LCOV - code coverage report
Current view: top level - mm - gup.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 553 0.0 %
Date: 2023-07-19 18:55:55 Functions: 0 45 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : #include <linux/kernel.h>
       3             : #include <linux/errno.h>
       4             : #include <linux/err.h>
       5             : #include <linux/spinlock.h>
       6             : 
       7             : #include <linux/mm.h>
       8             : #include <linux/memremap.h>
       9             : #include <linux/pagemap.h>
      10             : #include <linux/rmap.h>
      11             : #include <linux/swap.h>
      12             : #include <linux/swapops.h>
      13             : #include <linux/secretmem.h>
      14             : 
      15             : #include <linux/sched/signal.h>
      16             : #include <linux/rwsem.h>
      17             : #include <linux/hugetlb.h>
      18             : #include <linux/migrate.h>
      19             : #include <linux/mm_inline.h>
      20             : #include <linux/sched/mm.h>
      21             : 
      22             : #include <asm/mmu_context.h>
      23             : #include <asm/tlbflush.h>
      24             : 
      25             : #include "internal.h"
      26             : 
      27             : struct follow_page_context {
      28             :         struct dev_pagemap *pgmap;
      29             :         unsigned int page_mask;
      30             : };
      31             : 
      32             : static inline void sanity_check_pinned_pages(struct page **pages,
      33             :                                              unsigned long npages)
      34             : {
      35             :         if (!IS_ENABLED(CONFIG_DEBUG_VM))
      36             :                 return;
      37             : 
      38             :         /*
      39             :          * We only pin anonymous pages if they are exclusive. Once pinned, we
      40             :          * can no longer turn them possibly shared and PageAnonExclusive() will
      41             :          * stick around until the page is freed.
      42             :          *
      43             :          * We'd like to verify that our pinned anonymous pages are still mapped
      44             :          * exclusively. The issue with anon THP is that we don't know how
      45             :          * they are/were mapped when pinning them. However, for anon
      46             :          * THP we can assume that either the given page (PTE-mapped THP) or
      47             :          * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
      48             :          * neither is the case, there is certainly something wrong.
      49             :          */
      50             :         for (; npages; npages--, pages++) {
      51             :                 struct page *page = *pages;
      52             :                 struct folio *folio = page_folio(page);
      53             : 
      54             :                 if (!folio_test_anon(folio))
      55             :                         continue;
      56             :                 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
      57             :                         VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
      58             :                 else
      59             :                         /* Either a PTE-mapped or a PMD-mapped THP. */
      60             :                         VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
      61             :                                        !PageAnonExclusive(page), page);
      62             :         }
      63             : }
      64             : 
      65             : /*
      66             :  * Return the folio with ref appropriately incremented,
      67             :  * or NULL if that failed.
      68             :  */
      69           0 : static inline struct folio *try_get_folio(struct page *page, int refs)
      70             : {
      71             :         struct folio *folio;
      72             : 
      73             : retry:
      74           0 :         folio = page_folio(page);
      75           0 :         if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
      76             :                 return NULL;
      77           0 :         if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
      78             :                 return NULL;
      79             : 
      80             :         /*
      81             :          * At this point we have a stable reference to the folio; but it
      82             :          * could be that between calling page_folio() and the refcount
      83             :          * increment, the folio was split, in which case we'd end up
      84             :          * holding a reference on a folio that has nothing to do with the page
      85             :          * we were given anymore.
      86             :          * So now that the folio is stable, recheck that the page still
      87             :          * belongs to this folio.
      88             :          */
      89           0 :         if (unlikely(page_folio(page) != folio)) {
      90           0 :                 if (!put_devmap_managed_page_refs(&folio->page, refs))
      91             :                         folio_put_refs(folio, refs);
      92             :                 goto retry;
      93             :         }
      94             : 
      95             :         return folio;
      96             : }
      97             : 
      98             : /**
      99             :  * try_grab_folio() - Attempt to get or pin a folio.
     100             :  * @page:  pointer to page to be grabbed
     101             :  * @refs:  the value to (effectively) add to the folio's refcount
     102             :  * @flags: gup flags: these are the FOLL_* flag values.
     103             :  *
     104             :  * "grab" names in this file mean, "look at flags to decide whether to use
     105             :  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
     106             :  *
     107             :  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
     108             :  * same time. (That's true throughout the get_user_pages*() and
     109             :  * pin_user_pages*() APIs.) Cases:
     110             :  *
     111             :  *    FOLL_GET: folio's refcount will be incremented by @refs.
     112             :  *
     113             :  *    FOLL_PIN on large folios: folio's refcount will be incremented by
     114             :  *    @refs, and its pincount will be incremented by @refs.
     115             :  *
     116             :  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
     117             :  *    @refs * GUP_PIN_COUNTING_BIAS.
     118             :  *
     119             :  * Return: The folio containing @page (with refcount appropriately
     120             :  * incremented) for success, or NULL upon failure. If neither FOLL_GET
     121             :  * nor FOLL_PIN was set, that's considered failure, and furthermore,
     122             :  * a likely bug in the caller, so a warning is also emitted.
     123             :  */
     124           0 : struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
     125             : {
     126             :         if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
     127             :                 return NULL;
     128             : 
     129           0 :         if (flags & FOLL_GET)
     130           0 :                 return try_get_folio(page, refs);
     131           0 :         else if (flags & FOLL_PIN) {
     132             :                 struct folio *folio;
     133             : 
     134             :                 /*
     135             :                  * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
     136             :                  * right zone, so fail and let the caller fall back to the slow
     137             :                  * path.
     138             :                  */
     139           0 :                 if (unlikely((flags & FOLL_LONGTERM) &&
     140             :                              !is_longterm_pinnable_page(page)))
     141             :                         return NULL;
     142             : 
     143             :                 /*
     144             :                  * CAUTION: Don't use compound_head() on the page before this
     145             :                  * point, the result won't be stable.
     146             :                  */
     147           0 :                 folio = try_get_folio(page, refs);
     148           0 :                 if (!folio)
     149             :                         return NULL;
     150             : 
     151             :                 /*
     152             :                  * When pinning a large folio, use an exact count to track it.
     153             :                  *
     154             :                  * However, be sure to *also* increment the normal folio
     155             :                  * refcount field at least once, so that the folio really
     156             :                  * is pinned.  That's why the refcount from the earlier
     157             :                  * try_get_folio() is left intact.
     158             :                  */
     159           0 :                 if (folio_test_large(folio))
     160           0 :                         atomic_add(refs, &folio->_pincount);
     161             :                 else
     162           0 :                         folio_ref_add(folio,
     163           0 :                                         refs * (GUP_PIN_COUNTING_BIAS - 1));
     164             :                 /*
     165             :                  * Adjust the pincount before re-checking the PTE for changes.
     166             :                  * This is essentially a smp_mb() and is paired with a memory
     167             :                  * barrier in page_try_share_anon_rmap().
     168             :                  */
     169           0 :                 smp_mb__after_atomic();
     170             : 
     171           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
     172             : 
     173           0 :                 return folio;
     174             :         }
     175             : 
     176           0 :         WARN_ON_ONCE(1);
     177             :         return NULL;
     178             : }
     179             : 
     180           0 : static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
     181             : {
     182           0 :         if (flags & FOLL_PIN) {
     183           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
     184           0 :                 if (folio_test_large(folio))
     185           0 :                         atomic_sub(refs, &folio->_pincount);
     186             :                 else
     187           0 :                         refs *= GUP_PIN_COUNTING_BIAS;
     188             :         }
     189             : 
     190           0 :         if (!put_devmap_managed_page_refs(&folio->page, refs))
     191             :                 folio_put_refs(folio, refs);
     192           0 : }
     193             : 
     194             : /**
     195             :  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
     196             :  * @page:    pointer to page to be grabbed
     197             :  * @flags:   gup flags: these are the FOLL_* flag values.
     198             :  *
     199             :  * This might not do anything at all, depending on the flags argument.
     200             :  *
     201             :  * "grab" names in this file mean, "look at flags to decide whether to use
     202             :  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
     203             :  *
     204             :  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
     205             :  * time. Cases: please see the try_grab_folio() documentation, with
     206             :  * "refs=1".
     207             :  *
     208             :  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
     209             :  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
     210             :  *
     211             :  *   -ENOMEM            FOLL_GET or FOLL_PIN was set, but the page could not
     212             :  *                      be grabbed.
     213             :  */
     214           0 : int __must_check try_grab_page(struct page *page, unsigned int flags)
     215             : {
     216           0 :         struct folio *folio = page_folio(page);
     217             : 
     218           0 :         if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
     219             :                 return -ENOMEM;
     220             : 
     221             :         if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
     222             :                 return -EREMOTEIO;
     223             : 
     224           0 :         if (flags & FOLL_GET)
     225             :                 folio_ref_inc(folio);
     226           0 :         else if (flags & FOLL_PIN) {
     227             :                 /*
     228             :                  * Similar to try_grab_folio(): be sure to *also*
     229             :                  * increment the normal page refcount field at least once,
     230             :                  * so that the page really is pinned.
     231             :                  */
     232           0 :                 if (folio_test_large(folio)) {
     233           0 :                         folio_ref_add(folio, 1);
     234           0 :                         atomic_add(1, &folio->_pincount);
     235             :                 } else {
     236             :                         folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
     237             :                 }
     238             : 
     239           0 :                 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
     240             :         }
     241             : 
     242             :         return 0;
     243             : }
     244             : 
     245             : /**
     246             :  * unpin_user_page() - release a dma-pinned page
     247             :  * @page:            pointer to page to be released
     248             :  *
     249             :  * Pages that were pinned via pin_user_pages*() must be released via either
     250             :  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
     251             :  * that such pages can be separately tracked and uniquely handled. In
     252             :  * particular, interactions with RDMA and filesystems need special handling.
     253             :  */
     254           0 : void unpin_user_page(struct page *page)
     255             : {
     256           0 :         sanity_check_pinned_pages(&page, 1);
     257           0 :         gup_put_folio(page_folio(page), 1, FOLL_PIN);
     258           0 : }
     259             : EXPORT_SYMBOL(unpin_user_page);
     260             : 
     261           0 : static inline struct folio *gup_folio_range_next(struct page *start,
     262             :                 unsigned long npages, unsigned long i, unsigned int *ntails)
     263             : {
     264           0 :         struct page *next = nth_page(start, i);
     265           0 :         struct folio *folio = page_folio(next);
     266           0 :         unsigned int nr = 1;
     267             : 
     268           0 :         if (folio_test_large(folio))
     269           0 :                 nr = min_t(unsigned int, npages - i,
     270             :                            folio_nr_pages(folio) - folio_page_idx(folio, next));
     271             : 
     272           0 :         *ntails = nr;
     273           0 :         return folio;
     274             : }
     275             : 
     276           0 : static inline struct folio *gup_folio_next(struct page **list,
     277             :                 unsigned long npages, unsigned long i, unsigned int *ntails)
     278             : {
     279           0 :         struct folio *folio = page_folio(list[i]);
     280             :         unsigned int nr;
     281             : 
     282           0 :         for (nr = i + 1; nr < npages; nr++) {
     283           0 :                 if (page_folio(list[nr]) != folio)
     284             :                         break;
     285             :         }
     286             : 
     287           0 :         *ntails = nr - i;
     288           0 :         return folio;
     289             : }
     290             : 
     291             : /**
     292             :  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
     293             :  * @pages:  array of pages to be maybe marked dirty, and definitely released.
     294             :  * @npages: number of pages in the @pages array.
     295             :  * @make_dirty: whether to mark the pages dirty
     296             :  *
     297             :  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
     298             :  * variants called on that page.
     299             :  *
     300             :  * For each page in the @pages array, make that page (or its head page, if a
     301             :  * compound page) dirty, if @make_dirty is true, and if the page was previously
     302             :  * listed as clean. In any case, releases all pages using unpin_user_page(),
     303             :  * possibly via unpin_user_pages(), for the non-dirty case.
     304             :  *
     305             :  * Please see the unpin_user_page() documentation for details.
     306             :  *
     307             :  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
     308             :  * required, then the caller should a) verify that this is really correct,
     309             :  * because _lock() is usually required, and b) hand code it:
     310             :  * set_page_dirty_lock(), unpin_user_page().
     311             :  *
     312             :  */
     313           0 : void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
     314             :                                  bool make_dirty)
     315             : {
     316             :         unsigned long i;
     317             :         struct folio *folio;
     318             :         unsigned int nr;
     319             : 
     320           0 :         if (!make_dirty) {
     321           0 :                 unpin_user_pages(pages, npages);
     322           0 :                 return;
     323             :         }
     324             : 
     325             :         sanity_check_pinned_pages(pages, npages);
     326           0 :         for (i = 0; i < npages; i += nr) {
     327           0 :                 folio = gup_folio_next(pages, npages, i, &nr);
     328             :                 /*
     329             :                  * Checking PageDirty at this point may race with
     330             :                  * clear_page_dirty_for_io(), but that's OK. Two key
     331             :                  * cases:
     332             :                  *
     333             :                  * 1) This code sees the page as already dirty, so it
     334             :                  * skips the call to set_page_dirty(). That could happen
     335             :                  * because clear_page_dirty_for_io() called
     336             :                  * page_mkclean(), followed by set_page_dirty().
     337             :                  * However, now the page is going to get written back,
     338             :                  * which meets the original intention of setting it
     339             :                  * dirty, so all is well: clear_page_dirty_for_io() goes
     340             :                  * on to call TestClearPageDirty(), and write the page
     341             :                  * back.
     342             :                  *
     343             :                  * 2) This code sees the page as clean, so it calls
     344             :                  * set_page_dirty(). The page stays dirty, despite being
     345             :                  * written back, so it gets written back again in the
     346             :                  * next writeback cycle. This is harmless.
     347             :                  */
     348           0 :                 if (!folio_test_dirty(folio)) {
     349           0 :                         folio_lock(folio);
     350           0 :                         folio_mark_dirty(folio);
     351           0 :                         folio_unlock(folio);
     352             :                 }
     353           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     354             :         }
     355             : }
     356             : EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
     357             : 
     358             : /**
     359             :  * unpin_user_page_range_dirty_lock() - release and optionally dirty
     360             :  * gup-pinned page range
     361             :  *
     362             :  * @page:  the starting page of a range maybe marked dirty, and definitely released.
     363             :  * @npages: number of consecutive pages to release.
     364             :  * @make_dirty: whether to mark the pages dirty
     365             :  *
     366             :  * "gup-pinned page range" refers to a range of pages that has had one of the
     367             :  * pin_user_pages() variants called on that page.
     368             :  *
     369             :  * For the page ranges defined by [page .. page+npages], make that range (or
     370             :  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
     371             :  * page range was previously listed as clean.
     372             :  *
     373             :  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
     374             :  * required, then the caller should a) verify that this is really correct,
     375             :  * because _lock() is usually required, and b) hand code it:
     376             :  * set_page_dirty_lock(), unpin_user_page().
     377             :  *
     378             :  */
     379           0 : void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
     380             :                                       bool make_dirty)
     381             : {
     382             :         unsigned long i;
     383             :         struct folio *folio;
     384             :         unsigned int nr;
     385             : 
     386           0 :         for (i = 0; i < npages; i += nr) {
     387           0 :                 folio = gup_folio_range_next(page, npages, i, &nr);
     388           0 :                 if (make_dirty && !folio_test_dirty(folio)) {
     389           0 :                         folio_lock(folio);
     390           0 :                         folio_mark_dirty(folio);
     391           0 :                         folio_unlock(folio);
     392             :                 }
     393           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     394             :         }
     395           0 : }
     396             : EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
     397             : 
     398             : static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
     399             : {
     400             :         unsigned long i;
     401             :         struct folio *folio;
     402             :         unsigned int nr;
     403             : 
     404             :         /*
     405             :          * Don't perform any sanity checks because we might have raced with
     406             :          * fork() and some anonymous pages might now actually be shared --
     407             :          * which is why we're unpinning after all.
