LCOV - code coverage report
Current view: top level - lib - maple_tree.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 3 2423 0.1 %
Date: 2023-07-19 18:55:55 Functions: 1 132 0.8 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0+
       2             : /*
       3             :  * Maple Tree implementation
       4             :  * Copyright (c) 2018-2022 Oracle Corporation
       5             :  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
       6             :  *          Matthew Wilcox <willy@infradead.org>
       7             :  */
       8             : 
       9             : /*
      10             :  * DOC: Interesting implementation details of the Maple Tree
      11             :  *
      12             :  * Each node type has a number of slots for entries and a number of slots for
      13             :  * pivots.  In the case of dense nodes, the pivots are implied by the position
      14             :  * and are simply the slot index + the minimum of the node.
      15             :  *
      16             :  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
      17             :  * indicate that the tree is specifying ranges,  Pivots may appear in the
      18             :  * subtree with an entry attached to the value where as keys are unique to a
      19             :  * specific position of a B-tree.  Pivot values are inclusive of the slot with
      20             :  * the same index.
      21             :  *
      22             :  *
      23             :  * The following illustrates the layout of a range64 nodes slots and pivots.
      24             :  *
      25             :  *
      26             :  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
      27             :  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
      28             :  *           │   │   │   │     │    │    │    │    └─ Implied maximum
      29             :  *           │   │   │   │     │    │    │    └─ Pivot 14
      30             :  *           │   │   │   │     │    │    └─ Pivot 13
      31             :  *           │   │   │   │     │    └─ Pivot 12
      32             :  *           │   │   │   │     └─ Pivot 11
      33             :  *           │   │   │   └─ Pivot 2
      34             :  *           │   │   └─ Pivot 1
      35             :  *           │   └─ Pivot 0
      36             :  *           └─  Implied minimum
      37             :  *
      38             :  * Slot contents:
      39             :  *  Internal (non-leaf) nodes contain pointers to other nodes.
      40             :  *  Leaf nodes contain entries.
      41             :  *
      42             :  * The location of interest is often referred to as an offset.  All offsets have
      43             :  * a slot, but the last offset has an implied pivot from the node above (or
      44             :  * UINT_MAX for the root node.
      45             :  *
      46             :  * Ranges complicate certain write activities.  When modifying any of
      47             :  * the B-tree variants, it is known that one entry will either be added or
      48             :  * deleted.  When modifying the Maple Tree, one store operation may overwrite
      49             :  * the entire data set, or one half of the tree, or the middle half of the tree.
      50             :  *
      51             :  */
      52             : 
      53             : 
      54             : #include <linux/maple_tree.h>
      55             : #include <linux/xarray.h>
      56             : #include <linux/types.h>
      57             : #include <linux/export.h>
      58             : #include <linux/slab.h>
      59             : #include <linux/limits.h>
      60             : #include <asm/barrier.h>
      61             : 
      62             : #define CREATE_TRACE_POINTS
      63             : #include <trace/events/maple_tree.h>
      64             : 
      65             : #define MA_ROOT_PARENT 1
      66             : 
      67             : /*
      68             :  * Maple state flags
      69             :  * * MA_STATE_BULK              - Bulk insert mode
      70             :  * * MA_STATE_REBALANCE         - Indicate a rebalance during bulk insert
      71             :  * * MA_STATE_PREALLOC          - Preallocated nodes, WARN_ON allocation
      72             :  */
      73             : #define MA_STATE_BULK           1
      74             : #define MA_STATE_REBALANCE      2
      75             : #define MA_STATE_PREALLOC       4
      76             : 
      77             : #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
      78             : #define ma_mnode_ptr(x) ((struct maple_node *)(x))
      79             : #define ma_enode_ptr(x) ((struct maple_enode *)(x))
      80             : static struct kmem_cache *maple_node_cache;
      81             : 
      82             : #ifdef CONFIG_DEBUG_MAPLE_TREE
      83             : static const unsigned long mt_max[] = {
      84             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      85             :         [maple_leaf_64]         = ULONG_MAX,
      86             :         [maple_range_64]        = ULONG_MAX,
      87             :         [maple_arange_64]       = ULONG_MAX,
      88             : };
      89             : #define mt_node_max(x) mt_max[mte_node_type(x)]
      90             : #endif
      91             : 
      92             : static const unsigned char mt_slots[] = {
      93             :         [maple_dense]           = MAPLE_NODE_SLOTS,
      94             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS,
      95             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS,
      96             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS,
      97             : };
      98             : #define mt_slot_count(x) mt_slots[mte_node_type(x)]
      99             : 
     100             : static const unsigned char mt_pivots[] = {
     101             :         [maple_dense]           = 0,
     102             :         [maple_leaf_64]         = MAPLE_RANGE64_SLOTS - 1,
     103             :         [maple_range_64]        = MAPLE_RANGE64_SLOTS - 1,
     104             :         [maple_arange_64]       = MAPLE_ARANGE64_SLOTS - 1,
     105             : };
     106             : #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
     107             : 
     108             : static const unsigned char mt_min_slots[] = {
     109             :         [maple_dense]           = MAPLE_NODE_SLOTS / 2,
     110             :         [maple_leaf_64]         = (MAPLE_RANGE64_SLOTS / 2) - 2,
     111             :         [maple_range_64]        = (MAPLE_RANGE64_SLOTS / 2) - 2,
     112             :         [maple_arange_64]       = (MAPLE_ARANGE64_SLOTS / 2) - 1,
     113             : };
     114             : #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
     115             : 
     116             : #define MAPLE_BIG_NODE_SLOTS    (MAPLE_RANGE64_SLOTS * 2 + 2)
     117             : #define MAPLE_BIG_NODE_GAPS     (MAPLE_ARANGE64_SLOTS * 2 + 1)
     118             : 
     119             : struct maple_big_node {
     120             :         struct maple_pnode *parent;
     121             :         unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
     122             :         union {
     123             :                 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
     124             :                 struct {
     125             :                         unsigned long padding[MAPLE_BIG_NODE_GAPS];
     126             :                         unsigned long gap[MAPLE_BIG_NODE_GAPS];
     127             :                 };
     128             :         };
     129             :         unsigned char b_end;
     130             :         enum maple_type type;
     131             : };
     132             : 
     133             : /*
     134             :  * The maple_subtree_state is used to build a tree to replace a segment of an
     135             :  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
     136             :  * dead node and restart on updates.
     137             :  */
     138             : struct maple_subtree_state {
     139             :         struct ma_state *orig_l;        /* Original left side of subtree */
     140             :         struct ma_state *orig_r;        /* Original right side of subtree */
     141             :         struct ma_state *l;             /* New left side of subtree */
     142             :         struct ma_state *m;             /* New middle of subtree (rare) */
     143             :         struct ma_state *r;             /* New right side of subtree */
     144             :         struct ma_topiary *free;        /* nodes to be freed */
     145             :         struct ma_topiary *destroy;     /* Nodes to be destroyed (walked and freed) */
     146             :         struct maple_big_node *bn;
     147             : };
     148             : 
     149             : #ifdef CONFIG_KASAN_STACK
     150             : /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
     151             : #define noinline_for_kasan noinline_for_stack
     152             : #else
     153             : #define noinline_for_kasan inline
     154             : #endif
     155             : 
     156             : /* Functions */
     157             : static inline struct maple_node *mt_alloc_one(gfp_t gfp)
     158             : {
     159           0 :         return kmem_cache_alloc(maple_node_cache, gfp);
     160             : }
     161             : 
     162             : static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
     163             : {
     164           0 :         return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
     165             : }
     166             : 
     167             : static inline void mt_free_bulk(size_t size, void __rcu **nodes)
     168             : {
     169           0 :         kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
     170             : }
     171             : 
     172           0 : static void mt_free_rcu(struct rcu_head *head)
     173             : {
     174           0 :         struct maple_node *node = container_of(head, struct maple_node, rcu);
     175             : 
     176           0 :         kmem_cache_free(maple_node_cache, node);
     177           0 : }
     178             : 
     179             : /*
     180             :  * ma_free_rcu() - Use rcu callback to free a maple node
     181             :  * @node: The node to free
     182             :  *
     183             :  * The maple tree uses the parent pointer to indicate this node is no longer in
     184             :  * use and will be freed.
     185             :  */
     186           0 : static void ma_free_rcu(struct maple_node *node)
     187             : {
     188           0 :         WARN_ON(node->parent != ma_parent_ptr(node));
     189           0 :         call_rcu(&node->rcu, mt_free_rcu);
     190           0 : }
     191             : 
     192           0 : static void mas_set_height(struct ma_state *mas)
     193             : {
     194           0 :         unsigned int new_flags = mas->tree->ma_flags;
     195             : 
     196           0 :         new_flags &= ~MT_FLAGS_HEIGHT_MASK;
     197           0 :         BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
     198           0 :         new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
     199           0 :         mas->tree->ma_flags = new_flags;
     200           0 : }
     201             : 
     202             : static unsigned int mas_mt_height(struct ma_state *mas)
     203             : {
     204           0 :         return mt_height(mas->tree);
     205             : }
     206             : 
     207             : static inline enum maple_type mte_node_type(const struct maple_enode *entry)
     208             : {
     209           0 :         return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
     210             :                 MAPLE_NODE_TYPE_MASK;
     211             : }
     212             : 
     213             : static inline bool ma_is_dense(const enum maple_type type)
     214             : {
     215           0 :         return type < maple_leaf_64;
     216             : }
     217             : 
     218             : static inline bool ma_is_leaf(const enum maple_type type)
     219             : {
     220           0 :         return type < maple_range_64;
     221             : }
     222             : 
     223             : static inline bool mte_is_leaf(const struct maple_enode *entry)
     224             : {
     225           0 :         return ma_is_leaf(mte_node_type(entry));
     226             : }
     227             : 
     228             : /*
     229             :  * We also reserve values with the bottom two bits set to '10' which are
     230             :  * below 4096
     231             :  */
     232             : static inline bool mt_is_reserved(const void *entry)
     233             : {
     234           0 :         return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
     235           0 :                 xa_is_internal(entry);
     236             : }
     237             : 
     238             : static inline void mas_set_err(struct ma_state *mas, long err)
     239             : {
     240           0 :         mas->node = MA_ERROR(err);
     241             : }
     242             : 
     243             : static inline bool mas_is_ptr(struct ma_state *mas)
     244             : {
     245           0 :         return mas->node == MAS_ROOT;
     246             : }
     247             : 
     248             : static inline bool mas_is_start(struct ma_state *mas)
     249             : {
     250           0 :         return mas->node == MAS_START;
     251             : }
     252             : 
     253           0 : bool mas_is_err(struct ma_state *mas)
     254             : {
     255           0 :         return xa_is_err(mas->node);
     256             : }
     257             : 
     258             : static inline bool mas_searchable(struct ma_state *mas)
     259             : {
     260           0 :         if (mas_is_none(mas))
     261             :                 return false;
     262             : 
     263           0 :         if (mas_is_ptr(mas))
     264             :                 return false;
     265             : 
     266             :         return true;
     267             : }
     268             : 
     269             : static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
     270             : {
     271           0 :         return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
     272             : }
     273             : 
     274             : /*
     275             :  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
     276             :  * @entry: The maple encoded node
     277             :  *
     278             :  * Return: a maple topiary pointer
     279             :  */
     280             : static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
     281             : {
     282           0 :         return (struct maple_topiary *)
     283           0 :                 ((unsigned long)entry & ~MAPLE_NODE_MASK);
     284             : }
     285             : 
     286             : /*
     287             :  * mas_mn() - Get the maple state node.
     288             :  * @mas: The maple state
     289             :  *
     290             :  * Return: the maple node (not encoded - bare pointer).
     291             :  */
     292             : static inline struct maple_node *mas_mn(const struct ma_state *mas)
     293             : {
     294           0 :         return mte_to_node(mas->node);
     295             : }
     296             : 
     297             : /*
     298             :  * mte_set_node_dead() - Set a maple encoded node as dead.
     299             :  * @mn: The maple encoded node.
     300             :  */
     301             : static inline void mte_set_node_dead(struct maple_enode *mn)
     302             : {
     303           0 :         mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
     304           0 :         smp_wmb(); /* Needed for RCU */
     305             : }
     306             : 
     307             : /* Bit 1 indicates the root is a node */
     308             : #define MAPLE_ROOT_NODE                 0x02
     309             : /* maple_type stored bit 3-6 */
     310             : #define MAPLE_ENODE_TYPE_SHIFT          0x03
     311             : /* Bit 2 means a NULL somewhere below */
     312             : #define MAPLE_ENODE_NULL                0x04
     313             : 
     314             : static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
     315             :                                              enum maple_type type)
     316             : {
     317           0 :         return (void *)((unsigned long)node |
     318           0 :                         (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
     319             : }
     320             : 
     321             : static inline void *mte_mk_root(const struct maple_enode *node)
     322             : {
     323           0 :         return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
     324             : }
     325             : 
     326             : static inline void *mte_safe_root(const struct maple_enode *node)
     327             : {
     328           0 :         return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
     329             : }
     330             : 
     331             : static inline void *mte_set_full(const struct maple_enode *node)
     332             : {
     333             :         return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
     334             : }
     335             : 
     336             : static inline void *mte_clear_full(const struct maple_enode *node)
     337             : {
     338             :         return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
     339             : }
     340             : 
     341             : static inline bool mte_has_null(const struct maple_enode *node)
     342             : {
     343             :         return (unsigned long)node & MAPLE_ENODE_NULL;
     344             : }
     345             : 
     346             : static inline bool ma_is_root(struct maple_node *node)
     347             : {
     348           0 :         return ((unsigned long)node->parent & MA_ROOT_PARENT);
     349             : }
     350             : 
     351             : static inline bool mte_is_root(const struct maple_enode *node)
     352             : {
     353           0 :         return ma_is_root(mte_to_node(node));
     354             : }
     355             : 
     356             : static inline bool mas_is_root_limits(const struct ma_state *mas)
     357             : {
     358           0 :         return !mas->min && mas->max == ULONG_MAX;
     359             : }
     360             : 
     361             : static inline bool mt_is_alloc(struct maple_tree *mt)
     362             : {
     363           0 :         return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
     364             : }
     365             : 
     366             : /*
     367             :  * The Parent Pointer
     368             :  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
     369             :  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
     370             :  * bit values need an extra bit to store the offset.  This extra bit comes from
     371             :  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
     372             :  * indicate if bit 2 is part of the type or the slot.
     373             :  *
     374             :  * Note types:
     375             :  *  0x??1 = Root
     376             :  *  0x?00 = 16 bit nodes
     377             :  *  0x010 = 32 bit nodes
     378             :  *  0x110 = 64 bit nodes
     379             :  *
     380             :  * Slot size and alignment
     381             :  *  0b??1 : Root
     382             :  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
     383             :  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
     384             :  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
     385             :  */
     386             : 
     387             : #define MAPLE_PARENT_ROOT               0x01
     388             : 
     389             : #define MAPLE_PARENT_SLOT_SHIFT         0x03
     390             : #define MAPLE_PARENT_SLOT_MASK          0xF8
     391             : 
     392             : #define MAPLE_PARENT_16B_SLOT_SHIFT     0x02
     393             : #define MAPLE_PARENT_16B_SLOT_MASK      0xFC
     394             : 
     395             : #define MAPLE_PARENT_RANGE64            0x06
     396             : #define MAPLE_PARENT_RANGE32            0x04
     397             : #define MAPLE_PARENT_NOT_RANGE16        0x02
     398             : 
     399             : /*
     400             :  * mte_parent_shift() - Get the parent shift for the slot storage.
     401             :  * @parent: The parent pointer cast as an unsigned long
     402             :  * Return: The shift into that pointer to the star to of the slot
     403             :  */
     404             : static inline unsigned long mte_parent_shift(unsigned long parent)
     405             : {
     406             :         /* Note bit 1 == 0 means 16B */
     407           0 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     408             :                 return MAPLE_PARENT_SLOT_SHIFT;
     409             : 
     410             :         return MAPLE_PARENT_16B_SLOT_SHIFT;
     411             : }
     412             : 
     413             : /*
     414             :  * mte_parent_slot_mask() - Get the slot mask for the parent.
     415             :  * @parent: The parent pointer cast as an unsigned long.
     416             :  * Return: The slot mask for that parent.
     417             :  */
     418             : static inline unsigned long mte_parent_slot_mask(unsigned long parent)
     419             : {
     420             :         /* Note bit 1 == 0 means 16B */
     421           0 :         if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
     422             :                 return MAPLE_PARENT_SLOT_MASK;
     423             : 
     424             :         return MAPLE_PARENT_16B_SLOT_MASK;
     425             : }
     426             : 
     427             : /*
     428             :  * mas_parent_enum() - Return the maple_type of the parent from the stored
     429             :  * parent type.
     430             :  * @mas: The maple state
     431             :  * @node: The maple_enode to extract the parent's enum
     432             :  * Return: The node->parent maple_type
     433             :  */
     434             : static inline
     435             : enum maple_type mte_parent_enum(struct maple_enode *p_enode,
     436             :                                 struct maple_tree *mt)
     437             : {
     438             :         unsigned long p_type;
     439             : 
     440           0 :         p_type = (unsigned long)p_enode;
     441           0 :         if (p_type & MAPLE_PARENT_ROOT)
     442             :                 return 0; /* Validated in the caller. */
     443             : 
     444           0 :         p_type &= MAPLE_NODE_MASK;
     445           0 :         p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
     446             : 
     447           0 :         switch (p_type) {
     448             :         case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
     449           0 :                 if (mt_is_alloc(mt))
     450             :                         return maple_arange_64;
     451             :                 return maple_range_64;
     452             :         }
     453             : 
     454             :         return 0;
     455             : }
     456             : 
     457             : static inline
     458           0 : enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
     459             : {
     460           0 :         return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
     461             : }
     462             : 
     463             : /*
     464             :  * mte_set_parent() - Set the parent node and encode the slot
     465             :  * @enode: The encoded maple node.
     466             :  * @parent: The encoded maple node that is the parent of @enode.
     467             :  * @slot: The slot that @enode resides in @parent.
     468             :  *
     469             :  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
     470             :  * parent type.
     471             :  */
     472             : static inline
     473           0 : void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
     474             :                     unsigned char slot)
     475             : {
     476           0 :         unsigned long val = (unsigned long)parent;
     477             :         unsigned long shift;
     478             :         unsigned long type;
     479           0 :         enum maple_type p_type = mte_node_type(parent);
     480             : 
     481           0 :         BUG_ON(p_type == maple_dense);
     482           0 :         BUG_ON(p_type == maple_leaf_64);
     483             : 
     484           0 :         switch (p_type) {
     485             :         case maple_range_64:
     486             :         case maple_arange_64:
     487             :                 shift = MAPLE_PARENT_SLOT_SHIFT;
     488             :                 type = MAPLE_PARENT_RANGE64;
     489             :                 break;
     490             :         default:
     491             :         case maple_dense:
     492             :         case maple_leaf_64:
     493           0 :                 shift = type = 0;
     494           0 :                 break;
     495             :         }
     496             : 
     497           0 :         val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
     498           0 :         val |= (slot << shift) | type;
     499           0 :         mte_to_node(enode)->parent = ma_parent_ptr(val);
     500           0 : }
     501             : 
     502             : /*
     503             :  * mte_parent_slot() - get the parent slot of @enode.
     504             :  * @enode: The encoded maple node.
     505             :  *
     506             :  * Return: The slot in the parent node where @enode resides.
     507             :  */
     508             : static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
     509             : {
     510           0 :         unsigned long val = (unsigned long)mte_to_node(enode)->parent;
     511             : 
     512           0 :         if (val & MA_ROOT_PARENT)
     513             :                 return 0;
     514             : 
     515             :         /*
     516             :          * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
     517             :          * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
     518             :          */
     519           0 :         return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
     520             : }
     521             : 
     522             : /*
     523             :  * mte_parent() - Get the parent of @node.
     524             :  * @node: The encoded maple node.
     525             :  *
     526             :  * Return: The parent maple node.
     527             :  */
     528             : static inline struct maple_node *mte_parent(const struct maple_enode *enode)
     529             : {
     530           0 :         return (void *)((unsigned long)
     531           0 :                         (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
     532             : }
     533             : 
     534             : /*
     535             :  * ma_dead_node() - check if the @enode is dead.
     536             :  * @enode: The encoded maple node
     537             :  *
     538             :  * Return: true if dead, false otherwise.
     539             :  */
     540             : static inline bool ma_dead_node(const struct maple_node *node)
     541             : {
     542             :         struct maple_node *parent;
     543             : 
     544             :         /* Do not reorder reads from the node prior to the parent check */
     545           0 :         smp_rmb();
     546           0 :         parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
     547           0 :         return (parent == node);
     548             : }
     549             : 
     550             : /*
     551             :  * mte_dead_node() - check if the @enode is dead.
     552             :  * @enode: The encoded maple node
     553             :  *
     554             :  * Return: true if dead, false otherwise.
     555             :  */
     556             : static inline bool mte_dead_node(const struct maple_enode *enode)
     557             : {
     558             :         struct maple_node *parent, *node;
     559             : 
     560           0 :         node = mte_to_node(enode);
     561             :         /* Do not reorder reads from the node prior to the parent check */
     562           0 :         smp_rmb();
     563           0 :         parent = mte_parent(enode);
     564           0 :         return (parent == node);
     565             : }
     566             : 
     567             : /*
     568             :  * mas_allocated() - Get the number of nodes allocated in a maple state.
     569             :  * @mas: The maple state
     570             :  *
     571             :  * The ma_state alloc member is overloaded to hold a pointer to the first
     572             :  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
     573             :  * set, then the alloc contains the number of requested nodes.  If there is an
     574             :  * allocated node, then the total allocated nodes is in that node.
     575             :  *
     576             :  * Return: The total number of nodes allocated
     577             :  */
     578             : static inline unsigned long mas_allocated(const struct ma_state *mas)
     579             : {
     580           0 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
     581             :                 return 0;
     582             : 
     583           0 :         return mas->alloc->total;
     584             : }
     585             : 
     586             : /*
     587             :  * mas_set_alloc_req() - Set the requested number of allocations.
     588             :  * @mas: the maple state
     589             :  * @count: the number of allocations.
     590             :  *
     591             :  * The requested number of allocations is either in the first allocated node,
     592             :  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
     593             :  * no allocated node.  Set the request either in the node or do the necessary
     594             :  * encoding to store in @mas->alloc directly.
     595             :  */
     596             : static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
     597             : {
     598           0 :         if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
     599           0 :                 if (!count)
     600           0 :                         mas->alloc = NULL;
     601             :                 else
     602           0 :                         mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
     603             :                 return;
     604             :         }
     605             : 
     606           0 :         mas->alloc->request_count = count;
     607             : }
     608             : 
     609             : /*
     610             :  * mas_alloc_req() - get the requested number of allocations.
     611             :  * @mas: The maple state
     612             :  *
     613             :  * The alloc count is either stored directly in @mas, or in
     614             :  * @mas->alloc->request_count if there is at least one node allocated.  Decode
     615             :  * the request count if it's stored directly in @mas->alloc.
     616             :  *
     617             :  * Return: The allocation request count.
     618             :  */
     619             : static inline unsigned int mas_alloc_req(const struct ma_state *mas)
     620             : {
     621           0 :         if ((unsigned long)mas->alloc & 0x1)
     622           0 :                 return (unsigned long)(mas->alloc) >> 1;
     623           0 :         else if (mas->alloc)
     624           0 :                 return mas->alloc->request_count;
     625             :         return 0;
     626             : }
     627             : 
     628             : /*
     629             :  * ma_pivots() - Get a pointer to the maple node pivots.
     630             :  * @node - the maple node
     631             :  * @type - the node type
     632             :  *
     633             :  * In the event of a dead node, this array may be %NULL
     634             :  *
     635             :  * Return: A pointer to the maple node pivots
     636             :  */
     637             : static inline unsigned long *ma_pivots(struct maple_node *node,
     638             :                                            enum maple_type type)
     639             : {
     640           0 :         switch (type) {
     641             :         case maple_arange_64:
     642           0 :                 return node->ma64.pivot;
     643             :         case maple_range_64:
     644             :         case maple_leaf_64:
     645           0 :                 return node->mr64.pivot;
     646             :         case maple_dense:
     647             :                 return NULL;
     648             :         }
     649             :         return NULL;
     650             : }
     651             : 
     652             : /*
     653             :  * ma_gaps() - Get a pointer to the maple node gaps.
     654             :  * @node - the maple node
     655             :  * @type - the node type
     656             :  *
     657             :  * Return: A pointer to the maple node gaps
     658             :  */
     659             : static inline unsigned long *ma_gaps(struct maple_node *node,
     660             :                                      enum maple_type type)
     661             : {
     662           0 :         switch (type) {
     663             :         case maple_arange_64:
     664           0 :                 return node->ma64.gap;
     665             :         case maple_range_64:
     666             :         case maple_leaf_64:
     667             :         case maple_dense:
     668             :                 return NULL;
     669             :         }
     670             :         return NULL;
     671             : }
     672             : 
     673             : /*
     674             :  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
     675             :  * @mn: The maple encoded node.
     676             :  * @piv: The pivot.
     677             :  *
     678             :  * Return: the pivot at @piv of @mn.
     679             :  */
     680           0 : static inline unsigned long mte_pivot(const struct maple_enode *mn,
     681             :                                  unsigned char piv)
     682             : {
     683           0 :         struct maple_node *node = mte_to_node(mn);
     684           0 :         enum maple_type type = mte_node_type(mn);
     685             : 
     686           0 :         if (piv >= mt_pivots[type]) {
     687           0 :                 WARN_ON(1);
     688           0 :                 return 0;
     689             :         }
     690           0 :         switch (type) {
     691             :         case maple_arange_64:
     692           0 :                 return node->ma64.pivot[piv];
     693             :         case maple_range_64:
     694             :         case maple_leaf_64:
     695           0 :                 return node->mr64.pivot[piv];
     696             :         case maple_dense:
     697             :                 return 0;
     698             :         }
     699             :         return 0;
     700             : }
     701             : 
     702             : /*
     703             :  * mas_safe_pivot() - get the pivot at @piv or mas->max.
     704             :  * @mas: The maple state
     705             :  * @pivots: The pointer to the maple node pivots
     706             :  * @piv: The pivot to fetch
     707             :  * @type: The maple node type
     708             :  *
     709             :  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
     710             :  * otherwise.
     711             :  */
     712             : static inline unsigned long
     713             : mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
     714             :                unsigned char piv, enum maple_type type)
     715             : {
     716           0 :         if (piv >= mt_pivots[type])
     717           0 :                 return mas->max;
     718             : 
     719           0 :         return pivots[piv];
     720             : }
     721             : 
     722             : /*
     723             :  * mas_safe_min() - Return the minimum for a given offset.
     724             :  * @mas: The maple state
     725             :  * @pivots: The pointer to the maple node pivots
     726             :  * @offset: The offset into the pivot array
     727             :  *
     728             :  * Return: The minimum range value that is contained in @offset.
     729             :  */
     730             : static inline unsigned long
     731             : mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
     732             : {
     733           0 :         if (likely(offset))
     734           0 :                 return pivots[offset - 1] + 1;
     735             : 
     736           0 :         return mas->min;
     737             : }
     738             : 
     739             : /*
     740             :  * mas_logical_pivot() - Get the logical pivot of a given offset.
     741             :  * @mas: The maple state
     742             :  * @pivots: The pointer to the maple node pivots
     743             :  * @offset: The offset into the pivot array
     744             :  * @type: The maple node type
     745             :  *
     746             :  * When there is no value at a pivot (beyond the end of the data), then the
     747             :  * pivot is actually @mas->max.
     748             :  *
     749             :  * Return: the logical pivot of a given @offset.
     750             :  */
     751             : static inline unsigned long
     752             : mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
     753             :                   unsigned char offset, enum maple_type type)
     754             : {
     755           0 :         unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
     756             : 
     757           0 :         if (likely(lpiv))
     758             :                 return lpiv;
     759             : 
     760           0 :         if (likely(offset))
     761             :                 return mas->max;
     762             : 
     763             :         return lpiv;
     764             : }
     765             : 
     766             : /*
     767             :  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
     768             :  * @mn: The encoded maple node
     769             :  * @piv: The pivot offset
     770             :  * @val: The value of the pivot
     771             :  */
     772           0 : static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
     773             :                                 unsigned long val)
     774             : {
     775           0 :         struct maple_node *node = mte_to_node(mn);
     776           0 :         enum maple_type type = mte_node_type(mn);
     777             : 
     778           0 :         BUG_ON(piv >= mt_pivots[type]);
     779           0 :         switch (type) {
     780             :         default:
     781             :         case maple_range_64:
     782             :         case maple_leaf_64:
     783           0 :                 node->mr64.pivot[piv] = val;
     784           0 :                 break;
     785             :         case maple_arange_64:
     786           0 :                 node->ma64.pivot[piv] = val;
     787           0 :                 break;
     788             :         case maple_dense:
     789             :                 break;
     790             :         }
     791             : 
     792           0 : }
     793             : 
     794             : /*
     795             :  * ma_slots() - Get a pointer to the maple node slots.
     796             :  * @mn: The maple node
     797             :  * @mt: The maple node type
     798             :  *
     799             :  * Return: A pointer to the maple node slots
     800             :  */
     801             : static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
     802             : {
     803           0 :         switch (mt) {
     804             :         default:
     805             :         case maple_arange_64:
     806           0 :                 return mn->ma64.slot;
     807             :         case maple_range_64:
     808             :         case maple_leaf_64:
     809           0 :                 return mn->mr64.slot;
     810             :         case maple_dense:
     811           0 :                 return mn->slot;
     812             :         }
     813             : }
     814             : 
     815             : static inline bool mt_locked(const struct maple_tree *mt)
     816             : {
     817             :         return mt_external_lock(mt) ? mt_lock_is_held(mt) :
     818             :                 lockdep_is_held(&mt->ma_lock);
     819             : }
     820             : 
     821             : static inline void *mt_slot(const struct maple_tree *mt,
     822             :                 void __rcu **slots, unsigned char offset)
     823             : {
     824           0 :         return rcu_dereference_check(slots[offset], mt_locked(mt));
     825             : }
     826             : 
     827             : static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
     828             :                                    unsigned char offset)
     829             : {
     830           0 :         return rcu_dereference_protected(slots[offset], mt_locked(mt));
     831             : }
     832             : /*
     833             :  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
     834             :  * @mas: The maple state
     835             :  * @slots: The pointer to the slots
     836             :  * @offset: The offset into the slots array to fetch
     837             :  *
     838             :  * Return: The entry stored in @slots at the @offset.
     839             :  */
     840             : static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
     841             :                                        unsigned char offset)
     842             : {
     843           0 :         return mt_slot_locked(mas->tree, slots, offset);
     844             : }
     845             : 
     846             : /*
     847             :  * mas_slot() - Get the slot value when not holding the maple tree lock.
     848             :  * @mas: The maple state
     849             :  * @slots: The pointer to the slots
     850             :  * @offset: The offset into the slots array to fetch
     851             :  *
     852             :  * Return: The entry stored in @slots at the @offset
     853             :  */
     854             : static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
     855             :                              unsigned char offset)
     856             : {
     857           0 :         return mt_slot(mas->tree, slots, offset);
     858             : }
     859             : 
     860             : /*
     861             :  * mas_root() - Get the maple tree root.
     862             :  * @mas: The maple state.
     863             :  *
     864             :  * Return: The pointer to the root of the tree
     865             :  */
     866             : static inline void *mas_root(struct ma_state *mas)
     867             : {
     868           0 :         return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
     869             : }
     870             : 
     871             : static inline void *mt_root_locked(struct maple_tree *mt)
     872             : {
     873             :         return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
     874             : }
     875             : 
     876             : /*
     877             :  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
     878             :  * @mas: The maple state.
     879             :  *
     880             :  * Return: The pointer to the root of the tree
     881             :  */
     882             : static inline void *mas_root_locked(struct ma_state *mas)
     883             : {
     884           0 :         return mt_root_locked(mas->tree);
     885             : }
     886             : 
     887             : static inline struct maple_metadata *ma_meta(struct maple_node *mn,
     888             :                                              enum maple_type mt)
     889             : {
     890           0 :         switch (mt) {
     891             :         case maple_arange_64:
     892           0 :                 return &mn->ma64.meta;
     893             :         default:
     894           0 :                 return &mn->mr64.meta;
     895             :         }
     896             : }
     897             : 
     898             : /*
     899             :  * ma_set_meta() - Set the metadata information of a node.
     900             :  * @mn: The maple node
     901             :  * @mt: The maple node type
     902             :  * @offset: The offset of the highest sub-gap in this node.
     903             :  * @end: The end of the data in this node.
     904             :  */
     905             : static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
     906             :                                unsigned char offset, unsigned char end)
     907             : {
     908           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     909             : 
     910           0 :         meta->gap = offset;
     911           0 :         meta->end = end;
     912             : }
     913             : 
     914             : /*
     915             :  * mt_clear_meta() - clear the metadata information of a node, if it exists
     916             :  * @mt: The maple tree
     917             :  * @mn: The maple node
     918             :  * @type: The maple node type
     919             :  * @offset: The offset of the highest sub-gap in this node.
     920             :  * @end: The end of the data in this node.
     921             :  */
     922           0 : static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
     923             :                                   enum maple_type type)
     924             : {
     925             :         struct maple_metadata *meta;
     926             :         unsigned long *pivots;
     927             :         void __rcu **slots;
     928             :         void *next;
     929             : 
     930           0 :         switch (type) {
     931             :         case maple_range_64:
     932           0 :                 pivots = mn->mr64.pivot;
     933           0 :                 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
     934           0 :                         slots = mn->mr64.slot;
     935           0 :                         next = mt_slot_locked(mt, slots,
     936             :                                               MAPLE_RANGE64_SLOTS - 1);
     937           0 :                         if (unlikely((mte_to_node(next) &&
     938             :                                       mte_node_type(next))))
     939             :                                 return; /* no metadata, could be node */
     940             :                 }
     941             :                 fallthrough;
     942             :         case maple_arange_64:
     943           0 :                 meta = ma_meta(mn, type);
     944             :                 break;
     945             :         default:
     946             :                 return;
     947             :         }
     948             : 
     949           0 :         meta->gap = 0;
     950           0 :         meta->end = 0;
     951             : }
     952             : 
     953             : /*
     954             :  * ma_meta_end() - Get the data end of a node from the metadata
     955             :  * @mn: The maple node
     956             :  * @mt: The maple node type
     957             :  */
     958             : static inline unsigned char ma_meta_end(struct maple_node *mn,
     959             :                                         enum maple_type mt)
     960             : {
     961           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     962             : 
     963           0 :         return meta->end;
     964             : }
     965             : 
     966             : /*
     967             :  * ma_meta_gap() - Get the largest gap location of a node from the metadata
     968             :  * @mn: The maple node
     969             :  * @mt: The maple node type
     970             :  */
     971           0 : static inline unsigned char ma_meta_gap(struct maple_node *mn,
     972             :                                         enum maple_type mt)
     973             : {
     974           0 :         BUG_ON(mt != maple_arange_64);
     975             : 
     976           0 :         return mn->ma64.meta.gap;
     977             : }
     978             : 
     979             : /*
     980             :  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
     981             :  * @mn: The maple node
     982             :  * @mn: The maple node type
     983             :  * @offset: The location of the largest gap.
     984             :  */
     985             : static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
     986             :                                    unsigned char offset)
     987             : {
     988             : 
     989           0 :         struct maple_metadata *meta = ma_meta(mn, mt);
     990             : 
     991           0 :         meta->gap = offset;
     992             : }
     993             : 
     994             : /*
     995             :  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
     996             :  * @mat - the ma_topiary, a linked list of dead nodes.
     997             :  * @dead_enode - the node to be marked as dead and added to the tail of the list
     998             :  *
     999             :  * Add the @dead_enode to the linked list in @mat.
