Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0+
2 : /*
3 : * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4 : * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5 : * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
6 : * Author: John Garry <john.garry@huawei.com>
7 : */
8 :
9 : #define pr_fmt(fmt) "LOGIC PIO: " fmt
10 :
11 : #include <linux/of.h>
12 : #include <linux/io.h>
13 : #include <linux/logic_pio.h>
14 : #include <linux/mm.h>
15 : #include <linux/rculist.h>
16 : #include <linux/sizes.h>
17 : #include <linux/slab.h>
18 :
19 : /* The unique hardware address list */
20 : static LIST_HEAD(io_range_list);
21 : static DEFINE_MUTEX(io_range_mutex);
22 :
23 : /* Consider a kernel general helper for this */
24 : #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
25 :
26 : /**
27 : * logic_pio_register_range - register logical PIO range for a host
28 : * @new_range: pointer to the IO range to be registered.
29 : *
30 : * Returns 0 on success, the error code in case of failure.
31 : * If the range already exists, -EEXIST will be returned, which should be
32 : * considered a success.
33 : *
34 : * Register a new IO range node in the IO range list.
35 : */
36 0 : int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
37 : {
38 : struct logic_pio_hwaddr *range;
39 : resource_size_t start;
40 : resource_size_t end;
41 0 : resource_size_t mmio_end = 0;
42 0 : resource_size_t iio_sz = MMIO_UPPER_LIMIT;
43 0 : int ret = 0;
44 :
45 0 : if (!new_range || !new_range->fwnode || !new_range->size ||
46 0 : (new_range->flags == LOGIC_PIO_INDIRECT && !new_range->ops))
47 : return -EINVAL;
48 :
49 0 : start = new_range->hw_start;
50 0 : end = new_range->hw_start + new_range->size;
51 :
52 0 : mutex_lock(&io_range_mutex);
53 0 : list_for_each_entry(range, &io_range_list, list) {
54 0 : if (range->fwnode == new_range->fwnode) {
55 : /* range already there */
56 : ret = -EEXIST;
57 : goto end_register;
58 : }
59 0 : if (range->flags == LOGIC_PIO_CPU_MMIO &&
60 0 : new_range->flags == LOGIC_PIO_CPU_MMIO) {
61 : /* for MMIO ranges we need to check for overlap */
62 0 : if (start >= range->hw_start + range->size ||
63 : end < range->hw_start) {
64 0 : mmio_end = range->io_start + range->size;
65 : } else {
66 : ret = -EFAULT;
67 : goto end_register;
68 : }
69 0 : } else if (range->flags == LOGIC_PIO_INDIRECT &&
70 0 : new_range->flags == LOGIC_PIO_INDIRECT) {
71 0 : iio_sz += range->size;
72 : }
73 : }
74 :
75 : /* range not registered yet, check for available space */
76 0 : if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
77 0 : if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) {
78 : /* if it's too big check if 64K space can be reserved */
79 0 : if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
80 : ret = -E2BIG;
81 : goto end_register;
82 : }
83 0 : new_range->size = SZ_64K;
84 0 : pr_warn("Requested IO range too big, new size set to 64K\n");
85 : }
86 0 : new_range->io_start = mmio_end;
87 0 : } else if (new_range->flags == LOGIC_PIO_INDIRECT) {
88 0 : if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
89 : ret = -E2BIG;
90 : goto end_register;
91 : }
92 0 : new_range->io_start = iio_sz;
93 : } else {
94 : /* invalid flag */
95 : ret = -EINVAL;
96 : goto end_register;
97 : }
98 :
99 0 : list_add_tail_rcu(&new_range->list, &io_range_list);
100 :
101 : end_register:
102 0 : mutex_unlock(&io_range_mutex);
103 0 : return ret;
104 : }
105 :
106 : /**
107 : * logic_pio_unregister_range - unregister a logical PIO range for a host
108 : * @range: pointer to the IO range which has been already registered.
109 : *
110 : * Unregister a previously-registered IO range node.
111 : */
112 0 : void logic_pio_unregister_range(struct logic_pio_hwaddr *range)
113 : {
114 0 : mutex_lock(&io_range_mutex);
115 0 : list_del_rcu(&range->list);
116 0 : mutex_unlock(&io_range_mutex);
117 0 : synchronize_rcu();
118 0 : }
119 :
120 : /**
121 : * find_io_range_by_fwnode - find logical PIO range for given FW node
122 : * @fwnode: FW node handle associated with logical PIO range
123 : *
124 : * Returns pointer to node on success, NULL otherwise.
125 : *
126 : * Traverse the io_range_list to find the registered node for @fwnode.
127 : */
128 0 : struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
129 : {
130 0 : struct logic_pio_hwaddr *range, *found_range = NULL;
131 :
132 : rcu_read_lock();
133 0 : list_for_each_entry_rcu(range, &io_range_list, list) {
134 0 : if (range->fwnode == fwnode) {
135 : found_range = range;
136 : break;
137 : }
138 : }
139 : rcu_read_unlock();
140 :
141 0 : return found_range;
142 : }
143 :
144 : /* Return a registered range given an input PIO token */
145 0 : static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
146 : {
147 0 : struct logic_pio_hwaddr *range, *found_range = NULL;
148 :
149 : rcu_read_lock();
150 0 : list_for_each_entry_rcu(range, &io_range_list, list) {
151 0 : if (in_range(pio, range->io_start, range->size)) {
152 : found_range = range;
153 : break;
154 : }
155 : }
156 : rcu_read_unlock();
157 :
158 0 : if (!found_range)
159 0 : pr_err("PIO entry token 0x%lx invalid\n", pio);
160 :
161 0 : return found_range;
162 : }
163 :
164 : /**
165 : * logic_pio_to_hwaddr - translate logical PIO to HW address
166 : * @pio: logical PIO value
167 : *
168 : * Returns HW address if valid, ~0 otherwise.