     408             :          */
     409             :         for (i = 0; i < npages; i += nr) {
     410             :                 folio = gup_folio_next(pages, npages, i, &nr);
     411             :                 gup_put_folio(folio, nr, FOLL_PIN);
     412             :         }
     413             : }
     414             : 
     415             : /**
     416             :  * unpin_user_pages() - release an array of gup-pinned pages.
     417             :  * @pages:  array of pages to be marked dirty and released.
     418             :  * @npages: number of pages in the @pages array.
     419             :  *
     420             :  * For each page in the @pages array, release the page using unpin_user_page().
     421             :  *
     422             :  * Please see the unpin_user_page() documentation for details.
     423             :  */
     424           0 : void unpin_user_pages(struct page **pages, unsigned long npages)
     425             : {
     426             :         unsigned long i;
     427             :         struct folio *folio;
     428             :         unsigned int nr;
     429             : 
     430             :         /*
     431             :          * If this WARN_ON() fires, then the system *might* be leaking pages (by
     432             :          * leaving them pinned), but probably not. More likely, gup/pup returned
     433             :          * a hard -ERRNO error to the caller, who erroneously passed it here.
     434             :          */
     435           0 :         if (WARN_ON(IS_ERR_VALUE(npages)))
     436           0 :                 return;
     437             : 
     438             :         sanity_check_pinned_pages(pages, npages);
     439           0 :         for (i = 0; i < npages; i += nr) {
     440           0 :                 folio = gup_folio_next(pages, npages, i, &nr);
     441           0 :                 gup_put_folio(folio, nr, FOLL_PIN);
     442             :         }
     443             : }
     444             : EXPORT_SYMBOL(unpin_user_pages);
     445             : 
     446             : /*
     447             :  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
     448             :  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
     449             :  * cache bouncing on large SMP machines for concurrent pinned gups.
     450             :  */
     451           0 : static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
     452             : {
     453           0 :         if (!test_bit(MMF_HAS_PINNED, mm_flags))
     454             :                 set_bit(MMF_HAS_PINNED, mm_flags);
     455           0 : }
     456             : 
     457             : #ifdef CONFIG_MMU
     458             : static struct page *no_page_table(struct vm_area_struct *vma,
     459             :                 unsigned int flags)
     460             : {
     461             :         /*
     462             :          * When core dumping an enormous anonymous area that nobody
     463             :          * has touched so far, we don't want to allocate unnecessary pages or
     464             :          * page tables.  Return error instead of NULL to skip handle_mm_fault,
     465             :          * then get_dump_page() will return NULL to leave a hole in the dump.
     466             :          * But we can only make this optimization where a hole would surely
     467             :          * be zero-filled if handle_mm_fault() actually did handle it.
     468             :          */
     469           0 :         if ((flags & FOLL_DUMP) &&
     470           0 :                         (vma_is_anonymous(vma) || !vma->vm_ops->fault))
     471             :                 return ERR_PTR(-EFAULT);
     472             :         return NULL;
     473             : }
     474             : 
     475           0 : static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
     476             :                 pte_t *pte, unsigned int flags)
     477             : {
     478           0 :         if (flags & FOLL_TOUCH) {
     479           0 :                 pte_t entry = *pte;
     480             : 
     481           0 :                 if (flags & FOLL_WRITE)
     482             :                         entry = pte_mkdirty(entry);
     483           0 :                 entry = pte_mkyoung(entry);
     484             : 
     485           0 :                 if (!pte_same(*pte, entry)) {
     486           0 :                         set_pte_at(vma->vm_mm, address, pte, entry);
     487             :                         update_mmu_cache(vma, address, pte);
     488             :                 }
     489             :         }
     490             : 
     491             :         /* Proper page table entry exists, but no corresponding struct page */
     492           0 :         return -EEXIST;
     493             : }
     494             : 
     495             : /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
     496           0 : static inline bool can_follow_write_pte(pte_t pte, struct page *page,
     497             :                                         struct vm_area_struct *vma,
     498             :                                         unsigned int flags)
     499             : {
     500             :         /* If the pte is writable, we can write to the page. */
     501           0 :         if (pte_write(pte))
     502             :                 return true;
     503             : 
     504             :         /* Maybe FOLL_FORCE is set to override it? */
     505           0 :         if (!(flags & FOLL_FORCE))
     506             :                 return false;
     507             : 
     508             :         /* But FOLL_FORCE has no effect on shared mappings */
     509           0 :         if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
     510             :                 return false;
     511             : 
     512             :         /* ... or read-only private ones */
     513           0 :         if (!(vma->vm_flags & VM_MAYWRITE))
     514             :                 return false;
     515             : 
     516             :         /* ... or already writable ones that just need to take a write fault */
     517           0 :         if (vma->vm_flags & VM_WRITE)
     518             :                 return false;
     519             : 
     520             :         /*
     521             :          * See can_change_pte_writable(): we broke COW and could map the page
     522             :          * writable if we have an exclusive anonymous page ...
     523             :          */
     524           0 :         if (!page || !PageAnon(page) || !PageAnonExclusive(page))
     525             :                 return false;
     526             : 
     527             :         /* ... and a write-fault isn't required for other reasons. */
     528             :         if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
     529             :                 return false;
     530             :         return !userfaultfd_pte_wp(vma, pte);
     531             : }
     532             : 
     533           0 : static struct page *follow_page_pte(struct vm_area_struct *vma,
     534             :                 unsigned long address, pmd_t *pmd, unsigned int flags,
     535             :                 struct dev_pagemap **pgmap)
     536             : {
     537           0 :         struct mm_struct *mm = vma->vm_mm;
     538             :         struct page *page;
     539             :         spinlock_t *ptl;
     540             :         pte_t *ptep, pte;
     541             :         int ret;
     542             : 
     543             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
     544           0 :         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
     545             :                          (FOLL_PIN | FOLL_GET)))
     546             :                 return ERR_PTR(-EINVAL);
     547           0 :         if (unlikely(pmd_bad(*pmd)))
     548             :                 return no_page_table(vma, flags);
     549             : 
     550           0 :         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
     551           0 :         pte = *ptep;
     552           0 :         if (!pte_present(pte))
     553             :                 goto no_page;
     554           0 :         if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
     555             :                 goto no_page;
     556             : 
     557           0 :         page = vm_normal_page(vma, address, pte);
     558             : 
     559             :         /*
     560             :          * We only care about anon pages in can_follow_write_pte() and don't
     561             :          * have to worry about pte_devmap() because they are never anon.
     562             :          */
     563           0 :         if ((flags & FOLL_WRITE) &&
     564           0 :             !can_follow_write_pte(pte, page, vma, flags)) {
     565             :                 page = NULL;
     566             :                 goto out;
     567             :         }
     568             : 
     569             :         if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
     570             :                 /*
     571             :                  * Only return device mapping pages in the FOLL_GET or FOLL_PIN
     572             :                  * case since they are only valid while holding the pgmap
     573             :                  * reference.
     574             :                  */
     575             :                 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
     576             :                 if (*pgmap)
     577             :                         page = pte_page(pte);
     578             :                 else
     579             :                         goto no_page;
     580           0 :         } else if (unlikely(!page)) {
     581           0 :                 if (flags & FOLL_DUMP) {
     582             :                         /* Avoid special (like zero) pages in core dumps */
     583             :                         page = ERR_PTR(-EFAULT);
     584             :                         goto out;
     585             :                 }
     586             : 
     587           0 :                 if (is_zero_pfn(pte_pfn(pte))) {
     588           0 :                         page = pte_page(pte);
     589             :                 } else {
     590           0 :                         ret = follow_pfn_pte(vma, address, ptep, flags);
     591           0 :                         page = ERR_PTR(ret);
     592             :                         goto out;
     593             :                 }
     594             :         }
     595             : 
     596           0 :         if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
     597             :                 page = ERR_PTR(-EMLINK);
     598             :                 goto out;
     599             :         }
     600             : 
     601             :         VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
     602             :                        !PageAnonExclusive(page), page);
     603             : 
     604             :         /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
     605           0 :         ret = try_grab_page(page, flags);
     606           0 :         if (unlikely(ret)) {
     607           0 :                 page = ERR_PTR(ret);
     608             :                 goto out;
     609             :         }
     610             : 
     611             :         /*
     612             :          * We need to make the page accessible if and only if we are going
     613             :          * to access its content (the FOLL_PIN case).  Please see
     614             :          * Documentation/core-api/pin_user_pages.rst for details.
     615             :          */
     616             :         if (flags & FOLL_PIN) {
     617             :                 ret = arch_make_page_accessible(page);
     618             :                 if (ret) {
     619             :                         unpin_user_page(page);
     620             :                         page = ERR_PTR(ret);
     621             :                         goto out;
     622             :                 }
     623             :         }
     624           0 :         if (flags & FOLL_TOUCH) {
     625           0 :                 if ((flags & FOLL_WRITE) &&
     626           0 :                     !pte_dirty(pte) && !PageDirty(page))
     627           0 :                         set_page_dirty(page);
     628             :                 /*
     629             :                  * pte_mkyoung() would be more correct here, but atomic care
     630             :                  * is needed to avoid losing the dirty bit: it is easier to use
     631             :                  * mark_page_accessed().
     632             :                  */
     633           0 :                 mark_page_accessed(page);
     634             :         }
     635             : out:
     636           0 :         pte_unmap_unlock(ptep, ptl);
     637             :         return page;
     638             : no_page:
     639           0 :         pte_unmap_unlock(ptep, ptl);
     640           0 :         if (!pte_none(pte))
     641             :                 return NULL;
     642             :         return no_page_table(vma, flags);
     643             : }
     644             : 
     645           0 : static struct page *follow_pmd_mask(struct vm_area_struct *vma,
     646             :                                     unsigned long address, pud_t *pudp,
     647             :                                     unsigned int flags,
     648             :                                     struct follow_page_context *ctx)
     649             : {
     650             :         pmd_t *pmd, pmdval;
     651             :         spinlock_t *ptl;
     652             :         struct page *page;
     653           0 :         struct mm_struct *mm = vma->vm_mm;
     654             : 
     655           0 :         pmd = pmd_offset(pudp, address);
     656             :         /*
     657             :          * The READ_ONCE() will stabilize the pmdval in a register or
     658             :          * on the stack so that it will stop changing under the code.
     659             :          */
     660           0 :         pmdval = READ_ONCE(*pmd);
     661           0 :         if (pmd_none(pmdval))
     662             :                 return no_page_table(vma, flags);
     663           0 :         if (!pmd_present(pmdval))
     664             :                 return no_page_table(vma, flags);
     665           0 :         if (pmd_devmap(pmdval)) {
     666             :                 ptl = pmd_lock(mm, pmd);
     667             :                 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
     668             :                 spin_unlock(ptl);
     669             :                 if (page)
     670             :                         return page;
     671             :         }
     672           0 :         if (likely(!pmd_trans_huge(pmdval)))
     673           0 :                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     674             : 
     675             :         if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
     676             :                 return no_page_table(vma, flags);
     677             : 
     678             :         ptl = pmd_lock(mm, pmd);
     679             :         if (unlikely(!pmd_present(*pmd))) {
     680             :                 spin_unlock(ptl);
     681             :                 return no_page_table(vma, flags);
     682             :         }
     683             :         if (unlikely(!pmd_trans_huge(*pmd))) {
     684             :                 spin_unlock(ptl);
     685             :                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     686             :         }
     687             :         if (flags & FOLL_SPLIT_PMD) {
     688             :                 int ret;
     689             :                 page = pmd_page(*pmd);
     690             :                 if (is_huge_zero_page(page)) {
     691             :                         spin_unlock(ptl);
     692             :                         ret = 0;
     693             :                         split_huge_pmd(vma, pmd, address);
     694             :                         if (pmd_trans_unstable(pmd))
     695             :                                 ret = -EBUSY;
     696             :                 } else {
     697             :                         spin_unlock(ptl);
     698             :                         split_huge_pmd(vma, pmd, address);
     699             :                         ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
     700             :                 }
     701             : 
     702             :                 return ret ? ERR_PTR(ret) :
     703             :                         follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
     704             :         }
     705             :         page = follow_trans_huge_pmd(vma, address, pmd, flags);
     706             :         spin_unlock(ptl);
     707             :         ctx->page_mask = HPAGE_PMD_NR - 1;
     708             :         return page;
     709             : }
     710             : 
     711           0 : static struct page *follow_pud_mask(struct vm_area_struct *vma,
     712             :                                     unsigned long address, p4d_t *p4dp,
     713             :                                     unsigned int flags,
     714             :                                     struct follow_page_context *ctx)
     715             : {
     716             :         pud_t *pud;
     717             :         spinlock_t *ptl;
     718             :         struct page *page;
     719           0 :         struct mm_struct *mm = vma->vm_mm;
     720             : 
     721           0 :         pud = pud_offset(p4dp, address);
     722           0 :         if (pud_none(*pud))
     723             :                 return no_page_table(vma, flags);
     724             :         if (pud_devmap(*pud)) {
     725             :                 ptl = pud_lock(mm, pud);
     726             :                 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
     727             :                 spin_unlock(ptl);
     728             :                 if (page)
     729             :                         return page;
     730             :         }
     731           0 :         if (unlikely(pud_bad(*pud)))
     732             :                 return no_page_table(vma, flags);
     733             : 
     734           0 :         return follow_pmd_mask(vma, address, pud, flags, ctx);
     735             : }
     736             : 
     737             : static struct page *follow_p4d_mask(struct vm_area_struct *vma,
     738             :                                     unsigned long address, pgd_t *pgdp,
     739             :                                     unsigned int flags,
     740             :                                     struct follow_page_context *ctx)
     741             : {
     742             :         p4d_t *p4d;
     743             : 
     744           0 :         p4d = p4d_offset(pgdp, address);
     745             :         if (p4d_none(*p4d))
     746             :                 return no_page_table(vma, flags);
     747             :         BUILD_BUG_ON(p4d_huge(*p4d));
     748             :         if (unlikely(p4d_bad(*p4d)))
     749             :                 return no_page_table(vma, flags);
     750             : 
     751           0 :         return follow_pud_mask(vma, address, p4d, flags, ctx);
     752             : }
     753             : 
     754             : /**
     755             :  * follow_page_mask - look up a page descriptor from a user-virtual address
     756             :  * @vma: vm_area_struct mapping @address
     757             :  * @address: virtual address to look up
     758             :  * @flags: flags modifying lookup behaviour
     759             :  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
     760             :  *       pointer to output page_mask
     761             :  *
     762             :  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
     763             :  *
     764             :  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
     765             :  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
     766             :  *
     767             :  * When getting an anonymous page and the caller has to trigger unsharing
     768             :  * of a shared anonymous page first, -EMLINK is returned. The caller should
     769             :  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
     770             :  * relevant with FOLL_PIN and !FOLL_WRITE.
     771             :  *
     772             :  * On output, the @ctx->page_mask is set according to the size of the page.
     773             :  *
     774             :  * Return: the mapped (struct page *), %NULL if no mapping exists, or
     775             :  * an error pointer if there is a mapping to something not represented
     776             :  * by a page descriptor (see also vm_normal_page()).
     777             :  */
     778             : static struct page *follow_page_mask(struct vm_area_struct *vma,
     779             :                               unsigned long address, unsigned int flags,
     780             :                               struct follow_page_context *ctx)
     781             : {
     782             :         pgd_t *pgd;
     783             :         struct page *page;
     784           0 :         struct mm_struct *mm = vma->vm_mm;
     785             : 
     786           0 :         ctx->page_mask = 0;
     787             : 
     788             :         /*
     789             :          * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
     790             :          * special hugetlb page table walking code.  This eliminates the
     791             :          * need to check for hugetlb entries in the general walking code.
     792             :          *
     793             :          * hugetlb_follow_page_mask is only for follow_page() handling here.
