Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : #include <linux/bitmap.h>
3 : #include <linux/bug.h>
4 : #include <linux/export.h>
5 : #include <linux/idr.h>
6 : #include <linux/slab.h>
7 : #include <linux/spinlock.h>
8 : #include <linux/xarray.h>
9 :
10 : /**
11 : * idr_alloc_u32() - Allocate an ID.
12 : * @idr: IDR handle.
13 : * @ptr: Pointer to be associated with the new ID.
14 : * @nextid: Pointer to an ID.
15 : * @max: The maximum ID to allocate (inclusive).
16 : * @gfp: Memory allocation flags.
17 : *
18 : * Allocates an unused ID in the range specified by @nextid and @max.
19 : * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20 : * is exclusive. The new ID is assigned to @nextid before the pointer
21 : * is inserted into the IDR, so if @nextid points into the object pointed
22 : * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23 : *
24 : * The caller should provide their own locking to ensure that two
25 : * concurrent modifications to the IDR are not possible. Read-only
26 : * accesses to the IDR may be done under the RCU read lock or may
27 : * exclude simultaneous writers.
28 : *
29 : * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30 : * or -ENOSPC if no free IDs could be found. If an error occurred,
31 : * @nextid is unchanged.
32 : */
33 9930 : int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34 : unsigned long max, gfp_t gfp)
35 : {
36 : struct radix_tree_iter iter;
37 : void __rcu **slot;
38 9930 : unsigned int base = idr->idr_base;
39 9930 : unsigned int id = *nextid;
40 :
41 9930 : if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42 0 : idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43 :
44 9930 : id = (id < base) ? 0 : id - base;
45 19860 : radix_tree_iter_init(&iter, id);
46 9930 : slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
47 9930 : if (IS_ERR(slot))
48 0 : return PTR_ERR(slot);
49 :
50 9930 : *nextid = iter.index + base;
51 : /* there is a memory barrier inside radix_tree_iter_replace() */
52 9930 : radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53 9930 : radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 :
55 9930 : return 0;
56 : }
57 : EXPORT_SYMBOL_GPL(idr_alloc_u32);
58 :
59 : /**
60 : * idr_alloc() - Allocate an ID.
61 : * @idr: IDR handle.
62 : * @ptr: Pointer to be associated with the new ID.
63 : * @start: The minimum ID (inclusive).
64 : * @end: The maximum ID (exclusive).
65 : * @gfp: Memory allocation flags.
66 : *
67 : * Allocates an unused ID in the range specified by @start and @end. If
68 : * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
69 : * callers to use @start + N as @end as long as N is within integer range.
70 : *
71 : * The caller should provide their own locking to ensure that two
72 : * concurrent modifications to the IDR are not possible. Read-only
73 : * accesses to the IDR may be done under the RCU read lock or may
74 : * exclude simultaneous writers.
75 : *
76 : * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77 : * or -ENOSPC if no free IDs could be found.
78 : */
79 788 : int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80 : {
81 788 : u32 id = start;
82 : int ret;
83 :
84 788 : if (WARN_ON_ONCE(start < 0))
85 : return -EINVAL;
86 :
87 788 : ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88 788 : if (ret)
89 : return ret;
90 :
91 788 : return id;
92 : }
93 : EXPORT_SYMBOL_GPL(idr_alloc);
94 :
95 : /**
96 : * idr_alloc_cyclic() - Allocate an ID cyclically.
97 : * @idr: IDR handle.
98 : * @ptr: Pointer to be associated with the new ID.
99 : * @start: The minimum ID (inclusive).
100 : * @end: The maximum ID (exclusive).
101 : * @gfp: Memory allocation flags.
102 : *
103 : * Allocates an unused ID in the range specified by @nextid and @end. If
104 : * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
105 : * callers to use @start + N as @end as long as N is within integer range.
106 : * The search for an unused ID will start at the last ID allocated and will
107 : * wrap around to @start if no free IDs are found before reaching @end.
108 : *
109 : * The caller should provide their own locking to ensure that two
110 : * concurrent modifications to the IDR are not possible. Read-only
111 : * accesses to the IDR may be done under the RCU read lock or may
112 : * exclude simultaneous writers.
113 : *
114 : * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115 : * or -ENOSPC if no free IDs could be found.