    1000             :  */
    1001             : static inline void mat_add(struct ma_topiary *mat,
    1002             :                            struct maple_enode *dead_enode)
    1003             : {
    1004           0 :         mte_set_node_dead(dead_enode);
    1005           0 :         mte_to_mat(dead_enode)->next = NULL;
    1006           0 :         if (!mat->tail) {
    1007           0 :                 mat->tail = mat->head = dead_enode;
    1008             :                 return;
    1009             :         }
    1010             : 
    1011           0 :         mte_to_mat(mat->tail)->next = dead_enode;
    1012           0 :         mat->tail = dead_enode;
    1013             : }
    1014             : 
    1015             : static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
    1016             : static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
    1017             : 
    1018             : /*
    1019             :  * mas_mat_free() - Free all nodes in a dead list.
    1020             :  * @mas - the maple state
    1021             :  * @mat - the ma_topiary linked list of dead nodes to free.
    1022             :  *
    1023             :  * Free walk a dead list.
    1024             :  */
    1025             : static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
    1026             : {
    1027             :         struct maple_enode *next;
    1028             : 
    1029           0 :         while (mat->head) {
    1030           0 :                 next = mte_to_mat(mat->head)->next;
    1031           0 :                 mas_free(mas, mat->head);
    1032           0 :                 mat->head = next;
    1033             :         }
    1034             : }
    1035             : 
    1036             : /*
    1037             :  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
    1038             :  * @mas - the maple state
    1039             :  * @mat - the ma_topiary linked list of dead nodes to free.
    1040             :  *
    1041             :  * Destroy walk a dead list.
    1042             :  */
    1043             : static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
    1044             : {
    1045             :         struct maple_enode *next;
    1046             : 
    1047           0 :         while (mat->head) {
    1048           0 :                 next = mte_to_mat(mat->head)->next;
    1049           0 :                 mte_destroy_walk(mat->head, mat->mtree);
    1050           0 :                 mat->head = next;
    1051             :         }
    1052             : }
    1053             : /*
    1054             :  * mas_descend() - Descend into the slot stored in the ma_state.
    1055             :  * @mas - the maple state.
    1056             :  *
    1057             :  * Note: Not RCU safe, only use in write side or debug code.
    1058             :  */
    1059           0 : static inline void mas_descend(struct ma_state *mas)
    1060             : {
    1061             :         enum maple_type type;
    1062             :         unsigned long *pivots;
    1063             :         struct maple_node *node;
    1064             :         void __rcu **slots;
    1065             : 
    1066           0 :         node = mas_mn(mas);
    1067           0 :         type = mte_node_type(mas->node);
    1068           0 :         pivots = ma_pivots(node, type);
    1069           0 :         slots = ma_slots(node, type);
    1070             : 
    1071           0 :         if (mas->offset)
    1072           0 :                 mas->min = pivots[mas->offset - 1] + 1;
    1073           0 :         mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
    1074           0 :         mas->node = mas_slot(mas, slots, mas->offset);
    1075           0 : }
    1076             : 
    1077             : /*
    1078             :  * mte_set_gap() - Set a maple node gap.
    1079             :  * @mn: The encoded maple node
    1080             :  * @gap: The offset of the gap to set
    1081             :  * @val: The gap value
    1082             :  */
    1083             : static inline void mte_set_gap(const struct maple_enode *mn,
    1084             :                                  unsigned char gap, unsigned long val)
    1085             : {
    1086           0 :         switch (mte_node_type(mn)) {
    1087             :         default:
    1088             :                 break;
    1089             :         case maple_arange_64:
    1090           0 :                 mte_to_node(mn)->ma64.gap[gap] = val;
    1091             :                 break;
    1092             :         }
    1093             : }
    1094             : 
    1095             : /*
    1096             :  * mas_ascend() - Walk up a level of the tree.
    1097             :  * @mas: The maple state
    1098             :  *
    1099             :  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
    1100             :  * may cause several levels of walking up to find the correct min and max.
    1101             :  * May find a dead node which will cause a premature return.
    1102             :  * Return: 1 on dead node, 0 otherwise
    1103             :  */
    1104           0 : static int mas_ascend(struct ma_state *mas)
    1105             : {
    1106             :         struct maple_enode *p_enode; /* parent enode. */
    1107             :         struct maple_enode *a_enode; /* ancestor enode. */
    1108             :         struct maple_node *a_node; /* ancestor node. */
    1109             :         struct maple_node *p_node; /* parent node. */
    1110             :         unsigned char a_slot;
    1111             :         enum maple_type a_type;
    1112             :         unsigned long min, max;
    1113             :         unsigned long *pivots;
    1114             :         unsigned char offset;
    1115           0 :         bool set_max = false, set_min = false;
    1116             : 
    1117           0 :         a_node = mas_mn(mas);
    1118           0 :         if (ma_is_root(a_node)) {
    1119           0 :                 mas->offset = 0;
    1120           0 :                 return 0;
    1121             :         }
    1122             : 
    1123           0 :         p_node = mte_parent(mas->node);
    1124           0 :         if (unlikely(a_node == p_node))
    1125             :                 return 1;
    1126           0 :         a_type = mas_parent_enum(mas, mas->node);
    1127           0 :         offset = mte_parent_slot(mas->node);
    1128           0 :         a_enode = mt_mk_node(p_node, a_type);
    1129             : 
    1130             :         /* Check to make sure all parent information is still accurate */
    1131           0 :         if (p_node != mte_parent(mas->node))
    1132             :                 return 1;
    1133             : 
    1134           0 :         mas->node = a_enode;
    1135           0 :         mas->offset = offset;
    1136             : 
    1137           0 :         if (mte_is_root(a_enode)) {
    1138           0 :                 mas->max = ULONG_MAX;
    1139           0 :                 mas->min = 0;
    1140           0 :                 return 0;
    1141             :         }
    1142             : 
    1143             :         min = 0;
    1144             :         max = ULONG_MAX;
    1145             :         do {
    1146           0 :                 p_enode = a_enode;
    1147           0 :                 a_type = mas_parent_enum(mas, p_enode);
    1148           0 :                 a_node = mte_parent(p_enode);
    1149           0 :                 a_slot = mte_parent_slot(p_enode);
    1150           0 :                 a_enode = mt_mk_node(a_node, a_type);
    1151           0 :                 pivots = ma_pivots(a_node, a_type);
    1152             : 
    1153           0 :                 if (unlikely(ma_dead_node(a_node)))
    1154             :                         return 1;
    1155             : 
    1156           0 :                 if (!set_min && a_slot) {
    1157           0 :                         set_min = true;
    1158           0 :                         min = pivots[a_slot - 1] + 1;
    1159             :                 }
    1160             : 
    1161           0 :                 if (!set_max && a_slot < mt_pivots[a_type]) {
    1162           0 :                         set_max = true;
    1163           0 :                         max = pivots[a_slot];
    1164             :                 }
    1165             : 
    1166           0 :                 if (unlikely(ma_dead_node(a_node)))
    1167             :                         return 1;
    1168             : 
    1169           0 :                 if (unlikely(ma_is_root(a_node)))
    1170             :                         break;
    1171             : 
    1172           0 :         } while (!set_min || !set_max);
    1173             : 
    1174           0 :         mas->max = max;
    1175           0 :         mas->min = min;
    1176           0 :         return 0;
    1177             : }
    1178             : 
    1179             : /*
    1180             :  * mas_pop_node() - Get a previously allocated maple node from the maple state.
    1181             :  * @mas: The maple state
    1182             :  *
    1183             :  * Return: A pointer to a maple node.
    1184             :  */
    1185           0 : static inline struct maple_node *mas_pop_node(struct ma_state *mas)
    1186             : {
    1187           0 :         struct maple_alloc *ret, *node = mas->alloc;
    1188           0 :         unsigned long total = mas_allocated(mas);
    1189           0 :         unsigned int req = mas_alloc_req(mas);
    1190             : 
    1191             :         /* nothing or a request pending. */
    1192           0 :         if (WARN_ON(!total))
    1193             :                 return NULL;
    1194             : 
    1195           0 :         if (total == 1) {
    1196             :                 /* single allocation in this ma_state */
    1197           0 :                 mas->alloc = NULL;
    1198           0 :                 ret = node;
    1199           0 :                 goto single_node;
    1200             :         }
    1201             : 
    1202           0 :         if (node->node_count == 1) {
    1203             :                 /* Single allocation in this node. */
    1204           0 :                 mas->alloc = node->slot[0];
    1205           0 :                 mas->alloc->total = node->total - 1;
    1206           0 :                 ret = node;
    1207           0 :                 goto new_head;
    1208             :         }
    1209           0 :         node->total--;
    1210           0 :         ret = node->slot[--node->node_count];
    1211           0 :         node->slot[node->node_count] = NULL;
    1212             : 
    1213             : single_node:
    1214             : new_head:
    1215           0 :         if (req) {
    1216           0 :                 req++;
    1217           0 :                 mas_set_alloc_req(mas, req);
    1218             :         }
    1219             : 
    1220           0 :         memset(ret, 0, sizeof(*ret));
    1221           0 :         return (struct maple_node *)ret;
    1222             : }
    1223             : 
    1224             : /*
    1225             :  * mas_push_node() - Push a node back on the maple state allocation.
    1226             :  * @mas: The maple state
    1227             :  * @used: The used maple node
    1228             :  *
    1229             :  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
    1230             :  * requested node count as necessary.
    1231             :  */
    1232           0 : static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
    1233             : {
    1234           0 :         struct maple_alloc *reuse = (struct maple_alloc *)used;
    1235           0 :         struct maple_alloc *head = mas->alloc;
    1236             :         unsigned long count;
    1237           0 :         unsigned int requested = mas_alloc_req(mas);
    1238             : 
    1239           0 :         count = mas_allocated(mas);
    1240             : 
    1241           0 :         reuse->request_count = 0;
    1242           0 :         reuse->node_count = 0;
    1243           0 :         if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
    1244           0 :                 head->slot[head->node_count++] = reuse;
    1245           0 :                 head->total++;
    1246           0 :                 goto done;
    1247             :         }
    1248             : 
    1249           0 :         reuse->total = 1;
    1250           0 :         if ((head) && !((unsigned long)head & 0x1)) {
    1251           0 :                 reuse->slot[0] = head;
    1252           0 :                 reuse->node_count = 1;
    1253           0 :                 reuse->total += head->total;
    1254             :         }
    1255             : 
    1256           0 :         mas->alloc = reuse;
    1257             : done:
    1258           0 :         if (requested > 1)
    1259           0 :                 mas_set_alloc_req(mas, requested - 1);
    1260           0 : }
    1261             : 
    1262             : /*
    1263             :  * mas_alloc_nodes() - Allocate nodes into a maple state
    1264             :  * @mas: The maple state
    1265             :  * @gfp: The GFP Flags
    1266             :  */
    1267           0 : static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
    1268             : {
    1269             :         struct maple_alloc *node;
    1270           0 :         unsigned long allocated = mas_allocated(mas);
    1271           0 :         unsigned int requested = mas_alloc_req(mas);
    1272             :         unsigned int count;
    1273           0 :         void **slots = NULL;
    1274           0 :         unsigned int max_req = 0;
    1275             : 
    1276           0 :         if (!requested)
    1277             :                 return;
    1278             : 
    1279           0 :         mas_set_alloc_req(mas, 0);
    1280           0 :         if (mas->mas_flags & MA_STATE_PREALLOC) {
    1281           0 :                 if (allocated)
    1282             :                         return;
    1283           0 :                 WARN_ON(!allocated);
    1284             :         }
    1285             : 
    1286           0 :         if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
    1287           0 :                 node = (struct maple_alloc *)mt_alloc_one(gfp);
    1288           0 :                 if (!node)
    1289             :                         goto nomem_one;
    1290             : 
    1291           0 :                 if (allocated) {
    1292           0 :                         node->slot[0] = mas->alloc;
    1293           0 :                         node->node_count = 1;
    1294             :                 } else {
    1295           0 :                         node->node_count = 0;
    1296             :                 }
    1297             : 
    1298           0 :                 mas->alloc = node;
    1299           0 :                 node->total = ++allocated;
    1300           0 :                 requested--;
    1301             :         }
    1302             : 
    1303           0 :         node = mas->alloc;
    1304           0 :         node->request_count = 0;
    1305           0 :         while (requested) {
    1306           0 :                 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
    1307           0 :                 slots = (void **)&node->slot[node->node_count];
    1308           0 :                 max_req = min(requested, max_req);
    1309           0 :                 count = mt_alloc_bulk(gfp, max_req, slots);
    1310           0 :                 if (!count)
    1311             :                         goto nomem_bulk;
    1312             : 
    1313           0 :                 if (node->node_count == 0) {
    1314           0 :                         node->slot[0]->node_count = 0;
    1315           0 :                         node->slot[0]->request_count = 0;
    1316             :                 }
    1317             : 
    1318           0 :                 node->node_count += count;
    1319           0 :                 allocated += count;
    1320           0 :                 node = node->slot[0];
    1321           0 :                 requested -= count;
    1322             :         }
    1323           0 :         mas->alloc->total = allocated;
    1324           0 :         return;
    1325             : 
    1326             : nomem_bulk:
    1327             :         /* Clean up potential freed allocations on bulk failure */
    1328           0 :         memset(slots, 0, max_req * sizeof(unsigned long));
    1329             : nomem_one:
    1330           0 :         mas_set_alloc_req(mas, requested);
    1331           0 :         if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
    1332           0 :                 mas->alloc->total = allocated;
    1333           0 :         mas_set_err(mas, -ENOMEM);
    1334             : }
    1335             : 
    1336             : /*
    1337             :  * mas_free() - Free an encoded maple node
    1338             :  * @mas: The maple state
    1339             :  * @used: The encoded maple node to free.
    1340             :  *
    1341             :  * Uses rcu free if necessary, pushes @used back on the maple state allocations
    1342             :  * otherwise.
    1343             :  */
    1344           0 : static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
    1345             : {
    1346           0 :         struct maple_node *tmp = mte_to_node(used);
    1347             : 
    1348           0 :         if (mt_in_rcu(mas->tree))
    1349           0 :                 ma_free_rcu(tmp);
    1350             :         else
    1351           0 :                 mas_push_node(mas, tmp);
    1352           0 : }
    1353             : 
    1354             : /*
    1355             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1356             :  * there is not enough nodes.
    1357             :  * @mas: The maple state
    1358             :  * @count: The number of nodes needed
    1359             :  * @gfp: the gfp flags
    1360             :  */
    1361           0 : static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
    1362             : {
    1363           0 :         unsigned long allocated = mas_allocated(mas);
    1364             : 
    1365           0 :         if (allocated < count) {
    1366           0 :                 mas_set_alloc_req(mas, count - allocated);
    1367           0 :                 mas_alloc_nodes(mas, gfp);
    1368             :         }
    1369           0 : }
    1370             : 
    1371             : /*
    1372             :  * mas_node_count() - Check if enough nodes are allocated and request more if
    1373             :  * there is not enough nodes.
    1374             :  * @mas: The maple state
    1375             :  * @count: The number of nodes needed
    1376             :  *
    1377             :  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
    1378             :  */
    1379             : static void mas_node_count(struct ma_state *mas, int count)
    1380             : {
    1381           0 :         return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
    1382             : }
    1383             : 
    1384             : /*
    1385             :  * mas_start() - Sets up maple state for operations.
    1386             :  * @mas: The maple state.
    1387             :  *
    1388             :  * If mas->node == MAS_START, then set the min, max and depth to
    1389             :  * defaults.
    1390             :  *
    1391             :  * Return:
    1392             :  * - If mas->node is an error or not MAS_START, return NULL.
    1393             :  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
    1394             :  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
    1395             :  * - If it's a tree:            NULL & mas->node == safe root node.
    1396             :  */
    1397           0 : static inline struct maple_enode *mas_start(struct ma_state *mas)
    1398             : {
    1399           0 :         if (likely(mas_is_start(mas))) {
    1400             :                 struct maple_enode *root;
    1401             : 
    1402           0 :                 mas->min = 0;
    1403           0 :                 mas->max = ULONG_MAX;
    1404           0 :                 mas->depth = 0;
    1405             : 
    1406             : retry:
    1407           0 :                 root = mas_root(mas);
    1408             :                 /* Tree with nodes */
    1409           0 :                 if (likely(xa_is_node(root))) {
    1410           0 :                         mas->depth = 1;
    1411           0 :                         mas->node = mte_safe_root(root);
    1412           0 :                         mas->offset = 0;
    1413           0 :                         if (mte_dead_node(mas->node))
    1414             :                                 goto retry;
    1415             : 
    1416             :                         return NULL;
    1417             :                 }
    1418             : 
    1419             :                 /* empty tree */
    1420           0 :                 if (unlikely(!root)) {
    1421           0 :                         mas->node = MAS_NONE;
    1422           0 :                         mas->offset = MAPLE_NODE_SLOTS;
    1423           0 :                         return NULL;
    1424             :                 }
    1425             : 
    1426             :                 /* Single entry tree */
    1427           0 :                 mas->node = MAS_ROOT;
    1428           0 :                 mas->offset = MAPLE_NODE_SLOTS;
    1429             : 
    1430             :                 /* Single entry tree. */
    1431           0 :                 if (mas->index > 0)
    1432             :                         return NULL;
    1433             : 
    1434           0 :                 return root;
    1435             :         }
    1436             : 
    1437             :         return NULL;
    1438             : }
    1439             : 
    1440             : /*
    1441             :  * ma_data_end() - Find the end of the data in a node.
    1442             :  * @node: The maple node
    1443             :  * @type: The maple node type
    1444             :  * @pivots: The array of pivots in the node
    1445             :  * @max: The maximum value in the node
    1446             :  *
    1447             :  * Uses metadata to find the end of the data when possible.
    1448             :  * Return: The zero indexed last slot with data (may be null).
    1449             :  */
    1450           0 : static inline unsigned char ma_data_end(struct maple_node *node,
    1451             :                                         enum maple_type type,
    1452             :                                         unsigned long *pivots,
    1453             :                                         unsigned long max)
    1454             : {
    1455             :         unsigned char offset;
    1456             : 
    1457           0 :         if (!pivots)
    1458             :                 return 0;
    1459             : 
    1460           0 :         if (type == maple_arange_64)
    1461           0 :                 return ma_meta_end(node, type);
    1462             : 
    1463           0 :         offset = mt_pivots[type] - 1;
    1464           0 :         if (likely(!pivots[offset]))
    1465           0 :                 return ma_meta_end(node, type);
    1466             : 
    1467           0 :         if (likely(pivots[offset] == max))
    1468             :                 return offset;
    1469             : 
    1470           0 :         return mt_pivots[type];
    1471             : }
    1472             : 
    1473             : /*
    1474             :  * mas_data_end() - Find the end of the data (slot).
    1475             :  * @mas: the maple state
    1476             :  *
    1477             :  * This method is optimized to check the metadata of a node if the node type
    1478             :  * supports data end metadata.
    1479             :  *
    1480             :  * Return: The zero indexed last slot with data (may be null).
    1481             :  */
    1482           0 : static inline unsigned char mas_data_end(struct ma_state *mas)
    1483             : {
    1484             :         enum maple_type type;
    1485             :         struct maple_node *node;
    1486             :         unsigned char offset;
    1487             :         unsigned long *pivots;
    1488             : 
    1489           0 :         type = mte_node_type(mas->node);
    1490           0 :         node = mas_mn(mas);
    1491           0 :         if (type == maple_arange_64)
    1492           0 :                 return ma_meta_end(node, type);
    1493             : 
    1494           0 :         pivots = ma_pivots(node, type);
    1495           0 :         if (unlikely(ma_dead_node(node)))
    1496             :                 return 0;
    1497             : 
    1498           0 :         offset = mt_pivots[type] - 1;
    1499           0 :         if (likely(!pivots[offset]))
    1500           0 :                 return ma_meta_end(node, type);
    1501             : 
    1502           0 :         if (likely(pivots[offset] == mas->max))
    1503             :                 return offset;
    1504             : 
    1505             :         return mt_pivots[type];
    1506             : }
    1507             : 
    1508             : /*
    1509             :  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
    1510             :  * @mas - the maple state
    1511             :  *
    1512             :  * Return: The maximum gap in the leaf.
    1513             :  */
    1514           0 : static unsigned long mas_leaf_max_gap(struct ma_state *mas)
    1515             : {
    1516             :         enum maple_type mt;
    1517             :         unsigned long pstart, gap, max_gap;
    1518             :         struct maple_node *mn;
    1519             :         unsigned long *pivots;
    1520             :         void __rcu **slots;
    1521             :         unsigned char i;
    1522             :         unsigned char max_piv;
    1523             : 
    1524           0 :         mt = mte_node_type(mas->node);
    1525           0 :         mn = mas_mn(mas);
    1526           0 :         slots = ma_slots(mn, mt);
    1527           0 :         max_gap = 0;
    1528           0 :         if (unlikely(ma_is_dense(mt))) {
    1529             :                 gap = 0;
    1530           0 :                 for (i = 0; i < mt_slots[mt]; i++) {
    1531           0 :                         if (slots[i]) {
    1532           0 :                                 if (gap > max_gap)
    1533           0 :                                         max_gap = gap;
    1534             :                                 gap = 0;
    1535             :                         } else {
    1536           0 :                                 gap++;
    1537             :                         }
    1538             :                 }
    1539           0 :                 if (gap > max_gap)
    1540           0 :                         max_gap = gap;
    1541             :                 return max_gap;
    1542             :         }
    1543             : 
    1544             :         /*
    1545             :          * Check the first implied pivot optimizes the loop below and slot 1 may
    1546             :          * be skipped if there is a gap in slot 0.
    1547             :          */
    1548           0 :         pivots = ma_pivots(mn, mt);
    1549           0 :         if (likely(!slots[0])) {
    1550           0 :                 max_gap = pivots[0] - mas->min + 1;
    1551           0 :                 i = 2;
    1552             :         } else {
    1553             :                 i = 1;
    1554             :         }
    1555             : 
    1556             :         /* reduce max_piv as the special case is checked before the loop */
    1557           0 :         max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
    1558             :         /*
    1559             :          * Check end implied pivot which can only be a gap on the right most
    1560             :          * node.
    1561             :          */
    1562           0 :         if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
    1563           0 :                 gap = ULONG_MAX - pivots[max_piv];
    1564           0 :                 if (gap > max_gap)
    1565           0 :                         max_gap = gap;
    1566             :         }
    1567             : 
    1568           0 :         for (; i <= max_piv; i++) {
    1569             :                 /* data == no gap. */
    1570           0 :                 if (likely(slots[i]))
    1571           0 :                         continue;
    1572             : 
    1573           0 :                 pstart = pivots[i - 1];
    1574           0 :                 gap = pivots[i] - pstart;
    1575           0 :                 if (gap > max_gap)
    1576           0 :                         max_gap = gap;
    1577             : 
    1578             :                 /* There cannot be two gaps in a row. */
    1579           0 :                 i++;
    1580             :         }
    1581             :         return max_gap;
    1582             : }
    1583             : 
    1584             : /*
    1585             :  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
    1586             :  * @node: The maple node
    1587             :  * @gaps: The pointer to the gaps
    1588             :  * @mt: The maple node type
    1589             :  * @*off: Pointer to store the offset location of the gap.
    1590             :  *
    1591             :  * Uses the metadata data end to scan backwards across set gaps.
    1592             :  *
    1593             :  * Return: The maximum gap value
    1594             :  */
    1595             : static inline unsigned long
    1596             : ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
    1597             :             unsigned char *off)
    1598             : {
    1599             :         unsigned char offset, i;
    1600           0 :         unsigned long max_gap = 0;
    1601             : 
    1602           0 :         i = offset = ma_meta_end(node, mt);
    1603             :         do {
    1604           0 :                 if (gaps[i] > max_gap) {
    1605           0 :                         max_gap = gaps[i];
    1606           0 :                         offset = i;
    1607             :                 }
    1608           0 :         } while (i--);
    1609             : 
    1610           0 :         *off = offset;
    1611             :         return max_gap;
    1612             : }
    1613             : 
    1614             : /*
    1615             :  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
    1616             :  * @mas: The maple state.
    1617             :  *
    1618             :  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
    1619             :  *
    1620             :  * Return: The gap value.
    1621             :  */
    1622           0 : static inline unsigned long mas_max_gap(struct ma_state *mas)
    1623             : {
    1624             :         unsigned long *gaps;
    1625             :         unsigned char offset;
    1626             :         enum maple_type mt;
    1627             :         struct maple_node *node;
    1628             : 
    1629           0 :         mt = mte_node_type(mas->node);
    1630           0 :         if (ma_is_leaf(mt))
    1631           0 :                 return mas_leaf_max_gap(mas);
    1632             : 
    1633           0 :         node = mas_mn(mas);
    1634           0 :         offset = ma_meta_gap(node, mt);
    1635           0 :         if (offset == MAPLE_ARANGE64_META_MAX)
    1636             :                 return 0;
    1637             : 
    1638           0 :         gaps = ma_gaps(node, mt);
    1639           0 :         return gaps[offset];
    1640             : }
    1641             : 
    1642             : /*
    1643             :  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
    1644             :  * @mas: The maple state
    1645             :  * @offset: The gap offset in the parent to set
    1646             :  * @new: The new gap value.
    1647             :  *
    1648             :  * Set the parent gap then continue to set the gap upwards, using the metadata
    1649             :  * of the parent to see if it is necessary to check the node above.
    1650             :  */
    1651           0 : static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
    1652             :                 unsigned long new)
    1653             : {
    1654           0 :         unsigned long meta_gap = 0;
    1655             :         struct maple_node *pnode;
    1656             :         struct maple_enode *penode;
    1657             :         unsigned long *pgaps;
    1658             :         unsigned char meta_offset;
    1659             :         enum maple_type pmt;
    1660             : 
    1661           0 :         pnode = mte_parent(mas->node);
    1662           0 :         pmt = mas_parent_enum(mas, mas->node);
    1663           0 :         penode = mt_mk_node(pnode, pmt);
    1664             :         pgaps = ma_gaps(pnode, pmt);
    1665             : 
    1666             : ascend:
    1667           0 :         meta_offset = ma_meta_gap(pnode, pmt);
    1668           0 :         if (meta_offset == MAPLE_ARANGE64_META_MAX)
    1669             :                 meta_gap = 0;
    1670             :         else
    1671           0 :                 meta_gap = pgaps[meta_offset];
    1672             : 
    1673           0 :         pgaps[offset] = new;
    1674             : 
    1675           0 :         if (meta_gap == new)
    1676             :                 return;
    1677             : 
    1678           0 :         if (offset != meta_offset) {
    1679           0 :                 if (meta_gap > new)
    1680             :                         return;
    1681             : 
    1682           0 :                 ma_set_meta_gap(pnode, pmt, offset);
    1683           0 :         } else if (new < meta_gap) {
    1684           0 :                 meta_offset = 15;
    1685           0 :                 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
    1686           0 :                 ma_set_meta_gap(pnode, pmt, meta_offset);
    1687             :         }
    1688             : 
    1689           0 :         if (ma_is_root(pnode))
    1690             :                 return;
    1691             : 
    1692             :         /* Go to the parent node. */
    1693           0 :         pnode = mte_parent(penode);
    1694           0 :         pmt = mas_parent_enum(mas, penode);
    1695           0 :         pgaps = ma_gaps(pnode, pmt);
    1696           0 :         offset = mte_parent_slot(penode);
    1697           0 :         penode = mt_mk_node(pnode, pmt);
    1698           0 :         goto ascend;
    1699             : }
    1700             : 
    1701             : /*
    1702             :  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
    1703             :  * @mas - the maple state.
    1704             :  */
    1705           0 : static inline void mas_update_gap(struct ma_state *mas)
    1706             : {
    1707             :         unsigned char pslot;
    1708             :         unsigned long p_gap;
    1709             :         unsigned long max_gap;
    1710             : 
    1711           0 :         if (!mt_is_alloc(mas->tree))
    1712             :                 return;
    1713             : 
    1714           0 :         if (mte_is_root(mas->node))
    1715             :                 return;
    1716             : 
    1717           0 :         max_gap = mas_max_gap(mas);
    1718             : 
    1719           0 :         pslot = mte_parent_slot(mas->node);
    1720           0 :         p_gap = ma_gaps(mte_parent(mas->node),
    1721           0 :                         mas_parent_enum(mas, mas->node))[pslot];
    1722             : 
    1723           0 :         if (p_gap != max_gap)
    1724           0 :                 mas_parent_gap(mas, pslot, max_gap);
    1725             : }
    1726             : 
    1727             : /*
    1728             :  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
    1729             :  * @parent with the slot encoded.
    1730             :  * @mas - the maple state (for the tree)
    1731             :  * @parent - the maple encoded node containing the children.
    1732             :  */
    1733           0 : static inline void mas_adopt_children(struct ma_state *mas,
    1734             :                 struct maple_enode *parent)
    1735             : {
    1736           0 :         enum maple_type type = mte_node_type(parent);
    1737           0 :         struct maple_node *node = mas_mn(mas);
    1738           0 :         void __rcu **slots = ma_slots(node, type);
    1739           0 :         unsigned long *pivots = ma_pivots(node, type);
    1740             :         struct maple_enode *child;
    1741             :         unsigned char offset;
    1742             : 
    1743           0 :         offset = ma_data_end(node, type, pivots, mas->max);
    1744             :         do {
    1745           0 :                 child = mas_slot_locked(mas, slots, offset);
    1746           0 :                 mte_set_parent(child, parent, offset);
    1747           0 :         } while (offset--);
    1748           0 : }
    1749             : 
    1750             : /*
    1751             :  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
    1752             :  * parent encoding to locate the maple node in the tree.
    1753             :  * @mas - the ma_state to use for operations.
    1754             :  * @advanced - boolean to adopt the child nodes and free the old node (false) or
    1755             :  * leave the node (true) and handle the adoption and free elsewhere.
    1756             :  */
    1757           0 : static inline void mas_replace(struct ma_state *mas, bool advanced)
    1758             :         __must_hold(mas->tree->lock)
    1759             : {
    1760           0 :         struct maple_node *mn = mas_mn(mas);
    1761             :         struct maple_enode *old_enode;
    1762           0 :         unsigned char offset = 0;
    1763           0 :         void __rcu **slots = NULL;
    1764             : 
    1765           0 :         if (ma_is_root(mn)) {
    1766           0 :                 old_enode = mas_root_locked(mas);
    1767             :         } else {
    1768           0 :                 offset = mte_parent_slot(mas->node);
    1769           0 :                 slots = ma_slots(mte_parent(mas->node),
    1770             :                                  mas_parent_enum(mas, mas->node));
    1771           0 :                 old_enode = mas_slot_locked(mas, slots, offset);
    1772             :         }
    1773             : 
    1774           0 :         if (!advanced && !mte_is_leaf(mas->node))
    1775           0 :                 mas_adopt_children(mas, mas->node);
    1776             : 
    1777           0 :         if (mte_is_root(mas->node)) {
    1778           0 :                 mn->parent = ma_parent_ptr(
    1779             :                               ((unsigned long)mas->tree | MA_ROOT_PARENT));
    1780           0 :                 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    1781           0 :                 mas_set_height(mas);
    1782             :         } else {
    1783           0 :                 rcu_assign_pointer(slots[offset], mas->node);
    1784             :         }
    1785             : 
    1786           0 :         if (!advanced) {
    1787           0 :                 mte_set_node_dead(old_enode);
    1788           0 :                 mas_free(mas, old_enode);
    1789             :         }
    1790           0 : }
    1791             : 
    1792             : /*
    1793             :  * mas_new_child() - Find the new child of a node.
    1794             :  * @mas: the maple state
    1795             :  * @child: the maple state to store the child.
    1796             :  */
    1797           0 : static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
    1798             :         __must_hold(mas->tree->lock)
    1799             : {
    1800             :         enum maple_type mt;
    1801             :         unsigned char offset;
    1802             :         unsigned char end;
    1803             :         unsigned long *pivots;
    1804             :         struct maple_enode *entry;
    1805             :         struct maple_node *node;
    1806             :         void __rcu **slots;
    1807             : 
    1808           0 :         mt = mte_node_type(mas->node);
    1809           0 :         node = mas_mn(mas);
    1810           0 :         slots = ma_slots(node, mt);
    1811           0 :         pivots = ma_pivots(node, mt);
    1812           0 :         end = ma_data_end(node, mt, pivots, mas->max);
    1813           0 :         for (offset = mas->offset; offset <= end; offset++) {
    1814           0 :                 entry = mas_slot_locked(mas, slots, offset);
    1815           0 :                 if (mte_parent(entry) == node) {
    1816           0 :                         *child = *mas;
    1817           0 :                         mas->offset = offset + 1;
    1818           0 :                         child->offset = offset;
    1819           0 :                         mas_descend(child);
    1820           0 :                         child->offset = 0;
    1821           0 :                         return true;
    1822             :                 }
    1823             :         }
    1824             :         return false;
    1825             : }
    1826             : 
    1827             : /*
    1828             :  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
    1829             :  * old data or set b_node->b_end.
    1830             :  * @b_node: the maple_big_node
    1831             :  * @shift: the shift count
    1832             :  */
    1833           0 : static inline void mab_shift_right(struct maple_big_node *b_node,
    1834             :                                  unsigned char shift)
    1835             : {
    1836           0 :         unsigned long size = b_node->b_end * sizeof(unsigned long);
    1837             : 
    1838           0 :         memmove(b_node->pivot + shift, b_node->pivot, size);
    1839           0 :         memmove(b_node->slot + shift, b_node->slot, size);
    1840           0 :         if (b_node->type == maple_arange_64)
    1841           0 :                 memmove(b_node->gap + shift, b_node->gap, size);
    1842           0 : }
    1843             : 
    1844             : /*
    1845             :  * mab_middle_node() - Check if a middle node is needed (unlikely)
    1846             :  * @b_node: the maple_big_node that contains the data.
    1847             :  * @size: the amount of data in the b_node
    1848             :  * @split: the potential split location
    1849             :  * @slot_count: the size that can be stored in a single node being considered.
    1850             :  *
    1851             :  * Return: true if a middle node is required.
    1852             :  */
    1853             : static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
    1854             :                                    unsigned char slot_count)
    1855             : {
    1856           0 :         unsigned char size = b_node->b_end;
    1857             : 
    1858           0 :         if (size >= 2 * slot_count)
    1859             :                 return true;
    1860             : 
    1861           0 :         if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
    1862             :                 return true;
    1863             : 
    1864             :         return false;
    1865             : }
    1866             : 
    1867             : /*
    1868             :  * mab_no_null_split() - ensure the split doesn't fall on a NULL
    1869             :  * @b_node: the maple_big_node with the data
    1870             :  * @split: the suggested split location
    1871             :  * @slot_count: the number of slots in the node being considered.
    1872             :  *
    1873             :  * Return: the split location.
    1874             :  */
    1875             : static inline int mab_no_null_split(struct maple_big_node *b_node,
    1876             :                                     unsigned char split, unsigned char slot_count)
    1877             : {
    1878           0 :         if (!b_node->slot[split]) {
    1879             :                 /*
    1880             :                  * If the split is less than the max slot && the right side will
    1881             :                  * still be sufficient, then increment the split on NULL.
    1882             :                  */
    1883           0 :                 if ((split < slot_count - 1) &&
    1884           0 :                     (b_node->b_end - split) > (mt_min_slots[b_node->type]))
    1885           0 :                         split++;
    1886             :                 else
    1887           0 :                         split--;
    1888             :         }
    1889           0 :         return split;
    1890             : }
    1891             : 
    1892             : /*
    1893             :  * mab_calc_split() - Calculate the split location and if there needs to be two
    1894             :  * splits.
    1895             :  * @bn: The maple_big_node with the data
    1896             :  * @mid_split: The second split, if required.  0 otherwise.
    1897             :  *
    1898             :  * Return: The first split location.  The middle split is set in @mid_split.
    1899             :  */
    1900           0 : static inline int mab_calc_split(struct ma_state *mas,
    1901             :          struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
    1902             : {
    1903           0 :         unsigned char b_end = bn->b_end;
    1904           0 :         int split = b_end / 2; /* Assume equal split. */
    1905           0 :         unsigned char slot_min, slot_count = mt_slots[bn->type];
    1906             : 
    1907             :         /*
    1908             :          * To support gap tracking, all NULL entries are kept together and a node cannot
    1909             :          * end on a NULL entry, with the exception of the left-most leaf.  The
    1910             :          * limitation means that the split of a node must be checked for this condition
    1911             :          * and be able to put more data in one direction or the other.
