LCOV - code coverage report
Current view: top level - mm - memory.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 23 1464 1.6 %
Date: 2023-07-19 18:55:55 Functions: 3 101 3.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/mm/memory.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * demand-loading started 01.12.91 - seems it is high on the list of
      10             :  * things wanted, and it should be easy to implement. - Linus
      11             :  */
      12             : 
      13             : /*
      14             :  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
      15             :  * pages started 02.12.91, seems to work. - Linus.
      16             :  *
      17             :  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
      18             :  * would have taken more than the 6M I have free, but it worked well as
      19             :  * far as I could see.
      20             :  *
      21             :  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
      22             :  */
      23             : 
      24             : /*
      25             :  * Real VM (paging to/from disk) started 18.12.91. Much more work and
      26             :  * thought has to go into this. Oh, well..
      27             :  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
      28             :  *              Found it. Everything seems to work now.
      29             :  * 20.12.91  -  Ok, making the swap-device changeable like the root.
      30             :  */
      31             : 
      32             : /*
      33             :  * 05.04.94  -  Multi-page memory management added for v1.1.
      34             :  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
      35             :  *
      36             :  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
      37             :  *              (Gerhard.Wichert@pdb.siemens.de)
      38             :  *
      39             :  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
      40             :  */
      41             : 
      42             : #include <linux/kernel_stat.h>
      43             : #include <linux/mm.h>
      44             : #include <linux/mm_inline.h>
      45             : #include <linux/sched/mm.h>
      46             : #include <linux/sched/coredump.h>
      47             : #include <linux/sched/numa_balancing.h>
      48             : #include <linux/sched/task.h>
      49             : #include <linux/hugetlb.h>
      50             : #include <linux/mman.h>
      51             : #include <linux/swap.h>
      52             : #include <linux/highmem.h>
      53             : #include <linux/pagemap.h>
      54             : #include <linux/memremap.h>
      55             : #include <linux/kmsan.h>
      56             : #include <linux/ksm.h>
      57             : #include <linux/rmap.h>
      58             : #include <linux/export.h>
      59             : #include <linux/delayacct.h>
      60             : #include <linux/init.h>
      61             : #include <linux/pfn_t.h>
      62             : #include <linux/writeback.h>
      63             : #include <linux/memcontrol.h>
      64             : #include <linux/mmu_notifier.h>
      65             : #include <linux/swapops.h>
      66             : #include <linux/elf.h>
      67             : #include <linux/gfp.h>
      68             : #include <linux/migrate.h>
      69             : #include <linux/string.h>
      70             : #include <linux/memory-tiers.h>
      71             : #include <linux/debugfs.h>
      72             : #include <linux/userfaultfd_k.h>
      73             : #include <linux/dax.h>
      74             : #include <linux/oom.h>
      75             : #include <linux/numa.h>
      76             : #include <linux/perf_event.h>
      77             : #include <linux/ptrace.h>
      78             : #include <linux/vmalloc.h>
      79             : #include <linux/sched/sysctl.h>
      80             : 
      81             : #include <trace/events/kmem.h>
      82             : 
      83             : #include <asm/io.h>
      84             : #include <asm/mmu_context.h>
      85             : #include <asm/pgalloc.h>
      86             : #include <linux/uaccess.h>
      87             : #include <asm/tlb.h>
      88             : #include <asm/tlbflush.h>
      89             : 
      90             : #include "pgalloc-track.h"
      91             : #include "internal.h"
      92             : #include "swap.h"
      93             : 
      94             : #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
      95             : #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
      96             : #endif
      97             : 
      98             : #ifndef CONFIG_NUMA
      99             : unsigned long max_mapnr;
     100             : EXPORT_SYMBOL(max_mapnr);
     101             : 
     102             : struct page *mem_map;
     103             : EXPORT_SYMBOL(mem_map);
     104             : #endif
     105             : 
     106             : static vm_fault_t do_fault(struct vm_fault *vmf);
     107             : static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
     108             : static bool vmf_pte_changed(struct vm_fault *vmf);
     109             : 
     110             : /*
     111             :  * Return true if the original pte was a uffd-wp pte marker (so the pte was
     112             :  * wr-protected).
