : 
    2534             :         /*
    2535             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2536             :          * worker or that someone else has already assumed the manager
    2537             :          * role.  This is where @worker starts participating in concurrency
    2538             :          * management if applicable and concurrency management is restored
    2539             :          * after being rebound.  See rebind_workers() for details.
    2540             :          */
    2541          83 :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2542             : 
    2543             :         do {
    2544          84 :                 struct work_struct *work =
    2545          84 :                         list_first_entry(&pool->worklist,
    2546             :                                          struct work_struct, entry);
    2547             : 
    2548          84 :                 pool->watchdog_ts = jiffies;
    2549             : 
    2550          84 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2551             :                         /* optimization path, not strictly necessary */
    2552          82 :                         process_one_work(worker, work);
    2553         164 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2554             :                                 process_scheduled_works(worker);
    2555             :                 } else {
    2556           2 :                         move_linked_works(work, &worker->scheduled, NULL);
    2557             :                         process_scheduled_works(worker);
    2558             :                 }
    2559          84 :         } while (keep_working(pool));
    2560             : 
    2561          83 :         worker_set_flags(worker, WORKER_PREP);
    2562             : sleep:
    2563             :         /*
    2564             :          * pool->lock is held and there's no work to process and no need to
    2565             :          * manage, sleep.  Workers are woken up only while holding
    2566             :          * pool->lock or from local cpu, so setting the current state
    2567             :          * before releasing pool->lock is enough to prevent losing any
    2568             :          * event.
    2569             :          */
    2570          88 :         worker_enter_idle(worker);
    2571          88 :         __set_current_state(TASK_IDLE);
    2572          88 :         raw_spin_unlock_irq(&pool->lock);
    2573          88 :         schedule();
    2574          83 :         goto woke_up;
    2575             : }
    2576             : 
    2577             : /**
    2578             :  * rescuer_thread - the rescuer thread function
    2579             :  * @__rescuer: self
    2580             :  *
    2581             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2582             :  * workqueue which has WQ_MEM_RECLAIM set.
    2583             :  *
    2584             :  * Regular work processing on a pool may block trying to create a new
    2585             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2586             :  * developing into deadlock if some works currently on the same queue
    2587             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2588             :  * the problem rescuer solves.
    2589             :  *
    2590             :  * When such condition is possible, the pool summons rescuers of all
    2591             :  * workqueues which have works queued on the pool and let them process
    2592             :  * those works so that forward progress can be guaranteed.
    2593             :  *
    2594             :  * This should happen rarely.
    2595             :  *
    2596             :  * Return: 0
    2597             :  */
    2598           4 : static int rescuer_thread(void *__rescuer)
    2599             : {
    2600           4 :         struct worker *rescuer = __rescuer;
    2601           4 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2602           4 :         struct list_head *scheduled = &rescuer->scheduled;
    2603             :         bool should_stop;
    2604             : 
    2605           4 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2606             : 
    2607             :         /*
    2608             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2609             :          * doesn't participate in concurrency management.
    2610             :          */
    2611           4 :         set_pf_worker(true);
    2612             : repeat:
    2613           4 :         set_current_state(TASK_IDLE);
    2614             : 
    2615             :         /*
    2616             :          * By the time the rescuer is requested to stop, the workqueue
    2617             :          * shouldn't have any work pending, but @wq->maydays may still have
    2618             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2619             :          * all the work items before the rescuer got to them.  Go through
    2620             :          * @wq->maydays processing before acting on should_stop so that the
    2621             :          * list is always empty on exit.
    2622             :          */
    2623           4 :         should_stop = kthread_should_stop();
    2624             : 
    2625             :         /* see whether any pwq is asking for help */
    2626           4 :         raw_spin_lock_irq(&wq_mayday_lock);
    2627             : 
    2628          12 :         while (!list_empty(&wq->maydays)) {
    2629           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2630             :                                         struct pool_workqueue, mayday_node);
    2631           0 :                 struct worker_pool *pool = pwq->pool;
    2632             :                 struct work_struct *work, *n;
    2633           0 :                 bool first = true;
    2634             : 
    2635           0 :                 __set_current_state(TASK_RUNNING);
    2636           0 :                 list_del_init(&pwq->mayday_node);
    2637             : 
    2638           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    2639             : 
    2640           0 :                 worker_attach_to_pool(rescuer, pool);
    2641             : 
    2642           0 :                 raw_spin_lock_irq(&pool->lock);
    2643             : 
    2644             :                 /*
    2645             :                  * Slurp in all works issued via this workqueue and
    2646             :                  * process'em.
    2647             :                  */
    2648           0 :                 WARN_ON_ONCE(!list_empty(scheduled));
    2649           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
    2650           0 :                         if (get_work_pwq(work) == pwq) {
    2651           0 :                                 if (first)
    2652           0 :                                         pool->watchdog_ts = jiffies;
    2653             :                                 move_linked_works(work, scheduled, &n);
    2654             :                         }
    2655           0 :                         first = false;
    2656             :                 }
    2657             : 
    2658           0 :                 if (!list_empty(scheduled)) {
    2659           0 :                         process_scheduled_works(rescuer);
    2660             : 
    2661             :                         /*
    2662             :                          * The above execution of rescued work items could
    2663             :                          * have created more to rescue through
    2664             :                          * pwq_activate_first_inactive() or chained
    2665             :                          * queueing.  Let's put @pwq back on mayday list so
    2666             :                          * that such back-to-back work items, which may be
    2667             :                          * being used to relieve memory pressure, don't
    2668             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2669             :                          */
    2670           0 :                         if (pwq->nr_active && need_to_create_worker(pool)) {
    2671           0 :                                 raw_spin_lock(&wq_mayday_lock);
    2672             :                                 /*
    2673             :                                  * Queue iff we aren't racing destruction
    2674             :                                  * and somebody else hasn't queued it already.
    2675             :                                  */
    2676           0 :                                 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
    2677           0 :                                         get_pwq(pwq);
    2678           0 :                                         list_add_tail(&pwq->mayday_node, &wq->maydays);
    2679             :                                 }
    2680           0 :                                 raw_spin_unlock(&wq_mayday_lock);
    2681             :                         }
    2682             :                 }
    2683             : 
    2684             :                 /*
    2685             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2686             :                  * go away while we're still attached to it.
    2687             :                  */
    2688           0 :                 put_pwq(pwq);
    2689             : 
    2690             :                 /*
    2691             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2692             :                  * regular worker; otherwise, we end up with 0 concurrency
    2693             :                  * and stalling the execution.
    2694             :                  */
    2695           0 :                 if (need_more_worker(pool))
    2696             :                         wake_up_worker(pool);
    2697             : 
    2698           0 :                 raw_spin_unlock_irq(&pool->lock);
    2699             : 
    2700           0 :                 worker_detach_from_pool(rescuer);
    2701             : 
    2702           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    2703             :         }
    2704             : 
    2705           4 :         raw_spin_unlock_irq(&wq_mayday_lock);
    2706             : 
    2707           4 :         if (should_stop) {
    2708           0 :                 __set_current_state(TASK_RUNNING);
    2709           0 :                 set_pf_worker(false);
    2710           0 :                 return 0;
    2711             :         }
    2712             : 
    2713             :         /* rescuers should never participate in concurrency management */
    2714           4 :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2715           4 :         schedule();
    2716           0 :         goto repeat;
    2717             : }
    2718             : 
    2719             : /**
    2720             :  * check_flush_dependency - check for flush dependency sanity
    2721             :  * @target_wq: workqueue being flushed
    2722             :  * @target_work: work item being flushed (NULL for workqueue flushes)
    2723             :  *
    2724             :  * %current is trying to flush the whole @target_wq or @target_work on it.
    2725             :  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
    2726             :  * reclaiming memory or running on a workqueue which doesn't have
    2727             :  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
    2728             :  * a deadlock.
    2729             :  */
    2730           2 : static void check_flush_dependency(struct workqueue_struct *target_wq,
    2731             :                                    struct work_struct *target_work)
    2732             : {
    2733           2 :         work_func_t target_func = target_work ? target_work->func : NULL;
    2734             :         struct worker *worker;
    2735             : 
    2736           2 :         if (target_wq->flags & WQ_MEM_RECLAIM)
    2737             :                 return;
    2738             : 
    2739           2 :         worker = current_wq_worker();
    2740             : 
    2741           2 :         WARN_ONCE(current->flags & PF_MEMALLOC,
    2742             :                   "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
    2743             :                   current->pid, current->comm, target_wq->name, target_func);
    2744           2 :         WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
    2745             :                               (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
    2746             :                   "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
    2747             :                   worker->current_pwq->wq->name, worker->current_func,
    2748             :                   target_wq->name, target_func);
    2749             : }
    2750             : 
    2751             : struct wq_barrier {
    2752             :         struct work_struct      work;
    2753             :         struct completion       done;
    2754             :         struct task_struct      *task;  /* purely informational */
    2755             : };
    2756             : 
    2757           2 : static void wq_barrier_func(struct work_struct *work)
    2758             : {
    2759           2 :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2760           2 :         complete(&barr->done);
    2761           2 : }
    2762             : 
    2763             : /**
    2764             :  * insert_wq_barrier - insert a barrier work
    2765             :  * @pwq: pwq to insert barrier into
    2766             :  * @barr: wq_barrier to insert
    2767             :  * @target: target work to attach @barr to
    2768             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2769             :  *
    2770             :  * @barr is linked to @target such that @barr is completed only after
    2771             :  * @target finishes execution.  Please note that the ordering
    2772             :  * guarantee is observed only with respect to @target and on the local
    2773             :  * cpu.
    2774             :  *
    2775             :  * Currently, a queued barrier can't be canceled.  This is because
    2776             :  * try_to_grab_pending() can't determine whether the work to be
    2777             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2778             :  * flag of the previous work while there must be a valid next work
    2779             :  * after a work with LINKED flag set.
    2780             :  *
    2781             :  * Note that when @worker is non-NULL, @target may be modified
    2782             :  * underneath us, so we can't reliably determine pwq from @target.
    2783             :  *
    2784             :  * CONTEXT:
    2785             :  * raw_spin_lock_irq(pool->lock).
    2786             :  */
    2787           2 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2788             :                               struct wq_barrier *barr,
    2789             :                               struct work_struct *target, struct worker *worker)
    2790             : {
    2791           2 :         unsigned int work_flags = 0;
    2792             :         unsigned int work_color;
    2793             :         struct list_head *head;
    2794             : 
    2795             :         /*
    2796             :          * debugobject calls are safe here even with pool->lock locked
    2797             :          * as we know for sure that this will not trigger any of the
    2798             :          * checks and call back into the fixup functions where we
    2799             :          * might deadlock.
    2800             :          */
    2801           4 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2802           2 :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    2803             : 
    2804           4 :         init_completion_map(&barr->done, &target->lockdep_map);
    2805             : 
    2806           2 :         barr->task = current;
    2807             : 
    2808             :         /* The barrier work item does not participate in pwq->nr_active. */
    2809           2 :         work_flags |= WORK_STRUCT_INACTIVE;
    2810             : 
    2811             :         /*
    2812             :          * If @target is currently being executed, schedule the
    2813             :          * barrier to the worker; otherwise, put it after @target.
    2814             :          */
    2815           2 :         if (worker) {
    2816           0 :                 head = worker->scheduled.next;
    2817           0 :                 work_color = worker->current_color;
    2818             :         } else {
    2819           2 :                 unsigned long *bits = work_data_bits(target);
    2820             : 
    2821           2 :                 head = target->entry.next;
    2822             :                 /* there can already be other linked works, inherit and set */
    2823           2 :                 work_flags |= *bits & WORK_STRUCT_LINKED;
    2824           4 :                 work_color = get_work_color(*bits);
    2825           2 :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    2826             :         }
    2827             : 
    2828           2 :         pwq->nr_in_flight[work_color]++;
    2829           4 :         work_flags |= work_color_to_flags(work_color);
    2830             : 
    2831           2 :         debug_work_activate(&barr->work);
    2832           2 :         insert_work(pwq, &barr->work, head, work_flags);
    2833           2 : }
    2834             : 
    2835             : /**
    2836             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    2837             :  * @wq: workqueue being flushed
    2838             :  * @flush_color: new flush color, < 0 for no-op
    2839             :  * @work_color: new work color, < 0 for no-op
    2840             :  *
    2841             :  * Prepare pwqs for workqueue flushing.
    2842             :  *
    2843             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    2844             :  * -1.  If no pwq has in-flight commands at the specified color, all
    2845             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    2846             :  * has in flight commands, its pwq->flush_color is set to
    2847             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    2848             :  * wakeup logic is armed and %true is returned.
    2849             :  *
    2850             :  * The caller should have initialized @wq->first_flusher prior to
    2851             :  * calling this function with non-negative @flush_color.  If
    2852             :  * @flush_color is negative, no flush color update is done and %false
    2853             :  * is returned.
    2854             :  *
    2855             :  * If @work_color is non-negative, all pwqs should have the same
    2856             :  * work_color which is previous to @work_color and all will be
    2857             :  * advanced to @work_color.
    2858             :  *
    2859             :  * CONTEXT:
    2860             :  * mutex_lock(wq->mutex).
    2861             :  *
    2862             :  * Return:
    2863             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    2864             :  * otherwise.
    2865             :  */
    2866           0 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    2867             :                                       int flush_color, int work_color)
    2868             : {
    2869           0 :         bool wait = false;
    2870             :         struct pool_workqueue *pwq;
    2871             : 
    2872           0 :         if (flush_color >= 0) {
    2873           0 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    2874           0 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    2875             :         }
    2876             : 
    2877           0 :         for_each_pwq(pwq, wq) {
    2878           0 :                 struct worker_pool *pool = pwq->pool;
    2879             : 
    2880           0 :                 raw_spin_lock_irq(&pool->lock);
    2881             : 
    2882           0 :                 if (flush_color >= 0) {
    2883           0 :                         WARN_ON_ONCE(pwq->flush_color != -1);
    2884             : 
    2885           0 :                         if (pwq->nr_in_flight[flush_color]) {
    2886           0 :                                 pwq->flush_color = flush_color;
    2887           0 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    2888           0 :                                 wait = true;
    2889             :                         }
    2890             :                 }
    2891             : 
    2892           0 :                 if (work_color >= 0) {
    2893           0 :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    2894           0 :                         pwq->work_color = work_color;
    2895             :                 }
    2896             : 
    2897           0 :                 raw_spin_unlock_irq(&pool->lock);
    2898             :         }
    2899             : 
    2900           0 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    2901           0 :                 complete(&wq->first_flusher->done);
    2902             : 
    2903           0 :         return wait;
    2904             : }
    2905             : 
    2906             : /**
    2907             :  * __flush_workqueue - ensure that any scheduled work has run to completion.
    2908             :  * @wq: workqueue to flush
    2909             :  *
    2910             :  * This function sleeps until all work items which were queued on entry
    2911             :  * have finished execution, but it is not livelocked by new incoming ones.
    2912             :  */
    2913           0 : void __flush_workqueue(struct workqueue_struct *wq)
    2914             : {
    2915           0 :         struct wq_flusher this_flusher = {
    2916             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    2917             :                 .flush_color = -1,
    2918           0 :                 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
    2919             :         };
    2920             :         int next_color;
    2921             : 
    2922           0 :         if (WARN_ON(!wq_online))
    2923           0 :                 return;
    2924             : 
    2925             :         lock_map_acquire(&wq->lockdep_map);
    2926             :         lock_map_release(&wq->lockdep_map);
    2927             : 
    2928           0 :         mutex_lock(&wq->mutex);
    2929             : 
    2930             :         /*
    2931             :          * Start-to-wait phase
    2932             :          */
    2933           0 :         next_color = work_next_color(wq->work_color);
    2934             : 
    2935           0 :         if (next_color != wq->flush_color) {
    2936             :                 /*
    2937             :                  * Color space is not full.  The current work_color
    2938             :                  * becomes our flush_color and work_color is advanced
    2939             :                  * by one.
    2940             :                  */
    2941           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    2942           0 :                 this_flusher.flush_color = wq->work_color;
    2943           0 :                 wq->work_color = next_color;
    2944             : 
    2945           0 :                 if (!wq->first_flusher) {
    2946             :                         /* no flush in progress, become the first flusher */
    2947           0 :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2948             : 
    2949           0 :                         wq->first_flusher = &this_flusher;
    2950             : 
    2951           0 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    2952             :                                                        wq->work_color)) {
    2953             :                                 /* nothing to flush, done */
    2954           0 :                                 wq->flush_color = next_color;
    2955           0 :                                 wq->first_flusher = NULL;
    2956           0 :                                 goto out_unlock;
    2957             :                         }
    2958             :                 } else {
    2959             :                         /* wait in queue */
    2960           0 :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    2961           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    2962           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2963             :                 }
    2964             :         } else {
    2965             :                 /*
    2966             :                  * Oops, color space is full, wait on overflow queue.
    2967             :                  * The next flush completion will assign us
    2968             :                  * flush_color and transfer to flusher_queue.
    2969             :                  */
    2970           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    2971             :         }
    2972             : 
    2973           0 :         check_flush_dependency(wq, NULL);
    2974             : 
    2975           0 :         mutex_unlock(&wq->mutex);
    2976             : 
    2977           0 :         wait_for_completion(&this_flusher.done);
    2978             : 
    2979             :         /*
    2980             :          * Wake-up-and-cascade phase
    2981             :          *
    2982             :          * First flushers are responsible for cascading flushes and
    2983             :          * handling overflow.  Non-first flushers can simply return.