    1912             :          */
    1913           0 :         if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
    1914           0 :                 *mid_split = 0;
    1915           0 :                 split = b_end - mt_min_slots[bn->type];
    1916             : 
    1917           0 :                 if (!ma_is_leaf(bn->type))
    1918             :                         return split;
    1919             : 
    1920           0 :                 mas->mas_flags |= MA_STATE_REBALANCE;
    1921           0 :                 if (!bn->slot[split])
    1922           0 :                         split--;
    1923             :                 return split;
    1924             :         }
    1925             : 
    1926             :         /*
    1927             :          * Although extremely rare, it is possible to enter what is known as the 3-way
    1928             :          * split scenario.  The 3-way split comes about by means of a store of a range
    1929             :          * that overwrites the end and beginning of two full nodes.  The result is a set
    1930             :          * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
    1931             :          * also be located in different parent nodes which are also full.  This can
    1932             :          * carry upwards all the way to the root in the worst case.
    1933             :          */
    1934           0 :         if (unlikely(mab_middle_node(bn, split, slot_count))) {
    1935           0 :                 split = b_end / 3;
    1936           0 :                 *mid_split = split * 2;
    1937             :         } else {
    1938           0 :                 slot_min = mt_min_slots[bn->type];
    1939             : 
    1940           0 :                 *mid_split = 0;
    1941             :                 /*
    1942             :                  * Avoid having a range less than the slot count unless it
    1943             :                  * causes one node to be deficient.
    1944             :                  * NOTE: mt_min_slots is 1 based, b_end and split are zero.
    1945             :                  */
    1946           0 :                 while (((bn->pivot[split] - min) < slot_count - 1) &&
    1947           0 :                        (split < slot_count - 1) && (b_end - split > slot_min))
    1948           0 :                         split++;
    1949             :         }
    1950             : 
    1951             :         /* Avoid ending a node on a NULL entry */
    1952           0 :         split = mab_no_null_split(bn, split, slot_count);
    1953             : 
    1954           0 :         if (unlikely(*mid_split))
    1955           0 :                 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
    1956             : 
    1957             :         return split;
    1958             : }
    1959             : 
    1960             : /*
    1961             :  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
    1962             :  * and set @b_node->b_end to the next free slot.
    1963             :  * @mas: The maple state
    1964             :  * @mas_start: The starting slot to copy
    1965             :  * @mas_end: The end slot to copy (inclusively)
    1966             :  * @b_node: The maple_big_node to place the data
    1967             :  * @mab_start: The starting location in maple_big_node to store the data.
    1968             :  */
    1969           0 : static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
    1970             :                         unsigned char mas_end, struct maple_big_node *b_node,
    1971             :                         unsigned char mab_start)
    1972             : {
    1973             :         enum maple_type mt;
    1974             :         struct maple_node *node;
    1975             :         void __rcu **slots;
    1976             :         unsigned long *pivots, *gaps;
    1977           0 :         int i = mas_start, j = mab_start;
    1978             :         unsigned char piv_end;
    1979             : 
    1980           0 :         node = mas_mn(mas);
    1981           0 :         mt = mte_node_type(mas->node);
    1982           0 :         pivots = ma_pivots(node, mt);
    1983           0 :         if (!i) {
    1984           0 :                 b_node->pivot[j] = pivots[i++];
    1985           0 :                 if (unlikely(i > mas_end))
    1986             :                         goto complete;
    1987           0 :                 j++;
    1988             :         }
    1989             : 
    1990           0 :         piv_end = min(mas_end, mt_pivots[mt]);
    1991           0 :         for (; i < piv_end; i++, j++) {
    1992           0 :                 b_node->pivot[j] = pivots[i];
    1993           0 :                 if (unlikely(!b_node->pivot[j]))
    1994             :                         break;
    1995             : 
    1996           0 :                 if (unlikely(mas->max == b_node->pivot[j]))
    1997             :                         goto complete;
    1998             :         }
    1999             : 
    2000           0 :         if (likely(i <= mas_end))
    2001           0 :                 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
    2002             : 
    2003             : complete:
    2004           0 :         b_node->b_end = ++j;
    2005           0 :         j -= mab_start;
    2006           0 :         slots = ma_slots(node, mt);
    2007           0 :         memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
    2008           0 :         if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
    2009           0 :                 gaps = ma_gaps(node, mt);
    2010           0 :                 memcpy(b_node->gap + mab_start, gaps + mas_start,
    2011             :                        sizeof(unsigned long) * j);
    2012             :         }
    2013           0 : }
    2014             : 
    2015             : /*
    2016             :  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
    2017             :  * @mas: The maple state
    2018             :  * @node: The maple node
    2019             :  * @pivots: pointer to the maple node pivots
    2020             :  * @mt: The maple type
    2021             :  * @end: The assumed end
    2022             :  *
    2023             :  * Note, end may be incremented within this function but not modified at the
    2024             :  * source.  This is fine since the metadata is the last thing to be stored in a
    2025             :  * node during a write.
    2026             :  */
    2027           0 : static inline void mas_leaf_set_meta(struct ma_state *mas,
    2028             :                 struct maple_node *node, unsigned long *pivots,
    2029             :                 enum maple_type mt, unsigned char end)
    2030             : {
    2031             :         /* There is no room for metadata already */
    2032           0 :         if (mt_pivots[mt] <= end)
    2033             :                 return;
    2034             : 
    2035           0 :         if (pivots[end] && pivots[end] < mas->max)
    2036           0 :                 end++;
    2037             : 
    2038           0 :         if (end < mt_slots[mt] - 1)
    2039           0 :                 ma_set_meta(node, mt, 0, end);
    2040             : }
    2041             : 
    2042             : /*
    2043             :  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
    2044             :  * @b_node: the maple_big_node that has the data
    2045             :  * @mab_start: the start location in @b_node.
    2046             :  * @mab_end: The end location in @b_node (inclusively)
    2047             :  * @mas: The maple state with the maple encoded node.
    2048             :  */
    2049           0 : static inline void mab_mas_cp(struct maple_big_node *b_node,
    2050             :                               unsigned char mab_start, unsigned char mab_end,
    2051             :                               struct ma_state *mas, bool new_max)
    2052             : {
    2053           0 :         int i, j = 0;
    2054           0 :         enum maple_type mt = mte_node_type(mas->node);
    2055           0 :         struct maple_node *node = mte_to_node(mas->node);
    2056           0 :         void __rcu **slots = ma_slots(node, mt);
    2057           0 :         unsigned long *pivots = ma_pivots(node, mt);
    2058           0 :         unsigned long *gaps = NULL;
    2059             :         unsigned char end;
    2060             : 
    2061           0 :         if (mab_end - mab_start > mt_pivots[mt])
    2062           0 :                 mab_end--;
    2063             : 
    2064           0 :         if (!pivots[mt_pivots[mt] - 1])
    2065           0 :                 slots[mt_pivots[mt]] = NULL;
    2066             : 
    2067             :         i = mab_start;
    2068             :         do {
    2069           0 :                 pivots[j++] = b_node->pivot[i++];
    2070           0 :         } while (i <= mab_end && likely(b_node->pivot[i]));
    2071             : 
    2072           0 :         memcpy(slots, b_node->slot + mab_start,
    2073           0 :                sizeof(void *) * (i - mab_start));
    2074             : 
    2075           0 :         if (new_max)
    2076           0 :                 mas->max = b_node->pivot[i - 1];
    2077             : 
    2078           0 :         end = j - 1;
    2079           0 :         if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
    2080           0 :                 unsigned long max_gap = 0;
    2081           0 :                 unsigned char offset = 15;
    2082             : 
    2083           0 :                 gaps = ma_gaps(node, mt);
    2084             :                 do {
    2085           0 :                         gaps[--j] = b_node->gap[--i];
    2086           0 :                         if (gaps[j] > max_gap) {
    2087           0 :                                 offset = j;
    2088           0 :                                 max_gap = gaps[j];
    2089             :                         }
    2090           0 :                 } while (j);
    2091             : 
    2092           0 :                 ma_set_meta(node, mt, offset, end);
    2093             :         } else {
    2094           0 :                 mas_leaf_set_meta(mas, node, pivots, mt, end);
    2095             :         }
    2096           0 : }
    2097             : 
    2098             : /*
    2099             :  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
    2100             :  * @mas: the maple state with the maple encoded node of the sub-tree.
    2101             :  *
    2102             :  * Descend through a sub-tree and adopt children who do not have the correct
    2103             :  * parents set.  Follow the parents which have the correct parents as they are
    2104             :  * the new entries which need to be followed to find other incorrectly set
    2105             :  * parents.
    2106             :  */
    2107           0 : static inline void mas_descend_adopt(struct ma_state *mas)
    2108             : {
    2109             :         struct ma_state list[3], next[3];
    2110             :         int i, n;
    2111             : 
    2112             :         /*
    2113             :          * At each level there may be up to 3 correct parent pointers which indicates
    2114             :          * the new nodes which need to be walked to find any new nodes at a lower level.
    2115             :          */
    2116             : 
    2117           0 :         for (i = 0; i < 3; i++) {
    2118           0 :                 list[i] = *mas;
    2119           0 :                 list[i].offset = 0;
    2120           0 :                 next[i].offset = 0;
    2121             :         }
    2122           0 :         next[0] = *mas;
    2123             : 
    2124           0 :         while (!mte_is_leaf(list[0].node)) {
    2125             :                 n = 0;
    2126           0 :                 for (i = 0; i < 3; i++) {
    2127           0 :                         if (mas_is_none(&list[i]))
    2128           0 :                                 continue;
    2129             : 
    2130           0 :                         if (i && list[i-1].node == list[i].node)
    2131           0 :                                 continue;
    2132             : 
    2133           0 :                         while ((n < 3) && (mas_new_child(&list[i], &next[n])))
    2134           0 :                                 n++;
    2135             : 
    2136           0 :                         mas_adopt_children(&list[i], list[i].node);
    2137             :                 }
    2138             : 
    2139           0 :                 while (n < 3)
    2140           0 :                         next[n++].node = MAS_NONE;
    2141             : 
    2142             :                 /* descend by setting the list to the children */
    2143           0 :                 for (i = 0; i < 3; i++)
    2144           0 :                         list[i] = next[i];
    2145             :         }
    2146           0 : }
    2147             : 
    2148             : /*
    2149             :  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
    2150             :  * @mas: The maple state
    2151             :  * @end: The maple node end
    2152             :  * @mt: The maple node type
    2153             :  */
    2154             : static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
    2155             :                                       enum maple_type mt)
    2156             : {
    2157           0 :         if (!(mas->mas_flags & MA_STATE_BULK))
    2158             :                 return;
    2159             : 
    2160           0 :         if (mte_is_root(mas->node))
    2161             :                 return;
    2162             : 
    2163           0 :         if (end > mt_min_slots[mt]) {
    2164           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    2165             :                 return;
    2166             :         }
    2167             : }
    2168             : 
    2169             : /*
    2170             :  * mas_store_b_node() - Store an @entry into the b_node while also copying the
    2171             :  * data from a maple encoded node.
    2172             :  * @wr_mas: the maple write state
    2173             :  * @b_node: the maple_big_node to fill with data
    2174             :  * @offset_end: the offset to end copying
    2175             :  *
    2176             :  * Return: The actual end of the data stored in @b_node
    2177             :  */
    2178           0 : static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
    2179             :                 struct maple_big_node *b_node, unsigned char offset_end)
    2180             : {
    2181             :         unsigned char slot;
    2182             :         unsigned char b_end;
    2183             :         /* Possible underflow of piv will wrap back to 0 before use. */
    2184             :         unsigned long piv;
    2185           0 :         struct ma_state *mas = wr_mas->mas;
    2186             : 
    2187           0 :         b_node->type = wr_mas->type;
    2188           0 :         b_end = 0;
    2189           0 :         slot = mas->offset;
    2190           0 :         if (slot) {
    2191             :                 /* Copy start data up to insert. */
    2192           0 :                 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
    2193           0 :                 b_end = b_node->b_end;
    2194           0 :                 piv = b_node->pivot[b_end - 1];
    2195             :         } else
    2196           0 :                 piv = mas->min - 1;
    2197             : 
    2198           0 :         if (piv + 1 < mas->index) {
    2199             :                 /* Handle range starting after old range */
    2200           0 :                 b_node->slot[b_end] = wr_mas->content;
    2201           0 :                 if (!wr_mas->content)
    2202           0 :                         b_node->gap[b_end] = mas->index - 1 - piv;
    2203           0 :                 b_node->pivot[b_end++] = mas->index - 1;
    2204             :         }
    2205             : 
    2206             :         /* Store the new entry. */
    2207           0 :         mas->offset = b_end;
    2208           0 :         b_node->slot[b_end] = wr_mas->entry;
    2209           0 :         b_node->pivot[b_end] = mas->last;
    2210             : 
    2211             :         /* Appended. */
    2212           0 :         if (mas->last >= mas->max)
    2213             :                 goto b_end;
    2214             : 
    2215             :         /* Handle new range ending before old range ends */
    2216           0 :         piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
    2217           0 :         if (piv > mas->last) {
    2218           0 :                 if (piv == ULONG_MAX)
    2219           0 :                         mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
    2220             : 
    2221           0 :                 if (offset_end != slot)
    2222           0 :                         wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    2223             :                                                           offset_end);
    2224             : 
    2225           0 :                 b_node->slot[++b_end] = wr_mas->content;
    2226           0 :                 if (!wr_mas->content)
    2227           0 :                         b_node->gap[b_end] = piv - mas->last + 1;
    2228           0 :                 b_node->pivot[b_end] = piv;
    2229             :         }
    2230             : 
    2231           0 :         slot = offset_end + 1;
    2232           0 :         if (slot > wr_mas->node_end)
    2233             :                 goto b_end;
    2234             : 
    2235             :         /* Copy end data to the end of the node. */
    2236           0 :         mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
    2237           0 :         b_node->b_end--;
    2238           0 :         return;
    2239             : 
    2240             : b_end:
    2241           0 :         b_node->b_end = b_end;
    2242             : }
    2243             : 
    2244             : /*
    2245             :  * mas_prev_sibling() - Find the previous node with the same parent.
    2246             :  * @mas: the maple state
    2247             :  *
    2248             :  * Return: True if there is a previous sibling, false otherwise.
    2249             :  */
    2250           0 : static inline bool mas_prev_sibling(struct ma_state *mas)
    2251             : {
    2252           0 :         unsigned int p_slot = mte_parent_slot(mas->node);
    2253             : 
    2254           0 :         if (mte_is_root(mas->node))
    2255             :                 return false;
    2256             : 
    2257           0 :         if (!p_slot)
    2258             :                 return false;
    2259             : 
    2260           0 :         mas_ascend(mas);
    2261           0 :         mas->offset = p_slot - 1;
    2262           0 :         mas_descend(mas);
    2263           0 :         return true;
    2264             : }
    2265             : 
    2266             : /*
    2267             :  * mas_next_sibling() - Find the next node with the same parent.
    2268             :  * @mas: the maple state
    2269             :  *
    2270             :  * Return: true if there is a next sibling, false otherwise.
    2271             :  */
    2272           0 : static inline bool mas_next_sibling(struct ma_state *mas)
    2273             : {
    2274           0 :         MA_STATE(parent, mas->tree, mas->index, mas->last);
    2275             : 
    2276           0 :         if (mte_is_root(mas->node))
    2277             :                 return false;
    2278             : 
    2279           0 :         parent = *mas;
    2280           0 :         mas_ascend(&parent);
    2281           0 :         parent.offset = mte_parent_slot(mas->node) + 1;
    2282           0 :         if (parent.offset > mas_data_end(&parent))
    2283             :                 return false;
    2284             : 
    2285           0 :         *mas = parent;
    2286           0 :         mas_descend(mas);
    2287           0 :         return true;
    2288             : }
    2289             : 
    2290             : /*
    2291             :  * mte_node_or_node() - Return the encoded node or MAS_NONE.
    2292             :  * @enode: The encoded maple node.
    2293             :  *
    2294             :  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
    2295             :  *
    2296             :  * Return: @enode or MAS_NONE
    2297             :  */
    2298             : static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
    2299             : {
    2300           0 :         if (enode)
    2301             :                 return enode;
    2302             : 
    2303             :         return ma_enode_ptr(MAS_NONE);
    2304             : }
    2305             : 
    2306             : /*
    2307             :  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
    2308             :  * @wr_mas: The maple write state
    2309             :  *
    2310             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    2311             :  */
    2312           0 : static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
    2313             : {
    2314           0 :         struct ma_state *mas = wr_mas->mas;
    2315             :         unsigned char count, offset;
    2316             : 
    2317           0 :         if (unlikely(ma_is_dense(wr_mas->type))) {
    2318           0 :                 wr_mas->r_max = wr_mas->r_min = mas->index;
    2319           0 :                 mas->offset = mas->index = mas->min;
    2320           0 :                 return;
    2321             :         }
    2322             : 
    2323           0 :         wr_mas->node = mas_mn(wr_mas->mas);
    2324           0 :         wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
    2325           0 :         count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
    2326             :                                                wr_mas->pivots, mas->max);
    2327           0 :         offset = mas->offset;
    2328             : 
    2329           0 :         while (offset < count && mas->index > wr_mas->pivots[offset])
    2330           0 :                 offset++;
    2331             : 
    2332           0 :         wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
    2333           0 :         wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
    2334           0 :         wr_mas->offset_end = mas->offset = offset;
    2335             : }
    2336             : 
    2337             : /*
    2338             :  * mas_topiary_range() - Add a range of slots to the topiary.
    2339             :  * @mas: The maple state
    2340             :  * @destroy: The topiary to add the slots (usually destroy)
    2341             :  * @start: The starting slot inclusively
    2342             :  * @end: The end slot inclusively
    2343             :  */
    2344           0 : static inline void mas_topiary_range(struct ma_state *mas,
    2345             :         struct ma_topiary *destroy, unsigned char start, unsigned char end)
    2346             : {
    2347             :         void __rcu **slots;
    2348             :         unsigned char offset;
    2349             : 
    2350           0 :         MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
    2351           0 :         slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
    2352           0 :         for (offset = start; offset <= end; offset++) {
    2353           0 :                 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
    2354             : 
    2355           0 :                 if (mte_dead_node(enode))
    2356           0 :                         continue;
    2357             : 
    2358           0 :                 mat_add(destroy, enode);
    2359             :         }
    2360           0 : }
    2361             : 
    2362             : /*
    2363             :  * mast_topiary() - Add the portions of the tree to the removal list; either to
    2364             :  * be freed or discarded (destroy walk).
    2365             :  * @mast: The maple_subtree_state.
    2366             :  */
    2367           0 : static inline void mast_topiary(struct maple_subtree_state *mast)
    2368             : {
    2369           0 :         MA_WR_STATE(wr_mas, mast->orig_l, NULL);
    2370             :         unsigned char r_start, r_end;
    2371             :         unsigned char l_start, l_end;
    2372             :         void __rcu **l_slots, **r_slots;
    2373             : 
    2374           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2375           0 :         mast->orig_l->index = mast->orig_l->last;
    2376           0 :         mas_wr_node_walk(&wr_mas);
    2377           0 :         l_start = mast->orig_l->offset + 1;
    2378           0 :         l_end = mas_data_end(mast->orig_l);
    2379           0 :         r_start = 0;
    2380           0 :         r_end = mast->orig_r->offset;
    2381             : 
    2382           0 :         if (r_end)
    2383           0 :                 r_end--;
    2384             : 
    2385           0 :         l_slots = ma_slots(mas_mn(mast->orig_l),
    2386           0 :                            mte_node_type(mast->orig_l->node));
    2387             : 
    2388           0 :         r_slots = ma_slots(mas_mn(mast->orig_r),
    2389           0 :                            mte_node_type(mast->orig_r->node));
    2390             : 
    2391           0 :         if ((l_start < l_end) &&
    2392           0 :             mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
    2393           0 :                 l_start++;
    2394             :         }
    2395             : 
    2396           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
    2397           0 :                 if (r_end)
    2398           0 :                         r_end--;
    2399             :         }
    2400             : 
    2401           0 :         if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
    2402           0 :                 return;
    2403             : 
    2404             :         /* At the node where left and right sides meet, add the parts between */
    2405           0 :         if (mast->orig_l->node == mast->orig_r->node) {
    2406           0 :                 return mas_topiary_range(mast->orig_l, mast->destroy,
    2407             :                                              l_start, r_end);
    2408             :         }
    2409             : 
    2410             :         /* mast->orig_r is different and consumed. */
    2411           0 :         if (mte_is_leaf(mast->orig_r->node))
    2412             :                 return;
    2413             : 
    2414           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
    2415           0 :                 l_end--;
    2416             : 
    2417             : 
    2418           0 :         if (l_start <= l_end)
    2419           0 :                 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
    2420             : 
    2421           0 :         if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
    2422           0 :                 r_start++;
    2423             : 
    2424           0 :         if (r_start <= r_end)
    2425           0 :                 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
    2426             : }
    2427             : 
    2428             : /*
    2429             :  * mast_rebalance_next() - Rebalance against the next node
    2430             :  * @mast: The maple subtree state
    2431             :  * @old_r: The encoded maple node to the right (next node).
    2432             :  */
    2433           0 : static inline void mast_rebalance_next(struct maple_subtree_state *mast)
    2434             : {
    2435           0 :         unsigned char b_end = mast->bn->b_end;
    2436             : 
    2437           0 :         mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
    2438             :                    mast->bn, b_end);
    2439           0 :         mast->orig_r->last = mast->orig_r->max;
    2440           0 : }
    2441             : 
    2442             : /*
    2443             :  * mast_rebalance_prev() - Rebalance against the previous node
    2444             :  * @mast: The maple subtree state
    2445             :  * @old_l: The encoded maple node to the left (previous node)
    2446             :  */
    2447           0 : static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
    2448             : {
    2449           0 :         unsigned char end = mas_data_end(mast->orig_l) + 1;
    2450           0 :         unsigned char b_end = mast->bn->b_end;
    2451             : 
    2452           0 :         mab_shift_right(mast->bn, end);
    2453           0 :         mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
    2454           0 :         mast->l->min = mast->orig_l->min;
    2455           0 :         mast->orig_l->index = mast->orig_l->min;
    2456           0 :         mast->bn->b_end = end + b_end;
    2457           0 :         mast->l->offset += end;
    2458           0 : }
    2459             : 
    2460             : /*
    2461             :  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
    2462             :  * the node to the right.  Checking the nodes to the right then the left at each
    2463             :  * level upwards until root is reached.  Free and destroy as needed.
    2464             :  * Data is copied into the @mast->bn.
    2465             :  * @mast: The maple_subtree_state.
    2466             :  */
    2467             : static inline
    2468           0 : bool mast_spanning_rebalance(struct maple_subtree_state *mast)
    2469             : {
    2470           0 :         struct ma_state r_tmp = *mast->orig_r;
    2471           0 :         struct ma_state l_tmp = *mast->orig_l;
    2472           0 :         struct maple_enode *ancestor = NULL;
    2473             :         unsigned char start, end;
    2474           0 :         unsigned char depth = 0;
    2475             : 
    2476           0 :         r_tmp = *mast->orig_r;
    2477           0 :         l_tmp = *mast->orig_l;
    2478             :         do {
    2479           0 :                 mas_ascend(mast->orig_r);
    2480           0 :                 mas_ascend(mast->orig_l);
    2481           0 :                 depth++;
    2482           0 :                 if (!ancestor &&
    2483           0 :                     (mast->orig_r->node == mast->orig_l->node)) {
    2484           0 :                         ancestor = mast->orig_r->node;
    2485           0 :                         end = mast->orig_r->offset - 1;
    2486           0 :                         start = mast->orig_l->offset + 1;
    2487             :                 }
    2488             : 
    2489           0 :                 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
    2490           0 :                         if (!ancestor) {
    2491           0 :                                 ancestor = mast->orig_r->node;
    2492           0 :                                 start = 0;
    2493             :                         }
    2494             : 
    2495           0 :                         mast->orig_r->offset++;
    2496             :                         do {
    2497           0 :                                 mas_descend(mast->orig_r);
    2498           0 :                                 mast->orig_r->offset = 0;
    2499           0 :                                 depth--;
    2500           0 :                         } while (depth);
    2501             : 
    2502           0 :                         mast_rebalance_next(mast);
    2503             :                         do {
    2504           0 :                                 unsigned char l_off = 0;
    2505           0 :                                 struct maple_enode *child = r_tmp.node;
    2506             : 
    2507           0 :                                 mas_ascend(&r_tmp);
    2508           0 :                                 if (ancestor == r_tmp.node)
    2509           0 :                                         l_off = start;
    2510             : 
    2511           0 :                                 if (r_tmp.offset)
    2512           0 :                                         r_tmp.offset--;
    2513             : 
    2514           0 :                                 if (l_off < r_tmp.offset)
    2515           0 :                                         mas_topiary_range(&r_tmp, mast->destroy,
    2516             :                                                           l_off, r_tmp.offset);
    2517             : 
    2518           0 :                                 if (l_tmp.node != child)
    2519           0 :                                         mat_add(mast->free, child);
    2520             : 
    2521           0 :                         } while (r_tmp.node != ancestor);
    2522             : 
    2523           0 :                         *mast->orig_l = l_tmp;
    2524           0 :                         return true;
    2525             : 
    2526           0 :                 } else if (mast->orig_l->offset != 0) {
    2527           0 :                         if (!ancestor) {
    2528           0 :                                 ancestor = mast->orig_l->node;
    2529           0 :                                 end = mas_data_end(mast->orig_l);
    2530             :                         }
    2531             : 
    2532           0 :                         mast->orig_l->offset--;
    2533             :                         do {
    2534           0 :                                 mas_descend(mast->orig_l);
    2535           0 :                                 mast->orig_l->offset =
    2536           0 :                                         mas_data_end(mast->orig_l);
    2537           0 :                                 depth--;
    2538           0 :                         } while (depth);
    2539             : 
    2540           0 :                         mast_rebalance_prev(mast);
    2541             :                         do {
    2542             :                                 unsigned char r_off;
    2543           0 :                                 struct maple_enode *child = l_tmp.node;
    2544             : 
    2545           0 :                                 mas_ascend(&l_tmp);
    2546           0 :                                 if (ancestor == l_tmp.node)
    2547             :                                         r_off = end;
    2548             :                                 else
    2549           0 :                                         r_off = mas_data_end(&l_tmp);
    2550             : 
    2551           0 :                                 if (l_tmp.offset < r_off)
    2552           0 :                                         l_tmp.offset++;
    2553             : 
    2554           0 :                                 if (l_tmp.offset < r_off)
    2555           0 :                                         mas_topiary_range(&l_tmp, mast->destroy,
    2556             :                                                           l_tmp.offset, r_off);
    2557             : 
    2558           0 :                                 if (r_tmp.node != child)
    2559           0 :                                         mat_add(mast->free, child);
    2560             : 
    2561           0 :                         } while (l_tmp.node != ancestor);
    2562             : 
    2563           0 :                         *mast->orig_r = r_tmp;
    2564           0 :                         return true;
    2565             :                 }
    2566           0 :         } while (!mte_is_root(mast->orig_r->node));
    2567             : 
    2568           0 :         *mast->orig_r = r_tmp;
    2569           0 :         *mast->orig_l = l_tmp;
    2570           0 :         return false;
    2571             : }
    2572             : 
    2573             : /*
    2574             :  * mast_ascend_free() - Add current original maple state nodes to the free list
    2575             :  * and ascend.
    2576             :  * @mast: the maple subtree state.
    2577             :  *
    2578             :  * Ascend the original left and right sides and add the previous nodes to the
    2579             :  * free list.  Set the slots to point to the correct location in the new nodes.
    2580             :  */
    2581             : static inline void
    2582           0 : mast_ascend_free(struct maple_subtree_state *mast)
    2583             : {
    2584           0 :         MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
    2585           0 :         struct maple_enode *left = mast->orig_l->node;
    2586           0 :         struct maple_enode *right = mast->orig_r->node;
    2587             : 
    2588           0 :         mas_ascend(mast->orig_l);
    2589           0 :         mas_ascend(mast->orig_r);
    2590           0 :         mat_add(mast->free, left);
    2591             : 
    2592           0 :         if (left != right)
    2593           0 :                 mat_add(mast->free, right);
    2594             : 
    2595           0 :         mast->orig_r->offset = 0;
    2596           0 :         mast->orig_r->index = mast->r->max;
    2597             :         /* last should be larger than or equal to index */
    2598           0 :         if (mast->orig_r->last < mast->orig_r->index)
    2599           0 :                 mast->orig_r->last = mast->orig_r->index;
    2600             :         /*
    2601             :          * The node may not contain the value so set slot to ensure all
    2602             :          * of the nodes contents are freed or destroyed.
    2603             :          */
    2604           0 :         wr_mas.type = mte_node_type(mast->orig_r->node);
    2605           0 :         mas_wr_node_walk(&wr_mas);
    2606             :         /* Set up the left side of things */
    2607           0 :         mast->orig_l->offset = 0;
    2608           0 :         mast->orig_l->index = mast->l->min;
    2609           0 :         wr_mas.mas = mast->orig_l;
    2610           0 :         wr_mas.type = mte_node_type(mast->orig_l->node);
    2611           0 :         mas_wr_node_walk(&wr_mas);
    2612             : 
    2613           0 :         mast->bn->type = wr_mas.type;
    2614           0 : }
    2615             : 
    2616             : /*
    2617             :  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
    2618             :  * @mas: the maple state with the allocations.
    2619             :  * @b_node: the maple_big_node with the type encoding.
    2620             :  *
    2621             :  * Use the node type from the maple_big_node to allocate a new node from the
    2622             :  * ma_state.  This function exists mainly for code readability.
    2623             :  *
    2624             :  * Return: A new maple encoded node
    2625             :  */
    2626             : static inline struct maple_enode
    2627             : *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
    2628             : {
    2629           0 :         return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
    2630             : }
    2631             : 
    2632             : /*
    2633             :  * mas_mab_to_node() - Set up right and middle nodes
    2634             :  *
    2635             :  * @mas: the maple state that contains the allocations.
    2636             :  * @b_node: the node which contains the data.
    2637             :  * @left: The pointer which will have the left node
    2638             :  * @right: The pointer which may have the right node
    2639             :  * @middle: the pointer which may have the middle node (rare)
    2640             :  * @mid_split: the split location for the middle node
    2641             :  *
    2642             :  * Return: the split of left.
    2643             :  */
    2644           0 : static inline unsigned char mas_mab_to_node(struct ma_state *mas,
    2645             :         struct maple_big_node *b_node, struct maple_enode **left,
    2646             :         struct maple_enode **right, struct maple_enode **middle,
    2647             :         unsigned char *mid_split, unsigned long min)
    2648             : {
    2649           0 :         unsigned char split = 0;
    2650           0 :         unsigned char slot_count = mt_slots[b_node->type];
    2651             : 
    2652           0 :         *left = mas_new_ma_node(mas, b_node);
    2653           0 :         *right = NULL;
    2654           0 :         *middle = NULL;
    2655           0 :         *mid_split = 0;
    2656             : 
    2657           0 :         if (b_node->b_end < slot_count) {
    2658             :                 split = b_node->b_end;
    2659             :         } else {
    2660           0 :                 split = mab_calc_split(mas, b_node, mid_split, min);
    2661           0 :                 *right = mas_new_ma_node(mas, b_node);
    2662             :         }
    2663             : 
    2664           0 :         if (*mid_split)
    2665           0 :                 *middle = mas_new_ma_node(mas, b_node);
    2666             : 
    2667           0 :         return split;
    2668             : 
    2669             : }
    2670             : 
    2671             : /*
    2672             :  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
    2673             :  * pointer.
    2674             :  * @b_node - the big node to add the entry
    2675             :  * @mas - the maple state to get the pivot (mas->max)
    2676             :  * @entry - the entry to add, if NULL nothing happens.
    2677             :  */
    2678           0 : static inline void mab_set_b_end(struct maple_big_node *b_node,
    2679             :                                  struct ma_state *mas,
    2680             :                                  void *entry)
    2681             : {
    2682           0 :         if (!entry)
    2683             :                 return;
    2684             : 
    2685           0 :         b_node->slot[b_node->b_end] = entry;
    2686           0 :         if (mt_is_alloc(mas->tree))
    2687           0 :                 b_node->gap[b_node->b_end] = mas_max_gap(mas);
    2688           0 :         b_node->pivot[b_node->b_end++] = mas->max;
    2689             : }
    2690             : 
    2691             : /*
    2692             :  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
    2693             :  * of @mas->node to either @left or @right, depending on @slot and @split
    2694             :  *
    2695             :  * @mas - the maple state with the node that needs a parent
    2696             :  * @left - possible parent 1
    2697             :  * @right - possible parent 2
    2698             :  * @slot - the slot the mas->node was placed
    2699             :  * @split - the split location between @left and @right
    2700             :  */
    2701           0 : static inline void mas_set_split_parent(struct ma_state *mas,
    2702             :                                         struct maple_enode *left,
    2703             :                                         struct maple_enode *right,
    2704             :                                         unsigned char *slot, unsigned char split)
    2705             : {
    2706           0 :         if (mas_is_none(mas))
    2707             :                 return;
    2708             : 
    2709           0 :         if ((*slot) <= split)
    2710           0 :                 mte_set_parent(mas->node, left, *slot);
    2711           0 :         else if (right)
    2712           0 :                 mte_set_parent(mas->node, right, (*slot) - split - 1);
    2713             : 
    2714           0 :         (*slot)++;
    2715             : }
    2716             : 
    2717             : /*
    2718             :  * mte_mid_split_check() - Check if the next node passes the mid-split
    2719             :  * @**l: Pointer to left encoded maple node.
    2720             :  * @**m: Pointer to middle encoded maple node.
    2721             :  * @**r: Pointer to right encoded maple node.
    2722             :  * @slot: The offset
    2723             :  * @*split: The split location.
    2724             :  * @mid_split: The middle split.
    2725             :  */
    2726             : static inline void mte_mid_split_check(struct maple_enode **l,
    2727             :                                        struct maple_enode **r,
    2728             :                                        struct maple_enode *right,
    2729             :                                        unsigned char slot,
    2730             :                                        unsigned char *split,
    2731             :                                        unsigned char mid_split)
    2732             : {
    2733           0 :         if (*r == right)
    2734             :                 return;
    2735             : 
    2736           0 :         if (slot < mid_split)
    2737             :                 return;
    2738             : 
    2739           0 :         *l = *r;
    2740           0 :         *r = right;
    2741           0 :         *split = mid_split;
    2742             : }
    2743             : 
    2744             : /*
    2745             :  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
    2746             :  * is taken from @mast->l.
    2747             :  * @mast - the maple subtree state
    2748             :  * @left - the left node
    2749             :  * @right - the right node
    2750             :  * @split - the split location.
    2751             :  */
    2752           0 : static inline void mast_set_split_parents(struct maple_subtree_state *mast,
    2753             :                                           struct maple_enode *left,
    2754             :                                           struct maple_enode *middle,
    2755             :                                           struct maple_enode *right,
    2756             :                                           unsigned char split,
    2757             :                                           unsigned char mid_split)
    2758             : {
    2759             :         unsigned char slot;
    2760           0 :         struct maple_enode *l = left;
    2761           0 :         struct maple_enode *r = right;
    2762             : 
    2763           0 :         if (mas_is_none(mast->l))
    2764           0 :                 return;
    2765             : 
    2766           0 :         if (middle)
    2767           0 :                 r = middle;
    2768             : 
    2769           0 :         slot = mast->l->offset;
    2770             : 
    2771           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2772           0 :         mas_set_split_parent(mast->l, l, r, &slot, split);
    2773             : 
    2774           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2775           0 :         mas_set_split_parent(mast->m, l, r, &slot, split);
    2776             : 
    2777           0 :         mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
    2778           0 :         mas_set_split_parent(mast->r, l, r, &slot, split);
    2779             : }
    2780             : 
    2781             : /*
    2782             :  * mas_wmb_replace() - Write memory barrier and replace
    2783             :  * @mas: The maple state
    2784             :  * @free: the maple topiary list of nodes to free
    2785             :  * @destroy: The maple topiary list of nodes to destroy (walk and free)
    2786             :  *
    2787             :  * Updates gap as necessary.