     113             :  */
     114             : static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
     115             : {
     116             :         if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
     117             :                 return false;
     118             : 
     119             :         return pte_marker_uffd_wp(vmf->orig_pte);
     120             : }
     121             : 
     122             : /*
     123             :  * A number of key systems in x86 including ioremap() rely on the assumption
     124             :  * that high_memory defines the upper bound on direct map memory, then end
     125             :  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
     126             :  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
     127             :  * and ZONE_HIGHMEM.
     128             :  */
     129             : void *high_memory;
     130             : EXPORT_SYMBOL(high_memory);
     131             : 
     132             : /*
     133             :  * Randomize the address space (stacks, mmaps, brk, etc.).
     134             :  *
     135             :  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
     136             :  *   as ancient (libc5 based) binaries can segfault. )
     137             :  */
     138             : int randomize_va_space __read_mostly =
     139             : #ifdef CONFIG_COMPAT_BRK
     140             :                                         1;
     141             : #else
     142             :                                         2;
     143             : #endif
     144             : 
     145             : #ifndef arch_wants_old_prefaulted_pte
     146             : static inline bool arch_wants_old_prefaulted_pte(void)
     147             : {
     148             :         /*
     149             :          * Transitioning a PTE from 'old' to 'young' can be expensive on
     150             :          * some architectures, even if it's performed in hardware. By
     151             :          * default, "false" means prefaulted entries will be 'young'.
     152             :          */
     153             :         return false;
     154             : }
     155             : #endif
     156             : 
     157           0 : static int __init disable_randmaps(char *s)
     158             : {
     159           0 :         randomize_va_space = 0;
     160           0 :         return 1;
     161             : }
     162             : __setup("norandmaps", disable_randmaps);
     163             : 
     164             : unsigned long zero_pfn __read_mostly;
     165             : EXPORT_SYMBOL(zero_pfn);
     166             : 
     167             : unsigned long highest_memmap_pfn __read_mostly;
     168             : 
     169             : /*
     170             :  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
     171             :  */
     172           1 : static int __init init_zero_pfn(void)
     173             : {
     174           2 :         zero_pfn = page_to_pfn(ZERO_PAGE(0));
     175           1 :         return 0;
     176             : }
     177             : early_initcall(init_zero_pfn);
     178             : 
     179           0 : void mm_trace_rss_stat(struct mm_struct *mm, int member)
     180             : {
     181           0 :         trace_rss_stat(mm, member);
     182           0 : }
     183             : 
     184             : /*
     185             :  * Note: this doesn't free the actual pages themselves. That
     186             :  * has been handled earlier when unmapping all the memory regions.
     187             :  */
     188           0 : static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
     189             :                            unsigned long addr)
     190             : {
     191           0 :         pgtable_t token = pmd_pgtable(*pmd);
     192           0 :         pmd_clear(pmd);
     193           0 :         pte_free_tlb(tlb, token, addr);
     194           0 :         mm_dec_nr_ptes(tlb->mm);
     195           0 : }
     196             : 
     197           0 : static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
     198             :                                 unsigned long addr, unsigned long end,
     199             :                                 unsigned long floor, unsigned long ceiling)
     200             : {
     201             :         pmd_t *pmd;
     202             :         unsigned long next;
     203             :         unsigned long start;
     204             : 
     205           0 :         start = addr;
     206           0 :         pmd = pmd_offset(pud, addr);
     207             :         do {
     208           0 :                 next = pmd_addr_end(addr, end);
     209           0 :                 if (pmd_none_or_clear_bad(pmd))
     210           0 :                         continue;
     211           0 :                 free_pte_range(tlb, pmd, addr);
     212           0 :         } while (pmd++, addr = next, addr != end);
     213             : 
     214           0 :         start &= PUD_MASK;
     215           0 :         if (start < floor)
     216             :                 return;
     217           0 :         if (ceiling) {
     218           0 :                 ceiling &= PUD_MASK;
     219           0 :                 if (!ceiling)
     220             :                         return;
     221             :         }
     222           0 :         if (end - 1 > ceiling - 1)