     794             :          * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
     795             :          */
     796           0 :         if (is_vm_hugetlb_page(vma)) {
     797             :                 page = hugetlb_follow_page_mask(vma, address, flags);
     798             :                 if (!page)
     799             :                         page = no_page_table(vma, flags);
     800             :                 return page;
     801             :         }
     802             : 
     803           0 :         pgd = pgd_offset(mm, address);
     804             : 
     805             :         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
     806             :                 return no_page_table(vma, flags);
     807             : 
     808           0 :         return follow_p4d_mask(vma, address, pgd, flags, ctx);
     809             : }
     810             : 
     811           0 : struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
     812             :                          unsigned int foll_flags)
     813             : {
     814           0 :         struct follow_page_context ctx = { NULL };
     815             :         struct page *page;
     816             : 
     817           0 :         if (vma_is_secretmem(vma))
     818             :                 return NULL;
     819             : 
     820           0 :         if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
     821             :                 return NULL;
     822             : 
     823           0 :         page = follow_page_mask(vma, address, foll_flags, &ctx);
     824             :         if (ctx.pgmap)
     825             :                 put_dev_pagemap(ctx.pgmap);
     826           0 :         return page;
     827             : }
     828             : 
     829             : static int get_gate_page(struct mm_struct *mm, unsigned long address,
     830             :                 unsigned int gup_flags, struct vm_area_struct **vma,
     831             :                 struct page **page)
     832             : {
     833             :         pgd_t *pgd;
     834             :         p4d_t *p4d;
     835             :         pud_t *pud;
     836             :         pmd_t *pmd;
     837             :         pte_t *pte;
     838             :         int ret = -EFAULT;
     839             : 
     840             :         /* user gate pages are read-only */
     841             :         if (gup_flags & FOLL_WRITE)
     842             :                 return -EFAULT;
     843             :         if (address > TASK_SIZE)
     844             :                 pgd = pgd_offset_k(address);
     845             :         else
     846             :                 pgd = pgd_offset_gate(mm, address);
     847             :         if (pgd_none(*pgd))
     848             :                 return -EFAULT;
     849             :         p4d = p4d_offset(pgd, address);
     850             :         if (p4d_none(*p4d))
     851             :                 return -EFAULT;
     852             :         pud = pud_offset(p4d, address);
     853             :         if (pud_none(*pud))
     854             :                 return -EFAULT;
     855             :         pmd = pmd_offset(pud, address);
     856             :         if (!pmd_present(*pmd))
     857             :                 return -EFAULT;
     858             :         VM_BUG_ON(pmd_trans_huge(*pmd));
     859             :         pte = pte_offset_map(pmd, address);
     860             :         if (pte_none(*pte))
     861             :                 goto unmap;
     862             :         *vma = get_gate_vma(mm);
     863             :         if (!page)
     864             :                 goto out;
     865             :         *page = vm_normal_page(*vma, address, *pte);
     866             :         if (!*page) {
     867             :                 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
     868             :                         goto unmap;
     869             :                 *page = pte_page(*pte);
     870             :         }
     871             :         ret = try_grab_page(*page, gup_flags);
     872             :         if (unlikely(ret))
     873             :                 goto unmap;
     874             : out:
     875             :         ret = 0;
     876             : unmap:
     877             :         pte_unmap(pte);
     878             :         return ret;
     879             : }
     880             : 
     881             : /*
     882             :  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
     883             :  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
     884             :  * to 0 and -EBUSY returned.
     885             :  */
     886           0 : static int faultin_page(struct vm_area_struct *vma,
     887             :                 unsigned long address, unsigned int *flags, bool unshare,
     888             :                 int *locked)
     889             : {
     890           0 :         unsigned int fault_flags = 0;
     891             :         vm_fault_t ret;
     892             : 
     893           0 :         if (*flags & FOLL_NOFAULT)
     894             :                 return -EFAULT;
     895           0 :         if (*flags & FOLL_WRITE)
     896           0 :                 fault_flags |= FAULT_FLAG_WRITE;
     897           0 :         if (*flags & FOLL_REMOTE)
     898           0 :                 fault_flags |= FAULT_FLAG_REMOTE;
     899           0 :         if (*flags & FOLL_UNLOCKABLE) {
     900           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
     901             :                 /*
     902             :                  * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
     903             :                  * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
     904             :                  * That's because some callers may not be prepared to
     905             :                  * handle early exits caused by non-fatal signals.
     906             :                  */
     907           0 :                 if (*flags & FOLL_INTERRUPTIBLE)
     908           0 :                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
     909             :         }
     910           0 :         if (*flags & FOLL_NOWAIT)
     911           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
     912           0 :         if (*flags & FOLL_TRIED) {
     913             :                 /*
     914             :                  * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
     915             :                  * can co-exist
     916             :                  */
     917           0 :                 fault_flags |= FAULT_FLAG_TRIED;
     918             :         }
     919           0 :         if (unshare) {
     920           0 :                 fault_flags |= FAULT_FLAG_UNSHARE;
     921             :                 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
     922             :                 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
     923             :         }
     924             : 
     925           0 :         ret = handle_mm_fault(vma, address, fault_flags, NULL);
     926             : 
     927           0 :         if (ret & VM_FAULT_COMPLETED) {
     928             :                 /*
     929             :                  * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
     930             :                  * mmap lock in the page fault handler. Sanity check this.
     931             :                  */
     932           0 :                 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
     933           0 :                 *locked = 0;
     934             : 
     935             :                 /*
     936             :                  * We should do the same as VM_FAULT_RETRY, but let's not
     937             :                  * return -EBUSY since that's not reflecting the reality of
     938             :                  * what has happened - we've just fully completed a page
     939             :                  * fault, with the mmap lock released.  Use -EAGAIN to show
     940             :                  * that we want to take the mmap lock _again_.
     941             :                  */
     942           0 :                 return -EAGAIN;
     943             :         }
     944             : 
     945           0 :         if (ret & VM_FAULT_ERROR) {
     946           0 :                 int err = vm_fault_to_errno(ret, *flags);
     947             : 
     948           0 :                 if (err)
     949             :                         return err;
     950           0 :                 BUG();
     951             :         }
     952             : 
     953           0 :         if (ret & VM_FAULT_RETRY) {
     954           0 :                 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
     955           0 :                         *locked = 0;
     956             :                 return -EBUSY;
     957             :         }
     958             : 
     959             :         return 0;
     960             : }
     961             : 
     962           0 : static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
     963             : {
     964           0 :         vm_flags_t vm_flags = vma->vm_flags;
     965           0 :         int write = (gup_flags & FOLL_WRITE);
     966           0 :         int foreign = (gup_flags & FOLL_REMOTE);
     967             : 
     968           0 :         if (vm_flags & (VM_IO | VM_PFNMAP))
     969             :                 return -EFAULT;
     970             : 
     971           0 :         if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
     972             :                 return -EFAULT;
     973             : 
     974             :         if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
     975             :                 return -EOPNOTSUPP;
     976             : 
     977           0 :         if (vma_is_secretmem(vma))
     978             :                 return -EFAULT;
     979             : 
     980           0 :         if (write) {
     981           0 :                 if (!(vm_flags & VM_WRITE)) {
     982           0 :                         if (!(gup_flags & FOLL_FORCE))
     983             :                                 return -EFAULT;
     984             :                         /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
     985           0 :                         if (is_vm_hugetlb_page(vma))
     986             :                                 return -EFAULT;
     987             :                         /*
     988             :                          * We used to let the write,force case do COW in a
     989             :                          * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
     990             :                          * set a breakpoint in a read-only mapping of an
     991             :                          * executable, without corrupting the file (yet only
     992             :                          * when that file had been opened for writing!).
     993             :                          * Anon pages in shared mappings are surprising: now
     994             :                          * just reject it.
     995             :                          */
     996           0 :                         if (!is_cow_mapping(vm_flags))
     997             :                                 return -EFAULT;
     998             :                 }
     999           0 :         } else if (!(vm_flags & VM_READ)) {
    1000           0 :                 if (!(gup_flags & FOLL_FORCE))
    1001             :                         return -EFAULT;
    1002             :                 /*
    1003             :                  * Is there actually any vma we can reach here which does not
    1004             :                  * have VM_MAYREAD set?
    1005             :                  */
    1006           0 :                 if (!(vm_flags & VM_MAYREAD))
    1007             :                         return -EFAULT;
    1008             :         }
    1009             :         /*
    1010             :          * gups are always data accesses, not instruction
    1011             :          * fetches, so execute=false here
    1012             :          */
    1013           0 :         if (!arch_vma_access_permitted(vma, write, false, foreign))
    1014             :                 return -EFAULT;
    1015           0 :         return 0;
    1016             : }
    1017             : 
    1018             : /**
    1019             :  * __get_user_pages() - pin user pages in memory
    1020             :  * @mm:         mm_struct of target mm
    1021             :  * @start:      starting user address
    1022             :  * @nr_pages:   number of pages from start to pin
    1023             :  * @gup_flags:  flags modifying pin behaviour
    1024             :  * @pages:      array that receives pointers to the pages pinned.
    1025             :  *              Should be at least nr_pages long. Or NULL, if caller
    1026             :  *              only intends to ensure the pages are faulted in.
    1027             :  * @vmas:       array of pointers to vmas corresponding to each page.
    1028             :  *              Or NULL if the caller does not require them.
    1029             :  * @locked:     whether we're still with the mmap_lock held
    1030             :  *
    1031             :  * Returns either number of pages pinned (which may be less than the
    1032             :  * number requested), or an error. Details about the return value:
    1033             :  *
    1034             :  * -- If nr_pages is 0, returns 0.
    1035             :  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
    1036             :  * -- If nr_pages is >0, and some pages were pinned, returns the number of
    1037             :  *    pages pinned. Again, this may be less than nr_pages.
    1038             :  * -- 0 return value is possible when the fault would need to be retried.
    1039             :  *
    1040             :  * The caller is responsible for releasing returned @pages, via put_page().
    1041             :  *
    1042             :  * @vmas are valid only as long as mmap_lock is held.
    1043             :  *
    1044             :  * Must be called with mmap_lock held.  It may be released.  See below.
    1045             :  *
    1046             :  * __get_user_pages walks a process's page tables and takes a reference to
    1047             :  * each struct page that each user address corresponds to at a given
    1048             :  * instant. That is, it takes the page that would be accessed if a user
    1049             :  * thread accesses the given user virtual address at that instant.
    1050             :  *
    1051             :  * This does not guarantee that the page exists in the user mappings when
    1052             :  * __get_user_pages returns, and there may even be a completely different
    1053             :  * page there in some cases (eg. if mmapped pagecache has been invalidated
    1054             :  * and subsequently re-faulted). However it does guarantee that the page
    1055             :  * won't be freed completely. And mostly callers simply care that the page
    1056             :  * contains data that was valid *at some point in time*. Typically, an IO
    1057             :  * or similar operation cannot guarantee anything stronger anyway because
    1058             :  * locks can't be held over the syscall boundary.
    1059             :  *
    1060             :  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
    1061             :  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
    1062             :  * appropriate) must be called after the page is finished with, and
    1063             :  * before put_page is called.
    1064             :  *
    1065             :  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
    1066             :  * be released. If this happens *@locked will be set to 0 on return.
    1067             :  *
    1068             :  * A caller using such a combination of @gup_flags must therefore hold the
    1069             :  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
    1070             :  * it must be held for either reading or writing and will not be released.
    1071             :  *
    1072             :  * In most cases, get_user_pages or get_user_pages_fast should be used
    1073             :  * instead of __get_user_pages. __get_user_pages should be used only if
    1074             :  * you need some special @gup_flags.
    1075             :  */
    1076           0 : static long __get_user_pages(struct mm_struct *mm,
    1077             :                 unsigned long start, unsigned long nr_pages,
    1078             :                 unsigned int gup_flags, struct page **pages,
    1079             :                 struct vm_area_struct **vmas, int *locked)
    1080             : {
    1081           0 :         long ret = 0, i = 0;
    1082           0 :         struct vm_area_struct *vma = NULL;
    1083           0 :         struct follow_page_context ctx = { NULL };
    1084             : 
    1085           0 :         if (!nr_pages)
    1086             :                 return 0;
    1087             : 
    1088             :         start = untagged_addr_remote(mm, start);
    1089             : 
    1090             :         VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
    1091             : 
    1092             :         do {
    1093             :                 struct page *page;
    1094           0 :                 unsigned int foll_flags = gup_flags;
    1095             :                 unsigned int page_increm;
    1096             : 
    1097             :                 /* first iteration or cross vma bound */
    1098           0 :                 if (!vma || start >= vma->vm_end) {
    1099           0 :                         vma = find_extend_vma(mm, start);
    1100             :                         if (!vma && in_gate_area(mm, start)) {
    1101             :                                 ret = get_gate_page(mm, start & PAGE_MASK,
    1102             :                                                 gup_flags, &vma,
    1103             :                                                 pages ? &pages[i] : NULL);
    1104             :                                 if (ret)
    1105             :                                         goto out;
    1106             :                                 ctx.page_mask = 0;
    1107             :                                 goto next_page;
    1108             :                         }
    1109             : 
    1110           0 :                         if (!vma) {
    1111             :                                 ret = -EFAULT;
    1112             :                                 goto out;
    1113             :                         }
    1114           0 :                         ret = check_vma_flags(vma, gup_flags);
    1115           0 :                         if (ret)
    1116             :                                 goto out;
    1117             : 
    1118             :                         if (is_vm_hugetlb_page(vma)) {
    1119             :                                 i = follow_hugetlb_page(mm, vma, pages, vmas,
    1120             :                                                 &start, &nr_pages, i,
    1121             :                                                 gup_flags, locked);
    1122             :                                 if (!*locked) {
    1123             :                                         /*
    1124             :                                          * We've got a VM_FAULT_RETRY
    1125             :                                          * and we've lost mmap_lock.
    1126             :                                          * We must stop here.
    1127             :                                          */
    1128             :                                         BUG_ON(gup_flags & FOLL_NOWAIT);
    1129             :                                         goto out;
    1130             :                                 }
    1131             :                                 continue;
    1132             :                         }
    1133             :                 }
    1134             : retry:
    1135             :                 /*
    1136             :                  * If we have a pending SIGKILL, don't keep faulting pages and
    1137             :                  * potentially allocating memory.
    1138             :                  */
    1139           0 :                 if (fatal_signal_pending(current)) {
    1140             :                         ret = -EINTR;
    1141             :                         goto out;
    1142             :                 }
    1143           0 :                 cond_resched();
    1144             : 
    1145           0 :                 page = follow_page_mask(vma, start, foll_flags, &ctx);
    1146           0 :                 if (!page || PTR_ERR(page) == -EMLINK) {
    1147           0 :                         ret = faultin_page(vma, start, &foll_flags,
    1148           0 :                                            PTR_ERR(page) == -EMLINK, locked);
    1149           0 :                         switch (ret) {
    1150             :                         case 0:
    1151             :                                 goto retry;
    1152             :                         case -EBUSY:
    1153             :                         case -EAGAIN:
    1154           0 :                                 ret = 0;
    1155             :                                 fallthrough;
    1156             :                         case -EFAULT:
    1157             :                         case -ENOMEM:
    1158             :                         case -EHWPOISON:
    1159             :                                 goto out;
    1160             :                         }
    1161           0 :                         BUG();
    1162           0 :                 } else if (PTR_ERR(page) == -EEXIST) {
    1163             :                         /*
    1164             :                          * Proper page table entry exists, but no corresponding
    1165             :                          * struct page. If the caller expects **pages to be
    1166             :                          * filled in, bail out now, because that can't be done
    1167             :                          * for this page.
    1168             :                          */
    1169           0 :                         if (pages) {
    1170             :                                 ret = PTR_ERR(page);
    1171             :                                 goto out;
    1172             :                         }
    1173             : 
    1174             :                         goto next_page;
    1175           0 :                 } else if (IS_ERR(page)) {
    1176             :                         ret = PTR_ERR(page);
    1177             :                         goto out;
    1178             :                 }
    1179           0 :                 if (pages) {
    1180           0 :                         pages[i] = page;
    1181           0 :                         flush_anon_page(vma, page, start);
    1182             :                         flush_dcache_page(page);
    1183           0 :                         ctx.page_mask = 0;
    1184             :                 }
    1185             : next_page:
    1186           0 :                 if (vmas) {
    1187           0 :                         vmas[i] = vma;
    1188           0 :                         ctx.page_mask = 0;
    1189             :                 }
    1190           0 :                 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
    1191           0 :                 if (page_increm > nr_pages)
    1192           0 :                         page_increm = nr_pages;
    1193           0 :                 i += page_increm;
    1194           0 :                 start += page_increm * PAGE_SIZE;
    1195           0 :                 nr_pages -= page_increm;
    1196           0 :         } while (nr_pages);
    1197             : out:
    1198             :         if (ctx.pgmap)
    1199             :                 put_dev_pagemap(ctx.pgmap);
    1200           0 :         return i ? i : ret;
    1201             : }
    1202             : 
    1203             : static bool vma_permits_fault(struct vm_area_struct *vma,
    1204             :                               unsigned int fault_flags)
    1205             : {
    1206           0 :         bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
    1207           0 :         bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
    1208           0 :         vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
    1209             : 
    1210           0 :         if (!(vm_flags & vma->vm_flags))
    1211             :                 return false;
    1212             : 
    1213             :         /*
    1214             :          * The architecture might have a hardware protection
    1215             :          * mechanism other than read/write that can deny access.