    2984             :          */
    2985           0 :         if (READ_ONCE(wq->first_flusher) != &this_flusher)
    2986             :                 return;
    2987             : 
    2988           0 :         mutex_lock(&wq->mutex);
    2989             : 
    2990             :         /* we might have raced, check again with mutex held */
    2991           0 :         if (wq->first_flusher != &this_flusher)
    2992             :                 goto out_unlock;
    2993             : 
    2994           0 :         WRITE_ONCE(wq->first_flusher, NULL);
    2995             : 
    2996           0 :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    2997           0 :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2998             : 
    2999           0 :         while (true) {
    3000             :                 struct wq_flusher *next, *tmp;
    3001             : 
    3002             :                 /* complete all the flushers sharing the current flush color */
    3003           0 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    3004           0 :                         if (next->flush_color != wq->flush_color)
    3005             :                                 break;
    3006           0 :                         list_del_init(&next->list);
    3007           0 :                         complete(&next->done);
    3008             :                 }
    3009             : 
    3010           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    3011             :                              wq->flush_color != work_next_color(wq->work_color));
    3012             : 
    3013             :                 /* this flush_color is finished, advance by one */
    3014           0 :                 wq->flush_color = work_next_color(wq->flush_color);
    3015             : 
    3016             :                 /* one color has been freed, handle overflow queue */
    3017           0 :                 if (!list_empty(&wq->flusher_overflow)) {
    3018             :                         /*
    3019             :                          * Assign the same color to all overflowed
    3020             :                          * flushers, advance work_color and append to
    3021             :                          * flusher_queue.  This is the start-to-wait
    3022             :                          * phase for these overflowed flushers.
    3023             :                          */
    3024           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    3025           0 :                                 tmp->flush_color = wq->work_color;
    3026             : 
    3027           0 :                         wq->work_color = work_next_color(wq->work_color);
    3028             : 
    3029           0 :                         list_splice_tail_init(&wq->flusher_overflow,
    3030             :                                               &wq->flusher_queue);
    3031           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    3032             :                 }
    3033             : 
    3034           0 :                 if (list_empty(&wq->flusher_queue)) {
    3035           0 :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    3036             :                         break;
    3037             :                 }
    3038             : 
    3039             :                 /*
    3040             :                  * Need to flush more colors.  Make the next flusher
    3041             :                  * the new first flusher and arm pwqs.
    3042             :                  */
    3043           0 :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    3044           0 :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    3045             : 
    3046           0 :                 list_del_init(&next->list);
    3047           0 :                 wq->first_flusher = next;
    3048             : 
    3049           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    3050             :                         break;
    3051             : 
    3052             :                 /*
    3053             :                  * Meh... this color is already done, clear first
    3054             :                  * flusher and repeat cascading.
    3055             :                  */
    3056           0 :                 wq->first_flusher = NULL;
    3057             :         }
    3058             : 
    3059             : out_unlock:
    3060           0 :         mutex_unlock(&wq->mutex);
    3061             : }
    3062             : EXPORT_SYMBOL(__flush_workqueue);
    3063             : 
    3064             : /**
    3065             :  * drain_workqueue - drain a workqueue
    3066             :  * @wq: workqueue to drain
    3067             :  *
    3068             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    3069             :  * only chain queueing is allowed.  IOW, only currently pending or running
    3070             :  * work items on @wq can queue further work items on it.  @wq is flushed
    3071             :  * repeatedly until it becomes empty.  The number of flushing is determined
    3072             :  * by the depth of chaining and should be relatively short.  Whine if it
    3073             :  * takes too long.
    3074             :  */
    3075           0 : void drain_workqueue(struct workqueue_struct *wq)
    3076             : {
    3077           0 :         unsigned int flush_cnt = 0;
    3078             :         struct pool_workqueue *pwq;
    3079             : 
    3080             :         /*
    3081             :          * __queue_work() needs to test whether there are drainers, is much
    3082             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    3083             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    3084             :          */
    3085           0 :         mutex_lock(&wq->mutex);
    3086           0 :         if (!wq->nr_drainers++)
    3087           0 :                 wq->flags |= __WQ_DRAINING;
    3088           0 :         mutex_unlock(&wq->mutex);
    3089             : reflush:
    3090           0 :         __flush_workqueue(wq);
    3091             : 
    3092           0 :         mutex_lock(&wq->mutex);
    3093             : 
    3094           0 :         for_each_pwq(pwq, wq) {
    3095             :                 bool drained;
    3096             : 
    3097           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    3098           0 :                 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
    3099           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    3100             : 
    3101           0 :                 if (drained)
    3102           0 :                         continue;
    3103             : 
    3104           0 :                 if (++flush_cnt == 10 ||
    3105           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    3106           0 :                         pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
    3107             :                                 wq->name, __func__, flush_cnt);
    3108             : 
    3109           0 :                 mutex_unlock(&wq->mutex);
    3110           0 :                 goto reflush;
    3111             :         }
    3112             : 
    3113           0 :         if (!--wq->nr_drainers)
    3114           0 :                 wq->flags &= ~__WQ_DRAINING;
    3115           0 :         mutex_unlock(&wq->mutex);
    3116           0 : }
    3117             : EXPORT_SYMBOL_GPL(drain_workqueue);
    3118             : 
    3119          26 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
    3120             :                              bool from_cancel)
    3121             : {
    3122          26 :         struct worker *worker = NULL;
    3123             :         struct worker_pool *pool;
    3124             :         struct pool_workqueue *pwq;
    3125             : 
    3126             :         might_sleep();
    3127             : 
    3128             :         rcu_read_lock();
    3129          26 :         pool = get_work_pool(work);
    3130          26 :         if (!pool) {
    3131             :                 rcu_read_unlock();
    3132          22 :                 return false;
    3133             :         }
    3134             : 
    3135           4 :         raw_spin_lock_irq(&pool->lock);
    3136             :         /* see the comment in try_to_grab_pending() with the same code */
    3137           4 :         pwq = get_work_pwq(work);
    3138           4 :         if (pwq) {
    3139           2 :                 if (unlikely(pwq->pool != pool))
    3140             :                         goto already_gone;
    3141             :         } else {
    3142           2 :                 worker = find_worker_executing_work(pool, work);
    3143           2 :                 if (!worker)
    3144             :                         goto already_gone;
    3145           0 :                 pwq = worker->current_pwq;
    3146             :         }
    3147             : 
    3148           2 :         check_flush_dependency(pwq->wq, work);
    3149             : 
    3150           2 :         insert_wq_barrier(pwq, barr, work, worker);
    3151           2 :         raw_spin_unlock_irq(&pool->lock);
    3152             : 
    3153             :         /*
    3154             :          * Force a lock recursion deadlock when using flush_work() inside a
    3155             :          * single-threaded or rescuer equipped workqueue.
    3156             :          *
    3157             :          * For single threaded workqueues the deadlock happens when the work
    3158             :          * is after the work issuing the flush_work(). For rescuer equipped
    3159             :          * workqueues the deadlock happens when the rescuer stalls, blocking
    3160             :          * forward progress.
    3161             :          */
    3162             :         if (!from_cancel &&
    3163             :             (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
    3164             :                 lock_map_acquire(&pwq->wq->lockdep_map);
    3165             :                 lock_map_release(&pwq->wq->lockdep_map);
    3166             :         }
    3167             :         rcu_read_unlock();
    3168           2 :         return true;
    3169             : already_gone:
    3170           2 :         raw_spin_unlock_irq(&pool->lock);
    3171             :         rcu_read_unlock();
    3172           2 :         return false;
    3173             : }
    3174             : 
    3175          26 : static bool __flush_work(struct work_struct *work, bool from_cancel)
    3176             : {
    3177             :         struct wq_barrier barr;
    3178             : 
    3179          26 :         if (WARN_ON(!wq_online))
    3180             :                 return false;
    3181             : 
    3182          26 :         if (WARN_ON(!work->func))
    3183             :                 return false;
    3184             : 
    3185             :         lock_map_acquire(&work->lockdep_map);
    3186             :         lock_map_release(&work->lockdep_map);
    3187             : 
    3188          26 :         if (start_flush_work(work, &barr, from_cancel)) {
    3189           2 :                 wait_for_completion(&barr.done);
    3190           2 :                 destroy_work_on_stack(&barr.work);
    3191           2 :                 return true;
    3192             :         } else {
    3193             :                 return false;
    3194             :         }
    3195             : }
    3196             : 
    3197             : /**
    3198             :  * flush_work - wait for a work to finish executing the last queueing instance
    3199             :  * @work: the work to flush
    3200             :  *
    3201             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    3202             :  * on return if it hasn't been requeued since flush started.
    3203             :  *
    3204             :  * Return:
    3205             :  * %true if flush_work() waited for the work to finish execution,
    3206             :  * %false if it was already idle.
    3207             :  */
    3208          26 : bool flush_work(struct work_struct *work)
    3209             : {
    3210          26 :         return __flush_work(work, false);
    3211             : }
    3212             : EXPORT_SYMBOL_GPL(flush_work);
    3213             : 
    3214             : struct cwt_wait {
    3215             :         wait_queue_entry_t              wait;
    3216             :         struct work_struct      *work;
    3217             : };
    3218             : 
    3219           0 : static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
    3220             : {
    3221           0 :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    3222             : 
    3223           0 :         if (cwait->work != key)
    3224             :                 return 0;
    3225           0 :         return autoremove_wake_function(wait, mode, sync, key);
    3226             : }
    3227             : 
    3228           0 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    3229             : {
    3230             :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    3231             :         unsigned long flags;
    3232             :         int ret;
    3233             : 
    3234             :         do {
    3235           0 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3236             :                 /*
    3237             :                  * If someone else is already canceling, wait for it to
    3238             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    3239             :                  * because we may get scheduled between @work's completion
    3240             :                  * and the other canceling task resuming and clearing
    3241             :                  * CANCELING - flush_work() will return false immediately
    3242             :                  * as @work is no longer busy, try_to_grab_pending() will
    3243             :                  * return -ENOENT as @work is still being canceled and the
    3244             :                  * other canceling task won't be able to clear CANCELING as
    3245             :                  * we're hogging the CPU.
    3246             :                  *
    3247             :                  * Let's wait for completion using a waitqueue.  As this
    3248             :                  * may lead to the thundering herd problem, use a custom
    3249             :                  * wake function which matches @work along with exclusive
    3250             :                  * wait and wakeup.
    3251             :                  */
    3252           0 :                 if (unlikely(ret == -ENOENT)) {
    3253             :                         struct cwt_wait cwait;
    3254             : 
    3255           0 :                         init_wait(&cwait.wait);
    3256           0 :                         cwait.wait.func = cwt_wakefn;
    3257           0 :                         cwait.work = work;
    3258             : 
    3259           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    3260             :                                                   TASK_UNINTERRUPTIBLE);
    3261           0 :                         if (work_is_canceling(work))
    3262           0 :                                 schedule();
    3263           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    3264             :                 }
    3265           0 :         } while (unlikely(ret < 0));
    3266             : 
    3267             :         /* tell other tasks trying to grab @work to back off */
    3268           0 :         mark_work_canceling(work);
    3269           0 :         local_irq_restore(flags);
    3270             : 
    3271             :         /*
    3272             :          * This allows canceling during early boot.  We know that @work
    3273             :          * isn't executing.
    3274             :          */
    3275           0 :         if (wq_online)
    3276           0 :                 __flush_work(work, true);
    3277             : 
    3278           0 :         clear_work_data(work);
    3279             : 
    3280             :         /*
    3281             :          * Paired with prepare_to_wait() above so that either
    3282             :          * waitqueue_active() is visible here or !work_is_canceling() is
    3283             :          * visible there.
    3284             :          */
    3285           0 :         smp_mb();
    3286           0 :         if (waitqueue_active(&cancel_waitq))
    3287           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    3288             : 
    3289           0 :         return ret;
    3290             : }
    3291             : 
    3292             : /**
    3293             :  * cancel_work_sync - cancel a work and wait for it to finish
    3294             :  * @work: the work to cancel
    3295             :  *
    3296             :  * Cancel @work and wait for its execution to finish.  This function
    3297             :  * can be used even if the work re-queues itself or migrates to
    3298             :  * another workqueue.  On return from this function, @work is
    3299             :  * guaranteed to be not pending or executing on any CPU.
    3300             :  *
    3301             :  * cancel_work_sync(&delayed_work->work) must not be used for
    3302             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    3303             :  *
    3304             :  * The caller must ensure that the workqueue on which @work was last
    3305             :  * queued can't be destroyed before this function returns.
    3306             :  *
    3307             :  * Return:
    3308             :  * %true if @work was pending, %false otherwise.
    3309             :  */
    3310           0 : bool cancel_work_sync(struct work_struct *work)
    3311             : {
    3312           0 :         return __cancel_work_timer(work, false);
    3313             : }
    3314             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    3315             : 
    3316             : /**
    3317             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    3318             :  * @dwork: the delayed work to flush
    3319             :  *
    3320             :  * Delayed timer is cancelled and the pending work is queued for
    3321             :  * immediate execution.  Like flush_work(), this function only
    3322             :  * considers the last queueing instance of @dwork.
    3323             :  *
    3324             :  * Return:
    3325             :  * %true if flush_work() waited for the work to finish execution,
    3326             :  * %false if it was already idle.
    3327             :  */
    3328           0 : bool flush_delayed_work(struct delayed_work *dwork)
    3329             : {
    3330             :         local_irq_disable();
    3331           0 :         if (del_timer_sync(&dwork->timer))
    3332           0 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    3333             :         local_irq_enable();
    3334           0 :         return flush_work(&dwork->work);
    3335             : }
    3336             : EXPORT_SYMBOL(flush_delayed_work);
    3337             : 
    3338             : /**
    3339             :  * flush_rcu_work - wait for a rwork to finish executing the last queueing
    3340             :  * @rwork: the rcu work to flush
    3341             :  *
    3342             :  * Return:
    3343             :  * %true if flush_rcu_work() waited for the work to finish execution,
    3344             :  * %false if it was already idle.
    3345             :  */
    3346           0 : bool flush_rcu_work(struct rcu_work *rwork)
    3347             : {
    3348           0 :         if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
    3349           0 :                 rcu_barrier();
    3350           0 :                 flush_work(&rwork->work);
    3351           0 :                 return true;
    3352             :         } else {
    3353           0 :                 return flush_work(&rwork->work);
    3354             :         }
    3355             : }
    3356             : EXPORT_SYMBOL(flush_rcu_work);
    3357             : 
    3358          38 : static bool __cancel_work(struct work_struct *work, bool is_dwork)
    3359             : {
    3360             :         unsigned long flags;
    3361             :         int ret;
    3362             : 
    3363             :         do {
    3364          38 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3365          38 :         } while (unlikely(ret == -EAGAIN));
    3366             : 
    3367          38 :         if (unlikely(ret < 0))
    3368             :                 return false;
    3369             : 
    3370          76 :         set_work_pool_and_clear_pending(work, get_work_pool_id(work));
    3371          76 :         local_irq_restore(flags);
    3372          38 :         return ret;
    3373             : }
    3374             : 
    3375             : /*
    3376             :  * See cancel_delayed_work()
    3377             :  */
    3378           0 : bool cancel_work(struct work_struct *work)
    3379             : {
    3380           0 :         return __cancel_work(work, false);
    3381             : }
    3382             : EXPORT_SYMBOL(cancel_work);
    3383             : 
    3384             : /**
    3385             :  * cancel_delayed_work - cancel a delayed work
    3386             :  * @dwork: delayed_work to cancel
    3387             :  *
    3388             :  * Kill off a pending delayed_work.
    3389             :  *
    3390             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    3391             :  * pending.
    3392             :  *
    3393             :  * Note:
    3394             :  * The work callback function may still be running on return, unless
    3395             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    3396             :  * use cancel_delayed_work_sync() to wait on it.
    3397             :  *
    3398             :  * This function is safe to call from any context including IRQ handler.
    3399             :  */
    3400          38 : bool cancel_delayed_work(struct delayed_work *dwork)
    3401             : {
    3402          38 :         return __cancel_work(&dwork->work, true);
    3403             : }
    3404             : EXPORT_SYMBOL(cancel_delayed_work);
    3405             : 
    3406             : /**
    3407             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    3408             :  * @dwork: the delayed work cancel
    3409             :  *
    3410             :  * This is cancel_work_sync() for delayed works.
    3411             :  *
    3412             :  * Return:
    3413             :  * %true if @dwork was pending, %false otherwise.
    3414             :  */
    3415           0 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    3416             : {
    3417           0 :         return __cancel_work_timer(&dwork->work, true);
    3418             : }
    3419             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    3420             : 
    3421             : /**
    3422             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    3423             :  * @func: the function to call
    3424             :  *
    3425             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    3426             :  * system workqueue and blocks until all CPUs have completed.
    3427             :  * schedule_on_each_cpu() is very slow.
    3428             :  *
    3429             :  * Return:
    3430             :  * 0 on success, -errno on failure.
    3431             :  */
    3432           0 : int schedule_on_each_cpu(work_func_t func)
    3433             : {
    3434             :         int cpu;
    3435             :         struct work_struct __percpu *works;
    3436             : 
    3437           0 :         works = alloc_percpu(struct work_struct);
    3438           0 :         if (!works)
    3439             :                 return -ENOMEM;
    3440             : 
    3441             :         cpus_read_lock();
    3442             : 
    3443           0 :         for_each_online_cpu(cpu) {
    3444           0 :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    3445             : 
    3446           0 :                 INIT_WORK(work, func);
    3447           0 :                 schedule_work_on(cpu, work);
    3448             :         }
    3449             : 
    3450           0 :         for_each_online_cpu(cpu)
    3451           0 :                 flush_work(per_cpu_ptr(works, cpu));
    3452             : 
    3453             :         cpus_read_unlock();
    3454           0 :         free_percpu(works);
    3455           0 :         return 0;
    3456             : }
    3457             : 
    3458             : /**
    3459             :  * execute_in_process_context - reliably execute the routine with user context
    3460             :  * @fn:         the function to execute
    3461             :  * @ew:         guaranteed storage for the execute work structure (must
    3462             :  *              be available when the work executes)
    3463             :  *
    3464             :  * Executes the function immediately if process context is available,
    3465             :  * otherwise schedules the function for delayed execution.