     223             :                 return;
     224             : 
     225           0 :         pmd = pmd_offset(pud, start);
     226           0 :         pud_clear(pud);
     227           0 :         pmd_free_tlb(tlb, pmd, start);
     228           0 :         mm_dec_nr_pmds(tlb->mm);
     229             : }
     230             : 
     231           0 : static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
     232             :                                 unsigned long addr, unsigned long end,
     233             :                                 unsigned long floor, unsigned long ceiling)
     234             : {
     235             :         pud_t *pud;
     236             :         unsigned long next;
     237             :         unsigned long start;
     238             : 
     239           0 :         start = addr;
     240           0 :         pud = pud_offset(p4d, addr);
     241             :         do {
     242           0 :                 next = pud_addr_end(addr, end);
     243           0 :                 if (pud_none_or_clear_bad(pud))
     244           0 :                         continue;
     245           0 :                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
     246           0 :         } while (pud++, addr = next, addr != end);
     247             : 
     248           0 :         start &= P4D_MASK;
     249             :         if (start < floor)
     250             :                 return;
     251             :         if (ceiling) {
     252             :                 ceiling &= P4D_MASK;
     253             :                 if (!ceiling)
     254             :                         return;
     255             :         }
     256             :         if (end - 1 > ceiling - 1)
     257             :                 return;
     258             : 
     259             :         pud = pud_offset(p4d, start);
     260             :         p4d_clear(p4d);
     261             :         pud_free_tlb(tlb, pud, start);
     262             :         mm_dec_nr_puds(tlb->mm);
     263             : }
     264             : 
     265             : static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
     266             :                                 unsigned long addr, unsigned long end,
     267             :                                 unsigned long floor, unsigned long ceiling)
     268             : {
     269             :         p4d_t *p4d;
     270             :         unsigned long next;
     271             :         unsigned long start;
     272             : 
     273           0 :         start = addr;
     274           0 :         p4d = p4d_offset(pgd, addr);
     275             :         do {
     276           0 :                 next = p4d_addr_end(addr, end);
     277           0 :                 if (p4d_none_or_clear_bad(p4d))
     278             :                         continue;
     279           0 :                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
     280           0 :         } while (p4d++, addr = next, addr != end);
     281             : 
     282           0 :         start &= PGDIR_MASK;
     283             :         if (start < floor)
     284             :                 return;
     285             :         if (ceiling) {
     286             :                 ceiling &= PGDIR_MASK;
     287             :                 if (!ceiling)
     288             :                         return;
     289             :         }
     290             :         if (end - 1 > ceiling - 1)
     291             :                 return;
     292             : 
     293             :         p4d = p4d_offset(pgd, start);
     294             :         pgd_clear(pgd);
     295             :         p4d_free_tlb(tlb, p4d, start);
     296             : }
     297             : 
     298             : /*
     299             :  * This function frees user-level page tables of a process.
     300             :  */
     301           0 : void free_pgd_range(struct mmu_gather *tlb,
     302             :                         unsigned long addr, unsigned long end,
     303             :                         unsigned long floor, unsigned long ceiling)
     304             : {
     305             :         pgd_t *pgd;
     306             :         unsigned long next;
     307             : 
     308             :         /*
     309             :          * The next few lines have given us lots of grief...
     310             :          *
     311             :          * Why are we testing PMD* at this top level?  Because often
     312             :          * there will be no work to do at all, and we'd prefer not to
     313             :          * go all the way down to the bottom just to discover that.
     314             :          *
     315             :          * Why all these "- 1"s?  Because 0 represents both the bottom
     316             :          * of the address space and the top of it (using -1 for the
     317             :          * top wouldn't help much: the masks would do the wrong thing).
     318             :          * The rule is that addr 0 and floor 0 refer to the bottom of
     319             :          * the address space, but end 0 and ceiling 0 refer to the top
     320             :          * Comparisons need to use "end - 1" and "ceiling - 1" (though
     321             :          * that end 0 case should be mythical).