    1216             :          *
    1217             :          * gup always represents data access, not instruction
    1218             :          * fetches, so execute=false here:
    1219             :          */
    1220           0 :         if (!arch_vma_access_permitted(vma, write, false, foreign))
    1221             :                 return false;
    1222             : 
    1223             :         return true;
    1224             : }
    1225             : 
    1226             : /**
    1227             :  * fixup_user_fault() - manually resolve a user page fault
    1228             :  * @mm:         mm_struct of target mm
    1229             :  * @address:    user address
    1230             :  * @fault_flags:flags to pass down to handle_mm_fault()
    1231             :  * @unlocked:   did we unlock the mmap_lock while retrying, maybe NULL if caller
    1232             :  *              does not allow retry. If NULL, the caller must guarantee
    1233             :  *              that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
    1234             :  *
    1235             :  * This is meant to be called in the specific scenario where for locking reasons
    1236             :  * we try to access user memory in atomic context (within a pagefault_disable()
    1237             :  * section), this returns -EFAULT, and we want to resolve the user fault before
    1238             :  * trying again.
    1239             :  *
    1240             :  * Typically this is meant to be used by the futex code.
    1241             :  *
    1242             :  * The main difference with get_user_pages() is that this function will
    1243             :  * unconditionally call handle_mm_fault() which will in turn perform all the
    1244             :  * necessary SW fixup of the dirty and young bits in the PTE, while
    1245             :  * get_user_pages() only guarantees to update these in the struct page.
    1246             :  *
    1247             :  * This is important for some architectures where those bits also gate the
    1248             :  * access permission to the page because they are maintained in software.  On
    1249             :  * such architectures, gup() will not be enough to make a subsequent access
    1250             :  * succeed.
    1251             :  *
    1252             :  * This function will not return with an unlocked mmap_lock. So it has not the
    1253             :  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
    1254             :  */
    1255           0 : int fixup_user_fault(struct mm_struct *mm,
    1256             :                      unsigned long address, unsigned int fault_flags,
    1257             :                      bool *unlocked)
    1258             : {
    1259             :         struct vm_area_struct *vma;
    1260             :         vm_fault_t ret;
    1261             : 
    1262           0 :         address = untagged_addr_remote(mm, address);
    1263             : 
    1264           0 :         if (unlocked)
    1265           0 :                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    1266             : 
    1267             : retry:
    1268           0 :         vma = find_extend_vma(mm, address);
    1269           0 :         if (!vma || address < vma->vm_start)
    1270             :                 return -EFAULT;
    1271             : 
    1272           0 :         if (!vma_permits_fault(vma, fault_flags))
    1273             :                 return -EFAULT;
    1274             : 
    1275           0 :         if ((fault_flags & FAULT_FLAG_KILLABLE) &&
    1276           0 :             fatal_signal_pending(current))
    1277             :                 return -EINTR;
    1278             : 
    1279           0 :         ret = handle_mm_fault(vma, address, fault_flags, NULL);
    1280             : 
    1281           0 :         if (ret & VM_FAULT_COMPLETED) {
    1282             :                 /*
    1283             :                  * NOTE: it's a pity that we need to retake the lock here
    1284             :                  * to pair with the unlock() in the callers. Ideally we
    1285             :                  * could tell the callers so they do not need to unlock.
    1286             :                  */
    1287           0 :                 mmap_read_lock(mm);
    1288           0 :                 *unlocked = true;
    1289           0 :                 return 0;
    1290             :         }
    1291             : 
    1292           0 :         if (ret & VM_FAULT_ERROR) {
    1293           0 :                 int err = vm_fault_to_errno(ret, 0);
    1294             : 
    1295           0 :                 if (err)
    1296             :                         return err;
    1297           0 :                 BUG();
    1298             :         }
    1299             : 
    1300           0 :         if (ret & VM_FAULT_RETRY) {
    1301           0 :                 mmap_read_lock(mm);
    1302           0 :                 *unlocked = true;
    1303           0 :                 fault_flags |= FAULT_FLAG_TRIED;
    1304           0 :                 goto retry;
    1305             :         }
    1306             : 
    1307             :         return 0;
    1308             : }
    1309             : EXPORT_SYMBOL_GPL(fixup_user_fault);
    1310             : 
    1311             : /*
    1312             :  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
    1313             :  * specified, it'll also respond to generic signals.  The caller of GUP
    1314             :  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
    1315             :  */
    1316           0 : static bool gup_signal_pending(unsigned int flags)
    1317             : {
    1318           0 :         if (fatal_signal_pending(current))
    1319             :                 return true;
    1320             : 
    1321           0 :         if (!(flags & FOLL_INTERRUPTIBLE))
    1322             :                 return false;
    1323             : 
    1324           0 :         return signal_pending(current);
    1325             : }
    1326             : 
    1327             : /*
    1328             :  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
    1329             :  * the caller. This function may drop the mmap_lock. If it does so, then it will
    1330             :  * set (*locked = 0).
    1331             :  *
    1332             :  * (*locked == 0) means that the caller expects this function to acquire and
    1333             :  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
    1334             :  * the function returns, even though it may have changed temporarily during
    1335             :  * function execution.
    1336             :  *
    1337             :  * Please note that this function, unlike __get_user_pages(), will not return 0
    1338             :  * for nr_pages > 0, unless FOLL_NOWAIT is used.
    1339             :  */
    1340             : static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
    1341             :                                                 unsigned long start,
    1342             :                                                 unsigned long nr_pages,
    1343             :                                                 struct page **pages,
    1344             :                                                 struct vm_area_struct **vmas,
    1345             :                                                 int *locked,
    1346             :                                                 unsigned int flags)
    1347             : {
    1348             :         long ret, pages_done;
    1349           0 :         bool must_unlock = false;
    1350             : 
    1351             :         /*
    1352             :          * The internal caller expects GUP to manage the lock internally and the
    1353             :          * lock must be released when this returns.
    1354             :          */
    1355           0 :         if (!*locked) {
    1356           0 :                 if (mmap_read_lock_killable(mm))
    1357             :                         return -EAGAIN;
    1358           0 :                 must_unlock = true;
    1359           0 :                 *locked = 1;
    1360             :         }
    1361             :         else
    1362             :                 mmap_assert_locked(mm);
    1363             : 
    1364           0 :         if (flags & FOLL_PIN)
    1365           0 :                 mm_set_has_pinned_flag(&mm->flags);
    1366             : 
    1367             :         /*
    1368             :          * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
    1369             :          * is to set FOLL_GET if the caller wants pages[] filled in (but has
    1370             :          * carelessly failed to specify FOLL_GET), so keep doing that, but only
    1371             :          * for FOLL_GET, not for the newer FOLL_PIN.
    1372             :          *
    1373             :          * FOLL_PIN always expects pages to be non-null, but no need to assert
    1374             :          * that here, as any failures will be obvious enough.
    1375             :          */
    1376           0 :         if (pages && !(flags & FOLL_PIN))
    1377           0 :                 flags |= FOLL_GET;
    1378             : 
    1379           0 :         pages_done = 0;
    1380             :         for (;;) {
    1381           0 :                 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
    1382             :                                        vmas, locked);
    1383           0 :                 if (!(flags & FOLL_UNLOCKABLE)) {
    1384             :                         /* VM_FAULT_RETRY couldn't trigger, bypass */
    1385             :                         pages_done = ret;
    1386             :                         break;
    1387             :                 }
    1388             : 
    1389             :                 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
    1390           0 :                 if (!*locked) {
    1391           0 :                         BUG_ON(ret < 0);
    1392           0 :                         BUG_ON(ret >= nr_pages);
    1393             :                 }
    1394             : 
    1395           0 :                 if (ret > 0) {
    1396           0 :                         nr_pages -= ret;
    1397           0 :                         pages_done += ret;
    1398           0 :                         if (!nr_pages)
    1399             :                                 break;
    1400             :                 }
    1401           0 :                 if (*locked) {
    1402             :                         /*
    1403             :                          * VM_FAULT_RETRY didn't trigger or it was a
    1404             :                          * FOLL_NOWAIT.
    1405             :                          */
    1406           0 :                         if (!pages_done)
    1407           0 :                                 pages_done = ret;
    1408             :                         break;
    1409             :                 }
    1410             :                 /*
    1411             :                  * VM_FAULT_RETRY triggered, so seek to the faulting offset.
    1412             :                  * For the prefault case (!pages) we only update counts.
    1413             :                  */
    1414           0 :                 if (likely(pages))
    1415           0 :                         pages += ret;
    1416           0 :                 start += ret << PAGE_SHIFT;
    1417             : 
    1418             :                 /* The lock was temporarily dropped, so we must unlock later */
    1419           0 :                 must_unlock = true;
    1420             : 
    1421             : retry:
    1422             :                 /*
    1423             :                  * Repeat on the address that fired VM_FAULT_RETRY
    1424             :                  * with both FAULT_FLAG_ALLOW_RETRY and
    1425             :                  * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
    1426             :                  * by fatal signals of even common signals, depending on
    1427             :                  * the caller's request. So we need to check it before we
    1428             :                  * start trying again otherwise it can loop forever.
    1429             :                  */
    1430           0 :                 if (gup_signal_pending(flags)) {
    1431           0 :                         if (!pages_done)
    1432           0 :                                 pages_done = -EINTR;
    1433             :                         break;
    1434             :                 }
    1435             : 
    1436           0 :                 ret = mmap_read_lock_killable(mm);
    1437           0 :                 if (ret) {
    1438           0 :                         BUG_ON(ret > 0);
    1439           0 :                         if (!pages_done)
    1440           0 :                                 pages_done = ret;
    1441             :                         break;
    1442             :                 }
    1443             : 
    1444           0 :                 *locked = 1;
    1445           0 :                 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
    1446             :                                        pages, NULL, locked);
    1447           0 :                 if (!*locked) {
    1448             :                         /* Continue to retry until we succeeded */
    1449           0 :                         BUG_ON(ret != 0);
    1450             :                         goto retry;
    1451             :                 }
    1452           0 :                 if (ret != 1) {
    1453           0 :                         BUG_ON(ret > 1);
    1454           0 :                         if (!pages_done)
    1455           0 :                                 pages_done = ret;
    1456             :                         break;
    1457             :                 }
    1458           0 :                 nr_pages--;
    1459           0 :                 pages_done++;
    1460           0 :                 if (!nr_pages)
    1461             :                         break;
    1462           0 :                 if (likely(pages))
    1463           0 :                         pages++;
    1464           0 :                 start += PAGE_SIZE;
    1465             :         }
    1466           0 :         if (must_unlock && *locked) {
    1467             :                 /*
    1468             :                  * We either temporarily dropped the lock, or the caller
    1469             :                  * requested that we both acquire and drop the lock. Either way,
    1470             :                  * we must now unlock, and notify the caller of that state.
    1471             :                  */
    1472           0 :                 mmap_read_unlock(mm);
    1473           0 :                 *locked = 0;
    1474             :         }
    1475             :         return pages_done;
    1476             : }
    1477             : 
    1478             : /**
    1479             :  * populate_vma_page_range() -  populate a range of pages in the vma.
    1480             :  * @vma:   target vma
    1481             :  * @start: start address
    1482             :  * @end:   end address
    1483             :  * @locked: whether the mmap_lock is still held
    1484             :  *
    1485             :  * This takes care of mlocking the pages too if VM_LOCKED is set.
    1486             :  *
    1487             :  * Return either number of pages pinned in the vma, or a negative error
    1488             :  * code on error.
    1489             :  *
    1490             :  * vma->vm_mm->mmap_lock must be held.
    1491             :  *
    1492             :  * If @locked is NULL, it may be held for read or write and will
    1493             :  * be unperturbed.
    1494             :  *
    1495             :  * If @locked is non-NULL, it must held for read only and may be
    1496             :  * released.  If it's released, *@locked will be set to 0.
    1497             :  */
    1498           0 : long populate_vma_page_range(struct vm_area_struct *vma,
    1499             :                 unsigned long start, unsigned long end, int *locked)
    1500             : {
    1501           0 :         struct mm_struct *mm = vma->vm_mm;
    1502           0 :         unsigned long nr_pages = (end - start) / PAGE_SIZE;
    1503           0 :         int local_locked = 1;
    1504             :         int gup_flags;
    1505             :         long ret;
    1506             : 
    1507             :         VM_BUG_ON(!PAGE_ALIGNED(start));
    1508             :         VM_BUG_ON(!PAGE_ALIGNED(end));
    1509             :         VM_BUG_ON_VMA(start < vma->vm_start, vma);
    1510             :         VM_BUG_ON_VMA(end   > vma->vm_end, vma);
    1511           0 :         mmap_assert_locked(mm);
    1512             : 
    1513             :         /*
    1514             :          * Rightly or wrongly, the VM_LOCKONFAULT case has never used
    1515             :          * faultin_page() to break COW, so it has no work to do here.
    1516             :          */
    1517           0 :         if (vma->vm_flags & VM_LOCKONFAULT)
    1518           0 :                 return nr_pages;
    1519             : 
    1520           0 :         gup_flags = FOLL_TOUCH;
    1521             :         /*
    1522             :          * We want to touch writable mappings with a write fault in order
    1523             :          * to break COW, except for shared mappings because these don't COW
    1524             :          * and we would not want to dirty them for nothing.
    1525             :          */
    1526           0 :         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
    1527           0 :                 gup_flags |= FOLL_WRITE;
    1528             : 
    1529             :         /*
    1530             :          * We want mlock to succeed for regions that have any permissions
    1531             :          * other than PROT_NONE.
    1532             :          */
    1533           0 :         if (vma_is_accessible(vma))
    1534           0 :                 gup_flags |= FOLL_FORCE;
    1535             : 
    1536           0 :         if (locked)
    1537           0 :                 gup_flags |= FOLL_UNLOCKABLE;
    1538             : 
    1539             :         /*
    1540             :          * We made sure addr is within a VMA, so the following will
    1541             :          * not result in a stack expansion that recurses back here.
    1542             :          */
    1543           0 :         ret = __get_user_pages(mm, start, nr_pages, gup_flags,
    1544             :                                 NULL, NULL, locked ? locked : &local_locked);
    1545           0 :         lru_add_drain();
    1546           0 :         return ret;
    1547             : }
    1548             : 
    1549             : /*
    1550             :  * faultin_vma_page_range() - populate (prefault) page tables inside the
    1551             :  *                            given VMA range readable/writable
    1552             :  *
    1553             :  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
    1554             :  *
    1555             :  * @vma: target vma
    1556             :  * @start: start address
    1557             :  * @end: end address
    1558             :  * @write: whether to prefault readable or writable
    1559             :  * @locked: whether the mmap_lock is still held
    1560             :  *
    1561             :  * Returns either number of processed pages in the vma, or a negative error
    1562             :  * code on error (see __get_user_pages()).
    1563             :  *
    1564             :  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
    1565             :  * covered by the VMA. If it's released, *@locked will be set to 0.