    2788             :  */
    2789           0 : static inline void mas_wmb_replace(struct ma_state *mas,
    2790             :                                    struct ma_topiary *free,
    2791             :                                    struct ma_topiary *destroy)
    2792             : {
    2793             :         /* All nodes must see old data as dead prior to replacing that data */
    2794           0 :         smp_wmb(); /* Needed for RCU */
    2795             : 
    2796             :         /* Insert the new data in the tree */
    2797           0 :         mas_replace(mas, true);
    2798             : 
    2799           0 :         if (!mte_is_leaf(mas->node))
    2800           0 :                 mas_descend_adopt(mas);
    2801             : 
    2802           0 :         mas_mat_free(mas, free);
    2803             : 
    2804           0 :         if (destroy)
    2805             :                 mas_mat_destroy(mas, destroy);
    2806             : 
    2807           0 :         if (mte_is_leaf(mas->node))
    2808             :                 return;
    2809             : 
    2810           0 :         mas_update_gap(mas);
    2811             : }
    2812             : 
    2813             : /*
    2814             :  * mast_new_root() - Set a new tree root during subtree creation
    2815             :  * @mast: The maple subtree state
    2816             :  * @mas: The maple state
    2817             :  */
    2818           0 : static inline void mast_new_root(struct maple_subtree_state *mast,
    2819             :                                  struct ma_state *mas)
    2820             : {
    2821           0 :         mas_mn(mast->l)->parent =
    2822           0 :                 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
    2823           0 :         if (!mte_dead_node(mast->orig_l->node) &&
    2824           0 :             !mte_is_root(mast->orig_l->node)) {
    2825             :                 do {
    2826           0 :                         mast_ascend_free(mast);
    2827           0 :                         mast_topiary(mast);
    2828           0 :                 } while (!mte_is_root(mast->orig_l->node));
    2829             :         }
    2830           0 :         if ((mast->orig_l->node != mas->node) &&
    2831           0 :                    (mast->l->depth > mas_mt_height(mas))) {
    2832           0 :                 mat_add(mast->free, mas->node);
    2833             :         }
    2834           0 : }
    2835             : 
    2836             : /*
    2837             :  * mast_cp_to_nodes() - Copy data out to nodes.
    2838             :  * @mast: The maple subtree state
    2839             :  * @left: The left encoded maple node
    2840             :  * @middle: The middle encoded maple node
    2841             :  * @right: The right encoded maple node
    2842             :  * @split: The location to split between left and (middle ? middle : right)
    2843             :  * @mid_split: The location to split between middle and right.
    2844             :  */
    2845           0 : static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
    2846             :         struct maple_enode *left, struct maple_enode *middle,
    2847             :         struct maple_enode *right, unsigned char split, unsigned char mid_split)
    2848             : {
    2849           0 :         bool new_lmax = true;
    2850             : 
    2851           0 :         mast->l->node = mte_node_or_none(left);
    2852           0 :         mast->m->node = mte_node_or_none(middle);
    2853           0 :         mast->r->node = mte_node_or_none(right);
    2854             : 
    2855           0 :         mast->l->min = mast->orig_l->min;
    2856           0 :         if (split == mast->bn->b_end) {
    2857           0 :                 mast->l->max = mast->orig_r->max;
    2858           0 :                 new_lmax = false;
    2859             :         }
    2860             : 
    2861           0 :         mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
    2862             : 
    2863           0 :         if (middle) {
    2864           0 :                 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
    2865           0 :                 mast->m->min = mast->bn->pivot[split] + 1;
    2866           0 :                 split = mid_split;
    2867             :         }
    2868             : 
    2869           0 :         mast->r->max = mast->orig_r->max;
    2870           0 :         if (right) {
    2871           0 :                 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
    2872           0 :                 mast->r->min = mast->bn->pivot[split] + 1;
    2873             :         }
    2874           0 : }
    2875             : 
    2876             : /*
    2877             :  * mast_combine_cp_left - Copy in the original left side of the tree into the
    2878             :  * combined data set in the maple subtree state big node.
    2879             :  * @mast: The maple subtree state
    2880             :  */
    2881             : static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
    2882             : {
    2883           0 :         unsigned char l_slot = mast->orig_l->offset;
    2884             : 
    2885           0 :         if (!l_slot)
    2886             :                 return;
    2887             : 
    2888           0 :         mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
    2889             : }
    2890             : 
    2891             : /*
    2892             :  * mast_combine_cp_right: Copy in the original right side of the tree into the
    2893             :  * combined data set in the maple subtree state big node.
    2894             :  * @mast: The maple subtree state
    2895             :  */
    2896           0 : static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
    2897             : {
    2898           0 :         if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
    2899             :                 return;
    2900             : 
    2901           0 :         mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
    2902           0 :                    mt_slot_count(mast->orig_r->node), mast->bn,
    2903             :                    mast->bn->b_end);
    2904           0 :         mast->orig_r->last = mast->orig_r->max;
    2905             : }
    2906             : 
    2907             : /*
    2908             :  * mast_sufficient: Check if the maple subtree state has enough data in the big
    2909             :  * node to create at least one sufficient node
    2910             :  * @mast: the maple subtree state
    2911             :  */
    2912             : static inline bool mast_sufficient(struct maple_subtree_state *mast)
    2913             : {
    2914           0 :         if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
    2915             :                 return true;
    2916             : 
    2917             :         return false;
    2918             : }
    2919             : 
    2920             : /*
    2921             :  * mast_overflow: Check if there is too much data in the subtree state for a
    2922             :  * single node.
    2923             :  * @mast: The maple subtree state
    2924             :  */
    2925             : static inline bool mast_overflow(struct maple_subtree_state *mast)
    2926             : {
    2927           0 :         if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
    2928             :                 return true;
    2929             : 
    2930             :         return false;
    2931             : }
    2932             : 
    2933           0 : static inline void *mtree_range_walk(struct ma_state *mas)
    2934             : {
    2935             :         unsigned long *pivots;
    2936             :         unsigned char offset;
    2937             :         struct maple_node *node;
    2938             :         struct maple_enode *next, *last;
    2939             :         enum maple_type type;
    2940             :         void __rcu **slots;
    2941             :         unsigned char end;
    2942             :         unsigned long max, min;
    2943             :         unsigned long prev_max, prev_min;
    2944             : 
    2945           0 :         next = mas->node;
    2946           0 :         min = mas->min;
    2947           0 :         max = mas->max;
    2948             :         do {
    2949           0 :                 offset = 0;
    2950           0 :                 last = next;
    2951           0 :                 node = mte_to_node(next);
    2952           0 :                 type = mte_node_type(next);
    2953           0 :                 pivots = ma_pivots(node, type);
    2954           0 :                 end = ma_data_end(node, type, pivots, max);
    2955           0 :                 if (unlikely(ma_dead_node(node)))
    2956             :                         goto dead_node;
    2957             : 
    2958           0 :                 if (pivots[offset] >= mas->index) {
    2959             :                         prev_max = max;
    2960             :                         prev_min = min;
    2961             :                         max = pivots[offset];
    2962             :                         goto next;
    2963             :                 }
    2964             : 
    2965             :                 do {
    2966           0 :                         offset++;
    2967           0 :                 } while ((offset < end) && (pivots[offset] < mas->index));
    2968             : 
    2969           0 :                 prev_min = min;
    2970           0 :                 min = pivots[offset - 1] + 1;
    2971           0 :                 prev_max = max;
    2972           0 :                 if (likely(offset < end && pivots[offset]))
    2973           0 :                         max = pivots[offset];
    2974             : 
    2975             : next:
    2976           0 :                 slots = ma_slots(node, type);
    2977           0 :                 next = mt_slot(mas->tree, slots, offset);
    2978           0 :                 if (unlikely(ma_dead_node(node)))
    2979             :                         goto dead_node;
    2980           0 :         } while (!ma_is_leaf(type));
    2981             : 
    2982           0 :         mas->offset = offset;
    2983           0 :         mas->index = min;
    2984           0 :         mas->last = max;
    2985           0 :         mas->min = prev_min;
    2986           0 :         mas->max = prev_max;
    2987           0 :         mas->node = last;
    2988           0 :         return (void *)next;
    2989             : 
    2990             : dead_node:
    2991           0 :         mas_reset(mas);
    2992           0 :         return NULL;
    2993             : }
    2994             : 
    2995             : /*
    2996             :  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
    2997             :  * @mas: The starting maple state
    2998             :  * @mast: The maple_subtree_state, keeps track of 4 maple states.
    2999             :  * @count: The estimated count of iterations needed.
    3000             :  *
    3001             :  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
    3002             :  * is hit.  First @b_node is split into two entries which are inserted into the
    3003             :  * next iteration of the loop.  @b_node is returned populated with the final
    3004             :  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
    3005             :  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
    3006             :  * to account of what has been copied into the new sub-tree.  The update of
    3007             :  * orig_l_mas->last is used in mas_consume to find the slots that will need to
    3008             :  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
    3009             :  * the new sub-tree in case the sub-tree becomes the full tree.
    3010             :  *
    3011             :  * Return: the number of elements in b_node during the last loop.
    3012             :  */
    3013           0 : static int mas_spanning_rebalance(struct ma_state *mas,
    3014             :                 struct maple_subtree_state *mast, unsigned char count)
    3015             : {
    3016             :         unsigned char split, mid_split;
    3017           0 :         unsigned char slot = 0;
    3018           0 :         struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
    3019             : 
    3020           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->index);
    3021           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3022           0 :         MA_STATE(m_mas, mas->tree, mas->index, mas->index);
    3023           0 :         MA_TOPIARY(free, mas->tree);
    3024           0 :         MA_TOPIARY(destroy, mas->tree);
    3025             : 
    3026             :         /*
    3027             :          * The tree needs to be rebalanced and leaves need to be kept at the same level.
    3028             :          * Rebalancing is done by use of the ``struct maple_topiary``.
    3029             :          */
    3030           0 :         mast->l = &l_mas;
    3031           0 :         mast->m = &m_mas;
    3032           0 :         mast->r = &r_mas;
    3033           0 :         mast->free = &free;
    3034           0 :         mast->destroy = &destroy;
    3035           0 :         l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
    3036             : 
    3037             :         /* Check if this is not root and has sufficient data.  */
    3038           0 :         if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
    3039           0 :             unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
    3040           0 :                 mast_spanning_rebalance(mast);
    3041             : 
    3042           0 :         mast->orig_l->depth = 0;
    3043             : 
    3044             :         /*
    3045             :          * Each level of the tree is examined and balanced, pushing data to the left or
    3046             :          * right, or rebalancing against left or right nodes is employed to avoid
    3047             :          * rippling up the tree to limit the amount of churn.  Once a new sub-section of
    3048             :          * the tree is created, there may be a mix of new and old nodes.  The old nodes
    3049             :          * will have the incorrect parent pointers and currently be in two trees: the
    3050             :          * original tree and the partially new tree.  To remedy the parent pointers in
    3051             :          * the old tree, the new data is swapped into the active tree and a walk down
    3052             :          * the tree is performed and the parent pointers are updated.
    3053             :          * See mas_descend_adopt() for more information..
    3054             :          */
    3055           0 :         while (count--) {
    3056           0 :                 mast->bn->b_end--;
    3057           0 :                 mast->bn->type = mte_node_type(mast->orig_l->node);
    3058           0 :                 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
    3059           0 :                                         &mid_split, mast->orig_l->min);
    3060           0 :                 mast_set_split_parents(mast, left, middle, right, split,
    3061             :                                        mid_split);
    3062           0 :                 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
    3063             : 
    3064             :                 /*
    3065             :                  * Copy data from next level in the tree to mast->bn from next
    3066             :                  * iteration
    3067             :                  */
    3068           0 :                 memset(mast->bn, 0, sizeof(struct maple_big_node));
    3069           0 :                 mast->bn->type = mte_node_type(left);
    3070           0 :                 mast->orig_l->depth++;
    3071             : 
    3072             :                 /* Root already stored in l->node. */
    3073           0 :                 if (mas_is_root_limits(mast->l))
    3074             :                         goto new_root;
    3075             : 
    3076           0 :                 mast_ascend_free(mast);
    3077           0 :                 mast_combine_cp_left(mast);
    3078           0 :                 l_mas.offset = mast->bn->b_end;
    3079           0 :                 mab_set_b_end(mast->bn, &l_mas, left);
    3080           0 :                 mab_set_b_end(mast->bn, &m_mas, middle);
    3081           0 :                 mab_set_b_end(mast->bn, &r_mas, right);
    3082             : 
    3083             :                 /* Copy anything necessary out of the right node. */
    3084           0 :                 mast_combine_cp_right(mast);
    3085           0 :                 mast_topiary(mast);
    3086           0 :                 mast->orig_l->last = mast->orig_l->max;
    3087             : 
    3088           0 :                 if (mast_sufficient(mast))
    3089           0 :                         continue;
    3090             : 
    3091           0 :                 if (mast_overflow(mast))
    3092           0 :                         continue;
    3093             : 
    3094             :                 /* May be a new root stored in mast->bn */
    3095           0 :                 if (mas_is_root_limits(mast->orig_l))
    3096             :                         break;
    3097             : 
    3098           0 :                 mast_spanning_rebalance(mast);
    3099             : 
    3100             :                 /* rebalancing from other nodes may require another loop. */
    3101           0 :                 if (!count)
    3102           0 :                         count++;
    3103             :         }
    3104             : 
    3105           0 :         l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
    3106           0 :                                 mte_node_type(mast->orig_l->node));
    3107           0 :         mast->orig_l->depth++;
    3108           0 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
    3109           0 :         mte_set_parent(left, l_mas.node, slot);
    3110           0 :         if (middle)
    3111           0 :                 mte_set_parent(middle, l_mas.node, ++slot);
    3112             : 
    3113           0 :         if (right)
    3114           0 :                 mte_set_parent(right, l_mas.node, ++slot);
    3115             : 
    3116           0 :         if (mas_is_root_limits(mast->l)) {
    3117             : new_root:
    3118           0 :                 mast_new_root(mast, mas);
    3119             :         } else {
    3120           0 :                 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
    3121             :         }
    3122             : 
    3123           0 :         if (!mte_dead_node(mast->orig_l->node))
    3124           0 :                 mat_add(&free, mast->orig_l->node);
    3125             : 
    3126           0 :         mas->depth = mast->orig_l->depth;
    3127           0 :         *mast->orig_l = l_mas;
    3128           0 :         mte_set_node_dead(mas->node);
    3129             : 
    3130             :         /* Set up mas for insertion. */
    3131           0 :         mast->orig_l->depth = mas->depth;
    3132           0 :         mast->orig_l->alloc = mas->alloc;
    3133           0 :         *mas = *mast->orig_l;
    3134           0 :         mas_wmb_replace(mas, &free, &destroy);
    3135           0 :         mtree_range_walk(mas);
    3136           0 :         return mast->bn->b_end;
    3137             : }
    3138             : 
    3139             : /*
    3140             :  * mas_rebalance() - Rebalance a given node.
    3141             :  * @mas: The maple state
    3142             :  * @b_node: The big maple node.
    3143             :  *
    3144             :  * Rebalance two nodes into a single node or two new nodes that are sufficient.
    3145             :  * Continue upwards until tree is sufficient.
    3146             :  *
    3147             :  * Return: the number of elements in b_node during the last loop.
    3148             :  */
    3149           0 : static inline int mas_rebalance(struct ma_state *mas,
    3150             :                                 struct maple_big_node *b_node)
    3151             : {
    3152           0 :         char empty_count = mas_mt_height(mas);
    3153             :         struct maple_subtree_state mast;
    3154           0 :         unsigned char shift, b_end = ++b_node->b_end;
    3155             : 
    3156           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3157           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3158             : 
    3159           0 :         trace_ma_op(__func__, mas);
    3160             : 
    3161             :         /*
    3162             :          * Rebalancing occurs if a node is insufficient.  Data is rebalanced
    3163             :          * against the node to the right if it exists, otherwise the node to the
    3164             :          * left of this node is rebalanced against this node.  If rebalancing
    3165             :          * causes just one node to be produced instead of two, then the parent
    3166             :          * is also examined and rebalanced if it is insufficient.  Every level
    3167             :          * tries to combine the data in the same way.  If one node contains the
    3168             :          * entire range of the tree, then that node is used as a new root node.
    3169             :          */
    3170           0 :         mas_node_count(mas, 1 + empty_count * 3);
    3171           0 :         if (mas_is_err(mas))
    3172             :                 return 0;
    3173             : 
    3174           0 :         mast.orig_l = &l_mas;
    3175           0 :         mast.orig_r = &r_mas;
    3176           0 :         mast.bn = b_node;
    3177           0 :         mast.bn->type = mte_node_type(mas->node);
    3178             : 
    3179           0 :         l_mas = r_mas = *mas;
    3180             : 
    3181           0 :         if (mas_next_sibling(&r_mas)) {
    3182           0 :                 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
    3183           0 :                 r_mas.last = r_mas.index = r_mas.max;
    3184             :         } else {
    3185           0 :                 mas_prev_sibling(&l_mas);
    3186           0 :                 shift = mas_data_end(&l_mas) + 1;
    3187           0 :                 mab_shift_right(b_node, shift);
    3188           0 :                 mas->offset += shift;
    3189           0 :                 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
    3190           0 :                 b_node->b_end = shift + b_end;
    3191           0 :                 l_mas.index = l_mas.last = l_mas.min;
    3192             :         }
    3193             : 
    3194           0 :         return mas_spanning_rebalance(mas, &mast, empty_count);
    3195             : }
    3196             : 
    3197             : /*
    3198             :  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
    3199             :  * state.
    3200             :  * @mas: The maple state
    3201             :  * @end: The end of the left-most node.
    3202             :  *
    3203             :  * During a mass-insert event (such as forking), it may be necessary to
    3204             :  * rebalance the left-most node when it is not sufficient.
    3205             :  */
    3206           0 : static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
    3207             : {
    3208           0 :         enum maple_type mt = mte_node_type(mas->node);
    3209             :         struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
    3210             :         struct maple_enode *eparent;
    3211           0 :         unsigned char offset, tmp, split = mt_slots[mt] / 2;
    3212             :         void __rcu **l_slots, **slots;
    3213             :         unsigned long *l_pivs, *pivs, gap;
    3214           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    3215             : 
    3216             :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3217             : 
    3218           0 :         l_mas = *mas;
    3219           0 :         mas_prev_sibling(&l_mas);
    3220             : 
    3221             :         /* set up node. */
    3222           0 :         if (in_rcu) {
    3223             :                 /* Allocate for both left and right as well as parent. */
    3224           0 :                 mas_node_count(mas, 3);
    3225           0 :                 if (mas_is_err(mas))
    3226           0 :                         return;
    3227             : 
    3228           0 :                 newnode = mas_pop_node(mas);
    3229             :         } else {
    3230             :                 newnode = &reuse;
    3231             :         }
    3232             : 
    3233           0 :         node = mas_mn(mas);
    3234           0 :         newnode->parent = node->parent;
    3235           0 :         slots = ma_slots(newnode, mt);
    3236           0 :         pivs = ma_pivots(newnode, mt);
    3237           0 :         left = mas_mn(&l_mas);
    3238           0 :         l_slots = ma_slots(left, mt);
    3239           0 :         l_pivs = ma_pivots(left, mt);
    3240           0 :         if (!l_slots[split])
    3241           0 :                 split++;
    3242           0 :         tmp = mas_data_end(&l_mas) - split;
    3243             : 
    3244           0 :         memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
    3245           0 :         memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
    3246           0 :         pivs[tmp] = l_mas.max;
    3247           0 :         memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
    3248           0 :         memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
    3249             : 
    3250           0 :         l_mas.max = l_pivs[split];
    3251           0 :         mas->min = l_mas.max + 1;
    3252           0 :         eparent = mt_mk_node(mte_parent(l_mas.node),
    3253             :                              mas_parent_enum(&l_mas, l_mas.node));
    3254           0 :         tmp += end;
    3255           0 :         if (!in_rcu) {
    3256           0 :                 unsigned char max_p = mt_pivots[mt];
    3257           0 :                 unsigned char max_s = mt_slots[mt];
    3258             : 
    3259           0 :                 if (tmp < max_p)
    3260           0 :                         memset(pivs + tmp, 0,
    3261           0 :                                sizeof(unsigned long) * (max_p - tmp));
    3262             : 
    3263           0 :                 if (tmp < mt_slots[mt])
    3264           0 :                         memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3265             : 
    3266           0 :                 memcpy(node, newnode, sizeof(struct maple_node));
    3267           0 :                 ma_set_meta(node, mt, 0, tmp - 1);
    3268           0 :                 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
    3269             :                               l_pivs[split]);
    3270             : 
    3271             :                 /* Remove data from l_pivs. */
    3272           0 :                 tmp = split + 1;
    3273           0 :                 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
    3274           0 :                 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
    3275           0 :                 ma_set_meta(left, mt, 0, split);
    3276             : 
    3277             :                 goto done;
    3278             :         }
    3279             : 
    3280             :         /* RCU requires replacing both l_mas, mas, and parent. */
    3281           0 :         mas->node = mt_mk_node(newnode, mt);
    3282           0 :         ma_set_meta(newnode, mt, 0, tmp);
    3283             : 
    3284           0 :         new_left = mas_pop_node(mas);
    3285           0 :         new_left->parent = left->parent;
    3286           0 :         mt = mte_node_type(l_mas.node);
    3287           0 :         slots = ma_slots(new_left, mt);
    3288           0 :         pivs = ma_pivots(new_left, mt);
    3289           0 :         memcpy(slots, l_slots, sizeof(void *) * split);
    3290           0 :         memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
    3291           0 :         ma_set_meta(new_left, mt, 0, split);
    3292           0 :         l_mas.node = mt_mk_node(new_left, mt);
    3293             : 
    3294             :         /* replace parent. */
    3295           0 :         offset = mte_parent_slot(mas->node);
    3296           0 :         mt = mas_parent_enum(&l_mas, l_mas.node);
    3297           0 :         parent = mas_pop_node(mas);
    3298           0 :         slots = ma_slots(parent, mt);
    3299           0 :         pivs = ma_pivots(parent, mt);
    3300           0 :         memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
    3301           0 :         rcu_assign_pointer(slots[offset], mas->node);
    3302           0 :         rcu_assign_pointer(slots[offset - 1], l_mas.node);
    3303           0 :         pivs[offset - 1] = l_mas.max;
    3304           0 :         eparent = mt_mk_node(parent, mt);
    3305             : done:
    3306           0 :         gap = mas_leaf_max_gap(mas);
    3307           0 :         mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
    3308           0 :         gap = mas_leaf_max_gap(&l_mas);
    3309           0 :         mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
    3310           0 :         mas_ascend(mas);
    3311             : 
    3312           0 :         if (in_rcu)
    3313           0 :                 mas_replace(mas, false);
    3314             : 
    3315           0 :         mas_update_gap(mas);
    3316             : }
    3317             : 
    3318             : /*
    3319             :  * mas_split_final_node() - Split the final node in a subtree operation.
    3320             :  * @mast: the maple subtree state
    3321             :  * @mas: The maple state
    3322             :  * @height: The height of the tree in case it's a new root.
    3323             :  */
    3324           0 : static inline bool mas_split_final_node(struct maple_subtree_state *mast,
    3325             :                                         struct ma_state *mas, int height)
    3326             : {
    3327             :         struct maple_enode *ancestor;
    3328             : 
    3329           0 :         if (mte_is_root(mas->node)) {
    3330           0 :                 if (mt_is_alloc(mas->tree))
    3331           0 :                         mast->bn->type = maple_arange_64;
    3332             :                 else
    3333           0 :                         mast->bn->type = maple_range_64;
    3334           0 :                 mas->depth = height;
    3335             :         }
    3336             :         /*
    3337             :          * Only a single node is used here, could be root.
    3338             :          * The Big_node data should just fit in a single node.
    3339             :          */
    3340           0 :         ancestor = mas_new_ma_node(mas, mast->bn);
    3341           0 :         mte_set_parent(mast->l->node, ancestor, mast->l->offset);
    3342           0 :         mte_set_parent(mast->r->node, ancestor, mast->r->offset);
    3343           0 :         mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
    3344             : 
    3345           0 :         mast->l->node = ancestor;
    3346           0 :         mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
    3347           0 :         mas->offset = mast->bn->b_end - 1;
    3348           0 :         return true;
    3349             : }
    3350             : 
    3351             : /*
    3352             :  * mast_fill_bnode() - Copy data into the big node in the subtree state
    3353             :  * @mast: The maple subtree state
    3354             :  * @mas: the maple state
    3355             :  * @skip: The number of entries to skip for new nodes insertion.
    3356             :  */
    3357           0 : static inline void mast_fill_bnode(struct maple_subtree_state *mast,
    3358             :                                          struct ma_state *mas,
    3359             :                                          unsigned char skip)
    3360             : {
    3361           0 :         bool cp = true;
    3362           0 :         struct maple_enode *old = mas->node;
    3363             :         unsigned char split;
    3364             : 
    3365           0 :         memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
    3366           0 :         memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
    3367           0 :         memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
    3368           0 :         mast->bn->b_end = 0;
    3369             : 
    3370           0 :         if (mte_is_root(mas->node)) {
    3371             :                 cp = false;
    3372             :         } else {
    3373           0 :                 mas_ascend(mas);
    3374           0 :                 mat_add(mast->free, old);
    3375           0 :                 mas->offset = mte_parent_slot(mas->node);
    3376             :         }
    3377             : 
    3378           0 :         if (cp && mast->l->offset)
    3379           0 :                 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
    3380             : 
    3381           0 :         split = mast->bn->b_end;
    3382           0 :         mab_set_b_end(mast->bn, mast->l, mast->l->node);
    3383           0 :         mast->r->offset = mast->bn->b_end;
    3384           0 :         mab_set_b_end(mast->bn, mast->r, mast->r->node);
    3385           0 :         if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
    3386           0 :                 cp = false;
    3387             : 
    3388           0 :         if (cp)
    3389           0 :                 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
    3390             :                            mast->bn, mast->bn->b_end);
    3391             : 
    3392           0 :         mast->bn->b_end--;
    3393           0 :         mast->bn->type = mte_node_type(mas->node);
    3394           0 : }
    3395             : 
    3396             : /*
    3397             :  * mast_split_data() - Split the data in the subtree state big node into regular
    3398             :  * nodes.
    3399             :  * @mast: The maple subtree state
    3400             :  * @mas: The maple state
    3401             :  * @split: The location to split the big node
    3402             :  */
    3403           0 : static inline void mast_split_data(struct maple_subtree_state *mast,
    3404             :            struct ma_state *mas, unsigned char split)
    3405             : {
    3406             :         unsigned char p_slot;
    3407             : 
    3408           0 :         mab_mas_cp(mast->bn, 0, split, mast->l, true);
    3409           0 :         mte_set_pivot(mast->r->node, 0, mast->r->max);
    3410           0 :         mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
    3411           0 :         mast->l->offset = mte_parent_slot(mas->node);
    3412           0 :         mast->l->max = mast->bn->pivot[split];
    3413           0 :         mast->r->min = mast->l->max + 1;
    3414           0 :         if (mte_is_leaf(mas->node))
    3415           0 :                 return;
    3416             : 
    3417           0 :         p_slot = mast->orig_l->offset;
    3418           0 :         mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
    3419             :                              &p_slot, split);
    3420           0 :         mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
    3421             :                              &p_slot, split);
    3422             : }
    3423             : 
    3424             : /*
    3425             :  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
    3426             :  * data to the right or left node if there is room.
    3427             :  * @mas: The maple state
    3428             :  * @height: The current height of the maple state
    3429             :  * @mast: The maple subtree state
    3430             :  * @left: Push left or not.
    3431             :  *
    3432             :  * Keeping the height of the tree low means faster lookups.
    3433             :  *
    3434             :  * Return: True if pushed, false otherwise.
    3435             :  */
    3436           0 : static inline bool mas_push_data(struct ma_state *mas, int height,
    3437             :                                  struct maple_subtree_state *mast, bool left)
    3438             : {
    3439           0 :         unsigned char slot_total = mast->bn->b_end;
    3440             :         unsigned char end, space, split;
    3441             : 
    3442             :         MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
    3443           0 :         tmp_mas = *mas;
    3444           0 :         tmp_mas.depth = mast->l->depth;
    3445             : 
    3446           0 :         if (left && !mas_prev_sibling(&tmp_mas))
    3447             :                 return false;
    3448           0 :         else if (!left && !mas_next_sibling(&tmp_mas))
    3449             :                 return false;
    3450             : 
    3451           0 :         end = mas_data_end(&tmp_mas);
    3452           0 :         slot_total += end;
    3453           0 :         space = 2 * mt_slot_count(mas->node) - 2;
    3454             :         /* -2 instead of -1 to ensure there isn't a triple split */
    3455           0 :         if (ma_is_leaf(mast->bn->type))
    3456           0 :                 space--;
    3457             : 
    3458           0 :         if (mas->max == ULONG_MAX)
    3459           0 :                 space--;
    3460             : 
    3461           0 :         if (slot_total >= space)
    3462             :                 return false;
    3463             : 
    3464             :         /* Get the data; Fill mast->bn */
    3465           0 :         mast->bn->b_end++;
    3466           0 :         if (left) {
    3467           0 :                 mab_shift_right(mast->bn, end + 1);
    3468           0 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
    3469           0 :                 mast->bn->b_end = slot_total + 1;
    3470             :         } else {
    3471           0 :                 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
    3472             :         }
    3473             : 
    3474             :         /* Configure mast for splitting of mast->bn */
    3475           0 :         split = mt_slots[mast->bn->type] - 2;
    3476           0 :         if (left) {
    3477             :                 /*  Switch mas to prev node  */
    3478           0 :                 mat_add(mast->free, mas->node);
    3479           0 :                 *mas = tmp_mas;
    3480             :                 /* Start using mast->l for the left side. */
    3481           0 :                 tmp_mas.node = mast->l->node;
    3482           0 :                 *mast->l = tmp_mas;
    3483             :         } else {
    3484           0 :                 mat_add(mast->free, tmp_mas.node);
    3485           0 :                 tmp_mas.node = mast->r->node;
    3486           0 :                 *mast->r = tmp_mas;
    3487           0 :                 split = slot_total - split;
    3488             :         }
    3489           0 :         split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
    3490             :         /* Update parent slot for split calculation. */
    3491           0 :         if (left)
    3492           0 :                 mast->orig_l->offset += end + 1;
    3493             : 
    3494           0 :         mast_split_data(mast, mas, split);
    3495           0 :         mast_fill_bnode(mast, mas, 2);
    3496           0 :         mas_split_final_node(mast, mas, height + 1);
    3497           0 :         return true;
    3498             : }
    3499             : 
    3500             : /*
    3501             :  * mas_split() - Split data that is too big for one node into two.
    3502             :  * @mas: The maple state
    3503             :  * @b_node: The maple big node
    3504             :  * Return: 1 on success, 0 on failure.
    3505             :  */
    3506           0 : static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
    3507             : {
    3508             :         struct maple_subtree_state mast;
    3509           0 :         int height = 0;
    3510           0 :         unsigned char mid_split, split = 0;
    3511             : 
    3512             :         /*
    3513             :          * Splitting is handled differently from any other B-tree; the Maple
    3514             :          * Tree splits upwards.  Splitting up means that the split operation
    3515             :          * occurs when the walk of the tree hits the leaves and not on the way
    3516             :          * down.  The reason for splitting up is that it is impossible to know
    3517             :          * how much space will be needed until the leaf is (or leaves are)
    3518             :          * reached.  Since overwriting data is allowed and a range could
    3519             :          * overwrite more than one range or result in changing one entry into 3
    3520             :          * entries, it is impossible to know if a split is required until the
    3521             :          * data is examined.
    3522             :          *
    3523             :          * Splitting is a balancing act between keeping allocations to a minimum
    3524             :          * and avoiding a 'jitter' event where a tree is expanded to make room
    3525             :          * for an entry followed by a contraction when the entry is removed.  To
    3526             :          * accomplish the balance, there are empty slots remaining in both left
    3527             :          * and right nodes after a split.
    3528             :          */
    3529           0 :         MA_STATE(l_mas, mas->tree, mas->index, mas->last);
    3530           0 :         MA_STATE(r_mas, mas->tree, mas->index, mas->last);
    3531           0 :         MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
    3532           0 :         MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
    3533           0 :         MA_TOPIARY(mat, mas->tree);
    3534             : 
    3535           0 :         trace_ma_op(__func__, mas);
    3536           0 :         mas->depth = mas_mt_height(mas);
    3537             :         /* Allocation failures will happen early. */
    3538           0 :         mas_node_count(mas, 1 + mas->depth * 2);
    3539           0 :         if (mas_is_err(mas))
    3540             :                 return 0;
    3541             : 
    3542           0 :         mast.l = &l_mas;
    3543           0 :         mast.r = &r_mas;
    3544           0 :         mast.orig_l = &prev_l_mas;
    3545           0 :         mast.orig_r = &prev_r_mas;
    3546           0 :         mast.free = &mat;
    3547           0 :         mast.bn = b_node;
    3548             : 
    3549           0 :         while (height++ <= mas->depth) {
    3550           0 :                 if (mt_slots[b_node->type] > b_node->b_end) {
    3551           0 :                         mas_split_final_node(&mast, mas, height);
    3552           0 :                         break;
    3553             :                 }
    3554             : 
    3555           0 :                 l_mas = r_mas = *mas;
    3556           0 :                 l_mas.node = mas_new_ma_node(mas, b_node);
    3557           0 :                 r_mas.node = mas_new_ma_node(mas, b_node);
    3558             :                 /*
    3559             :                  * Another way that 'jitter' is avoided is to terminate a split up early if the
    3560             :                  * left or right node has space to spare.  This is referred to as "pushing left"
    3561             :                  * or "pushing right" and is similar to the B* tree, except the nodes left or
    3562             :                  * right can rarely be reused due to RCU, but the ripple upwards is halted which
    3563             :                  * is a significant savings.
    3564             :                  */
    3565             :                 /* Try to push left. */
    3566           0 :                 if (mas_push_data(mas, height, &mast, true))
    3567             :                         break;
    3568             : 
    3569             :                 /* Try to push right. */
    3570           0 :                 if (mas_push_data(mas, height, &mast, false))
    3571             :                         break;
    3572             : 
    3573           0 :                 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
    3574           0 :                 mast_split_data(&mast, mas, split);
    3575             :                 /*
    3576             :                  * Usually correct, mab_mas_cp in the above call overwrites
    3577             :                  * r->max.
    3578             :                  */
    3579           0 :                 mast.r->max = mas->max;
    3580           0 :                 mast_fill_bnode(&mast, mas, 1);
    3581           0 :                 prev_l_mas = *mast.l;
    3582           0 :                 prev_r_mas = *mast.r;
    3583             :         }
    3584             : 
    3585             :         /* Set the original node as dead */
    3586           0 :         mat_add(mast.free, mas->node);
    3587           0 :         mas->node = l_mas.node;
    3588           0 :         mas_wmb_replace(mas, mast.free, NULL);
    3589           0 :         mtree_range_walk(mas);
    3590           0 :         return 1;
    3591             : }
    3592             : 
    3593             : /*
    3594             :  * mas_reuse_node() - Reuse the node to store the data.
    3595             :  * @wr_mas: The maple write state
    3596             :  * @bn: The maple big node
    3597             :  * @end: The end of the data.
    3598             :  *
    3599             :  * Will always return false in RCU mode.
    3600             :  *
    3601             :  * Return: True if node was reused, false otherwise.
    3602             :  */
    3603           0 : static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
    3604             :                           struct maple_big_node *bn, unsigned char end)
    3605             : {
    3606             :         /* Need to be rcu safe. */
    3607           0 :         if (mt_in_rcu(wr_mas->mas->tree))
    3608             :                 return false;
    3609             : 
    3610           0 :         if (end > bn->b_end) {
    3611           0 :                 int clear = mt_slots[wr_mas->type] - bn->b_end;
    3612             : 
    3613           0 :                 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
    3614           0 :                 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
    3615             :         }
    3616           0 :         mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
    3617           0 :         return true;
    3618             : }
    3619             : 
    3620             : /*
    3621             :  * mas_commit_b_node() - Commit the big node into the tree.