    3466             :  *
    3467             :  * Return:      0 - function was executed
    3468             :  *              1 - function was scheduled for execution
    3469             :  */
    3470           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    3471             : {
    3472           0 :         if (!in_interrupt()) {
    3473           0 :                 fn(&ew->work);
    3474           0 :                 return 0;
    3475             :         }
    3476             : 
    3477           0 :         INIT_WORK(&ew->work, fn);
    3478           0 :         schedule_work(&ew->work);
    3479             : 
    3480           0 :         return 1;
    3481             : }
    3482             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    3483             : 
    3484             : /**
    3485             :  * free_workqueue_attrs - free a workqueue_attrs
    3486             :  * @attrs: workqueue_attrs to free
    3487             :  *
    3488             :  * Undo alloc_workqueue_attrs().
    3489             :  */
    3490           0 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3491             : {
    3492           3 :         if (attrs) {
    3493           6 :                 free_cpumask_var(attrs->cpumask);
    3494           6 :                 kfree(attrs);
    3495             :         }
    3496           0 : }
    3497             : 
    3498             : /**
    3499             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3500             :  *
    3501             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3502             :  * return it.
    3503             :  *
    3504             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3505             :  */
    3506          16 : struct workqueue_attrs *alloc_workqueue_attrs(void)
    3507             : {
    3508             :         struct workqueue_attrs *attrs;
    3509             : 
    3510          16 :         attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
    3511          16 :         if (!attrs)
    3512             :                 goto fail;
    3513          16 :         if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
    3514             :                 goto fail;
    3515             : 
    3516          32 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3517          16 :         return attrs;
    3518             : fail:
    3519             :         free_workqueue_attrs(attrs);
    3520             :         return NULL;
    3521             : }
    3522             : 
    3523             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3524             :                                  const struct workqueue_attrs *from)
    3525             : {
    3526          13 :         to->nice = from->nice;
    3527          26 :         cpumask_copy(to->cpumask, from->cpumask);
    3528             :         /*
    3529             :          * Unlike hash and equality test, this function doesn't ignore
    3530             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3531             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3532             :          */
    3533          13 :         to->no_numa = from->no_numa;
    3534             : }
    3535             : 
    3536             : /* hash value of the content of @attr */
    3537           3 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3538             : {
    3539           3 :         u32 hash = 0;
    3540             : 
    3541           6 :         hash = jhash_1word(attrs->nice, hash);
    3542           3 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3543             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3544           3 :         return hash;
    3545             : }
    3546             : 
    3547             : /* content equality test */
    3548             : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3549             :                           const struct workqueue_attrs *b)
    3550             : {
    3551           2 :         if (a->nice != b->nice)
    3552             :                 return false;
    3553           4 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3554             :                 return false;
    3555             :         return true;
    3556             : }
    3557             : 
    3558             : /**
    3559             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3560             :  * @pool: worker_pool to initialize
    3561             :  *
    3562             :  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3563             :  *
    3564             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3565             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3566             :  * on @pool safely to release it.
    3567             :  */
    3568           3 : static int init_worker_pool(struct worker_pool *pool)
    3569             : {
    3570             :         raw_spin_lock_init(&pool->lock);
    3571           3 :         pool->id = -1;
    3572           3 :         pool->cpu = -1;
    3573           3 :         pool->node = NUMA_NO_NODE;
    3574           3 :         pool->flags |= POOL_DISASSOCIATED;
    3575           3 :         pool->watchdog_ts = jiffies;
    3576           6 :         INIT_LIST_HEAD(&pool->worklist);
    3577           6 :         INIT_LIST_HEAD(&pool->idle_list);
    3578           6 :         hash_init(pool->busy_hash);
    3579             : 
    3580           3 :         timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
    3581           6 :         INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
    3582             : 
    3583           3 :         timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
    3584             : 
    3585           6 :         INIT_LIST_HEAD(&pool->workers);
    3586           6 :         INIT_LIST_HEAD(&pool->dying_workers);
    3587             : 
    3588           6 :         ida_init(&pool->worker_ida);
    3589           6 :         INIT_HLIST_NODE(&pool->hash_node);
    3590           3 :         pool->refcnt = 1;
    3591             : 
    3592             :         /* shouldn't fail above this point */
    3593           3 :         pool->attrs = alloc_workqueue_attrs();
    3594           3 :         if (!pool->attrs)
    3595             :                 return -ENOMEM;
    3596           3 :         return 0;
    3597             : }
    3598             : 
    3599             : #ifdef CONFIG_LOCKDEP
    3600             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3601             : {
    3602             :         char *lock_name;
    3603             : 
    3604             :         lockdep_register_key(&wq->key);
    3605             :         lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
    3606             :         if (!lock_name)
    3607             :                 lock_name = wq->name;
    3608             : 
    3609             :         wq->lock_name = lock_name;
    3610             :         lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
    3611             : }
    3612             : 
    3613             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3614             : {
    3615             :         lockdep_unregister_key(&wq->key);
    3616             : }
    3617             : 
    3618             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3619             : {
    3620             :         if (wq->lock_name != wq->name)
    3621             :                 kfree(wq->lock_name);
    3622             : }
    3623             : #else
    3624             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3625             : {
    3626             : }
    3627             : 
    3628             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3629             : {
    3630             : }
    3631             : 
    3632             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3633             : {
    3634             : }
    3635             : #endif
    3636             : 
    3637           0 : static void rcu_free_wq(struct rcu_head *rcu)
    3638             : {
    3639           0 :         struct workqueue_struct *wq =
    3640           0 :                 container_of(rcu, struct workqueue_struct, rcu);
    3641             : 
    3642           0 :         wq_free_lockdep(wq);
    3643             : 
    3644           0 :         if (!(wq->flags & WQ_UNBOUND))
    3645           0 :                 free_percpu(wq->cpu_pwqs);
    3646             :         else
    3647           0 :                 free_workqueue_attrs(wq->unbound_attrs);
    3648             : 
    3649           0 :         kfree(wq);
    3650           0 : }
    3651             : 
    3652           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3653             : {
    3654           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3655             : 
    3656           0 :         ida_destroy(&pool->worker_ida);
    3657           0 :         free_workqueue_attrs(pool->attrs);
    3658           0 :         kfree(pool);
    3659           0 : }
    3660             : 
    3661             : /**
    3662             :  * put_unbound_pool - put a worker_pool
    3663             :  * @pool: worker_pool to put
    3664             :  *
    3665             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
    3666             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3667             :  * and this function should be able to release pools which went through,
    3668             :  * successfully or not, init_worker_pool().
    3669             :  *
    3670             :  * Should be called with wq_pool_mutex held.
    3671             :  */
    3672           0 : static void put_unbound_pool(struct worker_pool *pool)
    3673             : {
    3674           0 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3675             :         struct list_head cull_list;
    3676             :         struct worker *worker;
    3677             : 
    3678           0 :         INIT_LIST_HEAD(&cull_list);
    3679             : 
    3680             :         lockdep_assert_held(&wq_pool_mutex);
    3681             : 
    3682           0 :         if (--pool->refcnt)
    3683           0 :                 return;
    3684             : 
    3685             :         /* sanity checks */
    3686           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3687           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3688             :                 return;
    3689             : 
    3690             :         /* release id and unhash */
    3691           0 :         if (pool->id >= 0)
    3692           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3693           0 :         hash_del(&pool->hash_node);
    3694             : 
    3695             :         /*
    3696             :          * Become the manager and destroy all workers.  This prevents
    3697             :          * @pool's workers from blocking on attach_mutex.  We're the last
    3698             :          * manager and @pool gets freed with the flag set.
    3699             :          *
    3700             :          * Having a concurrent manager is quite unlikely to happen as we can
    3701             :          * only get here with
    3702             :          *   pwq->refcnt == pool->refcnt == 0
    3703             :          * which implies no work queued to the pool, which implies no worker can
    3704             :          * become the manager. However a worker could have taken the role of
    3705             :          * manager before the refcnts dropped to 0, since maybe_create_worker()
    3706             :          * drops pool->lock
    3707             :          */
    3708             :         while (true) {
    3709           0 :                 rcuwait_wait_event(&manager_wait,
    3710             :                                    !(pool->flags & POOL_MANAGER_ACTIVE),
    3711             :                                    TASK_UNINTERRUPTIBLE);
    3712             : 
    3713           0 :                 mutex_lock(&wq_pool_attach_mutex);
    3714           0 :                 raw_spin_lock_irq(&pool->lock);
    3715           0 :                 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
    3716           0 :                         pool->flags |= POOL_MANAGER_ACTIVE;
    3717             :                         break;
    3718             :                 }
    3719           0 :                 raw_spin_unlock_irq(&pool->lock);
    3720           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    3721             :         }
    3722             : 
    3723           0 :         while ((worker = first_idle_worker(pool)))
    3724           0 :                 set_worker_dying(worker, &cull_list);
    3725           0 :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3726           0 :         raw_spin_unlock_irq(&pool->lock);
    3727             : 
    3728           0 :         wake_dying_workers(&cull_list);
    3729             : 
    3730           0 :         if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
    3731           0 :                 pool->detach_completion = &detach_completion;
    3732           0 :         mutex_unlock(&wq_pool_attach_mutex);
    3733             : 
    3734           0 :         if (pool->detach_completion)
    3735           0 :                 wait_for_completion(pool->detach_completion);
    3736             : 
    3737             :         /* shut down the timers */
    3738           0 :         del_timer_sync(&pool->idle_timer);
    3739           0 :         cancel_work_sync(&pool->idle_cull_work);
    3740           0 :         del_timer_sync(&pool->mayday_timer);
    3741             : 
    3742             :         /* RCU protected to allow dereferences from get_work_pool() */
    3743           0 :         call_rcu(&pool->rcu, rcu_free_pool);
    3744             : }
    3745             : 
    3746             : /**
    3747             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3748             :  * @attrs: the attributes of the worker_pool to get
    3749             :  *
    3750             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3751             :  * reference count and return it.  If there already is a matching
    3752             :  * worker_pool, it will be used; otherwise, this function attempts to
    3753             :  * create a new one.
    3754             :  *
    3755             :  * Should be called with wq_pool_mutex held.
    3756             :  *
    3757             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3758             :  * On failure, %NULL.
    3759             :  */
    3760           3 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3761             : {
    3762           3 :         u32 hash = wqattrs_hash(attrs);
    3763             :         struct worker_pool *pool;
    3764             :         int node;
    3765           3 :         int target_node = NUMA_NO_NODE;
    3766             : 
    3767             :         lockdep_assert_held(&wq_pool_mutex);
    3768             : 
    3769             :         /* do we already have a matching pool? */
    3770           3 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3771           4 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3772           2 :                         pool->refcnt++;
    3773           2 :                         return pool;
    3774             :                 }
    3775             :         }
    3776             : 
    3777             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3778           1 :         if (wq_numa_enabled) {
    3779           0 :                 for_each_node(node) {
    3780           0 :                         if (cpumask_subset(attrs->cpumask,
    3781           0 :                                            wq_numa_possible_cpumask[node])) {
    3782             :                                 target_node = node;
    3783             :                                 break;
    3784             :                         }
    3785             :                 }
    3786             :         }
    3787             : 
    3788             :         /* nope, create a new one */
    3789           1 :         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
    3790           1 :         if (!pool || init_worker_pool(pool) < 0)
    3791             :                 goto fail;
    3792             : 
    3793             :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3794           2 :         copy_workqueue_attrs(pool->attrs, attrs);
    3795           1 :         pool->node = target_node;
    3796             : 
    3797             :         /*
    3798             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3799             :          * 'struct workqueue_attrs' comments for detail.
    3800             :          */
    3801           1 :         pool->attrs->no_numa = false;
    3802             : 
    3803           1 :         if (worker_pool_assign_id(pool) < 0)
    3804             :                 goto fail;
    3805             : 
    3806             :         /* create and start the initial worker */
    3807           1 :         if (wq_online && !create_worker(pool))
    3808             :                 goto fail;
    3809             : 
    3810             :         /* install */
    3811           2 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    3812             : 
    3813           1 :         return pool;
    3814             : fail:
    3815           0 :         if (pool)
    3816           0 :                 put_unbound_pool(pool);
    3817             :         return NULL;
    3818             : }
    3819             : 
    3820           0 : static void rcu_free_pwq(struct rcu_head *rcu)
    3821             : {
    3822           0 :         kmem_cache_free(pwq_cache,
    3823           0 :                         container_of(rcu, struct pool_workqueue, rcu));
    3824           0 : }
    3825             : 
    3826             : /*
    3827             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    3828             :  * and needs to be destroyed.
    3829             :  */
    3830           0 : static void pwq_unbound_release_workfn(struct work_struct *work)
    3831             : {
    3832           0 :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    3833             :                                                   unbound_release_work);
    3834           0 :         struct workqueue_struct *wq = pwq->wq;
    3835           0 :         struct worker_pool *pool = pwq->pool;
    3836           0 :         bool is_last = false;
    3837             : 
    3838             :         /*
    3839             :          * when @pwq is not linked, it doesn't hold any reference to the
    3840             :          * @wq, and @wq is invalid to access.
    3841             :          */
    3842           0 :         if (!list_empty(&pwq->pwqs_node)) {
    3843           0 :                 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    3844             :                         return;
    3845             : 
    3846           0 :                 mutex_lock(&wq->mutex);
    3847           0 :                 list_del_rcu(&pwq->pwqs_node);
    3848           0 :                 is_last = list_empty(&wq->pwqs);
    3849           0 :                 mutex_unlock(&wq->mutex);
    3850             :         }
    3851             : 
    3852           0 :         mutex_lock(&wq_pool_mutex);
    3853           0 :         put_unbound_pool(pool);
    3854           0 :         mutex_unlock(&wq_pool_mutex);
    3855             : 
    3856           0 :         call_rcu(&pwq->rcu, rcu_free_pwq);
    3857             : 
    3858             :         /*
    3859             :          * If we're the last pwq going away, @wq is already dead and no one
    3860             :          * is gonna access it anymore.  Schedule RCU free.
    3861             :          */
    3862           0 :         if (is_last) {
    3863           0 :                 wq_unregister_lockdep(wq);
    3864           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    3865             :         }
    3866             : }
    3867             : 
    3868             : /**
    3869             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    3870             :  * @pwq: target pool_workqueue
    3871             :  *
    3872             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    3873             :  * workqueue's saved_max_active and activate inactive work items
    3874             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    3875             :  */
    3876          28 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    3877             : {
    3878          28 :         struct workqueue_struct *wq = pwq->wq;
    3879          28 :         bool freezable = wq->flags & WQ_FREEZABLE;
    3880             :         unsigned long flags;
    3881             : 
    3882             :         /* for @wq->saved_max_active */
    3883             :         lockdep_assert_held(&wq->mutex);
    3884             : 
    3885             :         /* fast exit for non-freezable wqs */
    3886          28 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    3887             :                 return;
    3888             : 
    3889             :         /* this function can be called during early boot w/ irq disabled */
    3890          17 :         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    3891             : 
    3892             :         /*
    3893             :          * During [un]freezing, the caller is responsible for ensuring that
    3894             :          * this function is called at least once after @workqueue_freezing
    3895             :          * is updated and visible.
    3896             :          */
    3897          17 :         if (!freezable || !workqueue_freezing) {
    3898          17 :                 bool kick = false;
    3899             : 
    3900          17 :                 pwq->max_active = wq->saved_max_active;
    3901             : 
    3902          51 :                 while (!list_empty(&pwq->inactive_works) &&
    3903           0 :                        pwq->nr_active < pwq->max_active) {
    3904           0 :                         pwq_activate_first_inactive(pwq);
    3905           0 :                         kick = true;
    3906             :                 }
    3907             : 
    3908             :                 /*
    3909             :                  * Need to kick a worker after thawed or an unbound wq's
    3910             :                  * max_active is bumped. In realtime scenarios, always kicking a
    3911             :                  * worker will cause interference on the isolated cpu cores, so
    3912             :                  * let's kick iff work items were activated.
    3913             :                  */
    3914          17 :                 if (kick)
    3915           0 :                         wake_up_worker(pwq->pool);
    3916             :         } else {
    3917           0 :                 pwq->max_active = 0;
    3918             :         }
    3919             : 
    3920          34 :         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    3921             : }
    3922             : 
    3923             : /* initialize newly allocated @pwq which is associated with @wq and @pool */
    3924          14 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    3925             :                      struct worker_pool *pool)
    3926             : {
    3927          14 :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    3928             : 
    3929          14 :         memset(pwq, 0, sizeof(*pwq));
    3930             : 
    3931          14 :         pwq->pool = pool;
    3932          14 :         pwq->wq = wq;
    3933          14 :         pwq->flush_color = -1;
    3934          14 :         pwq->refcnt = 1;
    3935          28 :         INIT_LIST_HEAD(&pwq->inactive_works);
    3936          28 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    3937          28 :         INIT_LIST_HEAD(&pwq->mayday_node);
    3938          28 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    3939          14 : }
    3940             : 
    3941             : /* sync @pwq with the current state of its associated wq and link it */
    3942          17 : static void link_pwq(struct pool_workqueue *pwq)
    3943             : {
    3944          17 :         struct workqueue_struct *wq = pwq->wq;
    3945             : 
    3946             :         lockdep_assert_held(&wq->mutex);
    3947             : 
    3948             :         /* may be called multiple times, ignore if already linked */
    3949          34 :         if (!list_empty(&pwq->pwqs_node))
    3950             :                 return;
    3951             : 
    3952             :         /* set the matching work_color */
    3953          14 :         pwq->work_color = wq->work_color;
    3954             : 
    3955             :         /* sync max_active to the current setting */
    3956          14 :         pwq_adjust_max_active(pwq);
    3957             : 
    3958             :         /* link in @pwq */
    3959          14 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    3960             : }
    3961             : 
    3962             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    3963           3 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    3964             :                                         const struct workqueue_attrs *attrs)
    3965             : {
    3966             :         struct worker_pool *pool;
    3967             :         struct pool_workqueue *pwq;
    3968             : 
    3969             :         lockdep_assert_held(&wq_pool_mutex);
    3970             : 
    3971           3 :         pool = get_unbound_pool(attrs);
    3972           3 :         if (!pool)
    3973             :                 return NULL;
    3974             : 
    3975           3 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    3976           3 :         if (!pwq) {
    3977           0 :                 put_unbound_pool(pool);
    3978           0 :                 return NULL;
    3979             :         }
    3980             : 
    3981           3 :         init_pwq(pwq, wq, pool);
    3982           3 :         return pwq;
    3983             : }
    3984             : 
    3985             : /**
    3986             :  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
    3987             :  * @attrs: the wq_attrs of the default pwq of the target workqueue
    3988             :  * @node: the target NUMA node
    3989             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    3990             :  * @cpumask: outarg, the resulting cpumask
    3991             :  *
    3992             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    3993             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    3994             :  * calculation.  The result is stored in @cpumask.