    1566             :  */
    1567           0 : long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
    1568             :                             unsigned long end, bool write, int *locked)
    1569             : {
    1570           0 :         struct mm_struct *mm = vma->vm_mm;
    1571           0 :         unsigned long nr_pages = (end - start) / PAGE_SIZE;
    1572             :         int gup_flags;
    1573             :         long ret;
    1574             : 
    1575             :         VM_BUG_ON(!PAGE_ALIGNED(start));
    1576             :         VM_BUG_ON(!PAGE_ALIGNED(end));
    1577             :         VM_BUG_ON_VMA(start < vma->vm_start, vma);
    1578             :         VM_BUG_ON_VMA(end > vma->vm_end, vma);
    1579           0 :         mmap_assert_locked(mm);
    1580             : 
    1581             :         /*
    1582             :          * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
    1583             :          *             the page dirty with FOLL_WRITE -- which doesn't make a
    1584             :          *             difference with !FOLL_FORCE, because the page is writable
    1585             :          *             in the page table.
    1586             :          * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
    1587             :          *                a poisoned page.
    1588             :          * !FOLL_FORCE: Require proper access permissions.
    1589             :          */
    1590           0 :         gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
    1591           0 :         if (write)
    1592           0 :                 gup_flags |= FOLL_WRITE;
    1593             : 
    1594             :         /*
    1595             :          * We want to report -EINVAL instead of -EFAULT for any permission
    1596             :          * problems or incompatible mappings.
    1597             :          */
    1598           0 :         if (check_vma_flags(vma, gup_flags))
    1599             :                 return -EINVAL;
    1600             : 
    1601           0 :         ret = __get_user_pages(mm, start, nr_pages, gup_flags,
    1602             :                                 NULL, NULL, locked);
    1603           0 :         lru_add_drain();
    1604           0 :         return ret;
    1605             : }
    1606             : 
    1607             : /*
    1608             :  * __mm_populate - populate and/or mlock pages within a range of address space.
    1609             :  *
    1610             :  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
    1611             :  * flags. VMAs must be already marked with the desired vm_flags, and
    1612             :  * mmap_lock must not be held.
    1613             :  */
    1614           0 : int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
    1615             : {
    1616           0 :         struct mm_struct *mm = current->mm;
    1617             :         unsigned long end, nstart, nend;
    1618           0 :         struct vm_area_struct *vma = NULL;
    1619           0 :         int locked = 0;
    1620           0 :         long ret = 0;
    1621             : 
    1622           0 :         end = start + len;
    1623             : 
    1624           0 :         for (nstart = start; nstart < end; nstart = nend) {
    1625             :                 /*
    1626             :                  * We want to fault in pages for [nstart; end) address range.
    1627             :                  * Find first corresponding VMA.
    1628             :                  */
    1629           0 :                 if (!locked) {
    1630           0 :                         locked = 1;
    1631           0 :                         mmap_read_lock(mm);
    1632           0 :                         vma = find_vma_intersection(mm, nstart, end);
    1633           0 :                 } else if (nstart >= vma->vm_end)
    1634           0 :                         vma = find_vma_intersection(mm, vma->vm_end, end);
    1635             : 
    1636           0 :                 if (!vma)
    1637             :                         break;
    1638             :                 /*
    1639             :                  * Set [nstart; nend) to intersection of desired address
    1640             :                  * range with the first VMA. Also, skip undesirable VMA types.
    1641             :                  */
    1642           0 :                 nend = min(end, vma->vm_end);
    1643           0 :                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
    1644           0 :                         continue;
    1645           0 :                 if (nstart < vma->vm_start)
    1646           0 :                         nstart = vma->vm_start;
    1647             :                 /*
    1648             :                  * Now fault in a range of pages. populate_vma_page_range()
    1649             :                  * double checks the vma flags, so that it won't mlock pages
    1650             :                  * if the vma was already munlocked.
    1651             :                  */
    1652           0 :                 ret = populate_vma_page_range(vma, nstart, nend, &locked);
    1653           0 :                 if (ret < 0) {
    1654           0 :                         if (ignore_errors) {
    1655           0 :                                 ret = 0;
    1656           0 :                                 continue;       /* continue at next VMA */
    1657             :                         }
    1658             :                         break;
    1659             :                 }
    1660           0 :                 nend = nstart + ret * PAGE_SIZE;
    1661           0 :                 ret = 0;
    1662             :         }
    1663           0 :         if (locked)
    1664             :                 mmap_read_unlock(mm);
    1665           0 :         return ret;     /* 0 or negative error code */
    1666             : }
    1667             : #else /* CONFIG_MMU */
    1668             : static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
    1669             :                 unsigned long nr_pages, struct page **pages,
    1670             :                 struct vm_area_struct **vmas, int *locked,
    1671             :                 unsigned int foll_flags)
    1672             : {
    1673             :         struct vm_area_struct *vma;
    1674             :         bool must_unlock = false;
    1675             :         unsigned long vm_flags;
    1676             :         long i;
    1677             : 
    1678             :         if (!nr_pages)
    1679             :                 return 0;
    1680             : 
    1681             :         /*
    1682             :          * The internal caller expects GUP to manage the lock internally and the
    1683             :          * lock must be released when this returns.
    1684             :          */
    1685             :         if (!*locked) {
    1686             :                 if (mmap_read_lock_killable(mm))
    1687             :                         return -EAGAIN;
    1688             :                 must_unlock = true;
    1689             :                 *locked = 1;
    1690             :         }
    1691             : 
    1692             :         /* calculate required read or write permissions.
    1693             :          * If FOLL_FORCE is set, we only require the "MAY" flags.
    1694             :          */
    1695             :         vm_flags  = (foll_flags & FOLL_WRITE) ?
    1696             :                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
    1697             :         vm_flags &= (foll_flags & FOLL_FORCE) ?
    1698             :                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
    1699             : 
    1700             :         for (i = 0; i < nr_pages; i++) {
    1701             :                 vma = find_vma(mm, start);
    1702             :                 if (!vma)
    1703             :                         break;
    1704             : 
    1705             :                 /* protect what we can, including chardevs */
    1706             :                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
    1707             :                     !(vm_flags & vma->vm_flags))
    1708             :                         break;
    1709             : 
    1710             :                 if (pages) {
    1711             :                         pages[i] = virt_to_page((void *)start);
    1712             :                         if (pages[i])
    1713             :                                 get_page(pages[i]);
    1714             :                 }
    1715             :                 if (vmas)
    1716             :                         vmas[i] = vma;
    1717             :                 start = (start + PAGE_SIZE) & PAGE_MASK;
    1718             :         }
    1719             : 
    1720             :         if (must_unlock && *locked) {
    1721             :                 mmap_read_unlock(mm);
    1722             :                 *locked = 0;
    1723             :         }
    1724             : 
    1725             :         return i ? : -EFAULT;
    1726             : }
    1727             : #endif /* !CONFIG_MMU */
    1728             : 
    1729             : /**
    1730             :  * fault_in_writeable - fault in userspace address range for writing
    1731             :  * @uaddr: start of address range
    1732             :  * @size: size of address range
    1733             :  *
    1734             :  * Returns the number of bytes not faulted in (like copy_to_user() and
    1735             :  * copy_from_user()).
    1736             :  */
    1737           0 : size_t fault_in_writeable(char __user *uaddr, size_t size)
    1738             : {
    1739           0 :         char __user *start = uaddr, *end;
    1740             : 
    1741           0 :         if (unlikely(size == 0))
    1742             :                 return 0;
    1743           0 :         if (!user_write_access_begin(uaddr, size))
    1744             :                 return size;
    1745           0 :         if (!PAGE_ALIGNED(uaddr)) {
    1746           0 :                 unsafe_put_user(0, uaddr, out);
    1747           0 :                 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
    1748             :         }
    1749           0 :         end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
    1750           0 :         if (unlikely(end < start))
    1751           0 :                 end = NULL;
    1752           0 :         while (uaddr != end) {
    1753           0 :                 unsafe_put_user(0, uaddr, out);
    1754           0 :                 uaddr += PAGE_SIZE;
    1755             :         }
    1756             : 
    1757             : out:
    1758             :         user_write_access_end();
    1759           0 :         if (size > uaddr - start)
    1760           0 :                 return size - (uaddr - start);
    1761             :         return 0;
    1762             : }
    1763             : EXPORT_SYMBOL(fault_in_writeable);
    1764             : 
    1765             : /**
    1766             :  * fault_in_subpage_writeable - fault in an address range for writing
    1767             :  * @uaddr: start of address range
    1768             :  * @size: size of address range
    1769             :  *
    1770             :  * Fault in a user address range for writing while checking for permissions at
    1771             :  * sub-page granularity (e.g. arm64 MTE). This function should be used when
    1772             :  * the caller cannot guarantee forward progress of a copy_to_user() loop.
    1773             :  *
    1774             :  * Returns the number of bytes not faulted in (like copy_to_user() and
    1775             :  * copy_from_user()).
    1776             :  */
    1777           0 : size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
    1778             : {
    1779             :         size_t faulted_in;
    1780             : 
    1781             :         /*
    1782             :          * Attempt faulting in at page granularity first for page table
    1783             :          * permission checking. The arch-specific probe_subpage_writeable()
    1784             :          * functions may not check for this.
    1785             :          */
    1786           0 :         faulted_in = size - fault_in_writeable(uaddr, size);
    1787             :         if (faulted_in)
    1788             :                 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
    1789             : 
    1790           0 :         return size - faulted_in;
    1791             : }
    1792             : EXPORT_SYMBOL(fault_in_subpage_writeable);
    1793             : 
    1794             : /*
    1795             :  * fault_in_safe_writeable - fault in an address range for writing
    1796             :  * @uaddr: start of address range
    1797             :  * @size: length of address range
    1798             :  *
    1799             :  * Faults in an address range for writing.  This is primarily useful when we
    1800             :  * already know that some or all of the pages in the address range aren't in
    1801             :  * memory.
    1802             :  *
    1803             :  * Unlike fault_in_writeable(), this function is non-destructive.
    1804             :  *
    1805             :  * Note that we don't pin or otherwise hold the pages referenced that we fault
    1806             :  * in.  There's no guarantee that they'll stay in memory for any duration of
    1807             :  * time.
    1808             :  *
    1809             :  * Returns the number of bytes not faulted in, like copy_to_user() and
    1810             :  * copy_from_user().
    1811             :  */
    1812           0 : size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
    1813             : {
    1814           0 :         unsigned long start = (unsigned long)uaddr, end;
    1815           0 :         struct mm_struct *mm = current->mm;
    1816           0 :         bool unlocked = false;
    1817             : 
    1818           0 :         if (unlikely(size == 0))
    1819             :                 return 0;
    1820           0 :         end = PAGE_ALIGN(start + size);
    1821           0 :         if (end < start)
    1822           0 :                 end = 0;
    1823             : 
    1824             :         mmap_read_lock(mm);
    1825             :         do {
    1826           0 :                 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
    1827             :                         break;
    1828           0 :                 start = (start + PAGE_SIZE) & PAGE_MASK;
    1829           0 :         } while (start != end);
    1830           0 :         mmap_read_unlock(mm);
    1831             : 
    1832           0 :         if (size > (unsigned long)uaddr - start)
    1833           0 :                 return size - ((unsigned long)uaddr - start);
    1834             :         return 0;
    1835             : }
    1836             : EXPORT_SYMBOL(fault_in_safe_writeable);
    1837             : 
    1838             : /**
    1839             :  * fault_in_readable - fault in userspace address range for reading
    1840             :  * @uaddr: start of user address range
    1841             :  * @size: size of user address range
    1842             :  *
    1843             :  * Returns the number of bytes not faulted in (like copy_to_user() and
    1844             :  * copy_from_user()).
    1845             :  */
    1846           0 : size_t fault_in_readable(const char __user *uaddr, size_t size)
    1847             : {
    1848           0 :         const char __user *start = uaddr, *end;
    1849             :         volatile char c;
    1850             : 
    1851           0 :         if (unlikely(size == 0))
    1852             :                 return 0;
    1853           0 :         if (!user_read_access_begin(uaddr, size))
    1854             :                 return size;
    1855           0 :         if (!PAGE_ALIGNED(uaddr)) {
    1856           0 :                 unsafe_get_user(c, uaddr, out);
    1857           0 :                 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
    1858             :         }
    1859           0 :         end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
    1860           0 :         if (unlikely(end < start))
    1861           0 :                 end = NULL;
    1862           0 :         while (uaddr != end) {
    1863           0 :                 unsafe_get_user(c, uaddr, out);
    1864           0 :                 uaddr += PAGE_SIZE;
    1865             :         }
    1866             : 
    1867             : out:
    1868             :         user_read_access_end();
    1869           0 :         (void)c;
    1870           0 :         if (size > uaddr - start)
    1871           0 :                 return size - (uaddr - start);
    1872             :         return 0;
    1873             : }
    1874             : EXPORT_SYMBOL(fault_in_readable);
    1875             : 
    1876             : /**
    1877             :  * get_dump_page() - pin user page in memory while writing it to core dump
    1878             :  * @addr: user address
    1879             :  *
    1880             :  * Returns struct page pointer of user page pinned for dump,
    1881             :  * to be freed afterwards by put_page().
    1882             :  *
    1883             :  * Returns NULL on any kind of failure - a hole must then be inserted into
    1884             :  * the corefile, to preserve alignment with its headers; and also returns
    1885             :  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
    1886             :  * allowing a hole to be left in the corefile to save disk space.
    1887             :  *
    1888             :  * Called without mmap_lock (takes and releases the mmap_lock by itself).
    1889             :  */
    1890             : #ifdef CONFIG_ELF_CORE
    1891           0 : struct page *get_dump_page(unsigned long addr)
    1892             : {
    1893             :         struct page *page;
    1894           0 :         int locked = 0;
    1895             :         int ret;
    1896             : 
    1897           0 :         ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
    1898             :                                       &locked,
    1899             :                                       FOLL_FORCE | FOLL_DUMP | FOLL_GET);
    1900           0 :         return (ret == 1) ? page : NULL;
    1901             : }
    1902             : #endif /* CONFIG_ELF_CORE */
    1903             : 
    1904             : #ifdef CONFIG_MIGRATION
    1905             : /*
    1906             :  * Returns the number of collected pages. Return value is always >= 0.
    1907             :  */
    1908           0 : static unsigned long collect_longterm_unpinnable_pages(
    1909             :                                         struct list_head *movable_page_list,
    1910             :                                         unsigned long nr_pages,
    1911             :                                         struct page **pages)
    1912             : {
    1913           0 :         unsigned long i, collected = 0;
    1914           0 :         struct folio *prev_folio = NULL;
    1915           0 :         bool drain_allow = true;
    1916             : 
    1917           0 :         for (i = 0; i < nr_pages; i++) {
    1918           0 :                 struct folio *folio = page_folio(pages[i]);
    1919             : 
    1920           0 :                 if (folio == prev_folio)
    1921           0 :                         continue;
    1922           0 :                 prev_folio = folio;
    1923             : 
    1924           0 :                 if (folio_is_longterm_pinnable(folio))
    1925           0 :                         continue;
    1926             : 
    1927           0 :                 collected++;
    1928             : 
    1929           0 :                 if (folio_is_device_coherent(folio))
    1930             :                         continue;
    1931             : 
    1932           0 :                 if (folio_test_hugetlb(folio)) {
    1933             :                         isolate_hugetlb(folio, movable_page_list);
    1934             :                         continue;
    1935             :                 }
    1936             : 
    1937           0 :                 if (!folio_test_lru(folio) && drain_allow) {
    1938           0 :                         lru_add_drain_all();
    1939           0 :                         drain_allow = false;
    1940             :                 }
    1941             : 
    1942           0 :                 if (!folio_isolate_lru(folio))
    1943           0 :                         continue;
    1944             : 
    1945           0 :                 list_add_tail(&folio->lru, movable_page_list);
    1946           0 :                 node_stat_mod_folio(folio,
    1947           0 :                                     NR_ISOLATED_ANON + folio_is_file_lru(folio),
    1948             :                                     folio_nr_pages(folio));
    1949             :         }
    1950             : 
    1951           0 :         return collected;
    1952             : }
    1953             : 
    1954             : /*
    1955             :  * Unpins all pages and migrates device coherent pages and movable_page_list.
    1956             :  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
    1957             :  * (or partial success).