    3622             :  * @wr_mas: The maple write state
    3623             :  * @b_node: The maple big node
    3624             :  * @end: The end of the data.
    3625             :  */
    3626           0 : static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
    3627             :                             struct maple_big_node *b_node, unsigned char end)
    3628             : {
    3629             :         struct maple_node *node;
    3630           0 :         unsigned char b_end = b_node->b_end;
    3631           0 :         enum maple_type b_type = b_node->type;
    3632             : 
    3633           0 :         if ((b_end < mt_min_slots[b_type]) &&
    3634           0 :             (!mte_is_root(wr_mas->mas->node)) &&
    3635           0 :             (mas_mt_height(wr_mas->mas) > 1))
    3636           0 :                 return mas_rebalance(wr_mas->mas, b_node);
    3637             : 
    3638           0 :         if (b_end >= mt_slots[b_type])
    3639           0 :                 return mas_split(wr_mas->mas, b_node);
    3640             : 
    3641           0 :         if (mas_reuse_node(wr_mas, b_node, end))
    3642             :                 goto reuse_node;
    3643             : 
    3644           0 :         mas_node_count(wr_mas->mas, 1);
    3645           0 :         if (mas_is_err(wr_mas->mas))
    3646             :                 return 0;
    3647             : 
    3648           0 :         node = mas_pop_node(wr_mas->mas);
    3649           0 :         node->parent = mas_mn(wr_mas->mas)->parent;
    3650           0 :         wr_mas->mas->node = mt_mk_node(node, b_type);
    3651           0 :         mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
    3652           0 :         mas_replace(wr_mas->mas, false);
    3653             : reuse_node:
    3654           0 :         mas_update_gap(wr_mas->mas);
    3655           0 :         return 1;
    3656             : }
    3657             : 
    3658             : /*
    3659             :  * mas_root_expand() - Expand a root to a node
    3660             :  * @mas: The maple state
    3661             :  * @entry: The entry to store into the tree
    3662             :  */
    3663           0 : static inline int mas_root_expand(struct ma_state *mas, void *entry)
    3664             : {
    3665           0 :         void *contents = mas_root_locked(mas);
    3666           0 :         enum maple_type type = maple_leaf_64;
    3667             :         struct maple_node *node;
    3668             :         void __rcu **slots;
    3669             :         unsigned long *pivots;
    3670           0 :         int slot = 0;
    3671             : 
    3672           0 :         mas_node_count(mas, 1);
    3673           0 :         if (unlikely(mas_is_err(mas)))
    3674             :                 return 0;
    3675             : 
    3676           0 :         node = mas_pop_node(mas);
    3677           0 :         pivots = ma_pivots(node, type);
    3678           0 :         slots = ma_slots(node, type);
    3679           0 :         node->parent = ma_parent_ptr(
    3680             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3681           0 :         mas->node = mt_mk_node(node, type);
    3682             : 
    3683           0 :         if (mas->index) {
    3684           0 :                 if (contents) {
    3685           0 :                         rcu_assign_pointer(slots[slot], contents);
    3686           0 :                         if (likely(mas->index > 1))
    3687           0 :                                 slot++;
    3688             :                 }
    3689           0 :                 pivots[slot++] = mas->index - 1;
    3690             :         }
    3691             : 
    3692           0 :         rcu_assign_pointer(slots[slot], entry);
    3693           0 :         mas->offset = slot;
    3694           0 :         pivots[slot] = mas->last;
    3695           0 :         if (mas->last != ULONG_MAX)
    3696           0 :                 slot++;
    3697           0 :         mas->depth = 1;
    3698           0 :         mas_set_height(mas);
    3699           0 :         ma_set_meta(node, maple_leaf_64, 0, slot);
    3700             :         /* swap the new root into the tree */
    3701           0 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3702           0 :         return slot;
    3703             : }
    3704             : 
    3705           0 : static inline void mas_store_root(struct ma_state *mas, void *entry)
    3706             : {
    3707           0 :         if (likely((mas->last != 0) || (mas->index != 0)))
    3708           0 :                 mas_root_expand(mas, entry);
    3709           0 :         else if (((unsigned long) (entry) & 3) == 2)
    3710           0 :                 mas_root_expand(mas, entry);
    3711             :         else {
    3712           0 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3713           0 :                 mas->node = MAS_START;
    3714             :         }
    3715           0 : }
    3716             : 
    3717             : /*
    3718             :  * mas_is_span_wr() - Check if the write needs to be treated as a write that
    3719             :  * spans the node.
    3720             :  * @mas: The maple state
    3721             :  * @piv: The pivot value being written
    3722             :  * @type: The maple node type
    3723             :  * @entry: The data to write
    3724             :  *
    3725             :  * Spanning writes are writes that start in one node and end in another OR if
    3726             :  * the write of a %NULL will cause the node to end with a %NULL.
    3727             :  *
    3728             :  * Return: True if this is a spanning write, false otherwise.
    3729             :  */
    3730           0 : static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
    3731             : {
    3732             :         unsigned long max;
    3733           0 :         unsigned long last = wr_mas->mas->last;
    3734           0 :         unsigned long piv = wr_mas->r_max;
    3735           0 :         enum maple_type type = wr_mas->type;
    3736           0 :         void *entry = wr_mas->entry;
    3737             : 
    3738             :         /* Contained in this pivot */
    3739           0 :         if (piv > last)
    3740             :                 return false;
    3741             : 
    3742           0 :         max = wr_mas->mas->max;
    3743           0 :         if (unlikely(ma_is_leaf(type))) {
    3744             :                 /* Fits in the node, but may span slots. */
    3745           0 :                 if (last < max)
    3746             :                         return false;
    3747             : 
    3748             :                 /* Writes to the end of the node but not null. */
    3749           0 :                 if ((last == max) && entry)
    3750             :                         return false;
    3751             : 
    3752             :                 /*
    3753             :                  * Writing ULONG_MAX is not a spanning write regardless of the
    3754             :                  * value being written as long as the range fits in the node.
    3755             :                  */
    3756           0 :                 if ((last == ULONG_MAX) && (last == max))
    3757             :                         return false;
    3758           0 :         } else if (piv == last) {
    3759           0 :                 if (entry)
    3760             :                         return false;
    3761             : 
    3762             :                 /* Detect spanning store wr walk */
    3763           0 :                 if (last == ULONG_MAX)
    3764             :                         return false;
    3765             :         }
    3766             : 
    3767           0 :         trace_ma_write(__func__, wr_mas->mas, piv, entry);
    3768             : 
    3769           0 :         return true;
    3770             : }
    3771             : 
    3772           0 : static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
    3773             : {
    3774           0 :         wr_mas->type = mte_node_type(wr_mas->mas->node);
    3775           0 :         mas_wr_node_walk(wr_mas);
    3776           0 :         wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
    3777           0 : }
    3778             : 
    3779             : static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
    3780             : {
    3781           0 :         wr_mas->mas->max = wr_mas->r_max;
    3782           0 :         wr_mas->mas->min = wr_mas->r_min;
    3783           0 :         wr_mas->mas->node = wr_mas->content;
    3784           0 :         wr_mas->mas->offset = 0;
    3785           0 :         wr_mas->mas->depth++;
    3786             : }
    3787             : /*
    3788             :  * mas_wr_walk() - Walk the tree for a write.
    3789             :  * @wr_mas: The maple write state
    3790             :  *
    3791             :  * Uses mas_slot_locked() and does not need to worry about dead nodes.
    3792             :  *
    3793             :  * Return: True if it's contained in a node, false on spanning write.
    3794             :  */
    3795           0 : static bool mas_wr_walk(struct ma_wr_state *wr_mas)
    3796             : {
    3797           0 :         struct ma_state *mas = wr_mas->mas;
    3798             : 
    3799             :         while (true) {
    3800           0 :                 mas_wr_walk_descend(wr_mas);
    3801           0 :                 if (unlikely(mas_is_span_wr(wr_mas)))
    3802             :                         return false;
    3803             : 
    3804           0 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3805           0 :                                                   mas->offset);
    3806           0 :                 if (ma_is_leaf(wr_mas->type))
    3807             :                         return true;
    3808             : 
    3809             :                 mas_wr_walk_traverse(wr_mas);
    3810             :         }
    3811             : 
    3812             :         return true;
    3813             : }
    3814             : 
    3815           0 : static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
    3816             : {
    3817           0 :         struct ma_state *mas = wr_mas->mas;
    3818             : 
    3819             :         while (true) {
    3820           0 :                 mas_wr_walk_descend(wr_mas);
    3821           0 :                 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
    3822           0 :                                                   mas->offset);
    3823           0 :                 if (ma_is_leaf(wr_mas->type))
    3824             :                         return true;
    3825             :                 mas_wr_walk_traverse(wr_mas);
    3826             : 
    3827             :         }
    3828             :         return true;
    3829             : }
    3830             : /*
    3831             :  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
    3832             :  * @l_wr_mas: The left maple write state
    3833             :  * @r_wr_mas: The right maple write state
    3834             :  */
    3835           0 : static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
    3836             :                                             struct ma_wr_state *r_wr_mas)
    3837             : {
    3838           0 :         struct ma_state *r_mas = r_wr_mas->mas;
    3839           0 :         struct ma_state *l_mas = l_wr_mas->mas;
    3840             :         unsigned char l_slot;
    3841             : 
    3842           0 :         l_slot = l_mas->offset;
    3843           0 :         if (!l_wr_mas->content)
    3844           0 :                 l_mas->index = l_wr_mas->r_min;
    3845             : 
    3846           0 :         if ((l_mas->index == l_wr_mas->r_min) &&
    3847           0 :                  (l_slot &&
    3848           0 :                   !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
    3849           0 :                 if (l_slot > 1)
    3850           0 :                         l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
    3851             :                 else
    3852           0 :                         l_mas->index = l_mas->min;
    3853             : 
    3854           0 :                 l_mas->offset = l_slot - 1;
    3855             :         }
    3856             : 
    3857           0 :         if (!r_wr_mas->content) {
    3858           0 :                 if (r_mas->last < r_wr_mas->r_max)
    3859           0 :                         r_mas->last = r_wr_mas->r_max;
    3860           0 :                 r_mas->offset++;
    3861           0 :         } else if ((r_mas->last == r_wr_mas->r_max) &&
    3862           0 :             (r_mas->last < r_mas->max) &&
    3863           0 :             !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
    3864           0 :                 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
    3865           0 :                                              r_wr_mas->type, r_mas->offset + 1);
    3866           0 :                 r_mas->offset++;
    3867             :         }
    3868           0 : }
    3869             : 
    3870           0 : static inline void *mas_state_walk(struct ma_state *mas)
    3871             : {
    3872             :         void *entry;
    3873             : 
    3874           0 :         entry = mas_start(mas);
    3875           0 :         if (mas_is_none(mas))
    3876             :                 return NULL;
    3877             : 
    3878           0 :         if (mas_is_ptr(mas))
    3879             :                 return entry;
    3880             : 
    3881           0 :         return mtree_range_walk(mas);
    3882             : }
    3883             : 
    3884             : /*
    3885             :  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
    3886             :  * to date.
    3887             :  *
    3888             :  * @mas: The maple state.
    3889             :  *
    3890             :  * Note: Leaves mas in undesirable state.
    3891             :  * Return: The entry for @mas->index or %NULL on dead node.
    3892             :  */
    3893           0 : static inline void *mtree_lookup_walk(struct ma_state *mas)
    3894             : {
    3895             :         unsigned long *pivots;
    3896             :         unsigned char offset;
    3897             :         struct maple_node *node;
    3898             :         struct maple_enode *next;
    3899             :         enum maple_type type;
    3900             :         void __rcu **slots;
    3901             :         unsigned char end;
    3902             :         unsigned long max;
    3903             : 
    3904           0 :         next = mas->node;
    3905           0 :         max = ULONG_MAX;
    3906             :         do {
    3907           0 :                 offset = 0;
    3908           0 :                 node = mte_to_node(next);
    3909           0 :                 type = mte_node_type(next);
    3910           0 :                 pivots = ma_pivots(node, type);
    3911           0 :                 end = ma_data_end(node, type, pivots, max);
    3912           0 :                 if (unlikely(ma_dead_node(node)))
    3913             :                         goto dead_node;
    3914             :                 do {
    3915           0 :                         if (pivots[offset] >= mas->index) {
    3916             :                                 max = pivots[offset];
    3917             :                                 break;
    3918             :                         }
    3919           0 :                 } while (++offset < end);
    3920             : 
    3921           0 :                 slots = ma_slots(node, type);
    3922           0 :                 next = mt_slot(mas->tree, slots, offset);
    3923           0 :                 if (unlikely(ma_dead_node(node)))
    3924             :                         goto dead_node;
    3925           0 :         } while (!ma_is_leaf(type));
    3926             : 
    3927             :         return (void *)next;
    3928             : 
    3929             : dead_node:
    3930           0 :         mas_reset(mas);
    3931           0 :         return NULL;
    3932             : }
    3933             : 
    3934             : /*
    3935             :  * mas_new_root() - Create a new root node that only contains the entry passed
    3936             :  * in.
    3937             :  * @mas: The maple state
    3938             :  * @entry: The entry to store.
    3939             :  *
    3940             :  * Only valid when the index == 0 and the last == ULONG_MAX
    3941             :  *
    3942             :  * Return 0 on error, 1 on success.
    3943             :  */
    3944           0 : static inline int mas_new_root(struct ma_state *mas, void *entry)
    3945             : {
    3946           0 :         struct maple_enode *root = mas_root_locked(mas);
    3947           0 :         enum maple_type type = maple_leaf_64;
    3948             :         struct maple_node *node;
    3949             :         void __rcu **slots;
    3950             :         unsigned long *pivots;
    3951             : 
    3952           0 :         if (!entry && !mas->index && mas->last == ULONG_MAX) {
    3953           0 :                 mas->depth = 0;
    3954           0 :                 mas_set_height(mas);
    3955           0 :                 rcu_assign_pointer(mas->tree->ma_root, entry);
    3956           0 :                 mas->node = MAS_START;
    3957           0 :                 goto done;
    3958             :         }
    3959             : 
    3960           0 :         mas_node_count(mas, 1);
    3961           0 :         if (mas_is_err(mas))
    3962             :                 return 0;
    3963             : 
    3964           0 :         node = mas_pop_node(mas);
    3965           0 :         pivots = ma_pivots(node, type);
    3966           0 :         slots = ma_slots(node, type);
    3967           0 :         node->parent = ma_parent_ptr(
    3968             :                       ((unsigned long)mas->tree | MA_ROOT_PARENT));
    3969           0 :         mas->node = mt_mk_node(node, type);
    3970           0 :         rcu_assign_pointer(slots[0], entry);
    3971           0 :         pivots[0] = mas->last;
    3972           0 :         mas->depth = 1;
    3973           0 :         mas_set_height(mas);
    3974           0 :         rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
    3975             : 
    3976             : done:
    3977           0 :         if (xa_is_node(root))
    3978           0 :                 mte_destroy_walk(root, mas->tree);
    3979             : 
    3980             :         return 1;
    3981             : }
    3982             : /*
    3983             :  * mas_wr_spanning_store() - Create a subtree with the store operation completed
    3984             :  * and new nodes where necessary, then place the sub-tree in the actual tree.
    3985             :  * Note that mas is expected to point to the node which caused the store to
    3986             :  * span.
    3987             :  * @wr_mas: The maple write state
    3988             :  *
    3989             :  * Return: 0 on error, positive on success.
    3990             :  */
    3991           0 : static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
    3992             : {
    3993             :         struct maple_subtree_state mast;
    3994             :         struct maple_big_node b_node;
    3995             :         struct ma_state *mas;
    3996             :         unsigned char height;
    3997             : 
    3998             :         /* Left and Right side of spanning store */
    3999           0 :         MA_STATE(l_mas, NULL, 0, 0);
    4000           0 :         MA_STATE(r_mas, NULL, 0, 0);
    4001             : 
    4002           0 :         MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
    4003           0 :         MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
    4004             : 
    4005             :         /*
    4006             :          * A store operation that spans multiple nodes is called a spanning
    4007             :          * store and is handled early in the store call stack by the function
    4008             :          * mas_is_span_wr().  When a spanning store is identified, the maple
    4009             :          * state is duplicated.  The first maple state walks the left tree path
    4010             :          * to ``index``, the duplicate walks the right tree path to ``last``.
    4011             :          * The data in the two nodes are combined into a single node, two nodes,
    4012             :          * or possibly three nodes (see the 3-way split above).  A ``NULL``
    4013             :          * written to the last entry of a node is considered a spanning store as
    4014             :          * a rebalance is required for the operation to complete and an overflow
    4015             :          * of data may happen.
    4016             :          */
    4017           0 :         mas = wr_mas->mas;
    4018           0 :         trace_ma_op(__func__, mas);
    4019             : 
    4020           0 :         if (unlikely(!mas->index && mas->last == ULONG_MAX))
    4021           0 :                 return mas_new_root(mas, wr_mas->entry);
    4022             :         /*
    4023             :          * Node rebalancing may occur due to this store, so there may be three new
    4024             :          * entries per level plus a new root.
    4025             :          */
    4026           0 :         height = mas_mt_height(mas);
    4027           0 :         mas_node_count(mas, 1 + height * 3);
    4028           0 :         if (mas_is_err(mas))
    4029             :                 return 0;
    4030             : 
    4031             :         /*
    4032             :          * Set up right side.  Need to get to the next offset after the spanning
    4033             :          * store to ensure it's not NULL and to combine both the next node and
    4034             :          * the node with the start together.
    4035             :          */
    4036           0 :         r_mas = *mas;
    4037             :         /* Avoid overflow, walk to next slot in the tree. */
    4038           0 :         if (r_mas.last + 1)
    4039           0 :                 r_mas.last++;
    4040             : 
    4041           0 :         r_mas.index = r_mas.last;
    4042           0 :         mas_wr_walk_index(&r_wr_mas);
    4043           0 :         r_mas.last = r_mas.index = mas->last;
    4044             : 
    4045             :         /* Set up left side. */
    4046           0 :         l_mas = *mas;
    4047           0 :         mas_wr_walk_index(&l_wr_mas);
    4048             : 
    4049           0 :         if (!wr_mas->entry) {
    4050           0 :                 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
    4051           0 :                 mas->offset = l_mas.offset;
    4052           0 :                 mas->index = l_mas.index;
    4053           0 :                 mas->last = l_mas.last = r_mas.last;
    4054             :         }
    4055             : 
    4056             :         /* expanding NULLs may make this cover the entire range */
    4057           0 :         if (!l_mas.index && r_mas.last == ULONG_MAX) {
    4058           0 :                 mas_set_range(mas, 0, ULONG_MAX);
    4059           0 :                 return mas_new_root(mas, wr_mas->entry);
    4060             :         }
    4061             : 
    4062           0 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4063             :         /* Copy l_mas and store the value in b_node. */
    4064           0 :         mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
    4065             :         /* Copy r_mas into b_node. */
    4066           0 :         if (r_mas.offset <= r_wr_mas.node_end)
    4067           0 :                 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
    4068           0 :                            &b_node, b_node.b_end + 1);
    4069             :         else
    4070           0 :                 b_node.b_end++;
    4071             : 
    4072             :         /* Stop spanning searches by searching for just index. */
    4073           0 :         l_mas.index = l_mas.last = mas->index;
    4074             : 
    4075           0 :         mast.bn = &b_node;
    4076           0 :         mast.orig_l = &l_mas;
    4077           0 :         mast.orig_r = &r_mas;
    4078             :         /* Combine l_mas and r_mas and split them up evenly again. */
    4079           0 :         return mas_spanning_rebalance(mas, &mast, height + 1);
    4080             : }
    4081             : 
    4082             : /*
    4083             :  * mas_wr_node_store() - Attempt to store the value in a node
    4084             :  * @wr_mas: The maple write state
    4085             :  *
    4086             :  * Attempts to reuse the node, but may allocate.
    4087             :  *
    4088             :  * Return: True if stored, false otherwise
    4089             :  */
    4090           0 : static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
    4091             : {
    4092           0 :         struct ma_state *mas = wr_mas->mas;
    4093             :         void __rcu **dst_slots;
    4094             :         unsigned long *dst_pivots;
    4095             :         unsigned char dst_offset;
    4096           0 :         unsigned char new_end = wr_mas->node_end;
    4097             :         unsigned char offset;
    4098           0 :         unsigned char node_slots = mt_slots[wr_mas->type];
    4099             :         struct maple_node reuse, *newnode;
    4100           0 :         unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
    4101           0 :         bool in_rcu = mt_in_rcu(mas->tree);
    4102             : 
    4103           0 :         offset = mas->offset;
    4104           0 :         if (mas->last == wr_mas->r_max) {
    4105             :                 /* runs right to the end of the node */
    4106           0 :                 if (mas->last == mas->max)
    4107           0 :                         new_end = offset;
    4108             :                 /* don't copy this offset */
    4109           0 :                 wr_mas->offset_end++;
    4110           0 :         } else if (mas->last < wr_mas->r_max) {
    4111             :                 /* new range ends in this range */
    4112           0 :                 if (unlikely(wr_mas->r_max == ULONG_MAX))
    4113           0 :                         mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
    4114             : 
    4115           0 :                 new_end++;
    4116             :         } else {
    4117           0 :                 if (wr_mas->end_piv == mas->last)
    4118           0 :                         wr_mas->offset_end++;
    4119             : 
    4120           0 :                 new_end -= wr_mas->offset_end - offset - 1;
    4121             :         }
    4122             : 
    4123             :         /* new range starts within a range */
    4124           0 :         if (wr_mas->r_min < mas->index)
    4125           0 :                 new_end++;
    4126             : 
    4127             :         /* Not enough room */
    4128           0 :         if (new_end >= node_slots)
    4129             :                 return false;
    4130             : 
    4131             :         /* Not enough data. */
    4132           0 :         if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
    4133           0 :             !(mas->mas_flags & MA_STATE_BULK))
    4134             :                 return false;
    4135             : 
    4136             :         /* set up node. */
    4137           0 :         if (in_rcu) {
    4138           0 :                 mas_node_count(mas, 1);
    4139           0 :                 if (mas_is_err(mas))
    4140             :                         return false;
    4141             : 
    4142           0 :                 newnode = mas_pop_node(mas);
    4143             :         } else {
    4144           0 :                 memset(&reuse, 0, sizeof(struct maple_node));
    4145           0 :                 newnode = &reuse;
    4146             :         }
    4147             : 
    4148           0 :         newnode->parent = mas_mn(mas)->parent;
    4149           0 :         dst_pivots = ma_pivots(newnode, wr_mas->type);
    4150           0 :         dst_slots = ma_slots(newnode, wr_mas->type);
    4151             :         /* Copy from start to insert point */
    4152           0 :         memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
    4153           0 :         memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
    4154           0 :         dst_offset = offset;
    4155             : 
    4156             :         /* Handle insert of new range starting after old range */
    4157           0 :         if (wr_mas->r_min < mas->index) {
    4158           0 :                 mas->offset++;
    4159           0 :                 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
    4160           0 :                 dst_pivots[dst_offset++] = mas->index - 1;
    4161             :         }
    4162             : 
    4163             :         /* Store the new entry and range end. */
    4164           0 :         if (dst_offset < max_piv)
    4165           0 :                 dst_pivots[dst_offset] = mas->last;
    4166           0 :         mas->offset = dst_offset;
    4167           0 :         rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
    4168             : 
    4169             :         /*
    4170             :          * this range wrote to the end of the node or it overwrote the rest of
    4171             :          * the data
    4172             :          */
    4173           0 :         if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
    4174             :                 new_end = dst_offset;
    4175             :                 goto done;
    4176             :         }
    4177             : 
    4178           0 :         dst_offset++;
    4179             :         /* Copy to the end of node if necessary. */
    4180           0 :         copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
    4181           0 :         memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
    4182             :                sizeof(void *) * copy_size);
    4183           0 :         if (dst_offset < max_piv) {
    4184           0 :                 if (copy_size > max_piv - dst_offset)
    4185           0 :                         copy_size = max_piv - dst_offset;
    4186             : 
    4187           0 :                 memcpy(dst_pivots + dst_offset,
    4188           0 :                        wr_mas->pivots + wr_mas->offset_end,
    4189             :                        sizeof(unsigned long) * copy_size);
    4190             :         }
    4191             : 
    4192           0 :         if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
    4193           0 :                 dst_pivots[new_end] = mas->max;
    4194             : 
    4195             : done:
    4196           0 :         mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
    4197           0 :         if (in_rcu) {
    4198           0 :                 mte_set_node_dead(mas->node);
    4199           0 :                 mas->node = mt_mk_node(newnode, wr_mas->type);
    4200           0 :                 mas_replace(mas, false);
    4201             :         } else {
    4202           0 :                 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
    4203             :         }
    4204           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4205           0 :         mas_update_gap(mas);
    4206           0 :         return true;
    4207             : }
    4208             : 
    4209             : /*
    4210             :  * mas_wr_slot_store: Attempt to store a value in a slot.
    4211             :  * @wr_mas: the maple write state
    4212             :  *
    4213             :  * Return: True if stored, false otherwise
    4214             :  */
    4215           0 : static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
    4216             : {
    4217           0 :         struct ma_state *mas = wr_mas->mas;
    4218             :         unsigned long lmax; /* Logical max. */
    4219           0 :         unsigned char offset = mas->offset;
    4220             : 
    4221           0 :         if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
    4222           0 :                                   (offset != wr_mas->node_end)))
    4223             :                 return false;
    4224             : 
    4225           0 :         if (offset == wr_mas->node_end - 1)
    4226           0 :                 lmax = mas->max;
    4227             :         else
    4228           0 :                 lmax = wr_mas->pivots[offset + 1];
    4229             : 
    4230             :         /* going to overwrite too many slots. */
    4231           0 :         if (lmax < mas->last)
    4232             :                 return false;
    4233             : 
    4234           0 :         if (wr_mas->r_min == mas->index) {
    4235             :                 /* overwriting two or more ranges with one. */
    4236           0 :                 if (lmax == mas->last)
    4237             :                         return false;
    4238             : 
    4239             :                 /* Overwriting all of offset and a portion of offset + 1. */
    4240           0 :                 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
    4241           0 :                 wr_mas->pivots[offset] = mas->last;
    4242           0 :                 goto done;
    4243             :         }
    4244             : 
    4245             :         /* Doesn't end on the next range end. */
    4246           0 :         if (lmax != mas->last)
    4247             :                 return false;
    4248             : 
    4249             :         /* Overwriting a portion of offset and all of offset + 1 */
    4250           0 :         if ((offset + 1 < mt_pivots[wr_mas->type]) &&
    4251           0 :             (wr_mas->entry || wr_mas->pivots[offset + 1]))
    4252           0 :                 wr_mas->pivots[offset + 1] = mas->last;
    4253             : 
    4254           0 :         rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
    4255           0 :         wr_mas->pivots[offset] = mas->index - 1;
    4256           0 :         mas->offset++; /* Keep mas accurate. */
    4257             : 
    4258             : done:
    4259           0 :         trace_ma_write(__func__, mas, 0, wr_mas->entry);
    4260           0 :         mas_update_gap(mas);
    4261           0 :         return true;
    4262             : }
    4263             : 
    4264             : static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
    4265             : {
    4266           0 :         while ((wr_mas->mas->last > wr_mas->end_piv) &&
    4267           0 :                (wr_mas->offset_end < wr_mas->node_end))
    4268           0 :                 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
    4269             : 
    4270           0 :         if (wr_mas->mas->last > wr_mas->end_piv)
    4271           0 :                 wr_mas->end_piv = wr_mas->mas->max;
    4272             : }
    4273             : 
    4274           0 : static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
    4275             : {
    4276           0 :         struct ma_state *mas = wr_mas->mas;
    4277             : 
    4278           0 :         if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
    4279           0 :                 mas->last = wr_mas->end_piv;
    4280             : 
    4281             :         /* Check next slot(s) if we are overwriting the end */
    4282           0 :         if ((mas->last == wr_mas->end_piv) &&
    4283           0 :             (wr_mas->node_end != wr_mas->offset_end) &&
    4284           0 :             !wr_mas->slots[wr_mas->offset_end + 1]) {
    4285           0 :                 wr_mas->offset_end++;
    4286           0 :                 if (wr_mas->offset_end == wr_mas->node_end)
    4287           0 :                         mas->last = mas->max;
    4288             :                 else
    4289           0 :                         mas->last = wr_mas->pivots[wr_mas->offset_end];
    4290           0 :                 wr_mas->end_piv = mas->last;
    4291             :         }
    4292             : 
    4293           0 :         if (!wr_mas->content) {
    4294             :                 /* If this one is null, the next and prev are not */
    4295           0 :                 mas->index = wr_mas->r_min;
    4296             :         } else {
    4297             :                 /* Check prev slot if we are overwriting the start */
    4298           0 :                 if (mas->index == wr_mas->r_min && mas->offset &&
    4299           0 :                     !wr_mas->slots[mas->offset - 1]) {
    4300           0 :                         mas->offset--;
    4301           0 :                         wr_mas->r_min = mas->index =
    4302           0 :                                 mas_safe_min(mas, wr_mas->pivots, mas->offset);
    4303           0 :                         wr_mas->r_max = wr_mas->pivots[mas->offset];
    4304             :                 }
    4305             :         }
    4306           0 : }
    4307             : 
    4308           0 : static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
    4309             : {
    4310           0 :         unsigned char end = wr_mas->node_end;
    4311           0 :         unsigned char new_end = end + 1;
    4312           0 :         struct ma_state *mas = wr_mas->mas;
    4313           0 :         unsigned char node_pivots = mt_pivots[wr_mas->type];
    4314             : 
    4315           0 :         if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
    4316           0 :                 if (new_end < node_pivots)
    4317           0 :                         wr_mas->pivots[new_end] = wr_mas->pivots[end];
    4318             : 
    4319           0 :                 if (new_end < node_pivots)
    4320           0 :                         ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
    4321             : 
    4322           0 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
    4323           0 :                 mas->offset = new_end;
    4324           0 :                 wr_mas->pivots[end] = mas->index - 1;
    4325             : 
    4326           0 :                 return true;
    4327             :         }
    4328             : 
    4329           0 :         if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
    4330           0 :                 if (new_end < node_pivots)
    4331           0 :                         wr_mas->pivots[new_end] = wr_mas->pivots[end];
    4332             : 
    4333           0 :                 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
    4334           0 :                 if (new_end < node_pivots)
    4335           0 :                         ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
    4336             : 
    4337           0 :                 wr_mas->pivots[end] = mas->last;
    4338           0 :                 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
    4339           0 :                 return true;
    4340             :         }
    4341             : 
    4342             :         return false;
    4343             : }
    4344             : 
    4345             : /*
    4346             :  * mas_wr_bnode() - Slow path for a modification.
    4347             :  * @wr_mas: The write maple state
    4348             :  *
    4349             :  * This is where split, rebalance end up.
    4350             :  */
    4351           0 : static void mas_wr_bnode(struct ma_wr_state *wr_mas)
    4352             : {
    4353             :         struct maple_big_node b_node;
    4354             : 
    4355           0 :         trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
    4356           0 :         memset(&b_node, 0, sizeof(struct maple_big_node));
    4357           0 :         mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
    4358           0 :         mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
    4359           0 : }
    4360             : 
    4361           0 : static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
    4362             : {
    4363             :         unsigned char node_slots;
    4364             :         unsigned char node_size;
    4365           0 :         struct ma_state *mas = wr_mas->mas;
    4366             : 
    4367             :         /* Direct replacement */
    4368           0 :         if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
    4369           0 :                 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
    4370           0 :                 if (!!wr_mas->entry ^ !!wr_mas->content)
    4371           0 :                         mas_update_gap(mas);
    4372             :                 return;
    4373             :         }
    4374             : 
    4375             :         /* Attempt to append */
    4376           0 :         node_slots = mt_slots[wr_mas->type];
    4377           0 :         node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
    4378           0 :         if (mas->max == ULONG_MAX)
    4379           0 :                 node_size++;
    4380             : 
    4381             :         /* slot and node store will not fit, go to the slow path */
    4382           0 :         if (unlikely(node_size >= node_slots))
    4383             :                 goto slow_path;
    4384             : 
    4385           0 :         if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
    4386           0 :             (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
    4387           0 :                 if (!wr_mas->content || !wr_mas->entry)
    4388           0 :                         mas_update_gap(mas);
    4389             :                 return;
    4390             :         }
    4391             : 
    4392           0 :         if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
    4393             :                 return;
    4394           0 :         else if (mas_wr_node_store(wr_mas))
    4395             :                 return;
    4396             : 
    4397           0 :         if (mas_is_err(mas))
    4398             :                 return;
    4399             : 
    4400             : slow_path:
    4401           0 :         mas_wr_bnode(wr_mas);
    4402             : }
    4403             : 
    4404             : /*
    4405             :  * mas_wr_store_entry() - Internal call to store a value
    4406             :  * @mas: The maple state
    4407             :  * @entry: The entry to store.
    4408             :  *
    4409             :  * Return: The contents that was stored at the index.
    4410             :  */
    4411           0 : static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
    4412             : {
    4413           0 :         struct ma_state *mas = wr_mas->mas;
    4414             : 
    4415           0 :         wr_mas->content = mas_start(mas);
    4416           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4417           0 :                 mas_store_root(mas, wr_mas->entry);
    4418           0 :                 return wr_mas->content;
    4419             :         }
    4420             : 
    4421           0 :         if (unlikely(!mas_wr_walk(wr_mas))) {
    4422           0 :                 mas_wr_spanning_store(wr_mas);
    4423           0 :                 return wr_mas->content;
    4424             :         }
    4425             : 
    4426             :         /* At this point, we are at the leaf node that needs to be altered. */
    4427           0 :         wr_mas->end_piv = wr_mas->r_max;
    4428           0 :         mas_wr_end_piv(wr_mas);
    4429             : 
    4430           0 :         if (!wr_mas->entry)
    4431           0 :                 mas_wr_extend_null(wr_mas);
    4432             : 
    4433             :         /* New root for a single pointer */
    4434           0 :         if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
    4435           0 :                 mas_new_root(mas, wr_mas->entry);
    4436           0 :                 return wr_mas->content;
    4437             :         }
    4438             : 
    4439           0 :         mas_wr_modify(wr_mas);
    4440           0 :         return wr_mas->content;
    4441             : }
    4442             : 
    4443             : /**
    4444             :  * mas_insert() - Internal call to insert a value
    4445             :  * @mas: The maple state
    4446             :  * @entry: The entry to store
    4447             :  *
    4448             :  * Return: %NULL or the contents that already exists at the requested index
    4449             :  * otherwise.  The maple state needs to be checked for error conditions.
    4450             :  */
    4451           0 : static inline void *mas_insert(struct ma_state *mas, void *entry)
    4452             : {
    4453           0 :         MA_WR_STATE(wr_mas, mas, entry);
    4454             : 
    4455             :         /*
    4456             :          * Inserting a new range inserts either 0, 1, or 2 pivots within the
    4457             :          * tree.  If the insert fits exactly into an existing gap with a value
    4458             :          * of NULL, then the slot only needs to be written with the new value.
    4459             :          * If the range being inserted is adjacent to another range, then only a
    4460             :          * single pivot needs to be inserted (as well as writing the entry).  If
    4461             :          * the new range is within a gap but does not touch any other ranges,
    4462             :          * then two pivots need to be inserted: the start - 1, and the end.  As
    4463             :          * usual, the entry must be written.  Most operations require a new node
    4464             :          * to be allocated and replace an existing node to ensure RCU safety,
    4465             :          * when in RCU mode.  The exception to requiring a newly allocated node
    4466             :          * is when inserting at the end of a node (appending).  When done
    4467             :          * carefully, appending can reuse the node in place.