     322             :          *
     323             :          * Wherever addr is brought up or ceiling brought down, we must
     324             :          * be careful to reject "the opposite 0" before it confuses the
     325             :          * subsequent tests.  But what about where end is brought down
     326             :          * by PMD_SIZE below? no, end can't go down to 0 there.
     327             :          *
     328             :          * Whereas we round start (addr) and ceiling down, by different
     329             :          * masks at different levels, in order to test whether a table
     330             :          * now has no other vmas using it, so can be freed, we don't
     331             :          * bother to round floor or end up - the tests don't need that.
     332             :          */
     333             : 
     334           0 :         addr &= PMD_MASK;
     335           0 :         if (addr < floor) {
     336           0 :                 addr += PMD_SIZE;
     337           0 :                 if (!addr)
     338             :                         return;
     339             :         }
     340           0 :         if (ceiling) {
     341           0 :                 ceiling &= PMD_MASK;
     342           0 :                 if (!ceiling)
     343             :                         return;
     344             :         }
     345           0 :         if (end - 1 > ceiling - 1)
     346           0 :                 end -= PMD_SIZE;
     347           0 :         if (addr > end - 1)
     348             :                 return;
     349             :         /*
     350             :          * We add page table cache pages with PAGE_SIZE,
     351             :          * (see pte_free_tlb()), flush the tlb if we need
     352             :          */
     353           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
     354           0 :         pgd = pgd_offset(tlb->mm, addr);
     355             :         do {
     356           0 :                 next = pgd_addr_end(addr, end);
     357           0 :                 if (pgd_none_or_clear_bad(pgd))
     358             :                         continue;
     359             :                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
     360           0 :         } while (pgd++, addr = next, addr != end);
     361             : }
     362             : 
     363           0 : void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
     364             :                    struct vm_area_struct *vma, unsigned long floor,
     365             :                    unsigned long ceiling, bool mm_wr_locked)
     366             : {
     367           0 :         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
     368             : 
     369             :         do {
     370           0 :                 unsigned long addr = vma->vm_start;
     371             :                 struct vm_area_struct *next;
     372             : 
     373             :                 /*
     374             :                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
     375             :                  * be 0.  This will underflow and is okay.
     376             :                  */
     377           0 :                 next = mas_find(&mas, ceiling - 1);
     378             : 
     379             :                 /*
     380             :                  * Hide vma from rmap and truncate_pagecache before freeing
     381             :                  * pgtables
     382             :                  */
     383             :                 if (mm_wr_locked)
     384             :                         vma_start_write(vma);
     385           0 :                 unlink_anon_vmas(vma);
     386           0 :                 unlink_file_vma(vma);
     387             : 
     388           0 :                 if (is_vm_hugetlb_page(vma)) {
     389             :                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
     390             :                                 floor, next ? next->vm_start : ceiling);
     391             :                 } else {
     392             :                         /*
     393             :                          * Optimization: gather nearby vmas into one call down
     394             :                          */
     395           0 :                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
     396           0 :                                && !is_vm_hugetlb_page(next)) {
     397           0 :                                 vma = next;
     398           0 :                                 next = mas_find(&mas, ceiling - 1);
     399             :                                 if (mm_wr_locked)
     400             :                                         vma_start_write(vma);
     401           0 :                                 unlink_anon_vmas(vma);
     402           0 :                                 unlink_file_vma(vma);
     403             :                         }
     404           0 :                         free_pgd_range(tlb, addr, vma->vm_end,
     405             :                                 floor, next ? next->vm_start : ceiling);
     406             :                 }
     407           0 :                 vma = next;
     408           0 :         } while (vma);
     409           0 : }
     410             : 
     411           0 : void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
     412             : {
     413           0 :         spinlock_t *ptl = pmd_lock(mm, pmd);
     414             : 
     415           0 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     416           0 :                 mm_inc_nr_ptes(mm);
     417             :                 /*
     418             :                  * Ensure all pte setup (eg. pte page lock and page clearing) are
     419             :                  * visible before the pte is made visible to other CPUs by being
     420             :                  * put into page tables.