    1958             :  */
    1959           0 : static int migrate_longterm_unpinnable_pages(
    1960             :                                         struct list_head *movable_page_list,
    1961             :                                         unsigned long nr_pages,
    1962             :                                         struct page **pages)
    1963             : {
    1964             :         int ret;
    1965             :         unsigned long i;
    1966             : 
    1967           0 :         for (i = 0; i < nr_pages; i++) {
    1968           0 :                 struct folio *folio = page_folio(pages[i]);
    1969             : 
    1970           0 :                 if (folio_is_device_coherent(folio)) {
    1971             :                         /*
    1972             :                          * Migration will fail if the page is pinned, so convert
    1973             :                          * the pin on the source page to a normal reference.
    1974             :                          */
    1975             :                         pages[i] = NULL;
    1976             :                         folio_get(folio);
    1977             :                         gup_put_folio(folio, 1, FOLL_PIN);
    1978             : 
    1979             :                         if (migrate_device_coherent_page(&folio->page)) {
    1980             :                                 ret = -EBUSY;
    1981             :                                 goto err;
    1982             :                         }
    1983             : 
    1984             :                         continue;
    1985             :                 }
    1986             : 
    1987             :                 /*
    1988             :                  * We can't migrate pages with unexpected references, so drop
    1989             :                  * the reference obtained by __get_user_pages_locked().
    1990             :                  * Migrating pages have been added to movable_page_list after
    1991             :                  * calling folio_isolate_lru() which takes a reference so the
    1992             :                  * page won't be freed if it's migrating.
    1993             :                  */
    1994           0 :                 unpin_user_page(pages[i]);
    1995           0 :                 pages[i] = NULL;
    1996             :         }
    1997             : 
    1998           0 :         if (!list_empty(movable_page_list)) {
    1999           0 :                 struct migration_target_control mtc = {
    2000             :                         .nid = NUMA_NO_NODE,
    2001             :                         .gfp_mask = GFP_USER | __GFP_NOWARN,
    2002             :                 };
    2003             : 
    2004           0 :                 if (migrate_pages(movable_page_list, alloc_migration_target,
    2005             :                                   NULL, (unsigned long)&mtc, MIGRATE_SYNC,
    2006             :                                   MR_LONGTERM_PIN, NULL)) {
    2007           0 :                         ret = -ENOMEM;
    2008           0 :                         goto err;
    2009             :                 }
    2010             :         }
    2011             : 
    2012           0 :         putback_movable_pages(movable_page_list);
    2013             : 
    2014           0 :         return -EAGAIN;
    2015             : 
    2016             : err:
    2017           0 :         for (i = 0; i < nr_pages; i++)
    2018           0 :                 if (pages[i])
    2019           0 :                         unpin_user_page(pages[i]);
    2020           0 :         putback_movable_pages(movable_page_list);
    2021             : 
    2022           0 :         return ret;
    2023             : }
    2024             : 
    2025             : /*
    2026             :  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
    2027             :  * pages in the range are required to be pinned via FOLL_PIN, before calling
    2028             :  * this routine.
    2029             :  *
    2030             :  * If any pages in the range are not allowed to be pinned, then this routine
    2031             :  * will migrate those pages away, unpin all the pages in the range and return
    2032             :  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
    2033             :  * call this routine again.
    2034             :  *
    2035             :  * If an error other than -EAGAIN occurs, this indicates a migration failure.
    2036             :  * The caller should give up, and propagate the error back up the call stack.
    2037             :  *
    2038             :  * If everything is OK and all pages in the range are allowed to be pinned, then
    2039             :  * this routine leaves all pages pinned and returns zero for success.
    2040             :  */
    2041           0 : static long check_and_migrate_movable_pages(unsigned long nr_pages,
    2042             :                                             struct page **pages)
    2043             : {
    2044             :         unsigned long collected;
    2045           0 :         LIST_HEAD(movable_page_list);
    2046             : 
    2047           0 :         collected = collect_longterm_unpinnable_pages(&movable_page_list,
    2048             :                                                 nr_pages, pages);
    2049           0 :         if (!collected)
    2050             :                 return 0;
    2051             : 
    2052           0 :         return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
    2053             :                                                 pages);
    2054             : }
    2055             : #else
    2056             : static long check_and_migrate_movable_pages(unsigned long nr_pages,
    2057             :                                             struct page **pages)
    2058             : {
    2059             :         return 0;
    2060             : }
    2061             : #endif /* CONFIG_MIGRATION */
    2062             : 
    2063             : /*
    2064             :  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
    2065             :  * allows us to process the FOLL_LONGTERM flag.
    2066             :  */
    2067           0 : static long __gup_longterm_locked(struct mm_struct *mm,
    2068             :                                   unsigned long start,
    2069             :                                   unsigned long nr_pages,
    2070             :                                   struct page **pages,
    2071             :                                   struct vm_area_struct **vmas,
    2072             :                                   int *locked,
    2073             :                                   unsigned int gup_flags)
    2074             : {
    2075             :         unsigned int flags;
    2076             :         long rc, nr_pinned_pages;
    2077             : 
    2078           0 :         if (!(gup_flags & FOLL_LONGTERM))
    2079             :                 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    2080             :                                                locked, gup_flags);
    2081             : 
    2082           0 :         flags = memalloc_pin_save();
    2083             :         do {
    2084           0 :                 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
    2085             :                                                           pages, vmas, locked,
    2086             :                                                           gup_flags);
    2087           0 :                 if (nr_pinned_pages <= 0) {
    2088             :                         rc = nr_pinned_pages;
    2089             :                         break;
    2090             :                 }
    2091             : 
    2092             :                 /* FOLL_LONGTERM implies FOLL_PIN */
    2093           0 :                 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
    2094           0 :         } while (rc == -EAGAIN);
    2095           0 :         memalloc_pin_restore(flags);
    2096           0 :         return rc ? rc : nr_pinned_pages;
    2097             : }
    2098             : 
    2099             : /*
    2100             :  * Check that the given flags are valid for the exported gup/pup interface, and
    2101             :  * update them with the required flags that the caller must have set.
    2102             :  */
    2103           0 : static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
    2104             :                               int *locked, unsigned int *gup_flags_p,
    2105             :                               unsigned int to_set)
    2106             : {
    2107           0 :         unsigned int gup_flags = *gup_flags_p;
    2108             : 
    2109             :         /*
    2110             :          * These flags not allowed to be specified externally to the gup
    2111             :          * interfaces:
    2112             :          * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
    2113             :          * - FOLL_REMOTE is internal only and used on follow_page()
    2114             :          * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
    2115             :          */
    2116           0 :         if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
    2117             :                                       FOLL_REMOTE | FOLL_FAST_ONLY)))
    2118             :                 return false;
    2119             : 
    2120           0 :         gup_flags |= to_set;
    2121           0 :         if (locked) {
    2122             :                 /* At the external interface locked must be set */
    2123           0 :                 if (WARN_ON_ONCE(*locked != 1))
    2124             :                         return false;
    2125             : 
    2126           0 :                 gup_flags |= FOLL_UNLOCKABLE;
    2127             :         }
    2128             : 
    2129             :         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
    2130           0 :         if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
    2131             :                          (FOLL_PIN | FOLL_GET)))
    2132             :                 return false;
    2133             : 
    2134             :         /* LONGTERM can only be specified when pinning */
    2135           0 :         if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
    2136             :                 return false;
    2137             : 
    2138             :         /* Pages input must be given if using GET/PIN */
    2139           0 :         if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
    2140             :                 return false;
    2141             : 
    2142             :         /* We want to allow the pgmap to be hot-unplugged at all times */
    2143           0 :         if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
    2144             :                          (gup_flags & FOLL_PCI_P2PDMA)))
    2145             :                 return false;
    2146             : 
    2147             :         /*
    2148             :          * Can't use VMAs with locked, as locked allows GUP to unlock
    2149             :          * which invalidates the vmas array
    2150             :          */
    2151           0 :         if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
    2152             :                 return false;
    2153             : 
    2154           0 :         *gup_flags_p = gup_flags;
    2155           0 :         return true;
    2156             : }
    2157             : 
    2158             : #ifdef CONFIG_MMU
    2159             : /**
    2160             :  * get_user_pages_remote() - pin user pages in memory
    2161             :  * @mm:         mm_struct of target mm
    2162             :  * @start:      starting user address
    2163             :  * @nr_pages:   number of pages from start to pin
    2164             :  * @gup_flags:  flags modifying lookup behaviour
    2165             :  * @pages:      array that receives pointers to the pages pinned.
    2166             :  *              Should be at least nr_pages long. Or NULL, if caller
    2167             :  *              only intends to ensure the pages are faulted in.
    2168             :  * @vmas:       array of pointers to vmas corresponding to each page.
    2169             :  *              Or NULL if the caller does not require them.
    2170             :  * @locked:     pointer to lock flag indicating whether lock is held and
    2171             :  *              subsequently whether VM_FAULT_RETRY functionality can be
    2172             :  *              utilised. Lock must initially be held.
    2173             :  *
    2174             :  * Returns either number of pages pinned (which may be less than the
    2175             :  * number requested), or an error. Details about the return value:
    2176             :  *
    2177             :  * -- If nr_pages is 0, returns 0.
    2178             :  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
    2179             :  * -- If nr_pages is >0, and some pages were pinned, returns the number of
    2180             :  *    pages pinned. Again, this may be less than nr_pages.
    2181             :  *
    2182             :  * The caller is responsible for releasing returned @pages, via put_page().
    2183             :  *
    2184             :  * @vmas are valid only as long as mmap_lock is held.
    2185             :  *
    2186             :  * Must be called with mmap_lock held for read or write.
    2187             :  *
    2188             :  * get_user_pages_remote walks a process's page tables and takes a reference
    2189             :  * to each struct page that each user address corresponds to at a given
    2190             :  * instant. That is, it takes the page that would be accessed if a user
    2191             :  * thread accesses the given user virtual address at that instant.
    2192             :  *
    2193             :  * This does not guarantee that the page exists in the user mappings when
    2194             :  * get_user_pages_remote returns, and there may even be a completely different
    2195             :  * page there in some cases (eg. if mmapped pagecache has been invalidated
    2196             :  * and subsequently re-faulted). However it does guarantee that the page
    2197             :  * won't be freed completely. And mostly callers simply care that the page
    2198             :  * contains data that was valid *at some point in time*. Typically, an IO
    2199             :  * or similar operation cannot guarantee anything stronger anyway because
    2200             :  * locks can't be held over the syscall boundary.
    2201             :  *
    2202             :  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
    2203             :  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
    2204             :  * be called after the page is finished with, and before put_page is called.
    2205             :  *
    2206             :  * get_user_pages_remote is typically used for fewer-copy IO operations,
    2207             :  * to get a handle on the memory by some means other than accesses
    2208             :  * via the user virtual addresses. The pages may be submitted for
    2209             :  * DMA to devices or accessed via their kernel linear mapping (via the
    2210             :  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
    2211             :  *
    2212             :  * See also get_user_pages_fast, for performance critical applications.
    2213             :  *
    2214             :  * get_user_pages_remote should be phased out in favor of
    2215             :  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
    2216             :  * should use get_user_pages_remote because it cannot pass
    2217             :  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
    2218             :  */
    2219           0 : long get_user_pages_remote(struct mm_struct *mm,
    2220             :                 unsigned long start, unsigned long nr_pages,
    2221             :                 unsigned int gup_flags, struct page **pages,
    2222             :                 struct vm_area_struct **vmas, int *locked)
    2223             : {
    2224           0 :         int local_locked = 1;
    2225             : 
    2226           0 :         if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
    2227             :                                FOLL_TOUCH | FOLL_REMOTE))
    2228             :                 return -EINVAL;
    2229             : 
    2230           0 :         return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    2231             :                                        locked ? locked : &local_locked,
    2232             :                                        gup_flags);
    2233             : }
    2234             : EXPORT_SYMBOL(get_user_pages_remote);
    2235             : 
    2236             : #else /* CONFIG_MMU */
    2237             : long get_user_pages_remote(struct mm_struct *mm,
    2238             :                            unsigned long start, unsigned long nr_pages,
    2239             :                            unsigned int gup_flags, struct page **pages,
    2240             :                            struct vm_area_struct **vmas, int *locked)
    2241             : {
    2242             :         return 0;
    2243             : }
    2244             : #endif /* !CONFIG_MMU */
    2245             : 
    2246             : /**
    2247             :  * get_user_pages() - pin user pages in memory
    2248             :  * @start:      starting user address
    2249             :  * @nr_pages:   number of pages from start to pin
    2250             :  * @gup_flags:  flags modifying lookup behaviour
    2251             :  * @pages:      array that receives pointers to the pages pinned.
    2252             :  *              Should be at least nr_pages long. Or NULL, if caller
    2253             :  *              only intends to ensure the pages are faulted in.
    2254             :  * @vmas:       array of pointers to vmas corresponding to each page.
    2255             :  *              Or NULL if the caller does not require them.
    2256             :  *
    2257             :  * This is the same as get_user_pages_remote(), just with a less-flexible
    2258             :  * calling convention where we assume that the mm being operated on belongs to
    2259             :  * the current task, and doesn't allow passing of a locked parameter.  We also
    2260             :  * obviously don't pass FOLL_REMOTE in here.
    2261             :  */
    2262           0 : long get_user_pages(unsigned long start, unsigned long nr_pages,
    2263             :                 unsigned int gup_flags, struct page **pages,
    2264             :                 struct vm_area_struct **vmas)
    2265             : {
    2266           0 :         int locked = 1;
    2267             : 
    2268           0 :         if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
    2269             :                 return -EINVAL;
    2270             : 
    2271           0 :         return __get_user_pages_locked(current->mm, start, nr_pages, pages,
    2272             :                                        vmas, &locked, gup_flags);
    2273             : }
    2274             : EXPORT_SYMBOL(get_user_pages);
    2275             : 
    2276             : /*
    2277             :  * get_user_pages_unlocked() is suitable to replace the form:
    2278             :  *
    2279             :  *      mmap_read_lock(mm);
    2280             :  *      get_user_pages(mm, ..., pages, NULL);
    2281             :  *      mmap_read_unlock(mm);
    2282             :  *
    2283             :  *  with:
    2284             :  *
    2285             :  *      get_user_pages_unlocked(mm, ..., pages);
    2286             :  *
    2287             :  * It is functionally equivalent to get_user_pages_fast so
    2288             :  * get_user_pages_fast should be used instead if specific gup_flags
    2289             :  * (e.g. FOLL_FORCE) are not required.
    2290             :  */
    2291           0 : long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    2292             :                              struct page **pages, unsigned int gup_flags)
    2293             : {
    2294           0 :         int locked = 0;
    2295             : 
    2296           0 :         if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
    2297             :                                FOLL_TOUCH | FOLL_UNLOCKABLE))
    2298             :                 return -EINVAL;
    2299             : 
    2300           0 :         return __get_user_pages_locked(current->mm, start, nr_pages, pages,
    2301             :                                        NULL, &locked, gup_flags);
    2302             : }
    2303             : EXPORT_SYMBOL(get_user_pages_unlocked);
    2304             : 
    2305             : /*
    2306             :  * Fast GUP
    2307             :  *
    2308             :  * get_user_pages_fast attempts to pin user pages by walking the page
    2309             :  * tables directly and avoids taking locks. Thus the walker needs to be
    2310             :  * protected from page table pages being freed from under it, and should
    2311             :  * block any THP splits.
    2312             :  *
    2313             :  * One way to achieve this is to have the walker disable interrupts, and
    2314             :  * rely on IPIs from the TLB flushing code blocking before the page table
    2315             :  * pages are freed. This is unsuitable for architectures that do not need
    2316             :  * to broadcast an IPI when invalidating TLBs.
    2317             :  *
    2318             :  * Another way to achieve this is to batch up page table containing pages
    2319             :  * belonging to more than one mm_user, then rcu_sched a callback to free those
    2320             :  * pages. Disabling interrupts will allow the fast_gup walker to both block
    2321             :  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
    2322             :  * (which is a relatively rare event). The code below adopts this strategy.
    2323             :  *
    2324             :  * Before activating this code, please be aware that the following assumptions
    2325             :  * are currently made:
    2326             :  *
    2327             :  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
    2328             :  *  free pages containing page tables or TLB flushing requires IPI broadcast.