    4468             :          */
    4469           0 :         wr_mas.content = mas_start(mas);
    4470           0 :         if (wr_mas.content)
    4471             :                 goto exists;
    4472             : 
    4473           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    4474           0 :                 mas_store_root(mas, entry);
    4475           0 :                 return NULL;
    4476             :         }
    4477             : 
    4478             :         /* spanning writes always overwrite something */
    4479           0 :         if (!mas_wr_walk(&wr_mas))
    4480             :                 goto exists;
    4481             : 
    4482             :         /* At this point, we are at the leaf node that needs to be altered. */
    4483           0 :         wr_mas.offset_end = mas->offset;
    4484           0 :         wr_mas.end_piv = wr_mas.r_max;
    4485             : 
    4486           0 :         if (wr_mas.content || (mas->last > wr_mas.r_max))
    4487             :                 goto exists;
    4488             : 
    4489           0 :         if (!entry)
    4490             :                 return NULL;
    4491             : 
    4492           0 :         mas_wr_modify(&wr_mas);
    4493           0 :         return wr_mas.content;
    4494             : 
    4495             : exists:
    4496           0 :         mas_set_err(mas, -EEXIST);
    4497           0 :         return wr_mas.content;
    4498             : 
    4499             : }
    4500             : 
    4501             : /*
    4502             :  * mas_prev_node() - Find the prev non-null entry at the same level in the
    4503             :  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
    4504             :  * @mas: The maple state
    4505             :  * @min: The lower limit to search
    4506             :  *
    4507             :  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
    4508             :  * Return: 1 if the node is dead, 0 otherwise.
    4509             :  */
    4510           0 : static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
    4511             : {
    4512             :         enum maple_type mt;
    4513             :         int offset, level;
    4514             :         void __rcu **slots;
    4515             :         struct maple_node *node;
    4516             :         struct maple_enode *enode;
    4517             :         unsigned long *pivots;
    4518             : 
    4519           0 :         if (mas_is_none(mas))
    4520             :                 return 0;
    4521             : 
    4522             :         level = 0;
    4523             :         do {
    4524           0 :                 node = mas_mn(mas);
    4525           0 :                 if (ma_is_root(node))
    4526             :                         goto no_entry;
    4527             : 
    4528             :                 /* Walk up. */
    4529           0 :                 if (unlikely(mas_ascend(mas)))
    4530             :                         return 1;
    4531           0 :                 offset = mas->offset;
    4532           0 :                 level++;
    4533           0 :         } while (!offset);
    4534             : 
    4535           0 :         offset--;
    4536           0 :         mt = mte_node_type(mas->node);
    4537           0 :         node = mas_mn(mas);
    4538           0 :         slots = ma_slots(node, mt);
    4539           0 :         pivots = ma_pivots(node, mt);
    4540           0 :         if (unlikely(ma_dead_node(node)))
    4541             :                 return 1;
    4542             : 
    4543           0 :         mas->max = pivots[offset];
    4544           0 :         if (offset)
    4545           0 :                 mas->min = pivots[offset - 1] + 1;
    4546           0 :         if (unlikely(ma_dead_node(node)))
    4547             :                 return 1;
    4548             : 
    4549           0 :         if (mas->max < min)
    4550             :                 goto no_entry_min;
    4551             : 
    4552           0 :         while (level > 1) {
    4553           0 :                 level--;
    4554           0 :                 enode = mas_slot(mas, slots, offset);
    4555           0 :                 if (unlikely(ma_dead_node(node)))
    4556             :                         return 1;
    4557             : 
    4558           0 :                 mas->node = enode;
    4559           0 :                 mt = mte_node_type(mas->node);
    4560           0 :                 node = mas_mn(mas);
    4561           0 :                 slots = ma_slots(node, mt);
    4562           0 :                 pivots = ma_pivots(node, mt);
    4563           0 :                 offset = ma_data_end(node, mt, pivots, mas->max);
    4564           0 :                 if (unlikely(ma_dead_node(node)))
    4565             :                         return 1;
    4566             : 
    4567           0 :                 if (offset)
    4568           0 :                         mas->min = pivots[offset - 1] + 1;
    4569             : 
    4570           0 :                 if (offset < mt_pivots[mt])
    4571           0 :                         mas->max = pivots[offset];
    4572             : 
    4573           0 :                 if (mas->max < min)
    4574             :                         goto no_entry;
    4575             :         }
    4576             : 
    4577           0 :         mas->node = mas_slot(mas, slots, offset);
    4578           0 :         if (unlikely(ma_dead_node(node)))
    4579             :                 return 1;
    4580             : 
    4581           0 :         mas->offset = mas_data_end(mas);
    4582           0 :         if (unlikely(mte_dead_node(mas->node)))
    4583             :                 return 1;
    4584             : 
    4585           0 :         return 0;
    4586             : 
    4587             : no_entry_min:
    4588           0 :         mas->offset = offset;
    4589           0 :         if (offset)
    4590           0 :                 mas->min = pivots[offset - 1] + 1;
    4591             : no_entry:
    4592           0 :         if (unlikely(ma_dead_node(node)))
    4593             :                 return 1;
    4594             : 
    4595           0 :         mas->node = MAS_NONE;
    4596           0 :         return 0;
    4597             : }
    4598             : 
    4599             : /*
    4600             :  * mas_next_node() - Get the next node at the same level in the tree.
    4601             :  * @mas: The maple state
    4602             :  * @max: The maximum pivot value to check.
    4603             :  *
    4604             :  * The next value will be mas->node[mas->offset] or MAS_NONE.
    4605             :  * Return: 1 on dead node, 0 otherwise.
    4606             :  */
    4607           0 : static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
    4608             :                                 unsigned long max)
    4609             : {
    4610             :         unsigned long min, pivot;
    4611             :         unsigned long *pivots;
    4612             :         struct maple_enode *enode;
    4613           0 :         int level = 0;
    4614             :         unsigned char offset;
    4615             :         unsigned char node_end;
    4616             :         enum maple_type mt;
    4617             :         void __rcu **slots;
    4618             : 
    4619           0 :         if (mas->max >= max)
    4620             :                 goto no_entry;
    4621             : 
    4622             :         level = 0;
    4623             :         do {
    4624           0 :                 if (ma_is_root(node))
    4625             :                         goto no_entry;
    4626             : 
    4627           0 :                 min = mas->max + 1;
    4628           0 :                 if (min > max)
    4629             :                         goto no_entry;
    4630             : 
    4631           0 :                 if (unlikely(mas_ascend(mas)))
    4632             :                         return 1;
    4633             : 
    4634           0 :                 offset = mas->offset;
    4635           0 :                 level++;
    4636           0 :                 node = mas_mn(mas);
    4637           0 :                 mt = mte_node_type(mas->node);
    4638           0 :                 pivots = ma_pivots(node, mt);
    4639           0 :                 node_end = ma_data_end(node, mt, pivots, mas->max);
    4640           0 :                 if (unlikely(ma_dead_node(node)))
    4641             :                         return 1;
    4642             : 
    4643           0 :         } while (unlikely(offset == node_end));
    4644             : 
    4645           0 :         slots = ma_slots(node, mt);
    4646           0 :         pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
    4647           0 :         while (unlikely(level > 1)) {
    4648             :                 /* Descend, if necessary */
    4649           0 :                 enode = mas_slot(mas, slots, offset);
    4650           0 :                 if (unlikely(ma_dead_node(node)))
    4651             :                         return 1;
    4652             : 
    4653           0 :                 mas->node = enode;
    4654           0 :                 level--;
    4655           0 :                 node = mas_mn(mas);
    4656           0 :                 mt = mte_node_type(mas->node);
    4657           0 :                 slots = ma_slots(node, mt);
    4658           0 :                 pivots = ma_pivots(node, mt);
    4659           0 :                 if (unlikely(ma_dead_node(node)))
    4660             :                         return 1;
    4661             : 
    4662           0 :                 offset = 0;
    4663           0 :                 pivot = pivots[0];
    4664             :         }
    4665             : 
    4666           0 :         enode = mas_slot(mas, slots, offset);
    4667           0 :         if (unlikely(ma_dead_node(node)))
    4668             :                 return 1;
    4669             : 
    4670           0 :         mas->node = enode;
    4671           0 :         mas->min = min;
    4672           0 :         mas->max = pivot;
    4673           0 :         return 0;
    4674             : 
    4675             : no_entry:
    4676           0 :         if (unlikely(ma_dead_node(node)))
    4677             :                 return 1;
    4678             : 
    4679           0 :         mas->node = MAS_NONE;
    4680           0 :         return 0;
    4681             : }
    4682             : 
    4683             : /*
    4684             :  * mas_next_nentry() - Get the next node entry
    4685             :  * @mas: The maple state
    4686             :  * @max: The maximum value to check
    4687             :  * @*range_start: Pointer to store the start of the range.
    4688             :  *
    4689             :  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
    4690             :  * pivot of the entry.
    4691             :  *
    4692             :  * Return: The next entry, %NULL otherwise
    4693             :  */
    4694           0 : static inline void *mas_next_nentry(struct ma_state *mas,
    4695             :             struct maple_node *node, unsigned long max, enum maple_type type)
    4696             : {
    4697             :         unsigned char count;
    4698             :         unsigned long pivot;
    4699             :         unsigned long *pivots;
    4700             :         void __rcu **slots;
    4701             :         void *entry;
    4702             : 
    4703           0 :         if (mas->last == mas->max) {
    4704           0 :                 mas->index = mas->max;
    4705           0 :                 return NULL;
    4706             :         }
    4707             : 
    4708           0 :         slots = ma_slots(node, type);
    4709           0 :         pivots = ma_pivots(node, type);
    4710           0 :         count = ma_data_end(node, type, pivots, mas->max);
    4711           0 :         if (unlikely(ma_dead_node(node)))
    4712             :                 return NULL;
    4713             : 
    4714           0 :         mas->index = mas_safe_min(mas, pivots, mas->offset);
    4715           0 :         if (unlikely(ma_dead_node(node)))
    4716             :                 return NULL;
    4717             : 
    4718           0 :         if (mas->index > max)
    4719             :                 return NULL;
    4720             : 
    4721           0 :         if (mas->offset > count)
    4722             :                 return NULL;
    4723             : 
    4724           0 :         while (mas->offset < count) {
    4725           0 :                 pivot = pivots[mas->offset];
    4726           0 :                 entry = mas_slot(mas, slots, mas->offset);
    4727           0 :                 if (ma_dead_node(node))
    4728             :                         return NULL;
    4729             : 
    4730           0 :                 if (entry)
    4731             :                         goto found;
    4732             : 
    4733           0 :                 if (pivot >= max)
    4734             :                         return NULL;
    4735             : 
    4736           0 :                 mas->index = pivot + 1;
    4737           0 :                 mas->offset++;
    4738             :         }
    4739             : 
    4740           0 :         if (mas->index > mas->max) {
    4741           0 :                 mas->index = mas->last;
    4742           0 :                 return NULL;
    4743             :         }
    4744             : 
    4745           0 :         pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
    4746           0 :         entry = mas_slot(mas, slots, mas->offset);
    4747           0 :         if (ma_dead_node(node))
    4748             :                 return NULL;
    4749             : 
    4750           0 :         if (!pivot)
    4751             :                 return NULL;
    4752             : 
    4753           0 :         if (!entry)
    4754             :                 return NULL;
    4755             : 
    4756             : found:
    4757           0 :         mas->last = pivot;
    4758           0 :         return entry;
    4759             : }
    4760             : 
    4761             : static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
    4762             : {
    4763             : retry:
    4764           0 :         mas_set(mas, index);
    4765           0 :         mas_state_walk(mas);
    4766           0 :         if (mas_is_start(mas))
    4767             :                 goto retry;
    4768             : }
    4769             : 
    4770             : /*
    4771             :  * mas_next_entry() - Internal function to get the next entry.
    4772             :  * @mas: The maple state
    4773             :  * @limit: The maximum range start.
    4774             :  *
    4775             :  * Set the @mas->node to the next entry and the range_start to
    4776             :  * the beginning value for the entry.  Does not check beyond @limit.
    4777             :  * Sets @mas->index and @mas->last to the limit if it is hit.
    4778             :  * Restarts on dead nodes.
    4779             :  *
    4780             :  * Return: the next entry or %NULL.
    4781             :  */
    4782           0 : static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
    4783             : {
    4784           0 :         void *entry = NULL;
    4785             :         struct maple_enode *prev_node;
    4786             :         struct maple_node *node;
    4787             :         unsigned char offset;
    4788             :         unsigned long last;
    4789             :         enum maple_type mt;
    4790             : 
    4791           0 :         if (mas->index > limit) {
    4792           0 :                 mas->index = mas->last = limit;
    4793           0 :                 mas_pause(mas);
    4794           0 :                 return NULL;
    4795             :         }
    4796           0 :         last = mas->last;
    4797             : retry:
    4798           0 :         offset = mas->offset;
    4799           0 :         prev_node = mas->node;
    4800           0 :         node = mas_mn(mas);
    4801           0 :         mt = mte_node_type(mas->node);
    4802           0 :         mas->offset++;
    4803           0 :         if (unlikely(mas->offset >= mt_slots[mt])) {
    4804           0 :                 mas->offset = mt_slots[mt] - 1;
    4805           0 :                 goto next_node;
    4806             :         }
    4807             : 
    4808           0 :         while (!mas_is_none(mas)) {
    4809           0 :                 entry = mas_next_nentry(mas, node, limit, mt);
    4810           0 :                 if (unlikely(ma_dead_node(node))) {
    4811             :                         mas_rewalk(mas, last);
    4812             :                         goto retry;
    4813             :                 }
    4814             : 
    4815           0 :                 if (likely(entry))
    4816             :                         return entry;
    4817             : 
    4818           0 :                 if (unlikely((mas->index > limit)))
    4819             :                         break;
    4820             : 
    4821             : next_node:
    4822           0 :                 prev_node = mas->node;
    4823           0 :                 offset = mas->offset;
    4824           0 :                 if (unlikely(mas_next_node(mas, node, limit))) {
    4825             :                         mas_rewalk(mas, last);
    4826             :                         goto retry;
    4827             :                 }
    4828           0 :                 mas->offset = 0;
    4829           0 :                 node = mas_mn(mas);
    4830           0 :                 mt = mte_node_type(mas->node);
    4831             :         }
    4832             : 
    4833           0 :         mas->index = mas->last = limit;
    4834           0 :         mas->offset = offset;
    4835           0 :         mas->node = prev_node;
    4836           0 :         return NULL;
    4837             : }
    4838             : 
    4839             : /*
    4840             :  * mas_prev_nentry() - Get the previous node entry.
    4841             :  * @mas: The maple state.
    4842             :  * @limit: The lower limit to check for a value.
    4843             :  *
    4844             :  * Return: the entry, %NULL otherwise.
    4845             :  */
    4846           0 : static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
    4847             :                                     unsigned long index)
    4848             : {
    4849             :         unsigned long pivot, min;
    4850             :         unsigned char offset;
    4851             :         struct maple_node *mn;
    4852             :         enum maple_type mt;
    4853             :         unsigned long *pivots;
    4854             :         void __rcu **slots;
    4855             :         void *entry;
    4856             : 
    4857             : retry:
    4858           0 :         if (!mas->offset)
    4859             :                 return NULL;
    4860             : 
    4861           0 :         mn = mas_mn(mas);
    4862           0 :         mt = mte_node_type(mas->node);
    4863           0 :         offset = mas->offset - 1;
    4864           0 :         if (offset >= mt_slots[mt])
    4865           0 :                 offset = mt_slots[mt] - 1;
    4866             : 
    4867           0 :         slots = ma_slots(mn, mt);
    4868           0 :         pivots = ma_pivots(mn, mt);
    4869           0 :         if (unlikely(ma_dead_node(mn))) {
    4870             :                 mas_rewalk(mas, index);
    4871             :                 goto retry;
    4872             :         }
    4873             : 
    4874           0 :         if (offset == mt_pivots[mt])
    4875           0 :                 pivot = mas->max;
    4876             :         else
    4877           0 :                 pivot = pivots[offset];
    4878             : 
    4879           0 :         if (unlikely(ma_dead_node(mn))) {
    4880             :                 mas_rewalk(mas, index);
    4881             :                 goto retry;
    4882             :         }
    4883             : 
    4884           0 :         while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
    4885             :                !pivot))
    4886           0 :                 pivot = pivots[--offset];
    4887             : 
    4888           0 :         min = mas_safe_min(mas, pivots, offset);
    4889           0 :         entry = mas_slot(mas, slots, offset);
    4890           0 :         if (unlikely(ma_dead_node(mn))) {
    4891             :                 mas_rewalk(mas, index);
    4892             :                 goto retry;
    4893             :         }
    4894             : 
    4895           0 :         if (likely(entry)) {
    4896           0 :                 mas->offset = offset;
    4897           0 :                 mas->last = pivot;
    4898           0 :                 mas->index = min;
    4899             :         }
    4900             :         return entry;
    4901             : }
    4902             : 
    4903           0 : static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
    4904             : {
    4905             :         void *entry;
    4906             : 
    4907           0 :         if (mas->index < min) {
    4908           0 :                 mas->index = mas->last = min;
    4909           0 :                 mas->node = MAS_NONE;
    4910           0 :                 return NULL;
    4911             :         }
    4912             : retry:
    4913           0 :         while (likely(!mas_is_none(mas))) {
    4914           0 :                 entry = mas_prev_nentry(mas, min, mas->index);
    4915           0 :                 if (unlikely(mas->last < min))
    4916             :                         goto not_found;
    4917             : 
    4918           0 :                 if (likely(entry))
    4919             :                         return entry;
    4920             : 
    4921           0 :                 if (unlikely(mas_prev_node(mas, min))) {
    4922           0 :                         mas_rewalk(mas, mas->index);
    4923             :                         goto retry;
    4924             :                 }
    4925             : 
    4926           0 :                 mas->offset++;
    4927             :         }
    4928             : 
    4929           0 :         mas->offset--;
    4930             : not_found:
    4931           0 :         mas->index = mas->last = min;
    4932           0 :         return NULL;
    4933             : }
    4934             : 
    4935             : /*
    4936             :  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
    4937             :  * highest gap address of a given size in a given node and descend.
    4938             :  * @mas: The maple state
    4939             :  * @size: The needed size.
    4940             :  *
    4941             :  * Return: True if found in a leaf, false otherwise.
    4942             :  *
    4943             :  */
    4944           0 : static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
    4945             :                 unsigned long *gap_min, unsigned long *gap_max)
    4946             : {
    4947           0 :         enum maple_type type = mte_node_type(mas->node);
    4948           0 :         struct maple_node *node = mas_mn(mas);
    4949             :         unsigned long *pivots, *gaps;
    4950             :         void __rcu **slots;
    4951           0 :         unsigned long gap = 0;
    4952             :         unsigned long max, min;
    4953             :         unsigned char offset;
    4954             : 
    4955           0 :         if (unlikely(mas_is_err(mas)))
    4956             :                 return true;
    4957             : 
    4958           0 :         if (ma_is_dense(type)) {
    4959             :                 /* dense nodes. */
    4960           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    4961           0 :                 return true;
    4962             :         }
    4963             : 
    4964           0 :         pivots = ma_pivots(node, type);
    4965           0 :         slots = ma_slots(node, type);
    4966           0 :         gaps = ma_gaps(node, type);
    4967           0 :         offset = mas->offset;
    4968           0 :         min = mas_safe_min(mas, pivots, offset);
    4969             :         /* Skip out of bounds. */
    4970           0 :         while (mas->last < min)
    4971           0 :                 min = mas_safe_min(mas, pivots, --offset);
    4972             : 
    4973           0 :         max = mas_safe_pivot(mas, pivots, offset, type);
    4974           0 :         while (mas->index <= max) {
    4975           0 :                 gap = 0;
    4976           0 :                 if (gaps)
    4977           0 :                         gap = gaps[offset];
    4978           0 :                 else if (!mas_slot(mas, slots, offset))
    4979           0 :                         gap = max - min + 1;
    4980             : 
    4981           0 :                 if (gap) {
    4982           0 :                         if ((size <= gap) && (size <= mas->last - min + 1))
    4983             :                                 break;
    4984             : 
    4985           0 :                         if (!gaps) {
    4986             :                                 /* Skip the next slot, it cannot be a gap. */
    4987           0 :                                 if (offset < 2)
    4988             :                                         goto ascend;
    4989             : 
    4990           0 :                                 offset -= 2;
    4991           0 :                                 max = pivots[offset];
    4992           0 :                                 min = mas_safe_min(mas, pivots, offset);
    4993           0 :                                 continue;
    4994             :                         }
    4995             :                 }
    4996             : 
    4997           0 :                 if (!offset)
    4998             :                         goto ascend;
    4999             : 
    5000           0 :                 offset--;
    5001           0 :                 max = min - 1;
    5002           0 :                 min = mas_safe_min(mas, pivots, offset);
    5003             :         }
    5004             : 
    5005           0 :         if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
    5006             :                 goto no_space;
    5007             : 
    5008           0 :         if (unlikely(ma_is_leaf(type))) {
    5009           0 :                 mas->offset = offset;
    5010           0 :                 *gap_min = min;
    5011           0 :                 *gap_max = min + gap - 1;
    5012           0 :                 return true;
    5013             :         }
    5014             : 
    5015             :         /* descend, only happens under lock. */
    5016           0 :         mas->node = mas_slot(mas, slots, offset);
    5017           0 :         mas->min = min;
    5018           0 :         mas->max = max;
    5019           0 :         mas->offset = mas_data_end(mas);
    5020           0 :         return false;
    5021             : 
    5022             : ascend:
    5023           0 :         if (!mte_is_root(mas->node))
    5024             :                 return false;
    5025             : 
    5026             : no_space:
    5027           0 :         mas_set_err(mas, -EBUSY);
    5028           0 :         return false;
    5029             : }
    5030             : 
    5031           0 : static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
    5032             : {
    5033           0 :         enum maple_type type = mte_node_type(mas->node);
    5034           0 :         unsigned long pivot, min, gap = 0;
    5035             :         unsigned char offset, data_end;
    5036             :         unsigned long *gaps, *pivots;
    5037             :         void __rcu **slots;
    5038             :         struct maple_node *node;
    5039           0 :         bool found = false;
    5040             : 
    5041           0 :         if (ma_is_dense(type)) {
    5042           0 :                 mas->offset = (unsigned char)(mas->index - mas->min);
    5043           0 :                 return true;
    5044             :         }
    5045             : 
    5046           0 :         node = mas_mn(mas);
    5047           0 :         pivots = ma_pivots(node, type);
    5048           0 :         slots = ma_slots(node, type);
    5049           0 :         gaps = ma_gaps(node, type);
    5050           0 :         offset = mas->offset;
    5051           0 :         min = mas_safe_min(mas, pivots, offset);
    5052           0 :         data_end = ma_data_end(node, type, pivots, mas->max);
    5053           0 :         for (; offset <= data_end; offset++) {
    5054           0 :                 pivot = mas_logical_pivot(mas, pivots, offset, type);
    5055             : 
    5056             :                 /* Not within lower bounds */
    5057           0 :                 if (mas->index > pivot)
    5058             :                         goto next_slot;
    5059             : 
    5060           0 :                 if (gaps)
    5061           0 :                         gap = gaps[offset];
    5062           0 :                 else if (!mas_slot(mas, slots, offset))
    5063           0 :                         gap = min(pivot, mas->last) - max(mas->index, min) + 1;
    5064             :                 else
    5065             :                         goto next_slot;
    5066             : 
    5067           0 :                 if (gap >= size) {
    5068           0 :                         if (ma_is_leaf(type)) {
    5069             :                                 found = true;
    5070             :                                 goto done;
    5071             :                         }
    5072             :                         if (mas->index <= pivot) {
    5073           0 :                                 mas->node = mas_slot(mas, slots, offset);
    5074           0 :                                 mas->min = min;
    5075           0 :                                 mas->max = pivot;
    5076           0 :                                 offset = 0;
    5077           0 :                                 break;
    5078             :                         }
    5079             :                 }
    5080             : next_slot:
    5081           0 :                 min = pivot + 1;
    5082           0 :                 if (mas->last <= pivot) {
    5083           0 :                         mas_set_err(mas, -EBUSY);
    5084           0 :                         return true;
    5085             :                 }
    5086             :         }
    5087             : 
    5088           0 :         if (mte_is_root(mas->node))
    5089           0 :                 found = true;
    5090             : done:
    5091           0 :         mas->offset = offset;
    5092           0 :         return found;
    5093             : }
    5094             : 
    5095             : /**
    5096             :  * mas_walk() - Search for @mas->index in the tree.
    5097             :  * @mas: The maple state.
    5098             :  *
    5099             :  * mas->index and mas->last will be set to the range if there is a value.  If
    5100             :  * mas->node is MAS_NONE, reset to MAS_START.
    5101             :  *
    5102             :  * Return: the entry at the location or %NULL.
    5103             :  */
    5104           0 : void *mas_walk(struct ma_state *mas)
    5105             : {
    5106             :         void *entry;
    5107             : 
    5108             : retry:
    5109           0 :         entry = mas_state_walk(mas);
    5110           0 :         if (mas_is_start(mas))
    5111             :                 goto retry;
    5112             : 
    5113           0 :         if (mas_is_ptr(mas)) {
    5114           0 :                 if (!mas->index) {
    5115           0 :                         mas->last = 0;
    5116             :                 } else {
    5117           0 :                         mas->index = 1;
    5118           0 :                         mas->last = ULONG_MAX;
    5119             :                 }
    5120             :                 return entry;
    5121             :         }
    5122             : 
    5123           0 :         if (mas_is_none(mas)) {
    5124           0 :                 mas->index = 0;
    5125           0 :                 mas->last = ULONG_MAX;
    5126             :         }
    5127             : 
    5128             :         return entry;
    5129             : }
    5130             : EXPORT_SYMBOL_GPL(mas_walk);
    5131             : 
    5132           0 : static inline bool mas_rewind_node(struct ma_state *mas)
    5133             : {
    5134             :         unsigned char slot;
    5135             : 
    5136             :         do {
    5137           0 :                 if (mte_is_root(mas->node)) {
    5138           0 :                         slot = mas->offset;
    5139           0 :                         if (!slot)
    5140             :                                 return false;
    5141             :                 } else {
    5142           0 :                         mas_ascend(mas);
    5143           0 :                         slot = mas->offset;
    5144             :                 }
    5145           0 :         } while (!slot);
    5146             : 
    5147           0 :         mas->offset = --slot;
    5148           0 :         return true;
    5149             : }
    5150             : 
    5151             : /*
    5152             :  * mas_skip_node() - Internal function.  Skip over a node.
    5153             :  * @mas: The maple state.
    5154             :  *
    5155             :  * Return: true if there is another node, false otherwise.
    5156             :  */
    5157           0 : static inline bool mas_skip_node(struct ma_state *mas)
    5158             : {
    5159           0 :         if (mas_is_err(mas))
    5160             :                 return false;
    5161             : 
    5162             :         do {
    5163           0 :                 if (mte_is_root(mas->node)) {
    5164           0 :                         if (mas->offset >= mas_data_end(mas)) {
    5165           0 :                                 mas_set_err(mas, -EBUSY);
    5166           0 :                                 return false;
    5167             :                         }
    5168             :                 } else {
    5169           0 :                         mas_ascend(mas);
    5170             :                 }
    5171           0 :         } while (mas->offset >= mas_data_end(mas));
    5172             : 
    5173           0 :         mas->offset++;
    5174           0 :         return true;
    5175             : }
    5176             : 
    5177             : /*
    5178             :  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
    5179             :  * @size
    5180             :  * @mas: The maple state
    5181             :  * @size: The size of the gap required
    5182             :  *
    5183             :  * Search between @mas->index and @mas->last for a gap of @size.
    5184             :  */
    5185           0 : static inline void mas_awalk(struct ma_state *mas, unsigned long size)
    5186             : {
    5187           0 :         struct maple_enode *last = NULL;
    5188             : 
    5189             :         /*
    5190             :          * There are 4 options:
    5191             :          * go to child (descend)
    5192             :          * go back to parent (ascend)
    5193             :          * no gap found. (return, slot == MAPLE_NODE_SLOTS)
    5194             :          * found the gap. (return, slot != MAPLE_NODE_SLOTS)
    5195             :          */
    5196           0 :         while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
    5197           0 :                 if (last == mas->node)
    5198           0 :                         mas_skip_node(mas);
    5199             :                 else
    5200             :                         last = mas->node;
    5201             :         }
    5202           0 : }
    5203             : 
    5204             : /*
    5205             :  * mas_fill_gap() - Fill a located gap with @entry.
    5206             :  * @mas: The maple state
    5207             :  * @entry: The value to store
    5208             :  * @slot: The offset into the node to store the @entry
    5209             :  * @size: The size of the entry
    5210             :  * @index: The start location
    5211             :  */
    5212           0 : static inline void mas_fill_gap(struct ma_state *mas, void *entry,
    5213             :                 unsigned char slot, unsigned long size, unsigned long *index)
    5214             : {
    5215           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5216           0 :         unsigned char pslot = mte_parent_slot(mas->node);
    5217           0 :         struct maple_enode *mn = mas->node;
    5218             :         unsigned long *pivots;
    5219             :         enum maple_type ptype;
    5220             :         /*
    5221             :          * mas->index is the start address for the search
    5222             :          *  which may no longer be needed.
    5223             :          * mas->last is the end address for the search
    5224             :          */
    5225             : 
    5226           0 :         *index = mas->index;
    5227           0 :         mas->last = mas->index + size - 1;
    5228             : 
    5229             :         /*
    5230             :          * It is possible that using mas->max and mas->min to correctly
    5231             :          * calculate the index and last will cause an issue in the gap
    5232             :          * calculation, so fix the ma_state here
    5233             :          */
    5234           0 :         mas_ascend(mas);
    5235           0 :         ptype = mte_node_type(mas->node);
    5236           0 :         pivots = ma_pivots(mas_mn(mas), ptype);
    5237           0 :         mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
    5238           0 :         mas->min = mas_safe_min(mas, pivots, pslot);
    5239           0 :         mas->node = mn;
    5240           0 :         mas->offset = slot;
    5241           0 :         mas_wr_store_entry(&wr_mas);
    5242           0 : }
    5243             : 
    5244             : /*
    5245             :  * mas_sparse_area() - Internal function.  Return upper or lower limit when
    5246             :  * searching for a gap in an empty tree.
    5247             :  * @mas: The maple state
    5248             :  * @min: the minimum range
    5249             :  * @max: The maximum range
    5250             :  * @size: The size of the gap
    5251             :  * @fwd: Searching forward or back
    5252             :  */
    5253             : static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
    5254             :                                 unsigned long max, unsigned long size, bool fwd)
    5255             : {
    5256           0 :         if (!unlikely(mas_is_none(mas)) && min == 0) {
    5257           0 :                 min++;
    5258             :                 /*
    5259             :                  * At this time, min is increased, we need to recheck whether
    5260             :                  * the size is satisfied.
    5261             :                  */
    5262           0 :                 if (min > max || max - min + 1 < size)
    5263             :                         return -EBUSY;
    5264             :         }
    5265             :         /* mas_is_ptr */
    5266             : 
    5267             :         if (fwd) {
    5268           0 :                 mas->index = min;
    5269           0 :                 mas->last = min + size - 1;
    5270             :         } else {
    5271           0 :                 mas->last = max;
    5272           0 :                 mas->index = max - size + 1;
    5273             :         }
    5274             :         return 0;
    5275             : }
    5276             : 
    5277             : /*
    5278             :  * mas_empty_area() - Get the lowest address within the range that is
    5279             :  * sufficient for the size requested.
    5280             :  * @mas: The maple state
    5281             :  * @min: The lowest value of the range
    5282             :  * @max: The highest value of the range
    5283             :  * @size: The size needed
    5284             :  */
    5285           0 : int mas_empty_area(struct ma_state *mas, unsigned long min,
    5286             :                 unsigned long max, unsigned long size)
    5287             : {
    5288             :         unsigned char offset;
    5289             :         unsigned long *pivots;
    5290             :         enum maple_type mt;
    5291             : 
    5292           0 :         if (min >= max)
    5293             :                 return -EINVAL;
    5294             : 
    5295           0 :         if (mas_is_start(mas))
    5296           0 :                 mas_start(mas);
    5297           0 :         else if (mas->offset >= 2)
    5298           0 :                 mas->offset -= 2;
    5299           0 :         else if (!mas_skip_node(mas))
    5300             :                 return -EBUSY;
    5301             : 
    5302             :         /* Empty set */
    5303           0 :         if (mas_is_none(mas) || mas_is_ptr(mas))
    5304             :                 return mas_sparse_area(mas, min, max, size, true);
    5305             : 
    5306             :         /* The start of the window can only be within these values */
    5307           0 :         mas->index = min;
    5308           0 :         mas->last = max;
    5309           0 :         mas_awalk(mas, size);
    5310             : 
    5311           0 :         if (unlikely(mas_is_err(mas)))
    5312           0 :                 return xa_err(mas->node);
    5313             : 
    5314           0 :         offset = mas->offset;
    5315           0 :         if (unlikely(offset == MAPLE_NODE_SLOTS))
    5316             :                 return -EBUSY;
    5317             : 
    5318           0 :         mt = mte_node_type(mas->node);
    5319           0 :         pivots = ma_pivots(mas_mn(mas), mt);
    5320           0 :         min = mas_safe_min(mas, pivots, offset);
    5321           0 :         if (mas->index < min)
    5322           0 :                 mas->index = min;
    5323           0 :         mas->last = mas->index + size - 1;
    5324           0 :         return 0;
    5325             : }
    5326             : EXPORT_SYMBOL_GPL(mas_empty_area);
    5327             : 
    5328             : /*
    5329             :  * mas_empty_area_rev() - Get the highest address within the range that is
    5330             :  * sufficient for the size requested.
    5331             :  * @mas: The maple state
    5332             :  * @min: The lowest value of the range
    5333             :  * @max: The highest value of the range
    5334             :  * @size: The size needed
    5335             :  */
    5336           0 : int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
    5337             :                 unsigned long max, unsigned long size)
    5338             : {
    5339           0 :         struct maple_enode *last = mas->node;
    5340             : 
    5341           0 :         if (min >= max)
    5342             :                 return -EINVAL;
    5343             : 
    5344           0 :         if (mas_is_start(mas)) {
    5345           0 :                 mas_start(mas);
    5346           0 :                 mas->offset = mas_data_end(mas);
    5347           0 :         } else if (mas->offset >= 2) {
    5348           0 :                 mas->offset -= 2;
    5349           0 :         } else if (!mas_rewind_node(mas)) {
    5350             :                 return -EBUSY;
    5351             :         }
    5352             : 
    5353             :         /* Empty set. */
    5354           0 :         if (mas_is_none(mas) || mas_is_ptr(mas))
    5355           0 :                 return mas_sparse_area(mas, min, max, size, false);
    5356             : 
    5357             :         /* The start of the window can only be within these values. */
    5358           0 :         mas->index = min;
    5359           0 :         mas->last = max;
    5360             : 
    5361           0 :         while (!mas_rev_awalk(mas, size, &min, &max)) {
    5362           0 :                 if (last == mas->node) {
    5363           0 :                         if (!mas_rewind_node(mas))
    5364             :                                 return -EBUSY;
    5365             :                 } else {
    5366             :                         last = mas->node;
    5367             :                 }
    5368             :         }
    5369             : 
    5370           0 :         if (mas_is_err(mas))
    5371           0 :                 return xa_err(mas->node);
    5372             : 
    5373           0 :         if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
    5374             :                 return -EBUSY;
    5375             : 
    5376             :         /* Trim the upper limit to the max. */
    5377           0 :         if (max <= mas->last)
    5378           0 :                 mas->last = max;
    5379             : 
    5380           0 :         mas->index = mas->last - size + 1;
    5381           0 :         return 0;
    5382             : }
    5383             : EXPORT_SYMBOL_GPL(mas_empty_area_rev);
    5384             : 
    5385           0 : static inline int mas_alloc(struct ma_state *mas, void *entry,
    5386             :                 unsigned long size, unsigned long *index)
    5387             : {
    5388             :         unsigned long min;
    5389             : 
    5390           0 :         mas_start(mas);
    5391           0 :         if (mas_is_none(mas) || mas_is_ptr(mas)) {
    5392           0 :                 mas_root_expand(mas, entry);
    5393           0 :                 if (mas_is_err(mas))
    5394           0 :                         return xa_err(mas->node);
    5395             : 
    5396           0 :                 if (!mas->index)
    5397           0 :                         return mte_pivot(mas->node, 0);
    5398           0 :                 return mte_pivot(mas->node, 1);
    5399             :         }
    5400             : 
    5401             :         /* Must be walking a tree. */
    5402           0 :         mas_awalk(mas, size);
    5403           0 :         if (mas_is_err(mas))
    5404           0 :                 return xa_err(mas->node);
    5405             : 
    5406           0 :         if (mas->offset == MAPLE_NODE_SLOTS)
    5407             :                 goto no_gap;
    5408             : 
    5409             :         /*
    5410             :          * At this point, mas->node points to the right node and we have an
    5411             :          * offset that has a sufficient gap.