    3995             :  *
    3996             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    3997             :  * enabled and @node has online CPUs requested by @attrs, the returned
    3998             :  * cpumask is the intersection of the possible CPUs of @node and
    3999             :  * @attrs->cpumask.
    4000             :  *
    4001             :  * The caller is responsible for ensuring that the cpumask of @node stays
    4002             :  * stable.
    4003             :  *
    4004             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    4005             :  * %false if equal.
    4006             :  */
    4007           3 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    4008             :                                  int cpu_going_down, cpumask_t *cpumask)
    4009             : {
    4010           3 :         if (!wq_numa_enabled || attrs->no_numa)
    4011             :                 goto use_dfl;
    4012             : 
    4013             :         /* does @node have any online CPUs @attrs wants? */
    4014           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    4015           0 :         if (cpu_going_down >= 0)
    4016             :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    4017             : 
    4018           0 :         if (cpumask_empty(cpumask))
    4019             :                 goto use_dfl;
    4020             : 
    4021             :         /* yeap, return possible CPUs in @node that @attrs wants */
    4022           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    4023             : 
    4024           0 :         if (cpumask_empty(cpumask)) {
    4025           0 :                 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
    4026             :                                 "possible intersect\n");
    4027             :                 return false;
    4028             :         }
    4029             : 
    4030           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    4031             : 
    4032             : use_dfl:
    4033           6 :         cpumask_copy(cpumask, attrs->cpumask);
    4034           3 :         return false;
    4035             : }
    4036             : 
    4037             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    4038             : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    4039             :                                                    int node,
    4040             :                                                    struct pool_workqueue *pwq)
    4041             : {
    4042             :         struct pool_workqueue *old_pwq;
    4043             : 
    4044             :         lockdep_assert_held(&wq_pool_mutex);
    4045             :         lockdep_assert_held(&wq->mutex);
    4046             : 
    4047             :         /* link_pwq() can handle duplicate calls */
    4048           3 :         link_pwq(pwq);
    4049             : 
    4050           3 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4051           3 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    4052             :         return old_pwq;
    4053             : }
    4054             : 
    4055             : /* context to store the prepared attrs & pwqs before applying */
    4056             : struct apply_wqattrs_ctx {
    4057             :         struct workqueue_struct *wq;            /* target workqueue */
    4058             :         struct workqueue_attrs  *attrs;         /* attrs to apply */
    4059             :         struct list_head        list;           /* queued for batching commit */
    4060             :         struct pool_workqueue   *dfl_pwq;
    4061             :         struct pool_workqueue   *pwq_tbl[];
    4062             : };
    4063             : 
    4064             : /* free the resources after success or abort */
    4065           3 : static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
    4066             : {
    4067           3 :         if (ctx) {
    4068             :                 int node;
    4069             : 
    4070           3 :                 for_each_node(node)
    4071           3 :                         put_pwq_unlocked(ctx->pwq_tbl[node]);
    4072           3 :                 put_pwq_unlocked(ctx->dfl_pwq);
    4073             : 
    4074           6 :                 free_workqueue_attrs(ctx->attrs);
    4075             : 
    4076           3 :                 kfree(ctx);
    4077             :         }
    4078           3 : }
    4079             : 
    4080             : /* allocate the attrs and pwqs for later installation */
    4081             : static struct apply_wqattrs_ctx *
    4082           3 : apply_wqattrs_prepare(struct workqueue_struct *wq,
    4083             :                       const struct workqueue_attrs *attrs,
    4084             :                       const cpumask_var_t unbound_cpumask)
    4085             : {
    4086             :         struct apply_wqattrs_ctx *ctx;
    4087             :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    4088             :         int node;
    4089             : 
    4090             :         lockdep_assert_held(&wq_pool_mutex);
    4091             : 
    4092           3 :         ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
    4093             : 
    4094           3 :         new_attrs = alloc_workqueue_attrs();
    4095           3 :         tmp_attrs = alloc_workqueue_attrs();
    4096           3 :         if (!ctx || !new_attrs || !tmp_attrs)
    4097             :                 goto out_free;
    4098             : 
    4099             :         /*
    4100             :          * Calculate the attrs of the default pwq with unbound_cpumask
    4101             :          * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
    4102             :          * If the user configured cpumask doesn't overlap with the
    4103             :          * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
    4104             :          */
    4105           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4106           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
    4107           6 :         if (unlikely(cpumask_empty(new_attrs->cpumask)))
    4108           0 :                 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
    4109             : 
    4110             :         /*
    4111             :          * We may create multiple pwqs with differing cpumasks.  Make a
    4112             :          * copy of @new_attrs which will be modified and used to obtain
    4113             :          * pools.
    4114             :          */
    4115           3 :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    4116             : 
    4117             :         /*
    4118             :          * If something goes wrong during CPU up/down, we'll fall back to
    4119             :          * the default pwq covering whole @attrs->cpumask.  Always create
    4120             :          * it even if we don't use it immediately.
    4121             :          */
    4122           3 :         ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    4123           3 :         if (!ctx->dfl_pwq)
    4124             :                 goto out_free;
    4125             : 
    4126           6 :         for_each_node(node) {
    4127           3 :                 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
    4128           0 :                         ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    4129           0 :                         if (!ctx->pwq_tbl[node])
    4130             :                                 goto out_free;
    4131             :                 } else {
    4132           3 :                         ctx->dfl_pwq->refcnt++;
    4133           3 :                         ctx->pwq_tbl[node] = ctx->dfl_pwq;
    4134             :                 }
    4135             :         }
    4136             : 
    4137             :         /* save the user configured attrs and sanitize it. */
    4138           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4139           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    4140           3 :         ctx->attrs = new_attrs;
    4141             : 
    4142           3 :         ctx->wq = wq;
    4143           3 :         free_workqueue_attrs(tmp_attrs);
    4144           3 :         return ctx;
    4145             : 
    4146             : out_free:
    4147           0 :         free_workqueue_attrs(tmp_attrs);
    4148           0 :         free_workqueue_attrs(new_attrs);
    4149           0 :         apply_wqattrs_cleanup(ctx);
    4150           0 :         return NULL;
    4151             : }
    4152             : 
    4153             : /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
    4154           3 : static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
    4155             : {
    4156             :         int node;
    4157             : 
    4158             :         /* all pwqs have been created successfully, let's install'em */
    4159           3 :         mutex_lock(&ctx->wq->mutex);
    4160             : 
    4161           6 :         copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
    4162             : 
    4163             :         /* save the previous pwq and install the new one */
    4164           6 :         for_each_node(node)
    4165           6 :                 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
    4166             :                                                           ctx->pwq_tbl[node]);
    4167             : 
    4168             :         /* @dfl_pwq might not have been used, ensure it's linked */
    4169           3 :         link_pwq(ctx->dfl_pwq);
    4170           3 :         swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
    4171             : 
    4172           3 :         mutex_unlock(&ctx->wq->mutex);
    4173           3 : }
    4174             : 
    4175             : static void apply_wqattrs_lock(void)
    4176             : {
    4177             :         /* CPUs should stay stable across pwq creations and installations */
    4178             :         cpus_read_lock();
    4179           0 :         mutex_lock(&wq_pool_mutex);
    4180             : }
    4181             : 
    4182             : static void apply_wqattrs_unlock(void)
    4183             : {
    4184           0 :         mutex_unlock(&wq_pool_mutex);
    4185             :         cpus_read_unlock();
    4186             : }
    4187             : 
    4188           3 : static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
    4189             :                                         const struct workqueue_attrs *attrs)
    4190             : {
    4191             :         struct apply_wqattrs_ctx *ctx;
    4192             : 
    4193             :         /* only unbound workqueues can change attributes */
    4194           3 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    4195             :                 return -EINVAL;
    4196             : 
    4197             :         /* creating multiple pwqs breaks ordering guarantee */
    4198           6 :         if (!list_empty(&wq->pwqs)) {
    4199           0 :                 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4200             :                         return -EINVAL;
    4201             : 
    4202           0 :                 wq->flags &= ~__WQ_ORDERED;
    4203             :         }
    4204             : 
    4205           3 :         ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
    4206           3 :         if (!ctx)
    4207             :                 return -ENOMEM;
    4208             : 
    4209             :         /* the ctx has been prepared successfully, let's commit it */
    4210           3 :         apply_wqattrs_commit(ctx);
    4211           3 :         apply_wqattrs_cleanup(ctx);
    4212             : 
    4213           3 :         return 0;
    4214             : }
    4215             : 
    4216             : /**
    4217             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    4218             :  * @wq: the target workqueue
    4219             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    4220             :  *
    4221             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    4222             :  * machines, this function maps a separate pwq to each NUMA node with
    4223             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    4224             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    4225             :  * items finish.  Note that a work item which repeatedly requeues itself
    4226             :  * back-to-back will stay on its current pwq.
    4227             :  *
    4228             :  * Performs GFP_KERNEL allocations.
    4229             :  *
    4230             :  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
    4231             :  *
    4232             :  * Return: 0 on success and -errno on failure.
    4233             :  */
    4234           3 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    4235             :                           const struct workqueue_attrs *attrs)
    4236             : {
    4237             :         int ret;
    4238             : 
    4239             :         lockdep_assert_cpus_held();
    4240             : 
    4241           3 :         mutex_lock(&wq_pool_mutex);
    4242           3 :         ret = apply_workqueue_attrs_locked(wq, attrs);
    4243           3 :         mutex_unlock(&wq_pool_mutex);
    4244             : 
    4245           3 :         return ret;
    4246             : }
    4247             : 
    4248             : /**
    4249             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    4250             :  * @wq: the target workqueue
    4251             :  * @cpu: the CPU coming up or going down
    4252             :  * @online: whether @cpu is coming up or going down
    4253             :  *
    4254             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    4255             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    4256             :  * @wq accordingly.
    4257             :  *
    4258             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    4259             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    4260             :  * correct.
    4261             :  *
    4262             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    4263             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    4264             :  * already executing the work items for the workqueue will lose their CPU
    4265             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    4266             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    4267             :  * affinity, it's the user's responsibility to flush the work item from
    4268             :  * CPU_DOWN_PREPARE.
    4269             :  */
    4270           8 : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    4271             :                                    bool online)
    4272             : {
    4273           8 :         int node = cpu_to_node(cpu);
    4274           8 :         int cpu_off = online ? -1 : cpu;
    4275           8 :         struct pool_workqueue *old_pwq = NULL, *pwq;
    4276             :         struct workqueue_attrs *target_attrs;
    4277             :         cpumask_t *cpumask;
    4278             : 
    4279             :         lockdep_assert_held(&wq_pool_mutex);
    4280             : 
    4281           8 :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
    4282           0 :             wq->unbound_attrs->no_numa)
    4283             :                 return;
    4284             : 
    4285             :         /*
    4286             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    4287             :          * Let's use a preallocated one.  The following buf is protected by
    4288             :          * CPU hotplug exclusion.
    4289             :          */
    4290           0 :         target_attrs = wq_update_unbound_numa_attrs_buf;
    4291           0 :         cpumask = target_attrs->cpumask;
    4292             : 
    4293           0 :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    4294           0 :         pwq = unbound_pwq_by_node(wq, node);
    4295             : 
    4296             :         /*
    4297             :          * Let's determine what needs to be done.  If the target cpumask is
    4298             :          * different from the default pwq's, we need to compare it to @pwq's
    4299             :          * and create a new one if they don't match.  If the target cpumask
    4300             :          * equals the default pwq's, the default pwq should be used.
    4301             :          */
    4302           0 :         if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
    4303           0 :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    4304             :                         return;
    4305             :         } else {
    4306             :                 goto use_dfl_pwq;
    4307             :         }
    4308             : 
    4309             :         /* create a new pwq */
    4310           0 :         pwq = alloc_unbound_pwq(wq, target_attrs);
    4311           0 :         if (!pwq) {
    4312           0 :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    4313             :                         wq->name);
    4314           0 :                 goto use_dfl_pwq;
    4315             :         }
    4316             : 
    4317             :         /* Install the new pwq. */
    4318           0 :         mutex_lock(&wq->mutex);
    4319           0 :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    4320           0 :         goto out_unlock;
    4321             : 
    4322             : use_dfl_pwq:
    4323           0 :         mutex_lock(&wq->mutex);
    4324           0 :         raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4325           0 :         get_pwq(wq->dfl_pwq);
    4326           0 :         raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4327           0 :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4328             : out_unlock:
    4329           0 :         mutex_unlock(&wq->mutex);
    4330           0 :         put_pwq_unlocked(old_pwq);
    4331             : }
    4332             : 
    4333          14 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4334             : {
    4335          14 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4336             :         int cpu, ret;
    4337             : 
    4338          14 :         if (!(wq->flags & WQ_UNBOUND)) {
    4339          11 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4340          11 :                 if (!wq->cpu_pwqs)
    4341             :                         return -ENOMEM;
    4342             : 
    4343          11 :                 for_each_possible_cpu(cpu) {
    4344          11 :                         struct pool_workqueue *pwq =
    4345          11 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4346          11 :                         struct worker_pool *cpu_pools =
    4347          11 :                                 per_cpu(cpu_worker_pools, cpu);
    4348             : 
    4349          11 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4350             : 
    4351          11 :                         mutex_lock(&wq->mutex);
    4352          11 :                         link_pwq(pwq);
    4353          11 :                         mutex_unlock(&wq->mutex);
    4354             :                 }
    4355             :                 return 0;
    4356             :         }
    4357             : 
    4358             :         cpus_read_lock();
    4359           3 :         if (wq->flags & __WQ_ORDERED) {
    4360           1 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4361             :                 /* there should only be single pwq for ordering guarantee */
    4362           1 :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4363             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4364             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4365             :         } else {
    4366           2 :                 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4367             :         }
    4368             :         cpus_read_unlock();
    4369             : 
    4370             :         return ret;
    4371             : }
    4372             : 
    4373          14 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4374             :                                const char *name)
    4375             : {
    4376          14 :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4377             : 
    4378          14 :         if (max_active < 1 || max_active > lim)
    4379           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4380             :                         max_active, name, 1, lim);
    4381             : 
    4382          14 :         return clamp_val(max_active, 1, lim);
    4383             : }
    4384             : 
    4385             : /*
    4386             :  * Workqueues which may be used during memory reclaim should have a rescuer
    4387             :  * to guarantee forward progress.
    4388             :  */
    4389          14 : static int init_rescuer(struct workqueue_struct *wq)
    4390             : {
    4391             :         struct worker *rescuer;
    4392             :         int ret;
    4393             : 
    4394          14 :         if (!(wq->flags & WQ_MEM_RECLAIM))
    4395             :                 return 0;
    4396             : 
    4397           4 :         rescuer = alloc_worker(NUMA_NO_NODE);
    4398           4 :         if (!rescuer) {
    4399           0 :                 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
    4400             :                        wq->name);
    4401           0 :                 return -ENOMEM;
    4402             :         }
    4403             : 
    4404           4 :         rescuer->rescue_wq = wq;
    4405           4 :         rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
    4406           8 :         if (IS_ERR(rescuer->task)) {
    4407           0 :                 ret = PTR_ERR(rescuer->task);
    4408           0 :                 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
    4409             :                        wq->name, ERR_PTR(ret));
    4410           0 :                 kfree(rescuer);
    4411           0 :                 return ret;
    4412             :         }
    4413             : 
    4414           4 :         wq->rescuer = rescuer;
    4415           4 :         kthread_bind_mask(rescuer->task, cpu_possible_mask);
    4416           4 :         wake_up_process(rescuer->task);
    4417             : 
    4418           4 :         return 0;
    4419             : }
    4420             : 
    4421             : __printf(1, 4)
    4422          14 : struct workqueue_struct *alloc_workqueue(const char *fmt,
    4423             :                                          unsigned int flags,
    4424             :                                          int max_active, ...)
    4425             : {
    4426          14 :         size_t tbl_size = 0;
    4427             :         va_list args;
    4428             :         struct workqueue_struct *wq;
    4429             :         struct pool_workqueue *pwq;
    4430             : 
    4431             :         /*
    4432             :          * Unbound && max_active == 1 used to imply ordered, which is no
    4433             :          * longer the case on NUMA machines due to per-node pools.  While
    4434             :          * alloc_ordered_workqueue() is the right way to create an ordered
    4435             :          * workqueue, keep the previous behavior to avoid subtle breakages
    4436             :          * on NUMA.