     421             :                  *
     422             :                  * The other side of the story is the pointer chasing in the page
     423             :                  * table walking code (when walking the page table without locking;
     424             :                  * ie. most of the time). Fortunately, these data accesses consist
     425             :                  * of a chain of data-dependent loads, meaning most CPUs (alpha
     426             :                  * being the notable exception) will already guarantee loads are
     427             :                  * seen in-order. See the alpha page table accessors for the
     428             :                  * smp_rmb() barriers in page table walking code.
     429             :                  */
     430           0 :                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
     431           0 :                 pmd_populate(mm, pmd, *pte);
     432           0 :                 *pte = NULL;
     433             :         }
     434           0 :         spin_unlock(ptl);
     435           0 : }
     436             : 
     437           0 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
     438             : {
     439           0 :         pgtable_t new = pte_alloc_one(mm);
     440           0 :         if (!new)
     441             :                 return -ENOMEM;
     442             : 
     443           0 :         pmd_install(mm, pmd, &new);
     444           0 :         if (new)
     445           0 :                 pte_free(mm, new);
     446             :         return 0;
     447             : }
     448             : 
     449          17 : int __pte_alloc_kernel(pmd_t *pmd)
     450             : {
     451          34 :         pte_t *new = pte_alloc_one_kernel(&init_mm);
     452          17 :         if (!new)
     453             :                 return -ENOMEM;
     454             : 
     455          17 :         spin_lock(&init_mm.page_table_lock);
     456          17 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     457          17 :                 smp_wmb(); /* See comment in pmd_install() */
     458          17 :                 pmd_populate_kernel(&init_mm, pmd, new);
     459          17 :                 new = NULL;
     460             :         }
     461          17 :         spin_unlock(&init_mm.page_table_lock);
     462          17 :         if (new)
     463           0 :                 pte_free_kernel(&init_mm, new);
     464             :         return 0;
     465             : }
     466             : 
     467             : static inline void init_rss_vec(int *rss)
     468             : {
     469           0 :         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
     470             : }
     471             : 
     472           0 : static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
     473             : {
     474             :         int i;
     475             : 
     476           0 :         if (current->mm == mm)
     477             :                 sync_mm_rss(mm);
     478           0 :         for (i = 0; i < NR_MM_COUNTERS; i++)
     479           0 :                 if (rss[i])
     480           0 :                         add_mm_counter(mm, i, rss[i]);
     481           0 : }
     482             : 
     483             : /*
     484             :  * This function is called to print an error when a bad pte
     485             :  * is found. For example, we might have a PFN-mapped pte in
     486             :  * a region that doesn't allow it.
     487             :  *
     488             :  * The calling function must still handle the error.
     489             :  */
     490           0 : static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
     491             :                           pte_t pte, struct page *page)
     492             : {
     493           0 :         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
     494           0 :         p4d_t *p4d = p4d_offset(pgd, addr);
     495           0 :         pud_t *pud = pud_offset(p4d, addr);
     496           0 :         pmd_t *pmd = pmd_offset(pud, addr);
     497             :         struct address_space *mapping;
     498             :         pgoff_t index;
     499             :         static unsigned long resume;
     500             :         static unsigned long nr_shown;
     501             :         static unsigned long nr_unshown;
     502             : 
     503             :         /*
     504             :          * Allow a burst of 60 reports, then keep quiet for that minute;
     505             :          * or allow a steady drip of one report per second.