    5412             :          */
    5413           0 :         min = mas->min;
    5414           0 :         if (mas->offset)
    5415           0 :                 min = mte_pivot(mas->node, mas->offset - 1) + 1;
    5416             : 
    5417           0 :         if (mas->index < min)
    5418           0 :                 mas->index = min;
    5419             : 
    5420           0 :         mas_fill_gap(mas, entry, mas->offset, size, index);
    5421           0 :         return 0;
    5422             : 
    5423             : no_gap:
    5424             :         return -EBUSY;
    5425             : }
    5426             : 
    5427           0 : static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
    5428             :                                 unsigned long max, void *entry,
    5429             :                                 unsigned long size, unsigned long *index)
    5430             : {
    5431           0 :         int ret = 0;
    5432             : 
    5433           0 :         ret = mas_empty_area_rev(mas, min, max, size);
    5434           0 :         if (ret)
    5435             :                 return ret;
    5436             : 
    5437           0 :         if (mas_is_err(mas))
    5438           0 :                 return xa_err(mas->node);
    5439             : 
    5440           0 :         if (mas->offset == MAPLE_NODE_SLOTS)
    5441             :                 goto no_gap;
    5442             : 
    5443           0 :         mas_fill_gap(mas, entry, mas->offset, size, index);
    5444           0 :         return 0;
    5445             : 
    5446             : no_gap:
    5447             :         return -EBUSY;
    5448             : }
    5449             : 
    5450             : /*
    5451             :  * mte_dead_leaves() - Mark all leaves of a node as dead.
    5452             :  * @mas: The maple state
    5453             :  * @slots: Pointer to the slot array
    5454             :  * @type: The maple node type
    5455             :  *
    5456             :  * Must hold the write lock.
    5457             :  *
    5458             :  * Return: The number of leaves marked as dead.
    5459             :  */
    5460             : static inline
    5461           0 : unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
    5462             :                               void __rcu **slots)
    5463             : {
    5464             :         struct maple_node *node;
    5465             :         enum maple_type type;
    5466             :         void *entry;
    5467             :         int offset;
    5468             : 
    5469           0 :         for (offset = 0; offset < mt_slot_count(enode); offset++) {
    5470           0 :                 entry = mt_slot(mt, slots, offset);
    5471           0 :                 type = mte_node_type(entry);
    5472           0 :                 node = mte_to_node(entry);
    5473             :                 /* Use both node and type to catch LE & BE metadata */
    5474           0 :                 if (!node || !type)
    5475             :                         break;
    5476             : 
    5477           0 :                 mte_set_node_dead(entry);
    5478           0 :                 node->type = type;
    5479           0 :                 rcu_assign_pointer(slots[offset], node);
    5480             :         }
    5481             : 
    5482           0 :         return offset;
    5483             : }
    5484             : 
    5485             : /**
    5486             :  * mte_dead_walk() - Walk down a dead tree to just before the leaves
    5487             :  * @enode: The maple encoded node
    5488             :  * @offset: The starting offset
    5489             :  *
    5490             :  * Note: This can only be used from the RCU callback context.
    5491             :  */
    5492             : static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
    5493             : {
    5494             :         struct maple_node *node, *next;
    5495           0 :         void __rcu **slots = NULL;
    5496             : 
    5497           0 :         next = mte_to_node(*enode);
    5498             :         do {
    5499           0 :                 *enode = ma_enode_ptr(next);
    5500           0 :                 node = mte_to_node(*enode);
    5501           0 :                 slots = ma_slots(node, node->type);
    5502           0 :                 next = rcu_dereference_protected(slots[offset],
    5503             :                                         lock_is_held(&rcu_callback_map));
    5504           0 :                 offset = 0;
    5505           0 :         } while (!ma_is_leaf(next->type));
    5506             : 
    5507             :         return slots;
    5508             : }
    5509             : 
    5510             : /**
    5511             :  * mt_free_walk() - Walk & free a tree in the RCU callback context
    5512             :  * @head: The RCU head that's within the node.
    5513             :  *
    5514             :  * Note: This can only be used from the RCU callback context.
    5515             :  */
    5516           0 : static void mt_free_walk(struct rcu_head *head)
    5517             : {
    5518             :         void __rcu **slots;
    5519             :         struct maple_node *node, *start;
    5520             :         struct maple_enode *enode;
    5521             :         unsigned char offset;
    5522             :         enum maple_type type;
    5523             : 
    5524           0 :         node = container_of(head, struct maple_node, rcu);
    5525             : 
    5526           0 :         if (ma_is_leaf(node->type))
    5527             :                 goto free_leaf;
    5528             : 
    5529           0 :         start = node;
    5530           0 :         enode = mt_mk_node(node, node->type);
    5531             :         slots = mte_dead_walk(&enode, 0);
    5532             :         node = mte_to_node(enode);
    5533             :         do {
    5534           0 :                 mt_free_bulk(node->slot_len, slots);
    5535           0 :                 offset = node->parent_slot + 1;
    5536           0 :                 enode = node->piv_parent;
    5537           0 :                 if (mte_to_node(enode) == node)
    5538             :                         goto free_leaf;
    5539             : 
    5540           0 :                 type = mte_node_type(enode);
    5541           0 :                 slots = ma_slots(mte_to_node(enode), type);
    5542           0 :                 if ((offset < mt_slots[type]) &&
    5543           0 :                     rcu_dereference_protected(slots[offset],
    5544             :                                               lock_is_held(&rcu_callback_map)))
    5545             :                         slots = mte_dead_walk(&enode, offset);
    5546           0 :                 node = mte_to_node(enode);
    5547           0 :         } while ((node != start) || (node->slot_len < offset));
    5548             : 
    5549           0 :         slots = ma_slots(node, node->type);
    5550           0 :         mt_free_bulk(node->slot_len, slots);
    5551             : 
    5552             : free_leaf:
    5553           0 :         mt_free_rcu(&node->rcu);
    5554           0 : }
    5555             : 
    5556           0 : static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
    5557             :         struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
    5558             : {
    5559             :         struct maple_node *node;
    5560           0 :         struct maple_enode *next = *enode;
    5561           0 :         void __rcu **slots = NULL;
    5562             :         enum maple_type type;
    5563           0 :         unsigned char next_offset = 0;
    5564             : 
    5565             :         do {
    5566           0 :                 *enode = next;
    5567           0 :                 node = mte_to_node(*enode);
    5568           0 :                 type = mte_node_type(*enode);
    5569           0 :                 slots = ma_slots(node, type);
    5570           0 :                 next = mt_slot_locked(mt, slots, next_offset);
    5571           0 :                 if ((mte_dead_node(next)))
    5572           0 :                         next = mt_slot_locked(mt, slots, ++next_offset);
    5573             : 
    5574           0 :                 mte_set_node_dead(*enode);
    5575           0 :                 node->type = type;
    5576           0 :                 node->piv_parent = prev;
    5577           0 :                 node->parent_slot = offset;
    5578           0 :                 offset = next_offset;
    5579           0 :                 next_offset = 0;
    5580           0 :                 prev = *enode;
    5581           0 :         } while (!mte_is_leaf(next));
    5582             : 
    5583           0 :         return slots;
    5584             : }
    5585             : 
    5586           0 : static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
    5587             :                             bool free)
    5588             : {
    5589             :         void __rcu **slots;
    5590           0 :         struct maple_node *node = mte_to_node(enode);
    5591             :         struct maple_enode *start;
    5592             : 
    5593           0 :         if (mte_is_leaf(enode)) {
    5594           0 :                 node->type = mte_node_type(enode);
    5595           0 :                 goto free_leaf;
    5596             :         }
    5597             : 
    5598           0 :         start = enode;
    5599           0 :         slots = mte_destroy_descend(&enode, mt, start, 0);
    5600           0 :         node = mte_to_node(enode); // Updated in the above call.
    5601             :         do {
    5602             :                 enum maple_type type;
    5603             :                 unsigned char offset;
    5604             :                 struct maple_enode *parent, *tmp;
    5605             : 
    5606           0 :                 node->slot_len = mte_dead_leaves(enode, mt, slots);
    5607           0 :                 if (free)
    5608           0 :                         mt_free_bulk(node->slot_len, slots);
    5609           0 :                 offset = node->parent_slot + 1;
    5610           0 :                 enode = node->piv_parent;
    5611           0 :                 if (mte_to_node(enode) == node)
    5612             :                         goto free_leaf;
    5613             : 
    5614           0 :                 type = mte_node_type(enode);
    5615           0 :                 slots = ma_slots(mte_to_node(enode), type);
    5616           0 :                 if (offset >= mt_slots[type])
    5617             :                         goto next;
    5618             : 
    5619           0 :                 tmp = mt_slot_locked(mt, slots, offset);
    5620           0 :                 if (mte_node_type(tmp) && mte_to_node(tmp)) {
    5621           0 :                         parent = enode;
    5622           0 :                         enode = tmp;
    5623           0 :                         slots = mte_destroy_descend(&enode, mt, parent, offset);
    5624             :                 }
    5625             : next:
    5626           0 :                 node = mte_to_node(enode);
    5627           0 :         } while (start != enode);
    5628             : 
    5629           0 :         node = mte_to_node(enode);
    5630           0 :         node->slot_len = mte_dead_leaves(enode, mt, slots);
    5631           0 :         if (free)
    5632           0 :                 mt_free_bulk(node->slot_len, slots);
    5633             : 
    5634             : free_leaf:
    5635           0 :         if (free)
    5636           0 :                 mt_free_rcu(&node->rcu);
    5637             :         else
    5638           0 :                 mt_clear_meta(mt, node, node->type);
    5639           0 : }
    5640             : 
    5641             : /*
    5642             :  * mte_destroy_walk() - Free a tree or sub-tree.
    5643             :  * @enode: the encoded maple node (maple_enode) to start
    5644             :  * @mt: the tree to free - needed for node types.
    5645             :  *
    5646             :  * Must hold the write lock.
    5647             :  */
    5648           0 : static inline void mte_destroy_walk(struct maple_enode *enode,
    5649             :                                     struct maple_tree *mt)
    5650             : {
    5651           0 :         struct maple_node *node = mte_to_node(enode);
    5652             : 
    5653           0 :         if (mt_in_rcu(mt)) {
    5654           0 :                 mt_destroy_walk(enode, mt, false);
    5655           0 :                 call_rcu(&node->rcu, mt_free_walk);
    5656             :         } else {
    5657           0 :                 mt_destroy_walk(enode, mt, true);
    5658             :         }
    5659           0 : }
    5660             : 
    5661           0 : static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
    5662             : {
    5663           0 :         if (unlikely(mas_is_paused(wr_mas->mas)))
    5664           0 :                 mas_reset(wr_mas->mas);
    5665             : 
    5666           0 :         if (!mas_is_start(wr_mas->mas)) {
    5667           0 :                 if (mas_is_none(wr_mas->mas)) {
    5668           0 :                         mas_reset(wr_mas->mas);
    5669             :                 } else {
    5670           0 :                         wr_mas->r_max = wr_mas->mas->max;
    5671           0 :                         wr_mas->type = mte_node_type(wr_mas->mas->node);
    5672           0 :                         if (mas_is_span_wr(wr_mas))
    5673           0 :                                 mas_reset(wr_mas->mas);
    5674             :                 }
    5675             :         }
    5676           0 : }
    5677             : 
    5678             : /* Interface */
    5679             : 
    5680             : /**
    5681             :  * mas_store() - Store an @entry.
    5682             :  * @mas: The maple state.
    5683             :  * @entry: The entry to store.
    5684             :  *
    5685             :  * The @mas->index and @mas->last is used to set the range for the @entry.
    5686             :  * Note: The @mas should have pre-allocated entries to ensure there is memory to
    5687             :  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
    5688             :  *
    5689             :  * Return: the first entry between mas->index and mas->last or %NULL.
    5690             :  */
    5691           0 : void *mas_store(struct ma_state *mas, void *entry)
    5692             : {
    5693           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5694             : 
    5695           0 :         trace_ma_write(__func__, mas, 0, entry);
    5696             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    5697             :         if (mas->index > mas->last)
    5698             :                 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
    5699             :         MT_BUG_ON(mas->tree, mas->index > mas->last);
    5700             :         if (mas->index > mas->last) {
    5701             :                 mas_set_err(mas, -EINVAL);
    5702             :                 return NULL;
    5703             :         }
    5704             : 
    5705             : #endif
    5706             : 
    5707             :         /*
    5708             :          * Storing is the same operation as insert with the added caveat that it
    5709             :          * can overwrite entries.  Although this seems simple enough, one may
    5710             :          * want to examine what happens if a single store operation was to
    5711             :          * overwrite multiple entries within a self-balancing B-Tree.
    5712             :          */
    5713           0 :         mas_wr_store_setup(&wr_mas);
    5714           0 :         mas_wr_store_entry(&wr_mas);
    5715           0 :         return wr_mas.content;
    5716             : }
    5717             : EXPORT_SYMBOL_GPL(mas_store);
    5718             : 
    5719             : /**
    5720             :  * mas_store_gfp() - Store a value into the tree.
    5721             :  * @mas: The maple state
    5722             :  * @entry: The entry to store
    5723             :  * @gfp: The GFP_FLAGS to use for allocations if necessary.
    5724             :  *
    5725             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    5726             :  * be allocated.
    5727             :  */
    5728           0 : int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
    5729             : {
    5730           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5731             : 
    5732           0 :         mas_wr_store_setup(&wr_mas);
    5733           0 :         trace_ma_write(__func__, mas, 0, entry);
    5734             : retry:
    5735           0 :         mas_wr_store_entry(&wr_mas);
    5736           0 :         if (unlikely(mas_nomem(mas, gfp)))
    5737             :                 goto retry;
    5738             : 
    5739           0 :         if (unlikely(mas_is_err(mas)))
    5740           0 :                 return xa_err(mas->node);
    5741             : 
    5742             :         return 0;
    5743             : }
    5744             : EXPORT_SYMBOL_GPL(mas_store_gfp);
    5745             : 
    5746             : /**
    5747             :  * mas_store_prealloc() - Store a value into the tree using memory
    5748             :  * preallocated in the maple state.
    5749             :  * @mas: The maple state
    5750             :  * @entry: The entry to store.
    5751             :  */
    5752           0 : void mas_store_prealloc(struct ma_state *mas, void *entry)
    5753             : {
    5754           0 :         MA_WR_STATE(wr_mas, mas, entry);
    5755             : 
    5756           0 :         mas_wr_store_setup(&wr_mas);
    5757           0 :         trace_ma_write(__func__, mas, 0, entry);
    5758           0 :         mas_wr_store_entry(&wr_mas);
    5759           0 :         BUG_ON(mas_is_err(mas));
    5760           0 :         mas_destroy(mas);
    5761           0 : }
    5762             : EXPORT_SYMBOL_GPL(mas_store_prealloc);
    5763             : 
    5764             : /**
    5765             :  * mas_preallocate() - Preallocate enough nodes for a store operation
    5766             :  * @mas: The maple state
    5767             :  * @gfp: The GFP_FLAGS to use for allocations.
    5768             :  *
    5769             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5770             :  */
    5771           0 : int mas_preallocate(struct ma_state *mas, gfp_t gfp)
    5772             : {
    5773             :         int ret;
    5774             : 
    5775           0 :         mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
    5776           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5777           0 :         if (likely(!mas_is_err(mas)))
    5778             :                 return 0;
    5779             : 
    5780           0 :         mas_set_alloc_req(mas, 0);
    5781           0 :         ret = xa_err(mas->node);
    5782           0 :         mas_reset(mas);
    5783           0 :         mas_destroy(mas);
    5784           0 :         mas_reset(mas);
    5785           0 :         return ret;
    5786             : }
    5787             : EXPORT_SYMBOL_GPL(mas_preallocate);
    5788             : 
    5789             : /*
    5790             :  * mas_destroy() - destroy a maple state.
    5791             :  * @mas: The maple state
    5792             :  *
    5793             :  * Upon completion, check the left-most node and rebalance against the node to
    5794             :  * the right if necessary.  Frees any allocated nodes associated with this maple
    5795             :  * state.
    5796             :  */
    5797           0 : void mas_destroy(struct ma_state *mas)
    5798             : {
    5799             :         struct maple_alloc *node;
    5800             :         unsigned long total;
    5801             : 
    5802             :         /*
    5803             :          * When using mas_for_each() to insert an expected number of elements,
    5804             :          * it is possible that the number inserted is less than the expected
    5805             :          * number.  To fix an invalid final node, a check is performed here to
    5806             :          * rebalance the previous node with the final node.
    5807             :          */
    5808           0 :         if (mas->mas_flags & MA_STATE_REBALANCE) {
    5809             :                 unsigned char end;
    5810             : 
    5811           0 :                 if (mas_is_start(mas))
    5812           0 :                         mas_start(mas);
    5813             : 
    5814           0 :                 mtree_range_walk(mas);
    5815           0 :                 end = mas_data_end(mas) + 1;
    5816           0 :                 if (end < mt_min_slot_count(mas->node) - 1)
    5817           0 :                         mas_destroy_rebalance(mas, end);
    5818             : 
    5819           0 :                 mas->mas_flags &= ~MA_STATE_REBALANCE;
    5820             :         }
    5821           0 :         mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
    5822             : 
    5823           0 :         total = mas_allocated(mas);
    5824           0 :         while (total) {
    5825           0 :                 node = mas->alloc;
    5826           0 :                 mas->alloc = node->slot[0];
    5827           0 :                 if (node->node_count > 1) {
    5828           0 :                         size_t count = node->node_count - 1;
    5829             : 
    5830           0 :                         mt_free_bulk(count, (void __rcu **)&node->slot[1]);
    5831           0 :                         total -= count;
    5832             :                 }
    5833           0 :                 kmem_cache_free(maple_node_cache, node);
    5834           0 :                 total--;
    5835             :         }
    5836             : 
    5837           0 :         mas->alloc = NULL;
    5838           0 : }
    5839             : EXPORT_SYMBOL_GPL(mas_destroy);
    5840             : 
    5841             : /*
    5842             :  * mas_expected_entries() - Set the expected number of entries that will be inserted.
    5843             :  * @mas: The maple state
    5844             :  * @nr_entries: The number of expected entries.
    5845             :  *
    5846             :  * This will attempt to pre-allocate enough nodes to store the expected number
    5847             :  * of entries.  The allocations will occur using the bulk allocator interface
    5848             :  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
    5849             :  * to ensure any unused nodes are freed.
    5850             :  *
    5851             :  * Return: 0 on success, -ENOMEM if memory could not be allocated.
    5852             :  */
    5853           0 : int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
    5854             : {
    5855           0 :         int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
    5856           0 :         struct maple_enode *enode = mas->node;
    5857             :         int nr_nodes;
    5858             :         int ret;
    5859             : 
    5860             :         /*
    5861             :          * Sometimes it is necessary to duplicate a tree to a new tree, such as
    5862             :          * forking a process and duplicating the VMAs from one tree to a new
    5863             :          * tree.  When such a situation arises, it is known that the new tree is
    5864             :          * not going to be used until the entire tree is populated.  For
    5865             :          * performance reasons, it is best to use a bulk load with RCU disabled.
    5866             :          * This allows for optimistic splitting that favours the left and reuse
    5867             :          * of nodes during the operation.
    5868             :          */
    5869             : 
    5870             :         /* Optimize splitting for bulk insert in-order */
    5871           0 :         mas->mas_flags |= MA_STATE_BULK;
    5872             : 
    5873             :         /*
    5874             :          * Avoid overflow, assume a gap between each entry and a trailing null.
    5875             :          * If this is wrong, it just means allocation can happen during
    5876             :          * insertion of entries.
    5877             :          */
    5878           0 :         nr_nodes = max(nr_entries, nr_entries * 2 + 1);
    5879           0 :         if (!mt_is_alloc(mas->tree))
    5880           0 :                 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
    5881             : 
    5882             :         /* Leaves; reduce slots to keep space for expansion */
    5883           0 :         nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
    5884             :         /* Internal nodes */
    5885           0 :         nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
    5886             :         /* Add working room for split (2 nodes) + new parents */
    5887           0 :         mas_node_count(mas, nr_nodes + 3);
    5888             : 
    5889             :         /* Detect if allocations run out */
    5890           0 :         mas->mas_flags |= MA_STATE_PREALLOC;
    5891             : 
    5892           0 :         if (!mas_is_err(mas))
    5893             :                 return 0;
    5894             : 
    5895           0 :         ret = xa_err(mas->node);
    5896           0 :         mas->node = enode;
    5897           0 :         mas_destroy(mas);
    5898           0 :         return ret;
    5899             : 
    5900             : }
    5901             : EXPORT_SYMBOL_GPL(mas_expected_entries);
    5902             : 
    5903             : /**
    5904             :  * mas_next() - Get the next entry.
    5905             :  * @mas: The maple state
    5906             :  * @max: The maximum index to check.
    5907             :  *
    5908             :  * Returns the next entry after @mas->index.
    5909             :  * Must hold rcu_read_lock or the write lock.
    5910             :  * Can return the zero entry.
    5911             :  *
    5912             :  * Return: The next entry or %NULL
    5913             :  */
    5914           0 : void *mas_next(struct ma_state *mas, unsigned long max)
    5915             : {
    5916           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5917           0 :                 mas->node = MAS_START;
    5918             : 
    5919           0 :         if (mas_is_start(mas))
    5920           0 :                 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
    5921             : 
    5922           0 :         if (mas_is_ptr(mas)) {
    5923           0 :                 if (!mas->index) {
    5924           0 :                         mas->index = 1;
    5925           0 :                         mas->last = ULONG_MAX;
    5926             :                 }
    5927             :                 return NULL;
    5928             :         }
    5929             : 
    5930           0 :         if (mas->last == ULONG_MAX)
    5931             :                 return NULL;
    5932             : 
    5933             :         /* Retries on dead nodes handled by mas_next_entry */
    5934           0 :         return mas_next_entry(mas, max);
    5935             : }
    5936             : EXPORT_SYMBOL_GPL(mas_next);
    5937             : 
    5938             : /**
    5939             :  * mt_next() - get the next value in the maple tree
    5940             :  * @mt: The maple tree
    5941             :  * @index: The start index
    5942             :  * @max: The maximum index to check
    5943             :  *
    5944             :  * Return: The entry at @index or higher, or %NULL if nothing is found.
    5945             :  */
    5946           0 : void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
    5947             : {
    5948           0 :         void *entry = NULL;
    5949           0 :         MA_STATE(mas, mt, index, index);
    5950             : 
    5951             :         rcu_read_lock();
    5952           0 :         entry = mas_next(&mas, max);
    5953             :         rcu_read_unlock();
    5954           0 :         return entry;
    5955             : }
    5956             : EXPORT_SYMBOL_GPL(mt_next);
    5957             : 
    5958             : /**
    5959             :  * mas_prev() - Get the previous entry
    5960             :  * @mas: The maple state
    5961             :  * @min: The minimum value to check.
    5962             :  *
    5963             :  * Must hold rcu_read_lock or the write lock.
    5964             :  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
    5965             :  * searchable nodes.
    5966             :  *
    5967             :  * Return: the previous value or %NULL.
    5968             :  */
    5969           0 : void *mas_prev(struct ma_state *mas, unsigned long min)
    5970             : {
    5971           0 :         if (!mas->index) {
    5972             :                 /* Nothing comes before 0 */
    5973           0 :                 mas->last = 0;
    5974           0 :                 mas->node = MAS_NONE;
    5975           0 :                 return NULL;
    5976             :         }
    5977             : 
    5978           0 :         if (unlikely(mas_is_ptr(mas)))
    5979             :                 return NULL;
    5980             : 
    5981           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    5982           0 :                 mas->node = MAS_START;
    5983             : 
    5984           0 :         if (mas_is_start(mas)) {
    5985           0 :                 mas_walk(mas);
    5986           0 :                 if (!mas->index)
    5987             :                         return NULL;
    5988             :         }
    5989             : 
    5990           0 :         if (mas_is_ptr(mas)) {
    5991           0 :                 if (!mas->index) {
    5992           0 :                         mas->last = 0;
    5993           0 :                         return NULL;
    5994             :                 }
    5995             : 
    5996           0 :                 mas->index = mas->last = 0;
    5997           0 :                 return mas_root_locked(mas);
    5998             :         }
    5999           0 :         return mas_prev_entry(mas, min);
    6000             : }
    6001             : EXPORT_SYMBOL_GPL(mas_prev);
    6002             : 
    6003             : /**
    6004             :  * mt_prev() - get the previous value in the maple tree
    6005             :  * @mt: The maple tree
    6006             :  * @index: The start index
    6007             :  * @min: The minimum index to check
    6008             :  *
    6009             :  * Return: The entry at @index or lower, or %NULL if nothing is found.
    6010             :  */
    6011           0 : void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
    6012             : {
    6013           0 :         void *entry = NULL;
    6014           0 :         MA_STATE(mas, mt, index, index);
    6015             : 
    6016             :         rcu_read_lock();
    6017           0 :         entry = mas_prev(&mas, min);
    6018             :         rcu_read_unlock();
    6019           0 :         return entry;
    6020             : }
    6021             : EXPORT_SYMBOL_GPL(mt_prev);
    6022             : 
    6023             : /**
    6024             :  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
    6025             :  * @mas: The maple state to pause
    6026             :  *
    6027             :  * Some users need to pause a walk and drop the lock they're holding in
    6028             :  * order to yield to a higher priority thread or carry out an operation
    6029             :  * on an entry.  Those users should call this function before they drop
    6030             :  * the lock.  It resets the @mas to be suitable for the next iteration
    6031             :  * of the loop after the user has reacquired the lock.  If most entries
    6032             :  * found during a walk require you to call mas_pause(), the mt_for_each()
    6033             :  * iterator may be more appropriate.
    6034             :  *
    6035             :  */
    6036           0 : void mas_pause(struct ma_state *mas)
    6037             : {
    6038           0 :         mas->node = MAS_PAUSE;
    6039           0 : }
    6040             : EXPORT_SYMBOL_GPL(mas_pause);
    6041             : 
    6042             : /**
    6043             :  * mas_find() - On the first call, find the entry at or after mas->index up to
    6044             :  * %max.  Otherwise, find the entry after mas->index.
    6045             :  * @mas: The maple state
    6046             :  * @max: The maximum value to check.
    6047             :  *
    6048             :  * Must hold rcu_read_lock or the write lock.
    6049             :  * If an entry exists, last and index are updated accordingly.
    6050             :  * May set @mas->node to MAS_NONE.
    6051             :  *
    6052             :  * Return: The entry or %NULL.
    6053             :  */
    6054           0 : void *mas_find(struct ma_state *mas, unsigned long max)
    6055             : {
    6056           0 :         if (unlikely(mas_is_paused(mas))) {
    6057           0 :                 if (unlikely(mas->last == ULONG_MAX)) {
    6058           0 :                         mas->node = MAS_NONE;
    6059           0 :                         return NULL;
    6060             :                 }
    6061           0 :                 mas->node = MAS_START;
    6062           0 :                 mas->index = ++mas->last;
    6063             :         }
    6064             : 
    6065           0 :         if (unlikely(mas_is_none(mas)))
    6066           0 :                 mas->node = MAS_START;
    6067             : 
    6068           0 :         if (unlikely(mas_is_start(mas))) {
    6069             :                 /* First run or continue */
    6070             :                 void *entry;
    6071             : 
    6072           0 :                 if (mas->index > max)
    6073             :                         return NULL;
    6074             : 
    6075           0 :                 entry = mas_walk(mas);
    6076           0 :                 if (entry)
    6077             :                         return entry;
    6078             :         }
    6079             : 
    6080           0 :         if (unlikely(!mas_searchable(mas)))
    6081             :                 return NULL;
    6082             : 
    6083             :         /* Retries on dead nodes handled by mas_next_entry */
    6084           0 :         return mas_next_entry(mas, max);
    6085             : }
    6086             : EXPORT_SYMBOL_GPL(mas_find);
    6087             : 
    6088             : /**
    6089             :  * mas_find_rev: On the first call, find the first non-null entry at or below
    6090             :  * mas->index down to %min.  Otherwise find the first non-null entry below
    6091             :  * mas->index down to %min.
    6092             :  * @mas: The maple state
    6093             :  * @min: The minimum value to check.
    6094             :  *
    6095             :  * Must hold rcu_read_lock or the write lock.
    6096             :  * If an entry exists, last and index are updated accordingly.
    6097             :  * May set @mas->node to MAS_NONE.
    6098             :  *
    6099             :  * Return: The entry or %NULL.
    6100             :  */
    6101           0 : void *mas_find_rev(struct ma_state *mas, unsigned long min)
    6102             : {
    6103           0 :         if (unlikely(mas_is_paused(mas))) {
    6104           0 :                 if (unlikely(mas->last == ULONG_MAX)) {
    6105           0 :                         mas->node = MAS_NONE;
    6106           0 :                         return NULL;
    6107             :                 }
    6108           0 :                 mas->node = MAS_START;
    6109           0 :                 mas->last = --mas->index;
    6110             :         }
    6111             : 
    6112           0 :         if (unlikely(mas_is_start(mas))) {
    6113             :                 /* First run or continue */
    6114             :                 void *entry;
    6115             : 
    6116           0 :                 if (mas->index < min)
    6117             :                         return NULL;
    6118             : 
    6119           0 :                 entry = mas_walk(mas);
    6120           0 :                 if (entry)
    6121             :                         return entry;
    6122             :         }
    6123             : 
    6124           0 :         if (unlikely(!mas_searchable(mas)))
    6125             :                 return NULL;
    6126             : 
    6127           0 :         if (mas->index < min)
    6128             :                 return NULL;
    6129             : 
    6130             :         /* Retries on dead nodes handled by mas_prev_entry */
    6131           0 :         return mas_prev_entry(mas, min);
    6132             : }
    6133             : EXPORT_SYMBOL_GPL(mas_find_rev);
    6134             : 
    6135             : /**
    6136             :  * mas_erase() - Find the range in which index resides and erase the entire
    6137             :  * range.
    6138             :  * @mas: The maple state
    6139             :  *
    6140             :  * Must hold the write lock.
    6141             :  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
    6142             :  * erases that range.
    6143             :  *
    6144             :  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
    6145             :  */
    6146           0 : void *mas_erase(struct ma_state *mas)
    6147             : {
    6148             :         void *entry;
    6149           0 :         MA_WR_STATE(wr_mas, mas, NULL);
    6150             : 
    6151           0 :         if (mas_is_none(mas) || mas_is_paused(mas))
    6152           0 :                 mas->node = MAS_START;
    6153             : 
    6154             :         /* Retry unnecessary when holding the write lock. */
    6155           0 :         entry = mas_state_walk(mas);
    6156           0 :         if (!entry)
    6157             :                 return NULL;
    6158             : 
    6159             : write_retry:
    6160             :         /* Must reset to ensure spanning writes of last slot are detected */
    6161           0 :         mas_reset(mas);
    6162           0 :         mas_wr_store_setup(&wr_mas);
    6163           0 :         mas_wr_store_entry(&wr_mas);
    6164           0 :         if (mas_nomem(mas, GFP_KERNEL))
    6165             :                 goto write_retry;
    6166             : 
    6167             :         return entry;
    6168             : }
    6169             : EXPORT_SYMBOL_GPL(mas_erase);
    6170             : 
    6171             : /**
    6172             :  * mas_nomem() - Check if there was an error allocating and do the allocation
    6173             :  * if necessary If there are allocations, then free them.
    6174             :  * @mas: The maple state
    6175             :  * @gfp: The GFP_FLAGS to use for allocations
    6176             :  * Return: true on allocation, false otherwise.
    6177             :  */
    6178           0 : bool mas_nomem(struct ma_state *mas, gfp_t gfp)
    6179             :         __must_hold(mas->tree->lock)
    6180             : {
    6181           0 :         if (likely(mas->node != MA_ERROR(-ENOMEM))) {
    6182           0 :                 mas_destroy(mas);
    6183           0 :                 return false;
    6184             :         }
    6185             : 
    6186           0 :         if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
    6187           0 :                 mtree_unlock(mas->tree);
    6188           0 :                 mas_alloc_nodes(mas, gfp);
    6189           0 :                 mtree_lock(mas->tree);
    6190             :         } else {
    6191           0 :                 mas_alloc_nodes(mas, gfp);
    6192             :         }
    6193             : 
    6194           0 :         if (!mas_allocated(mas))
    6195             :                 return false;
    6196             : 
    6197           0 :         mas->node = MAS_START;
    6198           0 :         return true;
    6199             : }
    6200             : 
    6201           1 : void __init maple_tree_init(void)
    6202             : {
    6203           1 :         maple_node_cache = kmem_cache_create("maple_node",
    6204             :                         sizeof(struct maple_node), sizeof(struct maple_node),
    6205             :                         SLAB_PANIC, NULL);
    6206           1 : }
    6207             : 
    6208             : /**
    6209             :  * mtree_load() - Load a value stored in a maple tree
    6210             :  * @mt: The maple tree
    6211             :  * @index: The index to load
    6212             :  *
    6213             :  * Return: the entry or %NULL
    6214             :  */
    6215           0 : void *mtree_load(struct maple_tree *mt, unsigned long index)
    6216             : {
    6217           0 :         MA_STATE(mas, mt, index, index);
    6218             :         void *entry;
    6219             : 
    6220           0 :         trace_ma_read(__func__, &mas);
    6221             :         rcu_read_lock();
    6222             : retry:
    6223           0 :         entry = mas_start(&mas);
    6224           0 :         if (unlikely(mas_is_none(&mas)))
    6225             :                 goto unlock;
    6226             : 
    6227           0 :         if (unlikely(mas_is_ptr(&mas))) {
    6228           0 :                 if (index)
    6229           0 :                         entry = NULL;
    6230             : 
    6231             :                 goto unlock;
    6232             :         }
    6233             : 
    6234           0 :         entry = mtree_lookup_walk(&mas);
    6235           0 :         if (!entry && unlikely(mas_is_start(&mas)))
    6236             :                 goto retry;
    6237             : unlock:
    6238           0 :         rcu_read_unlock();
    6239           0 :         if (xa_is_zero(entry))
    6240             :                 return NULL;
    6241             : 
    6242           0 :         return entry;
    6243             : }
    6244             : EXPORT_SYMBOL(mtree_load);
    6245             : 
    6246             : /**
    6247             :  * mtree_store_range() - Store an entry at a given range.
    6248             :  * @mt: The maple tree
    6249             :  * @index: The start of the range
    6250             :  * @last: The end of the range
    6251             :  * @entry: The entry to store
    6252             :  * @gfp: The GFP_FLAGS to use for allocations
    6253             :  *
    6254             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6255             :  * be allocated.
    6256             :  */
    6257           0 : int mtree_store_range(struct maple_tree *mt, unsigned long index,
    6258             :                 unsigned long last, void *entry, gfp_t gfp)
    6259             : {
    6260           0 :         MA_STATE(mas, mt, index, last);
    6261           0 :         MA_WR_STATE(wr_mas, &mas, entry);
    6262             : 
    6263           0 :         trace_ma_write(__func__, &mas, 0, entry);
    6264           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6265             :                 return -EINVAL;
    6266             : 
    6267           0 :         if (index > last)
    6268             :                 return -EINVAL;
    6269             : 
    6270           0 :         mtree_lock(mt);
    6271             : retry:
    6272           0 :         mas_wr_store_entry(&wr_mas);
    6273           0 :         if (mas_nomem(&mas, gfp))
    6274             :                 goto retry;
    6275             : 
    6276           0 :         mtree_unlock(mt);
    6277           0 :         if (mas_is_err(&mas))
    6278           0 :                 return xa_err(mas.node);
    6279             : 
    6280             :         return 0;
    6281             : }
    6282             : EXPORT_SYMBOL(mtree_store_range);
    6283             : 
    6284             : /**
    6285             :  * mtree_store() - Store an entry at a given index.