    4437             :          */
    4438          14 :         if ((flags & WQ_UNBOUND) && max_active == 1)
    4439           1 :                 flags |= __WQ_ORDERED;
    4440             : 
    4441             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4442          14 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4443           0 :                 flags |= WQ_UNBOUND;
    4444             : 
    4445             :         /* allocate wq and format name */
    4446          14 :         if (flags & WQ_UNBOUND)
    4447           3 :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4448             : 
    4449          14 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4450          14 :         if (!wq)
    4451             :                 return NULL;
    4452             : 
    4453          14 :         if (flags & WQ_UNBOUND) {
    4454           3 :                 wq->unbound_attrs = alloc_workqueue_attrs();
    4455           3 :                 if (!wq->unbound_attrs)
    4456             :                         goto err_free_wq;
    4457             :         }
    4458             : 
    4459          14 :         va_start(args, max_active);
    4460          14 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4461          14 :         va_end(args);
    4462             : 
    4463          14 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4464          14 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4465             : 
    4466             :         /* init wq */
    4467          14 :         wq->flags = flags;
    4468          14 :         wq->saved_max_active = max_active;
    4469          14 :         mutex_init(&wq->mutex);
    4470          28 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4471          28 :         INIT_LIST_HEAD(&wq->pwqs);
    4472          28 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4473          28 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4474          28 :         INIT_LIST_HEAD(&wq->maydays);
    4475             : 
    4476          14 :         wq_init_lockdep(wq);
    4477          28 :         INIT_LIST_HEAD(&wq->list);
    4478             : 
    4479          14 :         if (alloc_and_link_pwqs(wq) < 0)
    4480             :                 goto err_unreg_lockdep;
    4481             : 
    4482          14 :         if (wq_online && init_rescuer(wq) < 0)
    4483             :                 goto err_destroy;
    4484             : 
    4485          14 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4486             :                 goto err_destroy;
    4487             : 
    4488             :         /*
    4489             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4490             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4491             :          * list.
    4492             :          */
    4493          14 :         mutex_lock(&wq_pool_mutex);
    4494             : 
    4495          14 :         mutex_lock(&wq->mutex);
    4496          28 :         for_each_pwq(pwq, wq)
    4497          14 :                 pwq_adjust_max_active(pwq);
    4498          14 :         mutex_unlock(&wq->mutex);
    4499             : 
    4500          28 :         list_add_tail_rcu(&wq->list, &workqueues);
    4501             : 
    4502          14 :         mutex_unlock(&wq_pool_mutex);
    4503             : 
    4504          14 :         return wq;
    4505             : 
    4506             : err_unreg_lockdep:
    4507             :         wq_unregister_lockdep(wq);
    4508             :         wq_free_lockdep(wq);
    4509             : err_free_wq:
    4510           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4511           0 :         kfree(wq);
    4512           0 :         return NULL;
    4513             : err_destroy:
    4514           0 :         destroy_workqueue(wq);
    4515           0 :         return NULL;
    4516             : }
    4517             : EXPORT_SYMBOL_GPL(alloc_workqueue);
    4518             : 
    4519             : static bool pwq_busy(struct pool_workqueue *pwq)
    4520             : {
    4521             :         int i;
    4522             : 
    4523           0 :         for (i = 0; i < WORK_NR_COLORS; i++)
    4524           0 :                 if (pwq->nr_in_flight[i])
    4525             :                         return true;
    4526             : 
    4527           0 :         if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
    4528             :                 return true;
    4529           0 :         if (pwq->nr_active || !list_empty(&pwq->inactive_works))
    4530             :                 return true;
    4531             : 
    4532             :         return false;
    4533             : }
    4534             : 
    4535             : /**
    4536             :  * destroy_workqueue - safely terminate a workqueue
    4537             :  * @wq: target workqueue
    4538             :  *
    4539             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4540             :  */
    4541           0 : void destroy_workqueue(struct workqueue_struct *wq)
    4542             : {
    4543             :         struct pool_workqueue *pwq;
    4544             :         int node;
    4545             : 
    4546             :         /*
    4547             :          * Remove it from sysfs first so that sanity check failure doesn't
    4548             :          * lead to sysfs name conflicts.
    4549             :          */
    4550           0 :         workqueue_sysfs_unregister(wq);
    4551             : 
    4552             :         /* mark the workqueue destruction is in progress */
    4553           0 :         mutex_lock(&wq->mutex);
    4554           0 :         wq->flags |= __WQ_DESTROYING;
    4555           0 :         mutex_unlock(&wq->mutex);
    4556             : 
    4557             :         /* drain it before proceeding with destruction */
    4558           0 :         drain_workqueue(wq);
    4559             : 
    4560             :         /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
    4561           0 :         if (wq->rescuer) {
    4562           0 :                 struct worker *rescuer = wq->rescuer;
    4563             : 
    4564             :                 /* this prevents new queueing */
    4565           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    4566           0 :                 wq->rescuer = NULL;
    4567           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    4568             : 
    4569             :                 /* rescuer will empty maydays list before exiting */
    4570           0 :                 kthread_stop(rescuer->task);
    4571           0 :                 kfree(rescuer);
    4572             :         }
    4573             : 
    4574             :         /*
    4575             :          * Sanity checks - grab all the locks so that we wait for all
    4576             :          * in-flight operations which may do put_pwq().
    4577             :          */
    4578           0 :         mutex_lock(&wq_pool_mutex);
    4579           0 :         mutex_lock(&wq->mutex);
    4580           0 :         for_each_pwq(pwq, wq) {
    4581           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    4582           0 :                 if (WARN_ON(pwq_busy(pwq))) {
    4583           0 :                         pr_warn("%s: %s has the following busy pwq\n",
    4584             :                                 __func__, wq->name);
    4585           0 :                         show_pwq(pwq);
    4586           0 :                         raw_spin_unlock_irq(&pwq->pool->lock);
    4587           0 :                         mutex_unlock(&wq->mutex);
    4588           0 :                         mutex_unlock(&wq_pool_mutex);
    4589           0 :                         show_one_workqueue(wq);
    4590           0 :                         return;
    4591             :                 }
    4592           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    4593             :         }
    4594           0 :         mutex_unlock(&wq->mutex);
    4595             : 
    4596             :         /*
    4597             :          * wq list is used to freeze wq, remove from list after
    4598             :          * flushing is complete in case freeze races us.
    4599             :          */
    4600           0 :         list_del_rcu(&wq->list);
    4601           0 :         mutex_unlock(&wq_pool_mutex);
    4602             : 
    4603           0 :         if (!(wq->flags & WQ_UNBOUND)) {
    4604           0 :                 wq_unregister_lockdep(wq);
    4605             :                 /*
    4606             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4607             :                  * schedule RCU free.
    4608             :                  */
    4609           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4610             :         } else {
    4611             :                 /*
    4612             :                  * We're the sole accessor of @wq at this point.  Directly
    4613             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4614             :                  * @wq will be freed when the last pwq is released.
    4615             :                  */
    4616           0 :                 for_each_node(node) {
    4617           0 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4618           0 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4619           0 :                         put_pwq_unlocked(pwq);
    4620             :                 }
    4621             : 
    4622             :                 /*
    4623             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4624             :                  * put.  Don't access it afterwards.
    4625             :                  */
    4626           0 :                 pwq = wq->dfl_pwq;
    4627           0 :                 wq->dfl_pwq = NULL;
    4628           0 :                 put_pwq_unlocked(pwq);
    4629             :         }
    4630             : }
    4631             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4632             : 
    4633             : /**
    4634             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4635             :  * @wq: target workqueue
    4636             :  * @max_active: new max_active value.
    4637             :  *
    4638             :  * Set max_active of @wq to @max_active.
    4639             :  *
    4640             :  * CONTEXT:
    4641             :  * Don't call from IRQ context.
    4642             :  */
    4643           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4644             : {
    4645             :         struct pool_workqueue *pwq;
    4646             : 
    4647             :         /* disallow meddling with max_active for ordered workqueues */
    4648           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4649             :                 return;
    4650             : 
    4651           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4652             : 
    4653           0 :         mutex_lock(&wq->mutex);
    4654             : 
    4655           0 :         wq->flags &= ~__WQ_ORDERED;
    4656           0 :         wq->saved_max_active = max_active;
    4657             : 
    4658           0 :         for_each_pwq(pwq, wq)
    4659           0 :                 pwq_adjust_max_active(pwq);
    4660             : 
    4661           0 :         mutex_unlock(&wq->mutex);
    4662             : }
    4663             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4664             : 
    4665             : /**
    4666             :  * current_work - retrieve %current task's work struct
    4667             :  *
    4668             :  * Determine if %current task is a workqueue worker and what it's working on.
    4669             :  * Useful to find out the context that the %current task is running in.
    4670             :  *
    4671             :  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
    4672             :  */
    4673           0 : struct work_struct *current_work(void)
    4674             : {
    4675           0 :         struct worker *worker = current_wq_worker();
    4676             : 
    4677           0 :         return worker ? worker->current_work : NULL;
    4678             : }
    4679             : EXPORT_SYMBOL(current_work);
    4680             : 
    4681             : /**
    4682             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4683             :  *
    4684             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4685             :  * work functions to determine whether it's being run off the rescuer task.
    4686             :  *
    4687             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4688             :  */
    4689           0 : bool current_is_workqueue_rescuer(void)
    4690             : {
    4691           0 :         struct worker *worker = current_wq_worker();
    4692             : 
    4693           0 :         return worker && worker->rescue_wq;
    4694             : }
    4695             : 
    4696             : /**
    4697             :  * workqueue_congested - test whether a workqueue is congested
    4698             :  * @cpu: CPU in question
    4699             :  * @wq: target workqueue
    4700             :  *
    4701             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4702             :  * no synchronization around this function and the test result is
    4703             :  * unreliable and only useful as advisory hints or for debugging.
    4704             :  *
    4705             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4706             :  * Note that both per-cpu and unbound workqueues may be associated with
    4707             :  * multiple pool_workqueues which have separate congested states.  A
    4708             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4709             :  * contested on other CPUs / NUMA nodes.
    4710             :  *
    4711             :  * Return:
    4712             :  * %true if congested, %false otherwise.
    4713             :  */
    4714           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4715             : {
    4716             :         struct pool_workqueue *pwq;
    4717             :         bool ret;
    4718             : 
    4719             :         rcu_read_lock();
    4720           0 :         preempt_disable();
    4721             : 
    4722             :         if (cpu == WORK_CPU_UNBOUND)
    4723             :                 cpu = smp_processor_id();
    4724             : 
    4725           0 :         if (!(wq->flags & WQ_UNBOUND))
    4726           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4727             :         else
    4728           0 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4729             : 
    4730           0 :         ret = !list_empty(&pwq->inactive_works);
    4731           0 :         preempt_enable();
    4732             :         rcu_read_unlock();
    4733             : 
    4734           0 :         return ret;
    4735             : }
    4736             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4737             : 
    4738             : /**
    4739             :  * work_busy - test whether a work is currently pending or running
    4740             :  * @work: the work to be tested
    4741             :  *
    4742             :  * Test whether @work is currently pending or running.  There is no
    4743             :  * synchronization around this function and the test result is
    4744             :  * unreliable and only useful as advisory hints or for debugging.
    4745             :  *
    4746             :  * Return:
    4747             :  * OR'd bitmask of WORK_BUSY_* bits.
    4748             :  */
    4749           0 : unsigned int work_busy(struct work_struct *work)
    4750             : {
    4751             :         struct worker_pool *pool;
    4752             :         unsigned long flags;
    4753           0 :         unsigned int ret = 0;
    4754             : 
    4755           0 :         if (work_pending(work))
    4756           0 :                 ret |= WORK_BUSY_PENDING;
    4757             : 
    4758             :         rcu_read_lock();
    4759           0 :         pool = get_work_pool(work);
    4760           0 :         if (pool) {
    4761           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4762           0 :                 if (find_worker_executing_work(pool, work))
    4763           0 :                         ret |= WORK_BUSY_RUNNING;
    4764           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4765             :         }
    4766             :         rcu_read_unlock();
    4767             : 
    4768           0 :         return ret;
    4769             : }
    4770             : EXPORT_SYMBOL_GPL(work_busy);
    4771             : 
    4772             : /**
    4773             :  * set_worker_desc - set description for the current work item
    4774             :  * @fmt: printf-style format string
    4775             :  * @...: arguments for the format string
    4776             :  *
    4777             :  * This function can be called by a running work function to describe what
    4778             :  * the work item is about.  If the worker task gets dumped, this
    4779             :  * information will be printed out together to help debugging.  The
    4780             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4781             :  */
    4782           0 : void set_worker_desc(const char *fmt, ...)
    4783             : {
    4784           0 :         struct worker *worker = current_wq_worker();
    4785             :         va_list args;
    4786             : 
    4787           0 :         if (worker) {
    4788           0 :                 va_start(args, fmt);
    4789           0 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4790           0 :                 va_end(args);
    4791             :         }
    4792           0 : }
    4793             : EXPORT_SYMBOL_GPL(set_worker_desc);
    4794             : 
    4795             : /**
    4796             :  * print_worker_info - print out worker information and description
    4797             :  * @log_lvl: the log level to use when printing
    4798             :  * @task: target task
    4799             :  *
    4800             :  * If @task is a worker and currently executing a work item, print out the
    4801             :  * name of the workqueue being serviced and worker description set with
    4802             :  * set_worker_desc() by the currently executing work item.
    4803             :  *
    4804             :  * This function can be safely called on any task as long as the
    4805             :  * task_struct itself is accessible.  While safe, this function isn't
    4806             :  * synchronized and may print out mixups or garbages of limited length.
    4807             :  */
    4808           5 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    4809             : {
    4810           5 :         work_func_t *fn = NULL;
    4811           5 :         char name[WQ_NAME_LEN] = { };
    4812           5 :         char desc[WORKER_DESC_LEN] = { };
    4813           5 :         struct pool_workqueue *pwq = NULL;
    4814           5 :         struct workqueue_struct *wq = NULL;
    4815             :         struct worker *worker;
    4816             : 
    4817           5 :         if (!(task->flags & PF_WQ_WORKER))
    4818           5 :                 return;
    4819             : 
    4820             :         /*
    4821             :          * This function is called without any synchronization and @task
    4822             :          * could be in any state.  Be careful with dereferences.
    4823             :          */
    4824           0 :         worker = kthread_probe_data(task);
    4825             : 
    4826             :         /*
    4827             :          * Carefully copy the associated workqueue's workfn, name and desc.
    4828             :          * Keep the original last '\0' in case the original is garbage.
    4829             :          */
    4830           0 :         copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
    4831           0 :         copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
    4832           0 :         copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
    4833           0 :         copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
    4834           0 :         copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
    4835             : 
    4836           0 :         if (fn || name[0] || desc[0]) {
    4837           0 :                 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
    4838           0 :                 if (strcmp(name, desc))
    4839           0 :                         pr_cont(" (%s)", desc);
    4840           0 :                 pr_cont("\n");
    4841             :         }
    4842             : }
    4843             : 
    4844           0 : static void pr_cont_pool_info(struct worker_pool *pool)
    4845             : {
    4846           0 :         pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
    4847           0 :         if (pool->node != NUMA_NO_NODE)
    4848           0 :                 pr_cont(" node=%d", pool->node);
    4849           0 :         pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
    4850           0 : }
    4851             : 
    4852             : struct pr_cont_work_struct {
    4853             :         bool comma;
    4854             :         work_func_t func;
    4855             :         long ctr;
    4856             : };
    4857             : 
    4858           0 : static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
    4859             : {
    4860           0 :         if (!pcwsp->ctr)
    4861             :                 goto out_record;
    4862           0 :         if (func == pcwsp->func) {
    4863           0 :                 pcwsp->ctr++;
    4864           0 :                 return;
    4865             :         }
    4866           0 :         if (pcwsp->ctr == 1)
    4867           0 :                 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
    4868             :         else
    4869           0 :                 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
    4870           0 :         pcwsp->ctr = 0;
    4871             : out_record:
    4872           0 :         if ((long)func == -1L)
    4873             :                 return;
    4874           0 :         pcwsp->comma = comma;
    4875           0 :         pcwsp->func = func;
    4876           0 :         pcwsp->ctr = 1;
    4877             : }
    4878             : 
    4879           0 : static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
    4880             : {
    4881           0 :         if (work->func == wq_barrier_func) {
    4882             :                 struct wq_barrier *barr;
    4883             : 
    4884           0 :                 barr = container_of(work, struct wq_barrier, work);
    4885             : 
    4886           0 :                 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    4887           0 :                 pr_cont("%s BAR(%d)", comma ? "," : "",
    4888             :                         task_pid_nr(barr->task));
    4889             :         } else {
    4890           0 :                 if (!comma)
    4891           0 :                         pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    4892           0 :                 pr_cont_work_flush(comma, work->func, pcwsp);
    4893             :         }
    4894           0 : }
    4895             : 
    4896           0 : static void show_pwq(struct pool_workqueue *pwq)
    4897             : {
    4898           0 :         struct pr_cont_work_struct pcws = { .ctr = 0, };
    4899           0 :         struct worker_pool *pool = pwq->pool;
    4900             :         struct work_struct *work;
    4901             :         struct worker *worker;
    4902           0 :         bool has_in_flight = false, has_pending = false;
    4903             :         int bkt;
    4904             : 
    4905           0 :         pr_info("  pwq %d:", pool->id);
    4906           0 :         pr_cont_pool_info(pool);
    4907             : 
    4908           0 :         pr_cont(" active=%d/%d refcnt=%d%s\n",
    4909             :                 pwq->nr_active, pwq->max_active, pwq->refcnt,
    4910             :                 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
    4911             : 
    4912           0 :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4913           0 :                 if (worker->current_pwq == pwq) {
    4914             :                         has_in_flight = true;
    4915             :                         break;
    4916             :                 }
    4917             :         }
    4918           0 :         if (has_in_flight) {
    4919           0 :                 bool comma = false;
    4920             : 
    4921           0 :                 pr_info("    in-flight:");
    4922           0 :                 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4923           0 :                         if (worker->current_pwq != pwq)
    4924           0 :                                 continue;
    4925             : 
    4926           0 :                         pr_cont("%s %d%s:%ps", comma ? "," : "",
    4927             :                                 task_pid_nr(worker->task),
    4928             :                                 worker->rescue_wq ? "(RESCUER)" : "",
    4929             :                                 worker->current_func);
    4930           0 :                         list_for_each_entry(work, &worker->scheduled, entry)
    4931           0 :                                 pr_cont_work(false, work, &pcws);
    4932           0 :                         pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4933           0 :                         comma = true;
    4934             :                 }
    4935           0 :                 pr_cont("\n");
    4936             :         }
    4937             : 
    4938           0 :         list_for_each_entry(work, &pool->worklist, entry) {
    4939           0 :                 if (get_work_pwq(work) == pwq) {
    4940             :                         has_pending = true;
    4941             :                         break;
    4942             :                 }
    4943             :         }
    4944           0 :         if (has_pending) {
    4945           0 :                 bool comma = false;
    4946             : 
    4947           0 :                 pr_info("    pending:");
    4948           0 :                 list_for_each_entry(work, &pool->worklist, entry) {
    4949           0 :                         if (get_work_pwq(work) != pwq)
    4950           0 :                                 continue;
    4951             : 
    4952           0 :                         pr_cont_work(comma, work, &pcws);
    4953           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4954             :                 }
    4955           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4956           0 :                 pr_cont("\n");
    4957             :         }
    4958             : 
    4959           0 :         if (!list_empty(&pwq->inactive_works)) {
    4960           0 :                 bool comma = false;
    4961             : 
    4962           0 :                 pr_info("    inactive:");
    4963           0 :                 list_for_each_entry(work, &pwq->inactive_works, entry) {
    4964           0 :                         pr_cont_work(comma, work, &pcws);
    4965           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4966             :                 }
    4967           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4968           0 :                 pr_cont("\n");
    4969             :         }
    4970           0 : }
    4971             : 
    4972             : /**
    4973             :  * show_one_workqueue - dump state of specified workqueue
    4974             :  * @wq: workqueue whose state will be printed
    4975             :  */
    4976           0 : void show_one_workqueue(struct workqueue_struct *wq)
    4977             : {
    4978             :         struct pool_workqueue *pwq;
    4979           0 :         bool idle = true;
    4980             :         unsigned long flags;
    4981             : 
    4982           0 :         for_each_pwq(pwq, wq) {
    4983           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4984             :                         idle = false;
    4985             :                         break;
    4986             :                 }
    4987             :         }
    4988           0 :         if (idle) /* Nothing to print for idle workqueue */
    4989             :                 return;
    4990             : 
    4991           0 :         pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
    4992             : 
    4993           0 :         for_each_pwq(pwq, wq) {
    4994           0 :                 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    4995           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4996             :                         /*
    4997             :                          * Defer printing to avoid deadlocks in console
    4998             :                          * drivers that queue work while holding locks
    4999             :                          * also taken in their write paths.