    2329             :  *
    2330             :  *  *) ptes can be read atomically by the architecture.
    2331             :  *
    2332             :  *  *) access_ok is sufficient to validate userspace address ranges.
    2333             :  *
    2334             :  * The last two assumptions can be relaxed by the addition of helper functions.
    2335             :  *
    2336             :  * This code is based heavily on the PowerPC implementation by Nick Piggin.
    2337             :  */
    2338             : #ifdef CONFIG_HAVE_FAST_GUP
    2339             : 
    2340             : static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
    2341             :                                             unsigned int flags,
    2342             :                                             struct page **pages)
    2343             : {
    2344             :         while ((*nr) - nr_start) {
    2345             :                 struct page *page = pages[--(*nr)];
    2346             : 
    2347             :                 ClearPageReferenced(page);
    2348             :                 if (flags & FOLL_PIN)
    2349             :                         unpin_user_page(page);
    2350             :                 else
    2351             :                         put_page(page);
    2352             :         }
    2353             : }
    2354             : 
    2355             : #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
    2356             : /*
    2357             :  * Fast-gup relies on pte change detection to avoid concurrent pgtable
    2358             :  * operations.
    2359             :  *
    2360             :  * To pin the page, fast-gup needs to do below in order:
    2361             :  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
    2362             :  *
    2363             :  * For the rest of pgtable operations where pgtable updates can be racy
    2364             :  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
    2365             :  * is pinned.
    2366             :  *
    2367             :  * Above will work for all pte-level operations, including THP split.
    2368             :  *
    2369             :  * For THP collapse, it's a bit more complicated because fast-gup may be
    2370             :  * walking a pgtable page that is being freed (pte is still valid but pmd
    2371             :  * can be cleared already).  To avoid race in such condition, we need to
    2372             :  * also check pmd here to make sure pmd doesn't change (corresponds to
    2373             :  * pmdp_collapse_flush() in the THP collapse code path).
    2374             :  */
    2375             : static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
    2376             :                          unsigned long end, unsigned int flags,
    2377             :                          struct page **pages, int *nr)
    2378             : {
    2379             :         struct dev_pagemap *pgmap = NULL;
    2380             :         int nr_start = *nr, ret = 0;
    2381             :         pte_t *ptep, *ptem;
    2382             : 
    2383             :         ptem = ptep = pte_offset_map(&pmd, addr);
    2384             :         do {
    2385             :                 pte_t pte = ptep_get_lockless(ptep);
    2386             :                 struct page *page;
    2387             :                 struct folio *folio;
    2388             : 
    2389             :                 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
    2390             :                         goto pte_unmap;
    2391             : 
    2392             :                 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    2393             :                         goto pte_unmap;
    2394             : 
    2395             :                 if (pte_devmap(pte)) {
    2396             :                         if (unlikely(flags & FOLL_LONGTERM))
    2397             :                                 goto pte_unmap;
    2398             : 
    2399             :                         pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
    2400             :                         if (unlikely(!pgmap)) {
    2401             :                                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2402             :                                 goto pte_unmap;
    2403             :                         }
    2404             :                 } else if (pte_special(pte))
    2405             :                         goto pte_unmap;
    2406             : 
    2407             :                 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    2408             :                 page = pte_page(pte);
    2409             : 
    2410             :                 folio = try_grab_folio(page, 1, flags);
    2411             :                 if (!folio)
    2412             :                         goto pte_unmap;
    2413             : 
    2414             :                 if (unlikely(page_is_secretmem(page))) {
    2415             :                         gup_put_folio(folio, 1, flags);
    2416             :                         goto pte_unmap;
    2417             :                 }
    2418             : 
    2419             :                 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
    2420             :                     unlikely(pte_val(pte) != pte_val(*ptep))) {
    2421             :                         gup_put_folio(folio, 1, flags);
    2422             :                         goto pte_unmap;
    2423             :                 }
    2424             : 
    2425             :                 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
    2426             :                         gup_put_folio(folio, 1, flags);
    2427             :                         goto pte_unmap;
    2428             :                 }
    2429             : 
    2430             :                 /*
    2431             :                  * We need to make the page accessible if and only if we are
    2432             :                  * going to access its content (the FOLL_PIN case).  Please
    2433             :                  * see Documentation/core-api/pin_user_pages.rst for
    2434             :                  * details.
    2435             :                  */
    2436             :                 if (flags & FOLL_PIN) {
    2437             :                         ret = arch_make_page_accessible(page);
    2438             :                         if (ret) {
    2439             :                                 gup_put_folio(folio, 1, flags);
    2440             :                                 goto pte_unmap;
    2441             :                         }
    2442             :                 }
    2443             :                 folio_set_referenced(folio);
    2444             :                 pages[*nr] = page;
    2445             :                 (*nr)++;
    2446             :         } while (ptep++, addr += PAGE_SIZE, addr != end);
    2447             : 
    2448             :         ret = 1;
    2449             : 
    2450             : pte_unmap:
    2451             :         if (pgmap)
    2452             :                 put_dev_pagemap(pgmap);
    2453             :         pte_unmap(ptem);
    2454             :         return ret;
    2455             : }
    2456             : #else
    2457             : 
    2458             : /*
    2459             :  * If we can't determine whether or not a pte is special, then fail immediately
    2460             :  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
    2461             :  * to be special.
    2462             :  *
    2463             :  * For a futex to be placed on a THP tail page, get_futex_key requires a
    2464             :  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
    2465             :  * useful to have gup_huge_pmd even if we can't operate on ptes.
    2466             :  */
    2467             : static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
    2468             :                          unsigned long end, unsigned int flags,
    2469             :                          struct page **pages, int *nr)
    2470             : {
    2471             :         return 0;
    2472             : }
    2473             : #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
    2474             : 
    2475             : #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
    2476             : static int __gup_device_huge(unsigned long pfn, unsigned long addr,
    2477             :                              unsigned long end, unsigned int flags,
    2478             :                              struct page **pages, int *nr)
    2479             : {
    2480             :         int nr_start = *nr;
    2481             :         struct dev_pagemap *pgmap = NULL;
    2482             : 
    2483             :         do {
    2484             :                 struct page *page = pfn_to_page(pfn);
    2485             : 
    2486             :                 pgmap = get_dev_pagemap(pfn, pgmap);
    2487             :                 if (unlikely(!pgmap)) {
    2488             :                         undo_dev_pagemap(nr, nr_start, flags, pages);
    2489             :                         break;
    2490             :                 }
    2491             : 
    2492             :                 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
    2493             :                         undo_dev_pagemap(nr, nr_start, flags, pages);
    2494             :                         break;
    2495             :                 }
    2496             : 
    2497             :                 SetPageReferenced(page);
    2498             :                 pages[*nr] = page;
    2499             :                 if (unlikely(try_grab_page(page, flags))) {
    2500             :                         undo_dev_pagemap(nr, nr_start, flags, pages);
    2501             :                         break;
    2502             :                 }
    2503             :                 (*nr)++;
    2504             :                 pfn++;
    2505             :         } while (addr += PAGE_SIZE, addr != end);
    2506             : 
    2507             :         put_dev_pagemap(pgmap);
    2508             :         return addr == end;
    2509             : }
    2510             : 
    2511             : static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2512             :                                  unsigned long end, unsigned int flags,
    2513             :                                  struct page **pages, int *nr)
    2514             : {
    2515             :         unsigned long fault_pfn;
    2516             :         int nr_start = *nr;
    2517             : 
    2518             :         fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    2519             :         if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    2520             :                 return 0;
    2521             : 
    2522             :         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    2523             :                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2524             :                 return 0;
    2525             :         }
    2526             :         return 1;
    2527             : }
    2528             : 
    2529             : static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    2530             :                                  unsigned long end, unsigned int flags,
    2531             :                                  struct page **pages, int *nr)
    2532             : {
    2533             :         unsigned long fault_pfn;
    2534             :         int nr_start = *nr;
    2535             : 
    2536             :         fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    2537             :         if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    2538             :                 return 0;
    2539             : 
    2540             :         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    2541             :                 undo_dev_pagemap(nr, nr_start, flags, pages);
    2542             :                 return 0;
    2543             :         }
    2544             :         return 1;
    2545             : }
    2546             : #else
    2547             : static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2548             :                                  unsigned long end, unsigned int flags,
    2549             :                                  struct page **pages, int *nr)
    2550             : {
    2551             :         BUILD_BUG();
    2552             :         return 0;
    2553             : }
    2554             : 
    2555             : static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
    2556             :                                  unsigned long end, unsigned int flags,
    2557             :                                  struct page **pages, int *nr)
    2558             : {
    2559             :         BUILD_BUG();
    2560             :         return 0;
    2561             : }
    2562             : #endif
    2563             : 
    2564             : static int record_subpages(struct page *page, unsigned long addr,
    2565             :                            unsigned long end, struct page **pages)
    2566             : {
    2567             :         int nr;
    2568             : 
    2569             :         for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
    2570             :                 pages[nr] = nth_page(page, nr);
    2571             : 
    2572             :         return nr;
    2573             : }
    2574             : 
    2575             : #ifdef CONFIG_ARCH_HAS_HUGEPD
    2576             : static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
    2577             :                                       unsigned long sz)
    2578             : {
    2579             :         unsigned long __boundary = (addr + sz) & ~(sz-1);
    2580             :         return (__boundary - 1 < end - 1) ? __boundary : end;
    2581             : }
    2582             : 
    2583             : static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
    2584             :                        unsigned long end, unsigned int flags,
    2585             :                        struct page **pages, int *nr)
    2586             : {
    2587             :         unsigned long pte_end;
    2588             :         struct page *page;
    2589             :         struct folio *folio;
    2590             :         pte_t pte;
    2591             :         int refs;
    2592             : 
    2593             :         pte_end = (addr + sz) & ~(sz-1);
    2594             :         if (pte_end < end)
    2595             :                 end = pte_end;
    2596             : 
    2597             :         pte = huge_ptep_get(ptep);
    2598             : 
    2599             :         if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    2600             :                 return 0;
    2601             : 
    2602             :         /* hugepages are never "special" */
    2603             :         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    2604             : 
    2605             :         page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
    2606             :         refs = record_subpages(page, addr, end, pages + *nr);
    2607             : 
    2608             :         folio = try_grab_folio(page, refs, flags);
    2609             :         if (!folio)
    2610             :                 return 0;
    2611             : 
    2612             :         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    2613             :                 gup_put_folio(folio, refs, flags);
    2614             :                 return 0;
    2615             :         }
    2616             : 
    2617             :         if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
    2618             :                 gup_put_folio(folio, refs, flags);
    2619             :                 return 0;
    2620             :         }
    2621             : 
    2622             :         *nr += refs;
    2623             :         folio_set_referenced(folio);
    2624             :         return 1;
    2625             : }
    2626             : 
    2627             : static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    2628             :                 unsigned int pdshift, unsigned long end, unsigned int flags,
    2629             :                 struct page **pages, int *nr)
    2630             : {
    2631             :         pte_t *ptep;
    2632             :         unsigned long sz = 1UL << hugepd_shift(hugepd);
    2633             :         unsigned long next;
    2634             : 
    2635             :         ptep = hugepte_offset(hugepd, addr, pdshift);
    2636             :         do {
    2637             :                 next = hugepte_addr_end(addr, end, sz);
    2638             :                 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
    2639             :                         return 0;
    2640             :         } while (ptep++, addr = next, addr != end);
    2641             : 
    2642             :         return 1;
    2643             : }
    2644             : #else
    2645             : static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    2646             :                 unsigned int pdshift, unsigned long end, unsigned int flags,
    2647             :                 struct page **pages, int *nr)
    2648             : {
    2649             :         return 0;
    2650             : }
    2651             : #endif /* CONFIG_ARCH_HAS_HUGEPD */
    2652             : 
    2653             : static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    2654             :                         unsigned long end, unsigned int flags,
    2655             :                         struct page **pages, int *nr)
    2656             : {
    2657             :         struct page *page;
    2658             :         struct folio *folio;
    2659             :         int refs;
    2660             : 
    2661             :         if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
    2662             :                 return 0;
    2663             : 
    2664             :         if (pmd_devmap(orig)) {
    2665             :                 if (unlikely(flags & FOLL_LONGTERM))
    2666             :                         return 0;
    2667             :                 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
    2668             :                                              pages, nr);
    2669             :         }
    2670             : 
    2671             :         page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
    2672             :         refs = record_subpages(page, addr, end, pages + *nr);
    2673             : 
    2674             :         folio = try_grab_folio(page, refs, flags);
    2675             :         if (!folio)
    2676             :                 return 0;
    2677             : 
    2678             :         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    2679             :                 gup_put_folio(folio, refs, flags);
    2680             :                 return 0;
    2681             :         }
    2682             : 
    2683             :         if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
    2684             :                 gup_put_folio(folio, refs, flags);
    2685             :                 return 0;
    2686             :         }
    2687             : 
    2688             :         *nr += refs;
    2689             :         folio_set_referenced(folio);
    2690             :         return 1;
    2691             : }
    2692             : 
    2693             : static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    2694             :                         unsigned long end, unsigned int flags,
    2695             :                         struct page **pages, int *nr)
    2696             : {
    2697             :         struct page *page;
    2698             :         struct folio *folio;
    2699             :         int refs;
    2700             : 
    2701             :         if (!pud_access_permitted(orig, flags & FOLL_WRITE))
    2702             :                 return 0;
    2703             : 
    2704             :         if (pud_devmap(orig)) {
    2705             :                 if (unlikely(flags & FOLL_LONGTERM))
    2706             :                         return 0;
    2707             :                 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
    2708             :                                              pages, nr);
    2709             :         }
    2710             : 
    2711             :         page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
    2712             :         refs = record_subpages(page, addr, end, pages + *nr);
    2713             : 
    2714             :         folio = try_grab_folio(page, refs, flags);
    2715             :         if (!folio)
    2716             :                 return 0;
    2717             : 
    2718             :         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    2719             :                 gup_put_folio(folio, refs, flags);
    2720             :                 return 0;
    2721             :         }
    2722             : 
    2723             :         if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
    2724             :                 gup_put_folio(folio, refs, flags);
    2725             :                 return 0;
    2726             :         }
    2727             : 
    2728             :         *nr += refs;
    2729             :         folio_set_referenced(folio);
    2730             :         return 1;
    2731             : }
    2732             : 
    2733             : static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
    2734             :                         unsigned long end, unsigned int flags,
    2735             :                         struct page **pages, int *nr)
    2736             : {
    2737             :         int refs;
    2738             :         struct page *page;
    2739             :         struct folio *folio;
    2740             : 
    2741             :         if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
    2742             :                 return 0;
    2743             : 
    2744             :         BUILD_BUG_ON(pgd_devmap(orig));
    2745             : 
    2746             :         page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
    2747             :         refs = record_subpages(page, addr, end, pages + *nr);
    2748             : 
    2749             :         folio = try_grab_folio(page, refs, flags);
    2750             :         if (!folio)
    2751             :                 return 0;
    2752             : 
    2753             :         if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
    2754             :                 gup_put_folio(folio, refs, flags);
    2755             :                 return 0;
    2756             :         }
    2757             : 
    2758             :         *nr += refs;
    2759             :         folio_set_referenced(folio);
    2760             :         return 1;
    2761             : }
    2762             : 
    2763             : static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
    2764             :                 unsigned int flags, struct page **pages, int *nr)
    2765             : {
    2766             :         unsigned long next;
    2767             :         pmd_t *pmdp;
    2768             : 
    2769             :         pmdp = pmd_offset_lockless(pudp, pud, addr);
    2770             :         do {
    2771             :                 pmd_t pmd = pmdp_get_lockless(pmdp);
    2772             : 
    2773             :                 next = pmd_addr_end(addr, end);
    2774             :                 if (!pmd_present(pmd))
    2775             :                         return 0;
    2776             : 
    2777             :                 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