    6286             :  * @mt: The maple tree
    6287             :  * @index: The index to store the value
    6288             :  * @entry: The entry to store
    6289             :  * @gfp: The GFP_FLAGS to use for allocations
    6290             :  *
    6291             :  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
    6292             :  * be allocated.
    6293             :  */
    6294           0 : int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
    6295             :                  gfp_t gfp)
    6296             : {
    6297           0 :         return mtree_store_range(mt, index, index, entry, gfp);
    6298             : }
    6299             : EXPORT_SYMBOL(mtree_store);
    6300             : 
    6301             : /**
    6302             :  * mtree_insert_range() - Insert an entry at a give range if there is no value.
    6303             :  * @mt: The maple tree
    6304             :  * @first: The start of the range
    6305             :  * @last: The end of the range
    6306             :  * @entry: The entry to store
    6307             :  * @gfp: The GFP_FLAGS to use for allocations.
    6308             :  *
    6309             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6310             :  * request, -ENOMEM if memory could not be allocated.
    6311             :  */
    6312           0 : int mtree_insert_range(struct maple_tree *mt, unsigned long first,
    6313             :                 unsigned long last, void *entry, gfp_t gfp)
    6314             : {
    6315           0 :         MA_STATE(ms, mt, first, last);
    6316             : 
    6317           0 :         if (WARN_ON_ONCE(xa_is_advanced(entry)))
    6318             :                 return -EINVAL;
    6319             : 
    6320           0 :         if (first > last)
    6321             :                 return -EINVAL;
    6322             : 
    6323           0 :         mtree_lock(mt);
    6324             : retry:
    6325           0 :         mas_insert(&ms, entry);
    6326           0 :         if (mas_nomem(&ms, gfp))
    6327             :                 goto retry;
    6328             : 
    6329           0 :         mtree_unlock(mt);
    6330           0 :         if (mas_is_err(&ms))
    6331           0 :                 return xa_err(ms.node);
    6332             : 
    6333             :         return 0;
    6334             : }
    6335             : EXPORT_SYMBOL(mtree_insert_range);
    6336             : 
    6337             : /**
    6338             :  * mtree_insert() - Insert an entry at a give index if there is no value.
    6339             :  * @mt: The maple tree
    6340             :  * @index : The index to store the value
    6341             :  * @entry: The entry to store
    6342             :  * @gfp: The FGP_FLAGS to use for allocations.
    6343             :  *
    6344             :  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
    6345             :  * request, -ENOMEM if memory could not be allocated.
    6346             :  */
    6347           0 : int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
    6348             :                  gfp_t gfp)
    6349             : {
    6350           0 :         return mtree_insert_range(mt, index, index, entry, gfp);
    6351             : }
    6352             : EXPORT_SYMBOL(mtree_insert);
    6353             : 
    6354           0 : int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
    6355             :                 void *entry, unsigned long size, unsigned long min,
    6356             :                 unsigned long max, gfp_t gfp)
    6357             : {
    6358           0 :         int ret = 0;
    6359             : 
    6360           0 :         MA_STATE(mas, mt, min, max - size);
    6361           0 :         if (!mt_is_alloc(mt))
    6362             :                 return -EINVAL;
    6363             : 
    6364           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6365             :                 return -EINVAL;
    6366             : 
    6367           0 :         if (min > max)
    6368             :                 return -EINVAL;
    6369             : 
    6370           0 :         if (max < size)
    6371             :                 return -EINVAL;
    6372             : 
    6373           0 :         if (!size)
    6374             :                 return -EINVAL;
    6375             : 
    6376           0 :         mtree_lock(mt);
    6377             : retry:
    6378           0 :         mas.offset = 0;
    6379           0 :         mas.index = min;
    6380           0 :         mas.last = max - size;
    6381           0 :         ret = mas_alloc(&mas, entry, size, startp);
    6382           0 :         if (mas_nomem(&mas, gfp))
    6383             :                 goto retry;
    6384             : 
    6385           0 :         mtree_unlock(mt);
    6386           0 :         return ret;
    6387             : }
    6388             : EXPORT_SYMBOL(mtree_alloc_range);
    6389             : 
    6390           0 : int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
    6391             :                 void *entry, unsigned long size, unsigned long min,
    6392             :                 unsigned long max, gfp_t gfp)
    6393             : {
    6394           0 :         int ret = 0;
    6395             : 
    6396           0 :         MA_STATE(mas, mt, min, max - size);
    6397           0 :         if (!mt_is_alloc(mt))
    6398             :                 return -EINVAL;
    6399             : 
    6400           0 :         if (WARN_ON_ONCE(mt_is_reserved(entry)))
    6401             :                 return -EINVAL;
    6402             : 
    6403           0 :         if (min >= max)
    6404             :                 return -EINVAL;
    6405             : 
    6406           0 :         if (max < size - 1)
    6407             :                 return -EINVAL;
    6408             : 
    6409           0 :         if (!size)
    6410             :                 return -EINVAL;
    6411             : 
    6412           0 :         mtree_lock(mt);
    6413             : retry:
    6414           0 :         ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
    6415           0 :         if (mas_nomem(&mas, gfp))
    6416             :                 goto retry;
    6417             : 
    6418           0 :         mtree_unlock(mt);
    6419           0 :         return ret;
    6420             : }
    6421             : EXPORT_SYMBOL(mtree_alloc_rrange);
    6422             : 
    6423             : /**
    6424             :  * mtree_erase() - Find an index and erase the entire range.
    6425             :  * @mt: The maple tree
    6426             :  * @index: The index to erase
    6427             :  *
    6428             :  * Erasing is the same as a walk to an entry then a store of a NULL to that
    6429             :  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
    6430             :  *
    6431             :  * Return: The entry stored at the @index or %NULL
    6432             :  */
    6433           0 : void *mtree_erase(struct maple_tree *mt, unsigned long index)
    6434             : {
    6435           0 :         void *entry = NULL;
    6436             : 
    6437           0 :         MA_STATE(mas, mt, index, index);
    6438           0 :         trace_ma_op(__func__, &mas);
    6439             : 
    6440           0 :         mtree_lock(mt);
    6441           0 :         entry = mas_erase(&mas);
    6442           0 :         mtree_unlock(mt);
    6443             : 
    6444           0 :         return entry;
    6445             : }
    6446             : EXPORT_SYMBOL(mtree_erase);
    6447             : 
    6448             : /**
    6449             :  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
    6450             :  * @mt: The maple tree
    6451             :  *
    6452             :  * Note: Does not handle locking.
    6453             :  */
    6454           0 : void __mt_destroy(struct maple_tree *mt)
    6455             : {
    6456           0 :         void *root = mt_root_locked(mt);
    6457             : 
    6458           0 :         rcu_assign_pointer(mt->ma_root, NULL);
    6459           0 :         if (xa_is_node(root))
    6460           0 :                 mte_destroy_walk(root, mt);
    6461             : 
    6462           0 :         mt->ma_flags = 0;
    6463           0 : }
    6464             : EXPORT_SYMBOL_GPL(__mt_destroy);
    6465             : 
    6466             : /**
    6467             :  * mtree_destroy() - Destroy a maple tree
    6468             :  * @mt: The maple tree
    6469             :  *
    6470             :  * Frees all resources used by the tree.  Handles locking.
    6471             :  */
    6472           0 : void mtree_destroy(struct maple_tree *mt)
    6473             : {
    6474           0 :         mtree_lock(mt);
    6475           0 :         __mt_destroy(mt);
    6476           0 :         mtree_unlock(mt);
    6477           0 : }
    6478             : EXPORT_SYMBOL(mtree_destroy);
    6479             : 
    6480             : /**
    6481             :  * mt_find() - Search from the start up until an entry is found.
    6482             :  * @mt: The maple tree
    6483             :  * @index: Pointer which contains the start location of the search
    6484             :  * @max: The maximum value to check
    6485             :  *
    6486             :  * Handles locking.  @index will be incremented to one beyond the range.
    6487             :  *
    6488             :  * Return: The entry at or after the @index or %NULL
    6489             :  */
    6490           0 : void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
    6491             : {
    6492           0 :         MA_STATE(mas, mt, *index, *index);
    6493             :         void *entry;
    6494             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6495             :         unsigned long copy = *index;
    6496             : #endif
    6497             : 
    6498           0 :         trace_ma_read(__func__, &mas);
    6499             : 
    6500           0 :         if ((*index) > max)
    6501             :                 return NULL;
    6502             : 
    6503             :         rcu_read_lock();
    6504             : retry:
    6505           0 :         entry = mas_state_walk(&mas);
    6506           0 :         if (mas_is_start(&mas))
    6507             :                 goto retry;
    6508             : 
    6509           0 :         if (unlikely(xa_is_zero(entry)))
    6510           0 :                 entry = NULL;
    6511             : 
    6512           0 :         if (entry)
    6513             :                 goto unlock;
    6514             : 
    6515           0 :         while (mas_searchable(&mas) && (mas.index < max)) {
    6516           0 :                 entry = mas_next_entry(&mas, max);
    6517           0 :                 if (likely(entry && !xa_is_zero(entry)))
    6518             :                         break;
    6519             :         }
    6520             : 
    6521           0 :         if (unlikely(xa_is_zero(entry)))
    6522           0 :                 entry = NULL;
    6523             : unlock:
    6524             :         rcu_read_unlock();
    6525           0 :         if (likely(entry)) {
    6526           0 :                 *index = mas.last + 1;
    6527             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6528             :                 if ((*index) && (*index) <= copy)
    6529             :                         pr_err("index not increased! %lx <= %lx\n",
    6530             :                                *index, copy);
    6531             :                 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
    6532             : #endif
    6533             :         }
    6534             : 
    6535             :         return entry;
    6536             : }
    6537             : EXPORT_SYMBOL(mt_find);
    6538             : 
    6539             : /**
    6540             :  * mt_find_after() - Search from the start up until an entry is found.
    6541             :  * @mt: The maple tree
    6542             :  * @index: Pointer which contains the start location of the search
    6543             :  * @max: The maximum value to check
    6544             :  *
    6545             :  * Handles locking, detects wrapping on index == 0
    6546             :  *
    6547             :  * Return: The entry at or after the @index or %NULL
    6548             :  */
    6549           0 : void *mt_find_after(struct maple_tree *mt, unsigned long *index,
    6550             :                     unsigned long max)
    6551             : {
    6552           0 :         if (!(*index))
    6553             :                 return NULL;
    6554             : 
    6555           0 :         return mt_find(mt, index, max);
    6556             : }
    6557             : EXPORT_SYMBOL(mt_find_after);
    6558             : 
    6559             : #ifdef CONFIG_DEBUG_MAPLE_TREE
    6560             : atomic_t maple_tree_tests_run;
    6561             : EXPORT_SYMBOL_GPL(maple_tree_tests_run);
    6562             : atomic_t maple_tree_tests_passed;
    6563             : EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
    6564             : 
    6565             : #ifndef __KERNEL__
    6566             : extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
    6567             : void mt_set_non_kernel(unsigned int val)
    6568             : {
    6569             :         kmem_cache_set_non_kernel(maple_node_cache, val);
    6570             : }
    6571             : 
    6572             : extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
    6573             : unsigned long mt_get_alloc_size(void)
    6574             : {
    6575             :         return kmem_cache_get_alloc(maple_node_cache);
    6576             : }
    6577             : 
    6578             : extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
    6579             : void mt_zero_nr_tallocated(void)
    6580             : {
    6581             :         kmem_cache_zero_nr_tallocated(maple_node_cache);
    6582             : }
    6583             : 
    6584             : extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
    6585             : unsigned int mt_nr_tallocated(void)
    6586             : {
    6587             :         return kmem_cache_nr_tallocated(maple_node_cache);
    6588             : }
    6589             : 
    6590             : extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
    6591             : unsigned int mt_nr_allocated(void)
    6592             : {
    6593             :         return kmem_cache_nr_allocated(maple_node_cache);
    6594             : }
    6595             : 
    6596             : /*
    6597             :  * mas_dead_node() - Check if the maple state is pointing to a dead node.
    6598             :  * @mas: The maple state
    6599             :  * @index: The index to restore in @mas.
    6600             :  *
    6601             :  * Used in test code.
    6602             :  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
    6603             :  */
    6604             : static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
    6605             : {
    6606             :         if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
    6607             :                 return 0;
    6608             : 
    6609             :         if (likely(!mte_dead_node(mas->node)))
    6610             :                 return 0;
    6611             : 
    6612             :         mas_rewalk(mas, index);
    6613             :         return 1;
    6614             : }
    6615             : 
    6616             : void mt_cache_shrink(void)
    6617             : {
    6618             : }
    6619             : #else
    6620             : /*
    6621             :  * mt_cache_shrink() - For testing, don't use this.
    6622             :  *
    6623             :  * Certain testcases can trigger an OOM when combined with other memory
    6624             :  * debugging configuration options.  This function is used to reduce the
    6625             :  * possibility of an out of memory even due to kmem_cache objects remaining
    6626             :  * around for longer than usual.
    6627             :  */
    6628             : void mt_cache_shrink(void)
    6629             : {
    6630             :         kmem_cache_shrink(maple_node_cache);
    6631             : 
    6632             : }
    6633             : EXPORT_SYMBOL_GPL(mt_cache_shrink);
    6634             : 
    6635             : #endif /* not defined __KERNEL__ */
    6636             : /*
    6637             :  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
    6638             :  * @mas: The maple state
    6639             :  * @offset: The offset into the slot array to fetch.
    6640             :  *
    6641             :  * Return: The entry stored at @offset.
    6642             :  */
    6643             : static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
    6644             :                 unsigned char offset)
    6645             : {
    6646             :         return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
    6647             :                         offset);
    6648             : }
    6649             : 
    6650             : 
    6651             : /*
    6652             :  * mas_first_entry() - Go the first leaf and find the first entry.
    6653             :  * @mas: the maple state.
    6654             :  * @limit: the maximum index to check.
    6655             :  * @*r_start: Pointer to set to the range start.
    6656             :  *
    6657             :  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
    6658             :  *
    6659             :  * Return: The first entry or MAS_NONE.
    6660             :  */
    6661             : static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
    6662             :                 unsigned long limit, enum maple_type mt)
    6663             : 
    6664             : {
    6665             :         unsigned long max;
    6666             :         unsigned long *pivots;
    6667             :         void __rcu **slots;
    6668             :         void *entry = NULL;
    6669             : 
    6670             :         mas->index = mas->min;
    6671             :         if (mas->index > limit)
    6672             :                 goto none;
    6673             : 
    6674             :         max = mas->max;
    6675             :         mas->offset = 0;
    6676             :         while (likely(!ma_is_leaf(mt))) {
    6677             :                 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
    6678             :                 slots = ma_slots(mn, mt);
    6679             :                 entry = mas_slot(mas, slots, 0);
    6680             :                 pivots = ma_pivots(mn, mt);
    6681             :                 if (unlikely(ma_dead_node(mn)))
    6682             :                         return NULL;
    6683             :                 max = pivots[0];
    6684             :                 mas->node = entry;
    6685             :                 mn = mas_mn(mas);
    6686             :                 mt = mte_node_type(mas->node);
    6687             :         }
    6688             :         MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
    6689             : 
    6690             :         mas->max = max;
    6691             :         slots = ma_slots(mn, mt);
    6692             :         entry = mas_slot(mas, slots, 0);
    6693             :         if (unlikely(ma_dead_node(mn)))
    6694             :                 return NULL;
    6695             : 
    6696             :         /* Slot 0 or 1 must be set */
    6697             :         if (mas->index > limit)
    6698             :                 goto none;
    6699             : 
    6700             :         if (likely(entry))
    6701             :                 return entry;
    6702             : 
    6703             :         mas->offset = 1;
    6704             :         entry = mas_slot(mas, slots, 1);
    6705             :         pivots = ma_pivots(mn, mt);
    6706             :         if (unlikely(ma_dead_node(mn)))
    6707             :                 return NULL;
    6708             : 
    6709             :         mas->index = pivots[0] + 1;
    6710             :         if (mas->index > limit)
    6711             :                 goto none;
    6712             : 
    6713             :         if (likely(entry))
    6714             :                 return entry;
    6715             : 
    6716             : none:
    6717             :         if (likely(!ma_dead_node(mn)))
    6718             :                 mas->node = MAS_NONE;
    6719             :         return NULL;
    6720             : }
    6721             : 
    6722             : /* Depth first search, post-order */
    6723             : static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
    6724             : {
    6725             : 
    6726             :         struct maple_enode *p = MAS_NONE, *mn = mas->node;
    6727             :         unsigned long p_min, p_max;
    6728             : 
    6729             :         mas_next_node(mas, mas_mn(mas), max);
    6730             :         if (!mas_is_none(mas))
    6731             :                 return;
    6732             : 
    6733             :         if (mte_is_root(mn))
    6734             :                 return;
    6735             : 
    6736             :         mas->node = mn;
    6737             :         mas_ascend(mas);
    6738             :         while (mas->node != MAS_NONE) {
    6739             :                 p = mas->node;
    6740             :                 p_min = mas->min;
    6741             :                 p_max = mas->max;
    6742             :                 mas_prev_node(mas, 0);
    6743             :         }
    6744             : 
    6745             :         if (p == MAS_NONE)
    6746             :                 return;
    6747             : 
    6748             :         mas->node = p;
    6749             :         mas->max = p_max;
    6750             :         mas->min = p_min;
    6751             : }
    6752             : 
    6753             : /* Tree validations */
    6754             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6755             :                 unsigned long min, unsigned long max, unsigned int depth);
    6756             : static void mt_dump_range(unsigned long min, unsigned long max,
    6757             :                           unsigned int depth)
    6758             : {
    6759             :         static const char spaces[] = "                                ";
    6760             : 
    6761             :         if (min == max)
    6762             :                 pr_info("%.*s%lu: ", depth * 2, spaces, min);
    6763             :         else
    6764             :                 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
    6765             : }
    6766             : 
    6767             : static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
    6768             :                           unsigned int depth)
    6769             : {
    6770             :         mt_dump_range(min, max, depth);
    6771             : 
    6772             :         if (xa_is_value(entry))
    6773             :                 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
    6774             :                                 xa_to_value(entry), entry);
    6775             :         else if (xa_is_zero(entry))
    6776             :                 pr_cont("zero (%ld)\n", xa_to_internal(entry));
    6777             :         else if (mt_is_reserved(entry))
    6778             :                 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
    6779             :         else
    6780             :                 pr_cont("%p\n", entry);
    6781             : }
    6782             : 
    6783             : static void mt_dump_range64(const struct maple_tree *mt, void *entry,
    6784             :                         unsigned long min, unsigned long max, unsigned int depth)
    6785             : {
    6786             :         struct maple_range_64 *node = &mte_to_node(entry)->mr64;
    6787             :         bool leaf = mte_is_leaf(entry);
    6788             :         unsigned long first = min;
    6789             :         int i;
    6790             : 
    6791             :         pr_cont(" contents: ");
    6792             :         for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
    6793             :                 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6794             :         pr_cont("%p\n", node->slot[i]);
    6795             :         for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
    6796             :                 unsigned long last = max;
    6797             : 
    6798             :                 if (i < (MAPLE_RANGE64_SLOTS - 1))
    6799             :                         last = node->pivot[i];
    6800             :                 else if (!node->slot[i] && max != mt_node_max(entry))
    6801             :                         break;
    6802             :                 if (last == 0 && i > 0)
    6803             :                         break;
    6804             :                 if (leaf)
    6805             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6806             :                                         first, last, depth + 1);
    6807             :                 else if (node->slot[i])
    6808             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6809             :                                         first, last, depth + 1);
    6810             : 
    6811             :                 if (last == max)
    6812             :                         break;
    6813             :                 if (last > max) {
    6814             :                         pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6815             :                                         node, last, max, i);
    6816             :                         break;
    6817             :                 }
    6818             :                 first = last + 1;
    6819             :         }
    6820             : }
    6821             : 
    6822             : static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
    6823             :                         unsigned long min, unsigned long max, unsigned int depth)
    6824             : {
    6825             :         struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
    6826             :         bool leaf = mte_is_leaf(entry);
    6827             :         unsigned long first = min;
    6828             :         int i;
    6829             : 
    6830             :         pr_cont(" contents: ");
    6831             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
    6832             :                 pr_cont("%lu ", node->gap[i]);
    6833             :         pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
    6834             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
    6835             :                 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
    6836             :         pr_cont("%p\n", node->slot[i]);
    6837             :         for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
    6838             :                 unsigned long last = max;
    6839             : 
    6840             :                 if (i < (MAPLE_ARANGE64_SLOTS - 1))
    6841             :                         last = node->pivot[i];
    6842             :                 else if (!node->slot[i])
    6843             :                         break;
    6844             :                 if (last == 0 && i > 0)
    6845             :                         break;
    6846             :                 if (leaf)
    6847             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6848             :                                         first, last, depth + 1);
    6849             :                 else if (node->slot[i])
    6850             :                         mt_dump_node(mt, mt_slot(mt, node->slot, i),
    6851             :                                         first, last, depth + 1);
    6852             : 
    6853             :                 if (last == max)
    6854             :                         break;
    6855             :                 if (last > max) {
    6856             :                         pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
    6857             :                                         node, last, max, i);
    6858             :                         break;
    6859             :                 }
    6860             :                 first = last + 1;
    6861             :         }
    6862             : }
    6863             : 
    6864             : static void mt_dump_node(const struct maple_tree *mt, void *entry,
    6865             :                 unsigned long min, unsigned long max, unsigned int depth)
    6866             : {
    6867             :         struct maple_node *node = mte_to_node(entry);
    6868             :         unsigned int type = mte_node_type(entry);
    6869             :         unsigned int i;
    6870             : 
    6871             :         mt_dump_range(min, max, depth);
    6872             : 
    6873             :         pr_cont("node %p depth %d type %d parent %p", node, depth, type,
    6874             :                         node ? node->parent : NULL);
    6875             :         switch (type) {
    6876             :         case maple_dense:
    6877             :                 pr_cont("\n");
    6878             :                 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
    6879             :                         if (min + i > max)
    6880             :                                 pr_cont("OUT OF RANGE: ");
    6881             :                         mt_dump_entry(mt_slot(mt, node->slot, i),
    6882             :                                         min + i, min + i, depth);
    6883             :                 }
    6884             :                 break;
    6885             :         case maple_leaf_64:
    6886             :         case maple_range_64:
    6887             :                 mt_dump_range64(mt, entry, min, max, depth);
    6888             :                 break;
    6889             :         case maple_arange_64:
    6890             :                 mt_dump_arange64(mt, entry, min, max, depth);
    6891             :                 break;
    6892             : 
    6893             :         default:
    6894             :                 pr_cont(" UNKNOWN TYPE\n");
    6895             :         }
    6896             : }
    6897             : 
    6898             : void mt_dump(const struct maple_tree *mt)
    6899             : {
    6900             :         void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
    6901             : 
    6902             :         pr_info("maple_tree(%p) flags %X, height %u root %p\n",
    6903             :                  mt, mt->ma_flags, mt_height(mt), entry);
    6904             :         if (!xa_is_node(entry))
    6905             :                 mt_dump_entry(entry, 0, 0, 0);
    6906             :         else if (entry)
    6907             :                 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
    6908             : }
    6909             : EXPORT_SYMBOL_GPL(mt_dump);
    6910             : 
    6911             : /*
    6912             :  * Calculate the maximum gap in a node and check if that's what is reported in
    6913             :  * the parent (unless root).
    6914             :  */
    6915             : static void mas_validate_gaps(struct ma_state *mas)
    6916             : {
    6917             :         struct maple_enode *mte = mas->node;
    6918             :         struct maple_node *p_mn;
    6919             :         unsigned long gap = 0, max_gap = 0;
    6920             :         unsigned long p_end, p_start = mas->min;
    6921             :         unsigned char p_slot;
    6922             :         unsigned long *gaps = NULL;
    6923             :         unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
    6924             :         int i;
    6925             : 
    6926             :         if (ma_is_dense(mte_node_type(mte))) {
    6927             :                 for (i = 0; i < mt_slot_count(mte); i++) {
    6928             :                         if (mas_get_slot(mas, i)) {
    6929             :                                 if (gap > max_gap)
    6930             :                                         max_gap = gap;
    6931             :                                 gap = 0;
    6932             :                                 continue;
    6933             :                         }
    6934             :                         gap++;
    6935             :                 }
    6936             :                 goto counted;
    6937             :         }
    6938             : 
    6939             :         gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
    6940             :         for (i = 0; i < mt_slot_count(mte); i++) {
    6941             :                 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
    6942             : 
    6943             :                 if (!gaps) {
    6944             :                         if (mas_get_slot(mas, i)) {
    6945             :                                 gap = 0;
    6946             :                                 goto not_empty;
    6947             :                         }
    6948             : 
    6949             :                         gap += p_end - p_start + 1;
    6950             :                 } else {
    6951             :                         void *entry = mas_get_slot(mas, i);
    6952             : 
    6953             :                         gap = gaps[i];
    6954             :                         if (!entry) {
    6955             :                                 if (gap != p_end - p_start + 1) {
    6956             :                                         pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
    6957             :                                                 mas_mn(mas), i,
    6958             :                                                 mas_get_slot(mas, i), gap,
    6959             :                                                 p_end, p_start);
    6960             :                                         mt_dump(mas->tree);
    6961             : 
    6962             :                                         MT_BUG_ON(mas->tree,
    6963             :                                                 gap != p_end - p_start + 1);
    6964             :                                 }
    6965             :                         } else {
    6966             :                                 if (gap > p_end - p_start + 1) {
    6967             :                                         pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
    6968             :                                         mas_mn(mas), i, gap, p_end, p_start,
    6969             :                                         p_end - p_start + 1);
    6970             :                                         MT_BUG_ON(mas->tree,
    6971             :                                                 gap > p_end - p_start + 1);
    6972             :                                 }
    6973             :                         }
    6974             :                 }
    6975             : 
    6976             :                 if (gap > max_gap)
    6977             :                         max_gap = gap;
    6978             : not_empty:
    6979             :                 p_start = p_end + 1;
    6980             :                 if (p_end >= mas->max)
    6981             :                         break;
    6982             :         }
    6983             : 
    6984             : counted:
    6985             :         if (mte_is_root(mte))
    6986             :                 return;
    6987             : 
    6988             :         p_slot = mte_parent_slot(mas->node);
    6989             :         p_mn = mte_parent(mte);
    6990             :         MT_BUG_ON(mas->tree, max_gap > mas->max);
    6991             :         if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
    6992             :                 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
    6993             :                 mt_dump(mas->tree);
    6994             :         }
    6995             : 
    6996             :         MT_BUG_ON(mas->tree,
    6997             :                   ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
    6998             : }
    6999             : 
    7000             : static void mas_validate_parent_slot(struct ma_state *mas)
    7001             : {
    7002             :         struct maple_node *parent;
    7003             :         struct maple_enode *node;
    7004             :         enum maple_type p_type = mas_parent_enum(mas, mas->node);
    7005             :         unsigned char p_slot = mte_parent_slot(mas->node);
    7006             :         void __rcu **slots;
    7007             :         int i;
    7008             : 
    7009             :         if (mte_is_root(mas->node))
    7010             :                 return;
    7011             : 
    7012             :         parent = mte_parent(mas->node);
    7013             :         slots = ma_slots(parent, p_type);
    7014             :         MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
    7015             : 
    7016             :         /* Check prev/next parent slot for duplicate node entry */
    7017             : 
    7018             :         for (i = 0; i < mt_slots[p_type]; i++) {
    7019             :                 node = mas_slot(mas, slots, i);
    7020             :                 if (i == p_slot) {
    7021             :                         if (node != mas->node)
    7022             :                                 pr_err("parent %p[%u] does not have %p\n",
    7023             :                                         parent, i, mas_mn(mas));
    7024             :                         MT_BUG_ON(mas->tree, node != mas->node);
    7025             :                 } else if (node == mas->node) {
    7026             :                         pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
    7027             :                                mas_mn(mas), parent, i, p_slot);
    7028             :                         MT_BUG_ON(mas->tree, node == mas->node);
    7029             :                 }
    7030             :         }
    7031             : }
    7032             : 
    7033             : static void mas_validate_child_slot(struct ma_state *mas)
    7034             : {
    7035             :         enum maple_type type = mte_node_type(mas->node);
    7036             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    7037             :         unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
    7038             :         struct maple_enode *child;
    7039             :         unsigned char i;
    7040             : 
    7041             :         if (mte_is_leaf(mas->node))
    7042             :                 return;
    7043             : 
    7044             :         for (i = 0; i < mt_slots[type]; i++) {
    7045             :                 child = mas_slot(mas, slots, i);
    7046             :                 if (!pivots[i] || pivots[i] == mas->max)
    7047             :                         break;
    7048             : 
    7049             :                 if (!child)
    7050             :                         break;
    7051             : 
    7052             :                 if (mte_parent_slot(child) != i) {
    7053             :                         pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
    7054             :                                mas_mn(mas), i, mte_to_node(child),
    7055             :                                mte_parent_slot(child));
    7056             :                         MT_BUG_ON(mas->tree, 1);
    7057             :                 }
    7058             : 
    7059             :                 if (mte_parent(child) != mte_to_node(mas->node)) {
    7060             :                         pr_err("child %p has parent %p not %p\n",
    7061             :                                mte_to_node(child), mte_parent(child),
    7062             :                                mte_to_node(mas->node));
    7063             :                         MT_BUG_ON(mas->tree, 1);
    7064             :                 }
    7065             :         }
    7066             : }
    7067             : 
    7068             : /*
    7069             :  * Validate all pivots are within mas->min and mas->max.
    7070             :  */
    7071             : static void mas_validate_limits(struct ma_state *mas)
    7072             : {
    7073             :         int i;
    7074             :         unsigned long prev_piv = 0;
    7075             :         enum maple_type type = mte_node_type(mas->node);
    7076             :         void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
    7077             :         unsigned long *pivots = ma_pivots(mas_mn(mas), type);
    7078             : 
    7079             :         /* all limits are fine here. */
    7080             :         if (mte_is_root(mas->node))
    7081             :                 return;
    7082             : 
    7083             :         for (i = 0; i < mt_slots[type]; i++) {
    7084             :                 unsigned long piv;
    7085             : 
    7086             :                 piv = mas_safe_pivot(mas, pivots, i, type);
    7087             : 
    7088             :                 if (!piv && (i != 0))
    7089             :                         break;
    7090             : 
    7091             :                 if (!mte_is_leaf(mas->node)) {
    7092             :                         void *entry = mas_slot(mas, slots, i);
    7093             : 
    7094             :                         if (!entry)
    7095             :                                 pr_err("%p[%u] cannot be null\n",
    7096             :                                        mas_mn(mas), i);
    7097             : 
    7098             :                         MT_BUG_ON(mas->tree, !entry);
    7099             :                 }
    7100             : 
    7101             :                 if (prev_piv > piv) {
    7102             :                         pr_err("%p[%u] piv %lu < prev_piv %lu\n",
    7103             :                                 mas_mn(mas), i, piv, prev_piv);
    7104             :                         MT_BUG_ON(mas->tree, piv < prev_piv);
    7105             :                 }
    7106             : 
    7107             :                 if (piv < mas->min) {
    7108             :                         pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
    7109             :                                 piv, mas->min);
    7110             :                         MT_BUG_ON(mas->tree, piv < mas->min);
    7111             :                 }
    7112             :                 if (piv > mas->max) {
    7113             :                         pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
    7114             :                                 piv, mas->max);
    7115             :                         MT_BUG_ON(mas->tree, piv > mas->max);
    7116             :                 }
    7117             :                 prev_piv = piv;
    7118             :                 if (piv == mas->max)
    7119             :                         break;
    7120             :         }
    7121             :         for (i += 1; i < mt_slots[type]; i++) {
    7122             :                 void *entry = mas_slot(mas, slots, i);
    7123             : 
    7124             :                 if (entry && (i != mt_slots[type] - 1)) {
    7125             :                         pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
    7126             :                                i, entry);
    7127             :                         MT_BUG_ON(mas->tree, entry != NULL);
    7128             :                 }
    7129             : 
    7130             :                 if (i < mt_pivots[type]) {
    7131             :                         unsigned long piv = pivots[i];
    7132             : 
    7133             :                         if (!piv)
    7134             :                                 continue;
    7135             : 
    7136             :                         pr_err("%p[%u] should not have piv %lu\n",
    7137             :                                mas_mn(mas), i, piv);
    7138             :                         MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
    7139             :                 }
    7140             :         }
    7141             : }
    7142             : 
    7143             : static void mt_validate_nulls(struct maple_tree *mt)
    7144             : {
    7145             :         void *entry, *last = (void *)1;
    7146             :         unsigned char offset = 0;
    7147             :         void __rcu **slots;
    7148             :         MA_STATE(mas, mt, 0, 0);
    7149             : 
    7150             :         mas_start(&mas);
    7151             :         if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
    7152             :                 return;
    7153             : 
    7154             :         while (!mte_is_leaf(mas.node))
    7155             :                 mas_descend(&mas);
    7156             : 
    7157             :         slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
    7158             :         do {
    7159             :                 entry = mas_slot(&mas, slots, offset);
    7160             :                 if (!last && !entry) {
    7161             :                         pr_err("Sequential nulls end at %p[%u]\n",
    7162             :                                 mas_mn(&mas), offset);
    7163             :                 }
    7164             :                 MT_BUG_ON(mt, !last && !entry);
    7165             :                 last = entry;
    7166             :                 if (offset == mas_data_end(&mas)) {
    7167             :                         mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
    7168             :                         if (mas_is_none(&mas))
    7169             :                                 return;
    7170             :                         offset = 0;
    7171             :                         slots = ma_slots(mte_to_node(mas.node),
    7172             :                                          mte_node_type(mas.node));
    7173             :                 } else {
    7174             :                         offset++;
    7175             :                 }
    7176             : 
    7177             :         } while (!mas_is_none(&mas));
    7178             : }
    7179             : 
    7180             : /*
    7181             :  * validate a maple tree by checking:
    7182             :  * 1. The limits (pivots are within mas->min to mas->max)
    7183             :  * 2. The gap is correctly set in the parents
    7184             :  */
    7185             : void mt_validate(struct maple_tree *mt)
    7186             : {
    7187             :         unsigned char end;
    7188             : 
    7189             :         MA_STATE(mas, mt, 0, 0);
    7190             :         rcu_read_lock();
    7191             :         mas_start(&mas);
    7192             :         if (!mas_searchable(&mas))
    7193             :                 goto done;
    7194             : 
    7195             :         mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
    7196             :         while (!mas_is_none(&mas)) {
    7197             :                 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
    7198             :                 if (!mte_is_root(mas.node)) {
    7199             :                         end = mas_data_end(&mas);
    7200             :                         if ((end < mt_min_slot_count(mas.node)) &&
    7201             :                             (mas.max != ULONG_MAX)) {
    7202             :                                 pr_err("Invalid size %u of %p\n", end,
    7203             :                                 mas_mn(&mas));
    7204             :                                 MT_BUG_ON(mas.tree, 1);
    7205             :                         }
    7206             : 
    7207             :                 }
    7208             :                 mas_validate_parent_slot(&mas);
    7209             :                 mas_validate_child_slot(&mas);
    7210             :                 mas_validate_limits(&mas);
    7211             :                 if (mt_is_alloc(mt))
    7212             :                         mas_validate_gaps(&mas);
    7213             :                 mas_dfs_postorder(&mas, ULONG_MAX);
    7214             :         }
    7215             :         mt_validate_nulls(mt);
    7216             : done:
    7217             :         rcu_read_unlock();
    7218             : 
    7219             : }
    7220             : EXPORT_SYMBOL_GPL(mt_validate);
    7221             : 
    7222             : #endif /* CONFIG_DEBUG_MAPLE_TREE */

Generated by: LCOV version 1.14