    5000             :                          */
    5001           0 :                         printk_deferred_enter();
    5002           0 :                         show_pwq(pwq);
    5003           0 :                         printk_deferred_exit();
    5004             :                 }
    5005           0 :                 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    5006             :                 /*
    5007             :                  * We could be printing a lot from atomic context, e.g.
    5008             :                  * sysrq-t -> show_all_workqueues(). Avoid triggering
    5009             :                  * hard lockup.
    5010             :                  */
    5011             :                 touch_nmi_watchdog();
    5012             :         }
    5013             : 
    5014             : }
    5015             : 
    5016             : /**
    5017             :  * show_one_worker_pool - dump state of specified worker pool
    5018             :  * @pool: worker pool whose state will be printed
    5019             :  */
    5020           0 : static void show_one_worker_pool(struct worker_pool *pool)
    5021             : {
    5022             :         struct worker *worker;
    5023           0 :         bool first = true;
    5024             :         unsigned long flags;
    5025           0 :         unsigned long hung = 0;
    5026             : 
    5027           0 :         raw_spin_lock_irqsave(&pool->lock, flags);
    5028           0 :         if (pool->nr_workers == pool->nr_idle)
    5029             :                 goto next_pool;
    5030             : 
    5031             :         /* How long the first pending work is waiting for a worker. */
    5032           0 :         if (!list_empty(&pool->worklist))
    5033           0 :                 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
    5034             : 
    5035             :         /*
    5036             :          * Defer printing to avoid deadlocks in console drivers that
    5037             :          * queue work while holding locks also taken in their write
    5038             :          * paths.
    5039             :          */
    5040           0 :         printk_deferred_enter();
    5041           0 :         pr_info("pool %d:", pool->id);
    5042           0 :         pr_cont_pool_info(pool);
    5043           0 :         pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
    5044           0 :         if (pool->manager)
    5045           0 :                 pr_cont(" manager: %d",
    5046             :                         task_pid_nr(pool->manager->task));
    5047           0 :         list_for_each_entry(worker, &pool->idle_list, entry) {
    5048           0 :                 pr_cont(" %s%d", first ? "idle: " : "",
    5049             :                         task_pid_nr(worker->task));
    5050           0 :                 first = false;
    5051             :         }
    5052           0 :         pr_cont("\n");
    5053           0 :         printk_deferred_exit();
    5054             : next_pool:
    5055           0 :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    5056             :         /*
    5057             :          * We could be printing a lot from atomic context, e.g.
    5058             :          * sysrq-t -> show_all_workqueues(). Avoid triggering
    5059             :          * hard lockup.
    5060             :          */
    5061             :         touch_nmi_watchdog();
    5062             : 
    5063           0 : }
    5064             : 
    5065             : /**
    5066             :  * show_all_workqueues - dump workqueue state
    5067             :  *
    5068             :  * Called from a sysrq handler and prints out all busy workqueues and pools.
    5069             :  */
    5070           0 : void show_all_workqueues(void)
    5071             : {
    5072             :         struct workqueue_struct *wq;
    5073             :         struct worker_pool *pool;
    5074             :         int pi;
    5075             : 
    5076             :         rcu_read_lock();
    5077             : 
    5078           0 :         pr_info("Showing busy workqueues and worker pools:\n");
    5079             : 
    5080           0 :         list_for_each_entry_rcu(wq, &workqueues, list)
    5081           0 :                 show_one_workqueue(wq);
    5082             : 
    5083           0 :         for_each_pool(pool, pi)
    5084           0 :                 show_one_worker_pool(pool);
    5085             : 
    5086             :         rcu_read_unlock();
    5087           0 : }
    5088             : 
    5089             : /**
    5090             :  * show_freezable_workqueues - dump freezable workqueue state
    5091             :  *
    5092             :  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
    5093             :  * still busy.
    5094             :  */
    5095           0 : void show_freezable_workqueues(void)
    5096             : {
    5097             :         struct workqueue_struct *wq;
    5098             : 
    5099             :         rcu_read_lock();
    5100             : 
    5101           0 :         pr_info("Showing freezable workqueues that are still busy:\n");
    5102             : 
    5103           0 :         list_for_each_entry_rcu(wq, &workqueues, list) {
    5104           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5105           0 :                         continue;
    5106           0 :                 show_one_workqueue(wq);
    5107             :         }
    5108             : 
    5109             :         rcu_read_unlock();
    5110           0 : }
    5111             : 
    5112             : /* used to show worker information through /proc/PID/{comm,stat,status} */
    5113           0 : void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
    5114             : {
    5115             :         int off;
    5116             : 
    5117             :         /* always show the actual comm */
    5118           0 :         off = strscpy(buf, task->comm, size);
    5119           0 :         if (off < 0)
    5120             :                 return;
    5121             : 
    5122             :         /* stabilize PF_WQ_WORKER and worker pool association */
    5123           0 :         mutex_lock(&wq_pool_attach_mutex);
    5124             : 
    5125           0 :         if (task->flags & PF_WQ_WORKER) {
    5126           0 :                 struct worker *worker = kthread_data(task);
    5127           0 :                 struct worker_pool *pool = worker->pool;
    5128             : 
    5129           0 :                 if (pool) {
    5130           0 :                         raw_spin_lock_irq(&pool->lock);
    5131             :                         /*
    5132             :                          * ->desc tracks information (wq name or
    5133             :                          * set_worker_desc()) for the latest execution.  If
    5134             :                          * current, prepend '+', otherwise '-'.
    5135             :                          */
    5136           0 :                         if (worker->desc[0] != '\0') {
    5137           0 :                                 if (worker->current_work)
    5138           0 :                                         scnprintf(buf + off, size - off, "+%s",
    5139           0 :                                                   worker->desc);
    5140             :                                 else
    5141           0 :                                         scnprintf(buf + off, size - off, "-%s",
    5142           0 :                                                   worker->desc);
    5143             :                         }
    5144           0 :                         raw_spin_unlock_irq(&pool->lock);
    5145             :                 }
    5146             :         }
    5147             : 
    5148           0 :         mutex_unlock(&wq_pool_attach_mutex);
    5149             : }
    5150             : 
    5151             : #ifdef CONFIG_SMP
    5152             : 
    5153             : /*
    5154             :  * CPU hotplug.
    5155             :  *
    5156             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    5157             :  * are a lot of assumptions on strong associations among work, pwq and
    5158             :  * pool which make migrating pending and scheduled works very
    5159             :  * difficult to implement without impacting hot paths.  Secondly,
    5160             :  * worker pools serve mix of short, long and very long running works making
    5161             :  * blocked draining impractical.
    5162             :  *
    5163             :  * This is solved by allowing the pools to be disassociated from the CPU
    5164             :  * running as an unbound one and allowing it to be reattached later if the
    5165             :  * cpu comes back online.
    5166             :  */
    5167             : 
    5168             : static void unbind_workers(int cpu)
    5169             : {
    5170             :         struct worker_pool *pool;
    5171             :         struct worker *worker;
    5172             : 
    5173             :         for_each_cpu_worker_pool(pool, cpu) {
    5174             :                 mutex_lock(&wq_pool_attach_mutex);
    5175             :                 raw_spin_lock_irq(&pool->lock);
    5176             : 
    5177             :                 /*
    5178             :                  * We've blocked all attach/detach operations. Make all workers
    5179             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    5180             :                  * must be on the cpu.  After this, they may become diasporas.
    5181             :                  * And the preemption disabled section in their sched callbacks
    5182             :                  * are guaranteed to see WORKER_UNBOUND since the code here
    5183             :                  * is on the same cpu.
    5184             :                  */
    5185             :                 for_each_pool_worker(worker, pool)
    5186             :                         worker->flags |= WORKER_UNBOUND;
    5187             : 
    5188             :                 pool->flags |= POOL_DISASSOCIATED;
    5189             : 
    5190             :                 /*
    5191             :                  * The handling of nr_running in sched callbacks are disabled
    5192             :                  * now.  Zap nr_running.  After this, nr_running stays zero and
    5193             :                  * need_more_worker() and keep_working() are always true as
    5194             :                  * long as the worklist is not empty.  This pool now behaves as
    5195             :                  * an unbound (in terms of concurrency management) pool which
    5196             :                  * are served by workers tied to the pool.
    5197             :                  */
    5198             :                 pool->nr_running = 0;
    5199             : 
    5200             :                 /*
    5201             :                  * With concurrency management just turned off, a busy
    5202             :                  * worker blocking could lead to lengthy stalls.  Kick off
    5203             :                  * unbound chain execution of currently pending work items.
    5204             :                  */
    5205             :                 wake_up_worker(pool);
    5206             : 
    5207             :                 raw_spin_unlock_irq(&pool->lock);
    5208             : 
    5209             :                 for_each_pool_worker(worker, pool)
    5210             :                         unbind_worker(worker);
    5211             : 
    5212             :                 mutex_unlock(&wq_pool_attach_mutex);
    5213             :         }
    5214             : }
    5215             : 
    5216             : /**
    5217             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    5218             :  * @pool: pool of interest
    5219             :  *
    5220             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    5221             :  */
    5222             : static void rebind_workers(struct worker_pool *pool)
    5223             : {
    5224             :         struct worker *worker;
    5225             : 
    5226             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5227             : 
    5228             :         /*
    5229             :          * Restore CPU affinity of all workers.  As all idle workers should
    5230             :          * be on the run-queue of the associated CPU before any local
    5231             :          * wake-ups for concurrency management happen, restore CPU affinity
    5232             :          * of all workers first and then clear UNBOUND.  As we're called
    5233             :          * from CPU_ONLINE, the following shouldn't fail.
    5234             :          */
    5235             :         for_each_pool_worker(worker, pool) {
    5236             :                 kthread_set_per_cpu(worker->task, pool->cpu);
    5237             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    5238             :                                                   pool->attrs->cpumask) < 0);
    5239             :         }
    5240             : 
    5241             :         raw_spin_lock_irq(&pool->lock);
    5242             : 
    5243             :         pool->flags &= ~POOL_DISASSOCIATED;
    5244             : 
    5245             :         for_each_pool_worker(worker, pool) {
    5246             :                 unsigned int worker_flags = worker->flags;
    5247             : 
    5248             :                 /*
    5249             :                  * We want to clear UNBOUND but can't directly call
    5250             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    5251             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    5252             :                  * @worker will clear REBOUND using worker_clr_flags() when
    5253             :                  * it initiates the next execution cycle thus restoring
    5254             :                  * concurrency management.  Note that when or whether
    5255             :                  * @worker clears REBOUND doesn't affect correctness.
    5256             :                  *
    5257             :                  * WRITE_ONCE() is necessary because @worker->flags may be
    5258             :                  * tested without holding any lock in
    5259             :                  * wq_worker_running().  Without it, NOT_RUNNING test may
    5260             :                  * fail incorrectly leading to premature concurrency
    5261             :                  * management operations.
    5262             :                  */
    5263             :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    5264             :                 worker_flags |= WORKER_REBOUND;
    5265             :                 worker_flags &= ~WORKER_UNBOUND;
    5266             :                 WRITE_ONCE(worker->flags, worker_flags);
    5267             :         }
    5268             : 
    5269             :         raw_spin_unlock_irq(&pool->lock);
    5270             : }
    5271             : 
    5272             : /**
    5273             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    5274             :  * @pool: unbound pool of interest
    5275             :  * @cpu: the CPU which is coming up
    5276             :  *
    5277             :  * An unbound pool may end up with a cpumask which doesn't have any online
    5278             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    5279             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    5280             :  * online CPU before, cpus_allowed of all its workers should be restored.
    5281             :  */
    5282             : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    5283             : {
    5284             :         static cpumask_t cpumask;
    5285             :         struct worker *worker;
    5286             : 
    5287             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5288             : 
    5289             :         /* is @cpu allowed for @pool? */
    5290             :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    5291             :                 return;
    5292             : 
    5293             :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    5294             : 
    5295             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    5296             :         for_each_pool_worker(worker, pool)
    5297             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
    5298             : }
    5299             : 
    5300             : int workqueue_prepare_cpu(unsigned int cpu)
    5301             : {
    5302             :         struct worker_pool *pool;
    5303             : 
    5304             :         for_each_cpu_worker_pool(pool, cpu) {
    5305             :                 if (pool->nr_workers)
    5306             :                         continue;
    5307             :                 if (!create_worker(pool))
    5308             :                         return -ENOMEM;
    5309             :         }
    5310             :         return 0;
    5311             : }
    5312             : 
    5313             : int workqueue_online_cpu(unsigned int cpu)
    5314             : {
    5315             :         struct worker_pool *pool;
    5316             :         struct workqueue_struct *wq;
    5317             :         int pi;
    5318             : 
    5319             :         mutex_lock(&wq_pool_mutex);
    5320             : 
    5321             :         for_each_pool(pool, pi) {
    5322             :                 mutex_lock(&wq_pool_attach_mutex);
    5323             : 
    5324             :                 if (pool->cpu == cpu)
    5325             :                         rebind_workers(pool);
    5326             :                 else if (pool->cpu < 0)
    5327             :                         restore_unbound_workers_cpumask(pool, cpu);
    5328             : 
    5329             :                 mutex_unlock(&wq_pool_attach_mutex);
    5330             :         }
    5331             : 
    5332             :         /* update NUMA affinity of unbound workqueues */
    5333             :         list_for_each_entry(wq, &workqueues, list)
    5334             :                 wq_update_unbound_numa(wq, cpu, true);
    5335             : 
    5336             :         mutex_unlock(&wq_pool_mutex);
    5337             :         return 0;
    5338             : }
    5339             : 
    5340             : int workqueue_offline_cpu(unsigned int cpu)
    5341             : {
    5342             :         struct workqueue_struct *wq;
    5343             : 
    5344             :         /* unbinding per-cpu workers should happen on the local CPU */
    5345             :         if (WARN_ON(cpu != smp_processor_id()))
    5346             :                 return -1;
    5347             : 
    5348             :         unbind_workers(cpu);
    5349             : 
    5350             :         /* update NUMA affinity of unbound workqueues */
    5351             :         mutex_lock(&wq_pool_mutex);
    5352             :         list_for_each_entry(wq, &workqueues, list)
    5353             :                 wq_update_unbound_numa(wq, cpu, false);
    5354             :         mutex_unlock(&wq_pool_mutex);
    5355             : 
    5356             :         return 0;
    5357             : }
    5358             : 
    5359             : struct work_for_cpu {
    5360             :         struct work_struct work;
    5361             :         long (*fn)(void *);
    5362             :         void *arg;
    5363             :         long ret;
    5364             : };
    5365             : 
    5366             : static void work_for_cpu_fn(struct work_struct *work)
    5367             : {
    5368             :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    5369             : 
    5370             :         wfc->ret = wfc->fn(wfc->arg);
    5371             : }
    5372             : 
    5373             : /**
    5374             :  * work_on_cpu - run a function in thread context on a particular cpu
    5375             :  * @cpu: the cpu to run on
    5376             :  * @fn: the function to run
    5377             :  * @arg: the function arg
    5378             :  *
    5379             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    5380             :  * The caller must not hold any locks which would prevent @fn from completing.
    5381             :  *
    5382             :  * Return: The value @fn returns.