    2778             :                              pmd_devmap(pmd))) {
    2779             :                         if (pmd_protnone(pmd) &&
    2780             :                             !gup_can_follow_protnone(flags))
    2781             :                                 return 0;
    2782             : 
    2783             :                         if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
    2784             :                                 pages, nr))
    2785             :                                 return 0;
    2786             : 
    2787             :                 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
    2788             :                         /*
    2789             :                          * architecture have different format for hugetlbfs
    2790             :                          * pmd format and THP pmd format
    2791             :                          */
    2792             :                         if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
    2793             :                                          PMD_SHIFT, next, flags, pages, nr))
    2794             :                                 return 0;
    2795             :                 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
    2796             :                         return 0;
    2797             :         } while (pmdp++, addr = next, addr != end);
    2798             : 
    2799             :         return 1;
    2800             : }
    2801             : 
    2802             : static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
    2803             :                          unsigned int flags, struct page **pages, int *nr)
    2804             : {
    2805             :         unsigned long next;
    2806             :         pud_t *pudp;
    2807             : 
    2808             :         pudp = pud_offset_lockless(p4dp, p4d, addr);
    2809             :         do {
    2810             :                 pud_t pud = READ_ONCE(*pudp);
    2811             : 
    2812             :                 next = pud_addr_end(addr, end);
    2813             :                 if (unlikely(!pud_present(pud)))
    2814             :                         return 0;
    2815             :                 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
    2816             :                         if (!gup_huge_pud(pud, pudp, addr, next, flags,
    2817             :                                           pages, nr))
    2818             :                                 return 0;
    2819             :                 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
    2820             :                         if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
    2821             :                                          PUD_SHIFT, next, flags, pages, nr))
    2822             :                                 return 0;
    2823             :                 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
    2824             :                         return 0;
    2825             :         } while (pudp++, addr = next, addr != end);
    2826             : 
    2827             :         return 1;
    2828             : }
    2829             : 
    2830             : static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
    2831             :                          unsigned int flags, struct page **pages, int *nr)
    2832             : {
    2833             :         unsigned long next;
    2834             :         p4d_t *p4dp;
    2835             : 
    2836             :         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
    2837             :         do {
    2838             :                 p4d_t p4d = READ_ONCE(*p4dp);
    2839             : 
    2840             :                 next = p4d_addr_end(addr, end);
    2841             :                 if (p4d_none(p4d))
    2842             :                         return 0;
    2843             :                 BUILD_BUG_ON(p4d_huge(p4d));
    2844             :                 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
    2845             :                         if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
    2846             :                                          P4D_SHIFT, next, flags, pages, nr))
    2847             :                                 return 0;
    2848             :                 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
    2849             :                         return 0;
    2850             :         } while (p4dp++, addr = next, addr != end);
    2851             : 
    2852             :         return 1;
    2853             : }
    2854             : 
    2855             : static void gup_pgd_range(unsigned long addr, unsigned long end,
    2856             :                 unsigned int flags, struct page **pages, int *nr)
    2857             : {
    2858             :         unsigned long next;
    2859             :         pgd_t *pgdp;
    2860             : 
    2861             :         pgdp = pgd_offset(current->mm, addr);
    2862             :         do {
    2863             :                 pgd_t pgd = READ_ONCE(*pgdp);
    2864             : 
    2865             :                 next = pgd_addr_end(addr, end);
    2866             :                 if (pgd_none(pgd))
    2867             :                         return;
    2868             :                 if (unlikely(pgd_huge(pgd))) {
    2869             :                         if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
    2870             :                                           pages, nr))
    2871             :                                 return;
    2872             :                 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
    2873             :                         if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
    2874             :                                          PGDIR_SHIFT, next, flags, pages, nr))
    2875             :                                 return;
    2876             :                 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
    2877             :                         return;
    2878             :         } while (pgdp++, addr = next, addr != end);
    2879             : }
    2880             : #else
    2881             : static inline void gup_pgd_range(unsigned long addr, unsigned long end,
    2882             :                 unsigned int flags, struct page **pages, int *nr)
    2883             : {
    2884             : }
    2885             : #endif /* CONFIG_HAVE_FAST_GUP */
    2886             : 
    2887             : #ifndef gup_fast_permitted
    2888             : /*
    2889             :  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
    2890             :  * we need to fall back to the slow version:
    2891             :  */
    2892             : static bool gup_fast_permitted(unsigned long start, unsigned long end)
    2893             : {
    2894             :         return true;
    2895             : }
    2896             : #endif
    2897             : 
    2898             : static unsigned long lockless_pages_from_mm(unsigned long start,
    2899             :                                             unsigned long end,
    2900             :                                             unsigned int gup_flags,
    2901             :                                             struct page **pages)
    2902             : {
    2903             :         unsigned long flags;
    2904           0 :         int nr_pinned = 0;
    2905             :         unsigned seq;
    2906             : 
    2907             :         if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
    2908             :             !gup_fast_permitted(start, end))
    2909             :                 return 0;
    2910             : 
    2911             :         if (gup_flags & FOLL_PIN) {
    2912             :                 seq = raw_read_seqcount(&current->mm->write_protect_seq);
    2913             :                 if (seq & 1)
    2914             :                         return 0;
    2915             :         }
    2916             : 
    2917             :         /*
    2918             :          * Disable interrupts. The nested form is used, in order to allow full,
    2919             :          * general purpose use of this routine.
    2920             :          *
    2921             :          * With interrupts disabled, we block page table pages from being freed
    2922             :          * from under us. See struct mmu_table_batch comments in
    2923             :          * include/asm-generic/tlb.h for more details.
    2924             :          *
    2925             :          * We do not adopt an rcu_read_lock() here as we also want to block IPIs
    2926             :          * that come from THPs splitting.
    2927             :          */
    2928             :         local_irq_save(flags);
    2929             :         gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
    2930             :         local_irq_restore(flags);
    2931             : 
    2932             :         /*
    2933             :          * When pinning pages for DMA there could be a concurrent write protect
    2934             :          * from fork() via copy_page_range(), in this case always fail fast GUP.
    2935             :          */
    2936             :         if (gup_flags & FOLL_PIN) {
    2937             :                 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
    2938             :                         unpin_user_pages_lockless(pages, nr_pinned);
    2939             :                         return 0;
    2940             :                 } else {
    2941             :                         sanity_check_pinned_pages(pages, nr_pinned);
    2942             :                 }
    2943             :         }
    2944             :         return nr_pinned;
    2945             : }
    2946             : 
    2947           0 : static int internal_get_user_pages_fast(unsigned long start,
    2948             :                                         unsigned long nr_pages,
    2949             :                                         unsigned int gup_flags,
    2950             :                                         struct page **pages)
    2951             : {
    2952             :         unsigned long len, end;
    2953             :         unsigned long nr_pinned;
    2954           0 :         int locked = 0;
    2955             :         int ret;
    2956             : 
    2957           0 :         if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
    2958             :                                        FOLL_FORCE | FOLL_PIN | FOLL_GET |
    2959             :                                        FOLL_FAST_ONLY | FOLL_NOFAULT |
    2960             :                                        FOLL_PCI_P2PDMA)))
    2961             :                 return -EINVAL;
    2962             : 
    2963           0 :         if (gup_flags & FOLL_PIN)
    2964           0 :                 mm_set_has_pinned_flag(&current->mm->flags);
    2965             : 
    2966           0 :         if (!(gup_flags & FOLL_FAST_ONLY))
    2967             :                 might_lock_read(&current->mm->mmap_lock);
    2968             : 
    2969           0 :         start = untagged_addr(start) & PAGE_MASK;
    2970           0 :         len = nr_pages << PAGE_SHIFT;
    2971           0 :         if (check_add_overflow(start, len, &end))
    2972             :                 return 0;
    2973           0 :         if (end > TASK_SIZE_MAX)
    2974             :                 return -EFAULT;
    2975           0 :         if (unlikely(!access_ok((void __user *)start, len)))
    2976             :                 return -EFAULT;
    2977             : 
    2978           0 :         nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
    2979           0 :         if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
    2980             :                 return nr_pinned;
    2981             : 
    2982             :         /* Slow path: try to get the remaining pages with get_user_pages */
    2983           0 :         start += nr_pinned << PAGE_SHIFT;
    2984           0 :         pages += nr_pinned;
    2985           0 :         ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
    2986             :                                     pages, NULL, &locked,
    2987             :                                     gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
    2988             :         if (ret < 0) {
    2989             :                 /*
    2990             :                  * The caller has to unpin the pages we already pinned so
    2991             :                  * returning -errno is not an option
    2992             :                  */
    2993             :                 if (nr_pinned)
    2994             :                         return nr_pinned;
    2995             :                 return ret;
    2996             :         }
    2997             :         return ret + nr_pinned;
    2998             : }
    2999             : 
    3000             : /**
    3001             :  * get_user_pages_fast_only() - pin user pages in memory
    3002             :  * @start:      starting user address
    3003             :  * @nr_pages:   number of pages from start to pin
    3004             :  * @gup_flags:  flags modifying pin behaviour
    3005             :  * @pages:      array that receives pointers to the pages pinned.
    3006             :  *              Should be at least nr_pages long.
    3007             :  *
    3008             :  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
    3009             :  * the regular GUP.
    3010             :  *
    3011             :  * If the architecture does not support this function, simply return with no
    3012             :  * pages pinned.
    3013             :  *
    3014             :  * Careful, careful! COW breaking can go either way, so a non-write
    3015             :  * access can get ambiguous page results. If you call this function without
    3016             :  * 'write' set, you'd better be sure that you're ok with that ambiguity.
    3017             :  */
    3018           0 : int get_user_pages_fast_only(unsigned long start, int nr_pages,
    3019             :                              unsigned int gup_flags, struct page **pages)
    3020             : {
    3021             :         /*
    3022             :          * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
    3023             :          * because gup fast is always a "pin with a +1 page refcount" request.
    3024             :          *
    3025             :          * FOLL_FAST_ONLY is required in order to match the API description of
    3026             :          * this routine: no fall back to regular ("slow") GUP.
    3027             :          */
    3028           0 :         if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
    3029             :                                FOLL_GET | FOLL_FAST_ONLY))
    3030             :                 return -EINVAL;
    3031             : 
    3032           0 :         return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    3033             : }
    3034             : EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
    3035             : 
    3036             : /**
    3037             :  * get_user_pages_fast() - pin user pages in memory
    3038             :  * @start:      starting user address
    3039             :  * @nr_pages:   number of pages from start to pin
    3040             :  * @gup_flags:  flags modifying pin behaviour
    3041             :  * @pages:      array that receives pointers to the pages pinned.
    3042             :  *              Should be at least nr_pages long.
    3043             :  *
    3044             :  * Attempt to pin user pages in memory without taking mm->mmap_lock.
    3045             :  * If not successful, it will fall back to taking the lock and
    3046             :  * calling get_user_pages().
    3047             :  *
    3048             :  * Returns number of pages pinned. This may be fewer than the number requested.
    3049             :  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
    3050             :  * -errno.
    3051             :  */
    3052           0 : int get_user_pages_fast(unsigned long start, int nr_pages,
    3053             :                         unsigned int gup_flags, struct page **pages)
    3054             : {
    3055             :         /*
    3056             :          * The caller may or may not have explicitly set FOLL_GET; either way is
    3057             :          * OK. However, internally (within mm/gup.c), gup fast variants must set
    3058             :          * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
    3059             :          * request.
    3060             :          */
    3061           0 :         if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
    3062             :                 return -EINVAL;
    3063           0 :         return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    3064             : }
    3065             : EXPORT_SYMBOL_GPL(get_user_pages_fast);
    3066             : 
    3067             : /**
    3068             :  * pin_user_pages_fast() - pin user pages in memory without taking locks
    3069             :  *
    3070             :  * @start:      starting user address
    3071             :  * @nr_pages:   number of pages from start to pin
    3072             :  * @gup_flags:  flags modifying pin behaviour
    3073             :  * @pages:      array that receives pointers to the pages pinned.
    3074             :  *              Should be at least nr_pages long.
    3075             :  *
    3076             :  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
    3077             :  * get_user_pages_fast() for documentation on the function arguments, because
    3078             :  * the arguments here are identical.
    3079             :  *
    3080             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    3081             :  * see Documentation/core-api/pin_user_pages.rst for further details.
    3082             :  */
    3083           0 : int pin_user_pages_fast(unsigned long start, int nr_pages,
    3084             :                         unsigned int gup_flags, struct page **pages)
    3085             : {
    3086           0 :         if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
    3087             :                 return -EINVAL;
    3088           0 :         return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    3089             : }
    3090             : EXPORT_SYMBOL_GPL(pin_user_pages_fast);
    3091             : 
    3092             : /**
    3093             :  * pin_user_pages_remote() - pin pages of a remote process
    3094             :  *
    3095             :  * @mm:         mm_struct of target mm
    3096             :  * @start:      starting user address
    3097             :  * @nr_pages:   number of pages from start to pin
    3098             :  * @gup_flags:  flags modifying lookup behaviour
    3099             :  * @pages:      array that receives pointers to the pages pinned.
    3100             :  *              Should be at least nr_pages long.
    3101             :  * @vmas:       array of pointers to vmas corresponding to each page.
    3102             :  *              Or NULL if the caller does not require them.
    3103             :  * @locked:     pointer to lock flag indicating whether lock is held and
    3104             :  *              subsequently whether VM_FAULT_RETRY functionality can be
    3105             :  *              utilised. Lock must initially be held.
    3106             :  *
    3107             :  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
    3108             :  * get_user_pages_remote() for documentation on the function arguments, because
    3109             :  * the arguments here are identical.
    3110             :  *
    3111             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    3112             :  * see Documentation/core-api/pin_user_pages.rst for details.
    3113             :  */
    3114           0 : long pin_user_pages_remote(struct mm_struct *mm,
    3115             :                            unsigned long start, unsigned long nr_pages,
    3116             :                            unsigned int gup_flags, struct page **pages,
    3117             :                            struct vm_area_struct **vmas, int *locked)
    3118             : {
    3119           0 :         int local_locked = 1;
    3120             : 
    3121           0 :         if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
    3122             :                                FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
    3123             :                 return 0;
    3124           0 :         return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
    3125             :                                      locked ? locked : &local_locked,
    3126             :                                      gup_flags);
    3127             : }
    3128             : EXPORT_SYMBOL(pin_user_pages_remote);
    3129             : 
    3130             : /**
    3131             :  * pin_user_pages() - pin user pages in memory for use by other devices
    3132             :  *
    3133             :  * @start:      starting user address
    3134             :  * @nr_pages:   number of pages from start to pin
    3135             :  * @gup_flags:  flags modifying lookup behaviour
    3136             :  * @pages:      array that receives pointers to the pages pinned.
    3137             :  *              Should be at least nr_pages long.
    3138             :  * @vmas:       array of pointers to vmas corresponding to each page.
    3139             :  *              Or NULL if the caller does not require them.
    3140             :  *
    3141             :  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
    3142             :  * FOLL_PIN is set.
    3143             :  *
    3144             :  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
    3145             :  * see Documentation/core-api/pin_user_pages.rst for details.
    3146             :  */
    3147           0 : long pin_user_pages(unsigned long start, unsigned long nr_pages,
    3148             :                     unsigned int gup_flags, struct page **pages,
    3149             :                     struct vm_area_struct **vmas)
    3150             : {
    3151           0 :         int locked = 1;
    3152             : 
    3153           0 :         if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
    3154             :                 return 0;
    3155           0 :         return __gup_longterm_locked(current->mm, start, nr_pages,
    3156             :                                      pages, vmas, &locked, gup_flags);
    3157             : }
    3158             : EXPORT_SYMBOL(pin_user_pages);
    3159             : 
    3160             : /*
    3161             :  * pin_user_pages_unlocked() is the FOLL_PIN variant of
    3162             :  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
    3163             :  * FOLL_PIN and rejects FOLL_GET.
    3164             :  */
    3165           0 : long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    3166             :                              struct page **pages, unsigned int gup_flags)
    3167             : {
    3168           0 :         int locked = 0;
    3169             : 
    3170           0 :         if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
    3171             :                                FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
    3172             :                 return 0;
    3173             : 
    3174           0 :         return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
    3175             :                                      &locked, gup_flags);
    3176             : }
    3177             : EXPORT_SYMBOL(pin_user_pages_unlocked);

Generated by: LCOV version 1.14