116 : */
117 9142 : int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118 : {
119 9142 : u32 id = idr->idr_next;
120 9142 : int err, max = end > 0 ? end - 1 : INT_MAX;
121 :
122 9142 : if ((int)id < start)
123 2 : id = start;
124 :
125 9142 : err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126 9142 : if ((err == -ENOSPC) && (id > start)) {
127 0 : id = start;
128 0 : err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 : }
130 9142 : if (err)
131 : return err;
132 :
133 9142 : idr->idr_next = id + 1;
134 9142 : return id;
135 : }
136 : EXPORT_SYMBOL(idr_alloc_cyclic);
137 :
138 : /**
139 : * idr_remove() - Remove an ID from the IDR.
140 : * @idr: IDR handle.
141 : * @id: Pointer ID.
142 : *
143 : * Removes this ID from the IDR. If the ID was not previously in the IDR,
144 : * this function returns %NULL.
145 : *
146 : * Since this function modifies the IDR, the caller should provide their
147 : * own locking to ensure that concurrent modification of the same IDR is
148 : * not possible.
149 : *
150 : * Return: The pointer formerly associated with this ID.
151 : */
152 1676 : void *idr_remove(struct idr *idr, unsigned long id)
153 : {
154 1676 : return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
155 : }
156 : EXPORT_SYMBOL_GPL(idr_remove);
157 :
158 : /**
159 : * idr_find() - Return pointer for given ID.
160 : * @idr: IDR handle.
161 : * @id: Pointer ID.
162 : *
163 : * Looks up the pointer associated with this ID. A %NULL pointer may
164 : * indicate that @id is not allocated or that the %NULL pointer was
165 : * associated with this ID.
166 : *
167 : * This function can be called under rcu_read_lock(), given that the leaf
168 : * pointers lifetimes are correctly managed.
169 : *
170 : * Return: The pointer associated with this ID.
171 : */
172 60 : void *idr_find(const struct idr *idr, unsigned long id)
173 : {
174 60 : return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
175 : }
176 : EXPORT_SYMBOL_GPL(idr_find);
177 :
178 : /**
179 : * idr_for_each() - Iterate through all stored pointers.
180 : * @idr: IDR handle.
181 : * @fn: Function to be called for each pointer.
182 : * @data: Data passed to callback function.
183 : *
184 : * The callback function will be called for each entry in @idr, passing
185 : * the ID, the entry and @data.
186 : *
187 : * If @fn returns anything other than %0, the iteration stops and that
188 : * value is returned from this function.
189 : *
190 : * idr_for_each() can be called concurrently with idr_alloc() and
191 : * idr_remove() if protected by RCU. Newly added entries may not be
192 : * seen and deleted entries may be seen, but adding and removing entries
193 : * will not cause other entries to be skipped, nor spurious ones to be seen.
194 : */
195 0 : int idr_for_each(const struct idr *idr,
196 : int (*fn)(int id, void *p, void *data), void *data)
197 : {
198 : struct radix_tree_iter iter;
199 : void __rcu **slot;
200 0 : int base = idr->idr_base;
201 :
202 0 : radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
203 : int ret;
204 0 : unsigned long id = iter.index + base;
205 :
206 0 : if (WARN_ON_ONCE(id > INT_MAX))
207 : break;
208 0 : ret = fn(id, rcu_dereference_raw(*slot), data);
209 0 : if (ret)
210 : return ret;
211 : }
212 :
213 : return 0;
214 : }
215 : EXPORT_SYMBOL(idr_for_each);
216 :
217 : /**
218 : * idr_get_next_ul() - Find next populated entry.
219 : * @idr: IDR handle.
220 : * @nextid: Pointer to an ID.
221 : *
222 : * Returns the next populated entry in the tree with an ID greater than
223 : * or equal to the value pointed to by @nextid. On exit, @nextid is updated
224 : * to the ID of the found value. To use in a loop, the value pointed to by
225 : * nextid must be incremented by the user.
226 : */
227 0 : void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
228 : {
229 : struct radix_tree_iter iter;
230 : void __rcu **slot;
231 0 : void *entry = NULL;
232 0 : unsigned long base = idr->idr_base;
233 0 : unsigned long id = *nextid;
234 :
235 0 : id = (id < base) ? 0 : id - base;
236 0 : radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
237 0 : entry = rcu_dereference_raw(*slot);
238 0 : if (!entry)
239 0 : continue;
240 0 : if (!xa_is_internal(entry))
241 : break;
242 0 : if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
243 : break;
244 0 : slot = radix_tree_iter_retry(&iter);
245 : }
246 0 : if (!slot)
247 : return NULL;
248 :
249 0 : *nextid = iter.index + base;
250 0 : return entry;
251 : }
252 : EXPORT_SYMBOL(idr_get_next_ul);
253 :
254 : /**
255 : * idr_get_next() - Find next populated entry.