    5383             :  */
    5384             : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    5385             : {
    5386             :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    5387             : 
    5388             :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    5389             :         schedule_work_on(cpu, &wfc.work);
    5390             :         flush_work(&wfc.work);
    5391             :         destroy_work_on_stack(&wfc.work);
    5392             :         return wfc.ret;
    5393             : }
    5394             : EXPORT_SYMBOL_GPL(work_on_cpu);
    5395             : 
    5396             : /**
    5397             :  * work_on_cpu_safe - run a function in thread context on a particular cpu
    5398             :  * @cpu: the cpu to run on
    5399             :  * @fn:  the function to run
    5400             :  * @arg: the function argument
    5401             :  *
    5402             :  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
    5403             :  * any locks which would prevent @fn from completing.
    5404             :  *
    5405             :  * Return: The value @fn returns.
    5406             :  */
    5407             : long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
    5408             : {
    5409             :         long ret = -ENODEV;
    5410             : 
    5411             :         cpus_read_lock();
    5412             :         if (cpu_online(cpu))
    5413             :                 ret = work_on_cpu(cpu, fn, arg);
    5414             :         cpus_read_unlock();
    5415             :         return ret;
    5416             : }
    5417             : EXPORT_SYMBOL_GPL(work_on_cpu_safe);
    5418             : #endif /* CONFIG_SMP */
    5419             : 
    5420             : #ifdef CONFIG_FREEZER
    5421             : 
    5422             : /**
    5423             :  * freeze_workqueues_begin - begin freezing workqueues
    5424             :  *
    5425             :  * Start freezing workqueues.  After this function returns, all freezable
    5426             :  * workqueues will queue new works to their inactive_works list instead of
    5427             :  * pool->worklist.
    5428             :  *
    5429             :  * CONTEXT:
    5430             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5431             :  */
    5432           0 : void freeze_workqueues_begin(void)
    5433             : {
    5434             :         struct workqueue_struct *wq;
    5435             :         struct pool_workqueue *pwq;
    5436             : 
    5437           0 :         mutex_lock(&wq_pool_mutex);
    5438             : 
    5439           0 :         WARN_ON_ONCE(workqueue_freezing);
    5440           0 :         workqueue_freezing = true;
    5441             : 
    5442           0 :         list_for_each_entry(wq, &workqueues, list) {
    5443           0 :                 mutex_lock(&wq->mutex);
    5444           0 :                 for_each_pwq(pwq, wq)
    5445           0 :                         pwq_adjust_max_active(pwq);
    5446           0 :                 mutex_unlock(&wq->mutex);
    5447             :         }
    5448             : 
    5449           0 :         mutex_unlock(&wq_pool_mutex);
    5450           0 : }
    5451             : 
    5452             : /**
    5453             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    5454             :  *
    5455             :  * Check whether freezing is complete.  This function must be called
    5456             :  * between freeze_workqueues_begin() and thaw_workqueues().
    5457             :  *
    5458             :  * CONTEXT:
    5459             :  * Grabs and releases wq_pool_mutex.
    5460             :  *
    5461             :  * Return:
    5462             :  * %true if some freezable workqueues are still busy.  %false if freezing
    5463             :  * is complete.
    5464             :  */
    5465           0 : bool freeze_workqueues_busy(void)
    5466             : {
    5467           0 :         bool busy = false;
    5468             :         struct workqueue_struct *wq;
    5469             :         struct pool_workqueue *pwq;
    5470             : 
    5471           0 :         mutex_lock(&wq_pool_mutex);
    5472             : 
    5473           0 :         WARN_ON_ONCE(!workqueue_freezing);
    5474             : 
    5475           0 :         list_for_each_entry(wq, &workqueues, list) {
    5476           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5477           0 :                         continue;
    5478             :                 /*
    5479             :                  * nr_active is monotonically decreasing.  It's safe
    5480             :                  * to peek without lock.
    5481             :                  */
    5482             :                 rcu_read_lock();
    5483           0 :                 for_each_pwq(pwq, wq) {
    5484           0 :                         WARN_ON_ONCE(pwq->nr_active < 0);
    5485           0 :                         if (pwq->nr_active) {
    5486           0 :                                 busy = true;
    5487             :                                 rcu_read_unlock();
    5488             :                                 goto out_unlock;
    5489             :                         }
    5490             :                 }
    5491             :                 rcu_read_unlock();
    5492             :         }
    5493             : out_unlock:
    5494           0 :         mutex_unlock(&wq_pool_mutex);
    5495           0 :         return busy;
    5496             : }
    5497             : 
    5498             : /**
    5499             :  * thaw_workqueues - thaw workqueues
    5500             :  *
    5501             :  * Thaw workqueues.  Normal queueing is restored and all collected
    5502             :  * frozen works are transferred to their respective pool worklists.
    5503             :  *
    5504             :  * CONTEXT:
    5505             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5506             :  */
    5507           0 : void thaw_workqueues(void)
    5508             : {
    5509             :         struct workqueue_struct *wq;
    5510             :         struct pool_workqueue *pwq;
    5511             : 
    5512           0 :         mutex_lock(&wq_pool_mutex);
    5513             : 
    5514           0 :         if (!workqueue_freezing)
    5515             :                 goto out_unlock;
    5516             : 
    5517           0 :         workqueue_freezing = false;
    5518             : 
    5519             :         /* restore max_active and repopulate worklist */
    5520           0 :         list_for_each_entry(wq, &workqueues, list) {
    5521           0 :                 mutex_lock(&wq->mutex);
    5522           0 :                 for_each_pwq(pwq, wq)
    5523           0 :                         pwq_adjust_max_active(pwq);
    5524           0 :                 mutex_unlock(&wq->mutex);
    5525             :         }
    5526             : 
    5527             : out_unlock:
    5528           0 :         mutex_unlock(&wq_pool_mutex);
    5529           0 : }
    5530             : #endif /* CONFIG_FREEZER */
    5531             : 
    5532           0 : static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
    5533             : {
    5534           0 :         LIST_HEAD(ctxs);
    5535           0 :         int ret = 0;
    5536             :         struct workqueue_struct *wq;
    5537             :         struct apply_wqattrs_ctx *ctx, *n;
    5538             : 
    5539             :         lockdep_assert_held(&wq_pool_mutex);
    5540             : 
    5541           0 :         list_for_each_entry(wq, &workqueues, list) {
    5542           0 :                 if (!(wq->flags & WQ_UNBOUND))
    5543           0 :                         continue;
    5544             :                 /* creating multiple pwqs breaks ordering guarantee */
    5545           0 :                 if (wq->flags & __WQ_ORDERED)
    5546           0 :                         continue;
    5547             : 
    5548           0 :                 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
    5549           0 :                 if (!ctx) {
    5550             :                         ret = -ENOMEM;
    5551             :                         break;
    5552             :                 }
    5553             : 
    5554           0 :                 list_add_tail(&ctx->list, &ctxs);
    5555             :         }
    5556             : 
    5557           0 :         list_for_each_entry_safe(ctx, n, &ctxs, list) {
    5558           0 :                 if (!ret)
    5559           0 :                         apply_wqattrs_commit(ctx);
    5560           0 :                 apply_wqattrs_cleanup(ctx);
    5561             :         }
    5562             : 
    5563           0 :         if (!ret) {
    5564           0 :                 mutex_lock(&wq_pool_attach_mutex);
    5565           0 :                 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
    5566           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    5567             :         }
    5568           0 :         return ret;
    5569             : }
    5570             : 
    5571             : /**
    5572             :  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
    5573             :  *  @cpumask: the cpumask to set
    5574             :  *
    5575             :  *  The low-level workqueues cpumask is a global cpumask that limits
    5576             :  *  the affinity of all unbound workqueues.  This function check the @cpumask
    5577             :  *  and apply it to all unbound workqueues and updates all pwqs of them.
    5578             :  *
    5579             :  *  Return:     0       - Success
    5580             :  *              -EINVAL - Invalid @cpumask
    5581             :  *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
    5582             :  */
    5583           0 : int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
    5584             : {
    5585           0 :         int ret = -EINVAL;
    5586             : 
    5587             :         /*
    5588             :          * Not excluding isolated cpus on purpose.
    5589             :          * If the user wishes to include them, we allow that.
    5590             :          */
    5591           0 :         cpumask_and(cpumask, cpumask, cpu_possible_mask);
    5592           0 :         if (!cpumask_empty(cpumask)) {
    5593           0 :                 apply_wqattrs_lock();
    5594           0 :                 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
    5595             :                         ret = 0;
    5596             :                         goto out_unlock;
    5597             :                 }
    5598             : 
    5599           0 :                 ret = workqueue_apply_unbound_cpumask(cpumask);
    5600             : 
    5601             : out_unlock:
    5602             :                 apply_wqattrs_unlock();
    5603             :         }
    5604             : 
    5605           0 :         return ret;
    5606             : }
    5607             : 
    5608             : #ifdef CONFIG_SYSFS
    5609             : /*
    5610             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    5611             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    5612             :  * following attributes.
    5613             :  *
    5614             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    5615             :  *  max_active  RW int  : maximum number of in-flight work items
    5616             :  *
    5617             :  * Unbound workqueues have the following extra attributes.
    5618             :  *
    5619             :  *  pool_ids    RO int  : the associated pool IDs for each node
    5620             :  *  nice        RW int  : nice value of the workers
    5621             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    5622             :  *  numa        RW bool : whether enable NUMA affinity
    5623             :  */
    5624             : struct wq_device {
    5625             :         struct workqueue_struct         *wq;
    5626             :         struct device                   dev;
    5627             : };
    5628             : 
    5629             : static struct workqueue_struct *dev_to_wq(struct device *dev)
    5630             : {
    5631           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5632             : 
    5633           0 :         return wq_dev->wq;
    5634             : }
    5635             : 
    5636           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    5637             :                             char *buf)
    5638             : {
    5639           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5640             : 
    5641           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    5642             : }
    5643             : static DEVICE_ATTR_RO(per_cpu);
    5644             : 
    5645           0 : static ssize_t max_active_show(struct device *dev,
    5646             :                                struct device_attribute *attr, char *buf)
    5647             : {
    5648           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5649             : 
    5650           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    5651             : }
    5652             : 
    5653           0 : static ssize_t max_active_store(struct device *dev,
    5654             :                                 struct device_attribute *attr, const char *buf,
    5655             :                                 size_t count)
    5656             : {
    5657           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5658             :         int val;
    5659             : 
    5660           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    5661             :                 return -EINVAL;
    5662             : 
    5663           0 :         workqueue_set_max_active(wq, val);
    5664           0 :         return count;
    5665             : }
    5666             : static DEVICE_ATTR_RW(max_active);
    5667             : 
    5668             : static struct attribute *wq_sysfs_attrs[] = {
    5669             :         &dev_attr_per_cpu.attr,
    5670             :         &dev_attr_max_active.attr,
    5671             :         NULL,
    5672             : };
    5673             : ATTRIBUTE_GROUPS(wq_sysfs);
    5674             : 
    5675           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    5676             :                                 struct device_attribute *attr, char *buf)
    5677             : {
    5678           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5679           0 :         const char *delim = "";
    5680           0 :         int node, written = 0;
    5681             : 
    5682             :         cpus_read_lock();
    5683             :         rcu_read_lock();
    5684           0 :         for_each_node(node) {
    5685           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    5686             :                                      "%s%d:%d", delim, node,
    5687           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    5688           0 :                 delim = " ";
    5689             :         }
    5690           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    5691             :         rcu_read_unlock();
    5692             :         cpus_read_unlock();
    5693             : 
    5694           0 :         return written;
    5695             : }
    5696             : 
    5697           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    5698             :                             char *buf)
    5699             : {
    5700           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5701             :         int written;
    5702             : 
    5703           0 :         mutex_lock(&wq->mutex);
    5704           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    5705           0 :         mutex_unlock(&wq->mutex);
    5706             : 
    5707           0 :         return written;
    5708             : }
    5709             : 
    5710             : /* prepare workqueue_attrs for sysfs store operations */
    5711           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    5712             : {
    5713             :         struct workqueue_attrs *attrs;
    5714             : 
    5715             :         lockdep_assert_held(&wq_pool_mutex);
    5716             : 
    5717           0 :         attrs = alloc_workqueue_attrs();
    5718           0 :         if (!attrs)
    5719             :                 return NULL;
    5720             : 
    5721           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    5722           0 :         return attrs;
    5723             : }
    5724             : 
    5725           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    5726             :                              const char *buf, size_t count)
    5727             : {
    5728           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5729             :         struct workqueue_attrs *attrs;
    5730           0 :         int ret = -ENOMEM;
    5731             : 
    5732             :         apply_wqattrs_lock();
    5733             : 
    5734           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5735           0 :         if (!attrs)
    5736             :                 goto out_unlock;
    5737             : 
    5738           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    5739           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    5740           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5741             :         else
    5742             :                 ret = -EINVAL;
    5743             : 
    5744             : out_unlock:
    5745           0 :         apply_wqattrs_unlock();
    5746           0 :         free_workqueue_attrs(attrs);
    5747           0 :         return ret ?: count;
    5748             : }
    5749             : 
    5750           0 : static ssize_t wq_cpumask_show(struct device *dev,
    5751             :                                struct device_attribute *attr, char *buf)
    5752             : {
    5753           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5754             :         int written;
    5755             : 
    5756           0 :         mutex_lock(&wq->mutex);
    5757           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5758           0 :                             cpumask_pr_args(wq->unbound_attrs->cpumask));
    5759           0 :         mutex_unlock(&wq->mutex);
    5760           0 :         return written;
    5761             : }
    5762             : 
    5763           0 : static ssize_t wq_cpumask_store(struct device *dev,
    5764             :                                 struct device_attribute *attr,
    5765             :                                 const char *buf, size_t count)
    5766             : {
    5767           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5768             :         struct workqueue_attrs *attrs;
    5769           0 :         int ret = -ENOMEM;
    5770             : 
    5771             :         apply_wqattrs_lock();
    5772             : 
    5773           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5774           0 :         if (!attrs)
    5775             :                 goto out_unlock;
    5776             : 
    5777           0 :         ret = cpumask_parse(buf, attrs->cpumask);
    5778           0 :         if (!ret)
    5779           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5780             : 
    5781             : out_unlock:
    5782           0 :         apply_wqattrs_unlock();
    5783           0 :         free_workqueue_attrs(attrs);
    5784           0 :         return ret ?: count;
    5785             : }
    5786             : 
    5787           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    5788             :                             char *buf)
    5789             : {
    5790           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5791             :         int written;
    5792             : 
    5793           0 :         mutex_lock(&wq->mutex);
    5794           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    5795           0 :                             !wq->unbound_attrs->no_numa);
    5796           0 :         mutex_unlock(&wq->mutex);
    5797             : 
    5798           0 :         return written;
    5799             : }
    5800             : 
    5801           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    5802             :                              const char *buf, size_t count)
    5803             : {
    5804           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5805             :         struct workqueue_attrs *attrs;
    5806           0 :         int v, ret = -ENOMEM;
    5807             : 
    5808             :         apply_wqattrs_lock();
    5809             : 
    5810           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5811           0 :         if (!attrs)
    5812             :                 goto out_unlock;
    5813             : 
    5814           0 :         ret = -EINVAL;
    5815           0 :         if (sscanf(buf, "%d", &v) == 1) {
    5816           0 :                 attrs->no_numa = !v;
    5817           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5818             :         }
    5819             : 
    5820             : out_unlock:
    5821           0 :         apply_wqattrs_unlock();
    5822           0 :         free_workqueue_attrs(attrs);
    5823           0 :         return ret ?: count;
    5824             : }
    5825             : 
    5826             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    5827             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    5828             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    5829             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    5830             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    5831             :         __ATTR_NULL,
    5832             : };
    5833             : 
    5834             : static struct bus_type wq_subsys = {
    5835             :         .name                           = "workqueue",
    5836             :         .dev_groups                     = wq_sysfs_groups,
    5837             : };
    5838             : 
    5839           0 : static ssize_t wq_unbound_cpumask_show(struct device *dev,
    5840             :                 struct device_attribute *attr, char *buf)
    5841             : {
    5842             :         int written;
    5843             : 
    5844           0 :         mutex_lock(&wq_pool_mutex);
    5845           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5846             :                             cpumask_pr_args(wq_unbound_cpumask));
    5847           0 :         mutex_unlock(&wq_pool_mutex);
    5848             : 
    5849           0 :         return written;
    5850             : }
    5851             : 
    5852           0 : static ssize_t wq_unbound_cpumask_store(struct device *dev,
    5853             :                 struct device_attribute *attr, const char *buf, size_t count)
    5854             : {
    5855             :         cpumask_var_t cpumask;
    5856             :         int ret;
    5857             : 
    5858           0 :         if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
    5859             :                 return -ENOMEM;
    5860             : 
    5861           0 :         ret = cpumask_parse(buf, cpumask);
    5862           0 :         if (!ret)
    5863           0 :                 ret = workqueue_set_unbound_cpumask(cpumask);
    5864             : 
    5865           0 :         free_cpumask_var(cpumask);
    5866           0 :         return ret ? ret : count;
    5867             : }
    5868             : 
    5869             : static struct device_attribute wq_sysfs_cpumask_attr =
    5870             :         __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
    5871             :                wq_unbound_cpumask_store);
    5872             : 
    5873           1 : static int __init wq_sysfs_init(void)
    5874             : {
    5875             :         struct device *dev_root;
    5876             :         int err;
    5877             : 
    5878           1 :         err = subsys_virtual_register(&wq_subsys, NULL);
    5879           1 :         if (err)
    5880             :                 return err;
    5881             : 
    5882           1 :         dev_root = bus_get_dev_root(&wq_subsys);
    5883           1 :         if (dev_root) {
    5884           1 :                 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
    5885           1 :                 put_device(dev_root);
    5886             :         }
    5887             :         return err;
    5888             : }
    5889             : core_initcall(wq_sysfs_init);
    5890             : 
    5891           0 : static void wq_device_release(struct device *dev)
    5892             : {
    5893           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5894             : 
    5895           0 :         kfree(wq_dev);
    5896           0 : }
    5897             : 
    5898             : /**
    5899             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    5900             :  * @wq: the workqueue to register
    5901             :  *
    5902             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    5903             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    5904             :  * which is the preferred method.