169 : *
170 : * Translate the input logical PIO to the corresponding hardware address.
171 : * The input PIO should be unique in the whole logical PIO space.
172 : */
173 0 : resource_size_t logic_pio_to_hwaddr(unsigned long pio)
174 : {
175 : struct logic_pio_hwaddr *range;
176 :
177 0 : range = find_io_range(pio);
178 0 : if (range)
179 0 : return range->hw_start + pio - range->io_start;
180 :
181 : return (resource_size_t)~0;
182 : }
183 :
184 : /**
185 : * logic_pio_trans_hwaddr - translate HW address to logical PIO
186 : * @fwnode: FW node reference for the host
187 : * @addr: Host-relative HW address
188 : * @size: size to translate
189 : *
190 : * Returns Logical PIO value if successful, ~0UL otherwise
191 : */
192 0 : unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
193 : resource_size_t addr, resource_size_t size)
194 : {
195 : struct logic_pio_hwaddr *range;
196 :
197 0 : range = find_io_range_by_fwnode(fwnode);
198 0 : if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
199 0 : pr_err("IO range not found or invalid\n");
200 0 : return ~0UL;
201 : }
202 0 : if (range->size < size) {
203 0 : pr_err("resource size %pa cannot fit in IO range size %pa\n",
204 : &size, &range->size);
205 0 : return ~0UL;
206 : }
207 0 : return addr - range->hw_start + range->io_start;
208 : }
209 :
210 0 : unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
211 : {
212 : struct logic_pio_hwaddr *range;
213 :
214 : rcu_read_lock();
215 0 : list_for_each_entry_rcu(range, &io_range_list, list) {
216 0 : if (range->flags != LOGIC_PIO_CPU_MMIO)
217 0 : continue;
218 0 : if (in_range(addr, range->hw_start, range->size)) {
219 : unsigned long cpuaddr;
220 :
221 0 : cpuaddr = addr - range->hw_start + range->io_start;
222 :
223 : rcu_read_unlock();
224 0 : return cpuaddr;
225 : }
226 : }
227 : rcu_read_unlock();
228 :
229 0 : pr_err("addr %pa not registered in io_range_list\n", &addr);
230 :
231 0 : return ~0UL;
232 : }
233 :
234 : #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
235 : #define BUILD_LOGIC_IO(bwl, type) \
236 : type logic_in##bwl(unsigned long addr) \
237 : { \
238 : type ret = (type)~0; \
239 : \
240 : if (addr < MMIO_UPPER_LIMIT) { \
241 : ret = _in##bwl(addr); \
242 : } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
243 : struct logic_pio_hwaddr *entry = find_io_range(addr); \
244 : \
245 : if (entry) \
246 : ret = entry->ops->in(entry->hostdata, \
247 : addr, sizeof(type)); \
248 : else \
249 : WARN_ON_ONCE(1); \
250 : } \
251 : return ret; \
252 : } \
253 : \
254 : void logic_out##bwl(type value, unsigned long addr) \
255 : { \
256 : if (addr < MMIO_UPPER_LIMIT) { \
257 : _out##bwl(value, addr); \
258 : } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
259 : struct logic_pio_hwaddr *entry = find_io_range(addr); \
260 : \
261 : if (entry) \
262 : entry->ops->out(entry->hostdata, \
263 : addr, value, sizeof(type)); \
264 : else \
265 : WARN_ON_ONCE(1); \
266 : } \
267 : } \
268 : \
269 : void logic_ins##bwl(unsigned long addr, void *buffer, \
270 : unsigned int count) \
271 : { \
272 : if (addr < MMIO_UPPER_LIMIT) { \
273 : reads##bwl(PCI_IOBASE + addr, buffer, count); \
274 : } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
275 : struct logic_pio_hwaddr *entry = find_io_range(addr); \
276 : \
277 : if (entry) \
278 : entry->ops->ins(entry->hostdata, \
279 : addr, buffer, sizeof(type), count); \
280 : else \
281 : WARN_ON_ONCE(1); \
282 : } \
283 : \
284 : } \
285 : \
286 : void logic_outs##bwl(unsigned long addr, const void *buffer, \
287 : unsigned int count) \
288 : { \
289 : if (addr < MMIO_UPPER_LIMIT) { \
290 : writes##bwl(PCI_IOBASE + addr, buffer, count); \
291 : } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
292 : struct logic_pio_hwaddr *entry = find_io_range(addr); \
293 : \
294 : if (entry) \
295 : entry->ops->outs(entry->hostdata, \
296 : addr, buffer, sizeof(type), count); \
297 : else \
298 : WARN_ON_ONCE(1); \
299 : } \
300 : }
301 :
302 : BUILD_LOGIC_IO(b, u8)
303 : EXPORT_SYMBOL(logic_inb);
304 : EXPORT_SYMBOL(logic_insb);
305 : EXPORT_SYMBOL(logic_outb);
306 : EXPORT_SYMBOL(logic_outsb);
307 :
308 : BUILD_LOGIC_IO(w, u16)
309 : EXPORT_SYMBOL(logic_inw);
310 : EXPORT_SYMBOL(logic_insw);
311 : EXPORT_SYMBOL(logic_outw);
312 : EXPORT_SYMBOL(logic_outsw);
313 :
314 : BUILD_LOGIC_IO(l, u32)
315 : EXPORT_SYMBOL(logic_inl);
316 : EXPORT_SYMBOL(logic_insl);
317 : EXPORT_SYMBOL(logic_outl);
318 : EXPORT_SYMBOL(logic_outsl);
319 :
320 : #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */
|