256 : * @idr: IDR handle.
257 : * @nextid: Pointer to an ID.
258 : *
259 : * Returns the next populated entry in the tree with an ID greater than
260 : * or equal to the value pointed to by @nextid. On exit, @nextid is updated
261 : * to the ID of the found value. To use in a loop, the value pointed to by
262 : * nextid must be incremented by the user.
263 : */
264 0 : void *idr_get_next(struct idr *idr, int *nextid)
265 : {
266 0 : unsigned long id = *nextid;
267 0 : void *entry = idr_get_next_ul(idr, &id);
268 :
269 0 : if (WARN_ON_ONCE(id > INT_MAX))
270 : return NULL;
271 0 : *nextid = id;
272 0 : return entry;
273 : }
274 : EXPORT_SYMBOL(idr_get_next);
275 :
276 : /**
277 : * idr_replace() - replace pointer for given ID.
278 : * @idr: IDR handle.
279 : * @ptr: New pointer to associate with the ID.
280 : * @id: ID to change.
281 : *
282 : * Replace the pointer registered with an ID and return the old value.
283 : * This function can be called under the RCU read lock concurrently with
284 : * idr_alloc() and idr_remove() (as long as the ID being removed is not
285 : * the one being replaced!).
286 : *
287 : * Returns: the old value on success. %-ENOENT indicates that @id was not
288 : * found. %-EINVAL indicates that @ptr was not valid.
289 : */
290 384 : void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
291 : {
292 : struct radix_tree_node *node;
293 384 : void __rcu **slot = NULL;
294 : void *entry;
295 :
296 384 : id -= idr->idr_base;
297 :
298 384 : entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
299 384 : if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
300 : return ERR_PTR(-ENOENT);
301 :
302 384 : __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
303 :
304 384 : return entry;
305 : }
306 : EXPORT_SYMBOL(idr_replace);
307 :
308 : /**
309 : * DOC: IDA description
310 : *
311 : * The IDA is an ID allocator which does not provide the ability to
312 : * associate an ID with a pointer. As such, it only needs to store one
313 : * bit per ID, and so is more space efficient than an IDR. To use an IDA,
314 : * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
315 : * then initialise it using ida_init()). To allocate a new ID, call
316 : * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
317 : * To free an ID, call ida_free().
318 : *
319 : * ida_destroy() can be used to dispose of an IDA without needing to
320 : * free the individual IDs in it. You can use ida_is_empty() to find
321 : * out whether the IDA has any IDs currently allocated.
322 : *
323 : * The IDA handles its own locking. It is safe to call any of the IDA
324 : * functions without synchronisation in your code.
325 : *
326 : * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
327 : * limitation, it should be quite straightforward to raise the maximum.
328 : */
329 :
330 : /*
331 : * Developer's notes:
332 : *
333 : * The IDA uses the functionality provided by the XArray to store bitmaps in
334 : * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
335 : * have been set.
336 : *
337 : * I considered telling the XArray that each slot is an order-10 node
338 : * and indexing by bit number, but the XArray can't allow a single multi-index
339 : * entry in the head, which would significantly increase memory consumption
340 : * for the IDA. So instead we divide the index by the number of bits in the
341 : * leaf bitmap before doing a radix tree lookup.
342 : *
343 : * As an optimisation, if there are only a few low bits set in any given
344 : * leaf, instead of allocating a 128-byte bitmap, we store the bits
345 : * as a value entry. Value entries never have the XA_FREE_MARK cleared
346 : * because we can always convert them into a bitmap entry.
347 : *
348 : * It would be possible to optimise further; once we've run out of a
349 : * single 128-byte bitmap, we currently switch to a 576-byte node, put
350 : * the 128-byte bitmap in the first entry and then start allocating extra
351 : * 128-byte entries. We could instead use the 512 bytes of the node's
352 : * data as a bitmap before moving to that scheme. I do not believe this
353 : * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
354 : * users of the IDA and almost none of them use more than 1024 entries.
355 : * Those that do use more than the 8192 IDs that the 512 bytes would
356 : * provide.