    5905             :  *
    5906             :  * Workqueue user should use this function directly iff it wants to apply
    5907             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    5908             :  * apply_workqueue_attrs() may race against userland updating the
    5909             :  * attributes.
    5910             :  *
    5911             :  * Return: 0 on success, -errno on failure.
    5912             :  */
    5913           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    5914             : {
    5915             :         struct wq_device *wq_dev;
    5916             :         int ret;
    5917             : 
    5918             :         /*
    5919             :          * Adjusting max_active or creating new pwqs by applying
    5920             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    5921             :          * workqueues.
    5922             :          */
    5923           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    5924             :                 return -EINVAL;
    5925             : 
    5926           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    5927           1 :         if (!wq_dev)
    5928             :                 return -ENOMEM;
    5929             : 
    5930           1 :         wq_dev->wq = wq;
    5931           1 :         wq_dev->dev.bus = &wq_subsys;
    5932           1 :         wq_dev->dev.release = wq_device_release;
    5933           1 :         dev_set_name(&wq_dev->dev, "%s", wq->name);
    5934             : 
    5935             :         /*
    5936             :          * unbound_attrs are created separately.  Suppress uevent until
    5937             :          * everything is ready.
    5938             :          */
    5939           2 :         dev_set_uevent_suppress(&wq_dev->dev, true);
    5940             : 
    5941           1 :         ret = device_register(&wq_dev->dev);
    5942           1 :         if (ret) {
    5943           0 :                 put_device(&wq_dev->dev);
    5944           0 :                 wq->wq_dev = NULL;
    5945           0 :                 return ret;
    5946             :         }
    5947             : 
    5948           1 :         if (wq->flags & WQ_UNBOUND) {
    5949             :                 struct device_attribute *attr;
    5950             : 
    5951           4 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    5952           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    5953           4 :                         if (ret) {
    5954           0 :                                 device_unregister(&wq_dev->dev);
    5955           0 :                                 wq->wq_dev = NULL;
    5956           0 :                                 return ret;
    5957             :                         }
    5958             :                 }
    5959             :         }
    5960             : 
    5961           2 :         dev_set_uevent_suppress(&wq_dev->dev, false);
    5962           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    5963           1 :         return 0;
    5964             : }
    5965             : 
    5966             : /**
    5967             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    5968             :  * @wq: the workqueue to unregister
    5969             :  *
    5970             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    5971             :  */
    5972             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    5973             : {
    5974           0 :         struct wq_device *wq_dev = wq->wq_dev;
    5975             : 
    5976           0 :         if (!wq->wq_dev)
    5977             :                 return;
    5978             : 
    5979           0 :         wq->wq_dev = NULL;
    5980           0 :         device_unregister(&wq_dev->dev);
    5981             : }
    5982             : #else   /* CONFIG_SYSFS */
    5983             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    5984             : #endif  /* CONFIG_SYSFS */
    5985             : 
    5986             : /*
    5987             :  * Workqueue watchdog.
    5988             :  *
    5989             :  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
    5990             :  * flush dependency, a concurrency managed work item which stays RUNNING
    5991             :  * indefinitely.  Workqueue stalls can be very difficult to debug as the
    5992             :  * usual warning mechanisms don't trigger and internal workqueue state is
    5993             :  * largely opaque.
    5994             :  *
    5995             :  * Workqueue watchdog monitors all worker pools periodically and dumps
    5996             :  * state if some pools failed to make forward progress for a while where
    5997             :  * forward progress is defined as the first item on ->worklist changing.
    5998             :  *
    5999             :  * This mechanism is controlled through the kernel parameter
    6000             :  * "workqueue.watchdog_thresh" which can be updated at runtime through the
    6001             :  * corresponding sysfs parameter file.
    6002             :  */
    6003             : #ifdef CONFIG_WQ_WATCHDOG
    6004             : 
    6005             : static unsigned long wq_watchdog_thresh = 30;
    6006             : static struct timer_list wq_watchdog_timer;
    6007             : 
    6008             : static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
    6009             : static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
    6010             : 
    6011             : /*
    6012             :  * Show workers that might prevent the processing of pending work items.
    6013             :  * The only candidates are CPU-bound workers in the running state.
    6014             :  * Pending work items should be handled by another idle worker
    6015             :  * in all other situations.
    6016             :  */
    6017             : static void show_cpu_pool_hog(struct worker_pool *pool)
    6018             : {
    6019             :         struct worker *worker;
    6020             :         unsigned long flags;
    6021             :         int bkt;
    6022             : 
    6023             :         raw_spin_lock_irqsave(&pool->lock, flags);
    6024             : 
    6025             :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    6026             :                 if (task_is_running(worker->task)) {
    6027             :                         /*
    6028             :                          * Defer printing to avoid deadlocks in console
    6029             :                          * drivers that queue work while holding locks
    6030             :                          * also taken in their write paths.
    6031             :                          */
    6032             :                         printk_deferred_enter();
    6033             : 
    6034             :                         pr_info("pool %d:\n", pool->id);
    6035             :                         sched_show_task(worker->task);
    6036             : 
    6037             :                         printk_deferred_exit();
    6038             :                 }
    6039             :         }
    6040             : 
    6041             :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    6042             : }
    6043             : 
    6044             : static void show_cpu_pools_hogs(void)
    6045             : {
    6046             :         struct worker_pool *pool;
    6047             :         int pi;
    6048             : 
    6049             :         pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
    6050             : 
    6051             :         rcu_read_lock();
    6052             : 
    6053             :         for_each_pool(pool, pi) {
    6054             :                 if (pool->cpu_stall)
    6055             :                         show_cpu_pool_hog(pool);
    6056             : 
    6057             :         }
    6058             : 
    6059             :         rcu_read_unlock();
    6060             : }
    6061             : 
    6062             : static void wq_watchdog_reset_touched(void)
    6063             : {
    6064             :         int cpu;
    6065             : 
    6066             :         wq_watchdog_touched = jiffies;
    6067             :         for_each_possible_cpu(cpu)
    6068             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    6069             : }
    6070             : 
    6071             : static void wq_watchdog_timer_fn(struct timer_list *unused)
    6072             : {
    6073             :         unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
    6074             :         bool lockup_detected = false;
    6075             :         bool cpu_pool_stall = false;
    6076             :         unsigned long now = jiffies;
    6077             :         struct worker_pool *pool;
    6078             :         int pi;
    6079             : 
    6080             :         if (!thresh)
    6081             :                 return;
    6082             : 
    6083             :         rcu_read_lock();
    6084             : 
    6085             :         for_each_pool(pool, pi) {
    6086             :                 unsigned long pool_ts, touched, ts;
    6087             : 
    6088             :                 pool->cpu_stall = false;
    6089             :                 if (list_empty(&pool->worklist))
    6090             :                         continue;
    6091             : 
    6092             :                 /*
    6093             :                  * If a virtual machine is stopped by the host it can look to
    6094             :                  * the watchdog like a stall.
    6095             :                  */
    6096             :                 kvm_check_and_clear_guest_paused();
    6097             : 
    6098             :                 /* get the latest of pool and touched timestamps */
    6099             :                 if (pool->cpu >= 0)
    6100             :                         touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
    6101             :                 else
    6102             :                         touched = READ_ONCE(wq_watchdog_touched);
    6103             :                 pool_ts = READ_ONCE(pool->watchdog_ts);
    6104             : 
    6105             :                 if (time_after(pool_ts, touched))
    6106             :                         ts = pool_ts;
    6107             :                 else
    6108             :                         ts = touched;
    6109             : 
    6110             :                 /* did we stall? */
    6111             :                 if (time_after(now, ts + thresh)) {
    6112             :                         lockup_detected = true;
    6113             :                         if (pool->cpu >= 0) {
    6114             :                                 pool->cpu_stall = true;
    6115             :                                 cpu_pool_stall = true;
    6116             :                         }
    6117             :                         pr_emerg("BUG: workqueue lockup - pool");
    6118             :                         pr_cont_pool_info(pool);
    6119             :                         pr_cont(" stuck for %us!\n",
    6120             :                                 jiffies_to_msecs(now - pool_ts) / 1000);
    6121             :                 }
    6122             : 
    6123             : 
    6124             :         }
    6125             : 
    6126             :         rcu_read_unlock();
    6127             : 
    6128             :         if (lockup_detected)
    6129             :                 show_all_workqueues();
    6130             : 
    6131             :         if (cpu_pool_stall)
    6132             :                 show_cpu_pools_hogs();
    6133             : 
    6134             :         wq_watchdog_reset_touched();
    6135             :         mod_timer(&wq_watchdog_timer, jiffies + thresh);
    6136             : }
    6137             : 
    6138             : notrace void wq_watchdog_touch(int cpu)
    6139             : {
    6140             :         if (cpu >= 0)
    6141             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    6142             : 
    6143             :         wq_watchdog_touched = jiffies;
    6144             : }
    6145             : 
    6146             : static void wq_watchdog_set_thresh(unsigned long thresh)
    6147             : {
    6148             :         wq_watchdog_thresh = 0;
    6149             :         del_timer_sync(&wq_watchdog_timer);
    6150             : 
    6151             :         if (thresh) {
    6152             :                 wq_watchdog_thresh = thresh;
    6153             :                 wq_watchdog_reset_touched();
    6154             :                 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
    6155             :         }
    6156             : }
    6157             : 
    6158             : static int wq_watchdog_param_set_thresh(const char *val,
    6159             :                                         const struct kernel_param *kp)
    6160             : {
    6161             :         unsigned long thresh;
    6162             :         int ret;
    6163             : 
    6164             :         ret = kstrtoul(val, 0, &thresh);
    6165             :         if (ret)
    6166             :                 return ret;
    6167             : 
    6168             :         if (system_wq)
    6169             :                 wq_watchdog_set_thresh(thresh);
    6170             :         else
    6171             :                 wq_watchdog_thresh = thresh;
    6172             : 
    6173             :         return 0;
    6174             : }
    6175             : 
    6176             : static const struct kernel_param_ops wq_watchdog_thresh_ops = {
    6177             :         .set    = wq_watchdog_param_set_thresh,
    6178             :         .get    = param_get_ulong,
    6179             : };
    6180             : 
    6181             : module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
    6182             :                 0644);
    6183             : 
    6184             : static void wq_watchdog_init(void)
    6185             : {
    6186             :         timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
    6187             :         wq_watchdog_set_thresh(wq_watchdog_thresh);
    6188             : }
    6189             : 
    6190             : #else   /* CONFIG_WQ_WATCHDOG */
    6191             : 
    6192             : static inline void wq_watchdog_init(void) { }
    6193             : 
    6194             : #endif  /* CONFIG_WQ_WATCHDOG */
    6195             : 
    6196             : static void __init wq_numa_init(void)
    6197             : {
    6198             :         cpumask_var_t *tbl;
    6199             :         int node, cpu;
    6200             : 
    6201           1 :         if (num_possible_nodes() <= 1)
    6202             :                 return;
    6203             : 
    6204             :         if (wq_disable_numa) {
    6205             :                 pr_info("workqueue: NUMA affinity support disabled\n");
    6206             :                 return;
    6207             :         }
    6208             : 
    6209             :         for_each_possible_cpu(cpu) {
    6210             :                 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
    6211             :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    6212             :                         return;
    6213             :                 }
    6214             :         }
    6215             : 
    6216             :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
    6217             :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    6218             : 
    6219             :         /*
    6220             :          * We want masks of possible CPUs of each node which isn't readily
    6221             :          * available.  Build one from cpu_to_node() which should have been
    6222             :          * fully initialized by now.
    6223             :          */
    6224             :         tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
    6225             :         BUG_ON(!tbl);
    6226             : 
    6227             :         for_each_node(node)
    6228             :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    6229             :                                 node_online(node) ? node : NUMA_NO_NODE));
    6230             : 
    6231             :         for_each_possible_cpu(cpu) {
    6232             :                 node = cpu_to_node(cpu);
    6233             :                 cpumask_set_cpu(cpu, tbl[node]);
    6234             :         }
    6235             : 
    6236             :         wq_numa_possible_cpumask = tbl;
    6237             :         wq_numa_enabled = true;
    6238             : }
    6239             : 
    6240             : /**
    6241             :  * workqueue_init_early - early init for workqueue subsystem
    6242             :  *
    6243             :  * This is the first half of two-staged workqueue subsystem initialization
    6244             :  * and invoked as soon as the bare basics - memory allocation, cpumasks and
    6245             :  * idr are up.  It sets up all the data structures and system workqueues
    6246             :  * and allows early boot code to create workqueues and queue/cancel work
    6247             :  * items.  Actual work item execution starts only after kthreads can be
    6248             :  * created and scheduled right before early initcalls.
    6249             :  */
    6250           1 : void __init workqueue_init_early(void)
    6251             : {
    6252           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    6253             :         int i, cpu;
    6254             : 
    6255             :         BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    6256             : 
    6257           1 :         BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
    6258           2 :         cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
    6259           2 :         cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
    6260             : 
    6261           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    6262             : 
    6263             :         /* initialize CPU pools */
    6264           2 :         for_each_possible_cpu(cpu) {
    6265             :                 struct worker_pool *pool;
    6266             : 
    6267             :                 i = 0;
    6268           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6269           2 :                         BUG_ON(init_worker_pool(pool));
    6270           2 :                         pool->cpu = cpu;
    6271           6 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    6272           2 :                         pool->attrs->nice = std_nice[i++];
    6273           2 :                         pool->node = cpu_to_node(cpu);
    6274             : 
    6275             :                         /* alloc pool ID */
    6276           2 :                         mutex_lock(&wq_pool_mutex);
    6277           2 :                         BUG_ON(worker_pool_assign_id(pool));
    6278           2 :                         mutex_unlock(&wq_pool_mutex);
    6279             :                 }
    6280             :         }
    6281             : 
    6282             :         /* create default unbound and ordered wq attrs */
    6283           2 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    6284             :                 struct workqueue_attrs *attrs;
    6285             : 
    6286           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6287           2 :                 attrs->nice = std_nice[i];
    6288           2 :                 unbound_std_wq_attrs[i] = attrs;
    6289             : 
    6290             :                 /*
    6291             :                  * An ordered wq should have only one pwq as ordering is
    6292             :                  * guaranteed by max_active which is enforced by pwqs.
    6293             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    6294             :                  */
    6295           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6296           2 :                 attrs->nice = std_nice[i];
    6297           2 :                 attrs->no_numa = true;
    6298           2 :                 ordered_wq_attrs[i] = attrs;
    6299             :         }
    6300             : 
    6301           1 :         system_wq = alloc_workqueue("events", 0, 0);
    6302           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    6303           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    6304           1 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    6305             :                                             WQ_UNBOUND_MAX_ACTIVE);
    6306           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    6307             :                                               WQ_FREEZABLE, 0);
    6308           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    6309             :                                               WQ_POWER_EFFICIENT, 0);
    6310           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    6311             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    6312             :                                               0);
    6313           1 :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    6314             :                !system_unbound_wq || !system_freezable_wq ||
    6315             :                !system_power_efficient_wq ||
    6316             :                !system_freezable_power_efficient_wq);
    6317           1 : }
    6318             : 
    6319             : /**
    6320             :  * workqueue_init - bring workqueue subsystem fully online
    6321             :  *
    6322             :  * This is the latter half of two-staged workqueue subsystem initialization
    6323             :  * and invoked as soon as kthreads can be created and scheduled.
    6324             :  * Workqueues have been created and work items queued on them, but there
    6325             :  * are no kworkers executing the work items yet.  Populate the worker pools
    6326             :  * with the initial workers and enable future kworker creations.
    6327             :  */
    6328           1 : void __init workqueue_init(void)
    6329             : {
    6330             :         struct workqueue_struct *wq;
    6331             :         struct worker_pool *pool;
    6332             :         int cpu, bkt;
    6333             : 
    6334             :         /*
    6335             :          * It'd be simpler to initialize NUMA in workqueue_init_early() but
    6336             :          * CPU to node mapping may not be available that early on some
    6337             :          * archs such as power and arm64.  As per-cpu pools created
    6338             :          * previously could be missing node hint and unbound pools NUMA
    6339             :          * affinity, fix them up.
    6340             :          *
    6341             :          * Also, while iterating workqueues, create rescuers if requested.
    6342             :          */
    6343             :         wq_numa_init();
    6344             : 
    6345           1 :         mutex_lock(&wq_pool_mutex);
    6346             : 
    6347           2 :         for_each_possible_cpu(cpu) {
    6348           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6349           2 :                         pool->node = cpu_to_node(cpu);
    6350             :                 }
    6351             :         }
    6352             : 
    6353           9 :         list_for_each_entry(wq, &workqueues, list) {
    6354           8 :                 wq_update_unbound_numa(wq, smp_processor_id(), true);
    6355           8 :                 WARN(init_rescuer(wq),
    6356             :                      "workqueue: failed to create early rescuer for %s",
    6357             :                      wq->name);
    6358             :         }
    6359             : 
    6360           1 :         mutex_unlock(&wq_pool_mutex);
    6361             : 
    6362             :         /* create the initial workers */
    6363           2 :         for_each_online_cpu(cpu) {
    6364           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6365           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    6366           2 :                         BUG_ON(!create_worker(pool));
    6367             :                 }
    6368             :         }
    6369             : 
    6370          65 :         hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
    6371           1 :                 BUG_ON(!create_worker(pool));
    6372             : 
    6373           1 :         wq_online = true;
    6374             :         wq_watchdog_init();
    6375           1 : }
    6376             : 
    6377             : /*
    6378             :  * Despite the naming, this is a no-op function which is here only for avoiding
    6379             :  * link error. Since compile-time warning may fail to catch, we will need to
    6380             :  * emit run-time warning from __flush_workqueue().
    6381             :  */
    6382           0 : void __warn_flushing_systemwide_wq(void) { }
    6383             : EXPORT_SYMBOL(__warn_flushing_systemwide_wq);

Generated by: LCOV version 1.14