357 : *
358 : * The IDA always uses a lock to alloc/free. If we add a 'test_bit'
359 : * equivalent, it will still need locking. Going to RCU lookup would require
360 : * using RCU to free bitmaps, and that's not trivial without embedding an
361 : * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
362 : * bitmap, which is excessive.
363 : */
364 :
365 : /**
366 : * ida_alloc_range() - Allocate an unused ID.
367 : * @ida: IDA handle.
368 : * @min: Lowest ID to allocate.
369 : * @max: Highest ID to allocate.
370 : * @gfp: Memory allocation flags.
371 : *
372 : * Allocate an ID between @min and @max, inclusive. The allocated ID will
373 : * not exceed %INT_MAX, even if @max is larger.
374 : *
375 : * Context: Any context. It is safe to call this function without
376 : * locking in your code.
377 : * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
378 : * or %-ENOSPC if there are no free IDs.
379 : */
380 276 : int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
381 : gfp_t gfp)
382 : {
383 276 : XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
384 276 : unsigned bit = min % IDA_BITMAP_BITS;
385 : unsigned long flags;
386 276 : struct ida_bitmap *bitmap, *alloc = NULL;
387 :
388 276 : if ((int)min < 0)
389 : return -ENOSPC;
390 :
391 276 : if ((int)max < 0)
392 49 : max = INT_MAX;
393 :
394 : retry:
395 276 : xas_lock_irqsave(&xas, flags);
396 : next:
397 276 : bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
398 276 : if (xas.xa_index > min / IDA_BITMAP_BITS)
399 0 : bit = 0;
400 276 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
401 : goto nospc;
402 :
403 276 : if (xa_is_value(bitmap)) {
404 127 : unsigned long tmp = xa_to_value(bitmap);
405 :
406 127 : if (bit < BITS_PER_XA_VALUE) {
407 127 : bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
408 127 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
409 : goto nospc;
410 127 : if (bit < BITS_PER_XA_VALUE) {
411 126 : tmp |= 1UL << bit;
412 252 : xas_store(&xas, xa_mk_value(tmp));
413 126 : goto out;
414 : }
415 : }
416 1 : bitmap = alloc;
417 1 : if (!bitmap)
418 1 : bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
419 1 : if (!bitmap)
420 : goto alloc;
421 1 : bitmap->bitmap[0] = tmp;
422 1 : xas_store(&xas, bitmap);
423 2 : if (xas_error(&xas)) {
424 0 : bitmap->bitmap[0] = 0;
425 0 : goto out;
426 : }
427 : }
428 :
429 150 : if (bitmap) {
430 119 : bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
431 119 : if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
432 : goto nospc;
433 119 : if (bit == IDA_BITMAP_BITS)
434 : goto next;
435 :
436 238 : __set_bit(bit, bitmap->bitmap);
437 238 : if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
438 0 : xas_clear_mark(&xas, XA_FREE_MARK);
439 : } else {
440 31 : if (bit < BITS_PER_XA_VALUE) {
441 62 : bitmap = xa_mk_value(1UL << bit);
442 : } else {
443 0 : bitmap = alloc;
444 0 : if (!bitmap)
445 0 : bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
446 0 : if (!bitmap)
447 : goto alloc;
448 0 : __set_bit(bit, bitmap->bitmap);
449 : }
450 31 : xas_store(&xas, bitmap);
451 : }
452 : out:
453 552 : xas_unlock_irqrestore(&xas, flags);
454 276 : if (xas_nomem(&xas, gfp)) {
455 0 : xas.xa_index = min / IDA_BITMAP_BITS;
456 0 : bit = min % IDA_BITMAP_BITS;
457 0 : goto retry;
458 : }
459 276 : if (bitmap != alloc)
460 276 : kfree(alloc);
461 552 : if (xas_error(&xas))
462 0 : return xas_error(&xas);
463 276 : return xas.xa_index * IDA_BITMAP_BITS + bit;
464 : alloc:
465 0 : xas_unlock_irqrestore(&xas, flags);
466 0 : alloc = kzalloc(sizeof(*bitmap), gfp);
467 0 : if (!alloc)
468 : return -ENOMEM;
469 0 : xas_set(&xas, min / IDA_BITMAP_BITS);
470 0 : bit = min % IDA_BITMAP_BITS;
471 0 : goto retry;
472 : nospc:
473 0 : xas_unlock_irqrestore(&xas, flags);
474 0 : kfree(alloc);
475 0 : return -ENOSPC;
476 : }
477 : EXPORT_SYMBOL(ida_alloc_range);
478 :
479 : /**
480 : * ida_free() - Release an allocated ID.
481 : * @ida: IDA handle.
482 : * @id: Previously allocated ID.
483 : *
484 : * Context: Any context. It is safe to call this function without
485 : * locking in your code.
486 : */
487 68 : void ida_free(struct ida *ida, unsigned int id)
488 : {
489 68 : XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
490 68 : unsigned bit = id % IDA_BITMAP_BITS;
491 : struct ida_bitmap *bitmap;
492 : unsigned long flags;
493 :
494 68 : if ((int)id < 0)
495 68 : return;
496 :
497 68 : xas_lock_irqsave(&xas, flags);
498 68 : bitmap = xas_load(&xas);
499 :
500 68 : if (xa_is_value(bitmap)) {
501 68 : unsigned long v = xa_to_value(bitmap);
502 68 : if (bit >= BITS_PER_XA_VALUE)
503 : goto err;
504 68 : if (!(v & (1UL << bit)))
505 : goto err;
506 68 : v &= ~(1UL << bit);
507 68 : if (!v)
508 : goto delete;
509 44 : xas_store(&xas, xa_mk_value(v));
510 : } else {
511 0 : if (!test_bit(bit, bitmap->bitmap))
512 : goto err;
513 0 : __clear_bit(bit, bitmap->bitmap);
514 0 : xas_set_mark(&xas, XA_FREE_MARK);
515 0 : if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
516 0 : kfree(bitmap);
517 : delete:
518 24 : xas_store(&xas, NULL);
519 : }
520 : }
521 68 : xas_unlock_irqrestore(&xas, flags);
522 : return;
523 : err:
524 0 : xas_unlock_irqrestore(&xas, flags);
525 0 : WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
526 : }
527 : EXPORT_SYMBOL(ida_free);
528 :
529 : /**
530 : * ida_destroy() - Free all IDs.
531 : * @ida: IDA handle.
532 : *
533 : * Calling this function frees all IDs and releases all resources used
534 : * by an IDA. When this call returns, the IDA is empty and can be reused
535 : * or freed. If the IDA is already empty, there is no need to call this
536 : * function.
537 : *
538 : * Context: Any context. It is safe to call this function without
539 : * locking in your code.
540 : */
541 22 : void ida_destroy(struct ida *ida)
542 : {
543 22 : XA_STATE(xas, &ida->xa, 0);
544 : struct ida_bitmap *bitmap;
545 : unsigned long flags;
546 :
547 22 : xas_lock_irqsave(&xas, flags);
548 22 : xas_for_each(&xas, bitmap, ULONG_MAX) {
549 0 : if (!xa_is_value(bitmap))
550 0 : kfree(bitmap);
551 0 : xas_store(&xas, NULL);
552 : }
553 44 : xas_unlock_irqrestore(&xas, flags);
554 22 : }
555 : EXPORT_SYMBOL(ida_destroy);
556 :
557 : #ifndef __KERNEL__
558 : extern void xa_dump_index(unsigned long index, unsigned int shift);
559 : #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
560 :
561 : static void ida_dump_entry(void *entry, unsigned long index)
562 : {
563 : unsigned long i;
564 :
565 : if (!entry)
566 : return;
567 :
568 : if (xa_is_node(entry)) {
569 : struct xa_node *node = xa_to_node(entry);
570 : unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
571 : XA_CHUNK_SHIFT;
572 :
573 : xa_dump_index(index * IDA_BITMAP_BITS, shift);
574 : xa_dump_node(node);
575 : for (i = 0; i < XA_CHUNK_SIZE; i++)
576 : ida_dump_entry(node->slots[i],
577 : index | (i << node->shift));
578 : } else if (xa_is_value(entry)) {
579 : xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
580 : pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
581 : } else {
582 : struct ida_bitmap *bitmap = entry;
583 :
584 : xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
585 : pr_cont("bitmap: %p data", bitmap);
586 : for (i = 0; i < IDA_BITMAP_LONGS; i++)
587 : pr_cont(" %lx", bitmap->bitmap[i]);
588 : pr_cont("\n");
589 : }
590 : }
591 :
592 : static void ida_dump(struct ida *ida)
593 : {
594 : struct xarray *xa = &ida->xa;
595 : pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
596 : xa->xa_flags >> ROOT_TAG_SHIFT);
597 : ida_dump_entry(xa->xa_head, 0);
598 : }
599 : #endif
|