     506             :          */
     507           0 :         if (nr_shown == 60) {
     508           0 :                 if (time_before(jiffies, resume)) {
     509           0 :                         nr_unshown++;
     510           0 :                         return;
     511             :                 }
     512           0 :                 if (nr_unshown) {
     513           0 :                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
     514             :                                  nr_unshown);
     515           0 :                         nr_unshown = 0;
     516             :                 }
     517           0 :                 nr_shown = 0;
     518             :         }
     519           0 :         if (nr_shown++ == 0)
     520           0 :                 resume = jiffies + 60 * HZ;
     521             : 
     522           0 :         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
     523           0 :         index = linear_page_index(vma, addr);
     524             : 
     525           0 :         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
     526             :                  current->comm,
     527             :                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
     528           0 :         if (page)
     529           0 :                 dump_page(page, "bad pte");
     530           0 :         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
     531             :                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
     532           0 :         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
     533             :                  vma->vm_file,
     534             :                  vma->vm_ops ? vma->vm_ops->fault : NULL,
     535             :                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
     536             :                  mapping ? mapping->a_ops->read_folio : NULL);
     537           0 :         dump_stack();
     538           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     539             : }
     540             : 
     541             : /*
     542             :  * vm_normal_page -- This function gets the "struct page" associated with a pte.
     543             :  *
     544             :  * "Special" mappings do not wish to be associated with a "struct page" (either
     545             :  * it doesn't exist, or it exists but they don't want to touch it). In this
     546             :  * case, NULL is returned here. "Normal" mappings do have a struct page.
     547             :  *
     548             :  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
     549             :  * pte bit, in which case this function is trivial. Secondly, an architecture
     550             :  * may not have a spare pte bit, which requires a more complicated scheme,
     551             :  * described below.
     552             :  *
     553             :  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
     554             :  * special mapping (even if there are underlying and valid "struct pages").
     555             :  * COWed pages of a VM_PFNMAP are always normal.
     556             :  *
     557             :  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
     558             :  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
     559             :  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
     560             :  * mapping will always honor the rule
     561             :  *
     562             :  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
     563             :  *
     564             :  * And for normal mappings this is false.
     565             :  *
     566             :  * This restricts such mappings to be a linear translation from virtual address
     567             :  * to pfn. To get around this restriction, we allow arbitrary mappings so long
     568             :  * as the vma is not a COW mapping; in that case, we know that all ptes are
     569             :  * special (because none can have been COWed).
     570             :  *
     571             :  *
     572             :  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
     573             :  *
     574             :  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
     575             :  * page" backing, however the difference is that _all_ pages with a struct
     576             :  * page (that is, those where pfn_valid is true) are refcounted and considered
     577             :  * normal pages by the VM. The disadvantage is that pages are refcounted
     578             :  * (which can be slower and simply not an option for some PFNMAP users). The
     579             :  * advantage is that we don't have to follow the strict linearity rule of
     580             :  * PFNMAP mappings in order to support COWable mappings.
     581             :  *
     582             :  */
     583           0 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
     584             :                             pte_t pte)
     585             : {
     586           0 :         unsigned long pfn = pte_pfn(pte);
     587             : 
     588             :         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
     589             :                 if (likely(!pte_special(pte)))
     590             :                         goto check_pfn;
     591             :                 if (vma->vm_ops && vma->vm_ops->find_special_page)
     592             :                         return vma->vm_ops->find_special_page(vma, addr);
     593             :                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
     594             :                         return NULL;
     595             :                 if (is_zero_pfn(pfn))
     596             :                         return NULL;
     597             :                 if (pte_devmap(pte))
     598             :                 /*
     599             :                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
     600             :                  * and will have refcounts incremented on their struct pages
     601             :                  * when they are inserted into PTEs, thus they are safe to
     602             :                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
     603             :                  * do not have refcounts. Example of legacy ZONE_DEVICE is
     604             :                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
     605             :                  */
     606             :                         return NULL;
     607             : 
     608             :                 print_bad_pte(vma, addr, pte, NULL);
     609             :                 return NULL;
     610             :         }
     611             : 
     612             :         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
     613             : 
     614           0 :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     615           0 :                 if (vma->vm_flags & VM_MIXEDMAP) {
     616           0 :                         if (!pfn_valid(pfn))
     617             :                                 return NULL;
     618             :                         goto out;
     619             :                 } else {
     620             :                         unsigned long off;
     621           0 :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     622           0 :                         if (pfn == vma->vm_pgoff + off)
     623             :                                 return NULL;
     624           0 :                         if (!is_cow_mapping(vma->vm_flags))
     625             :                                 return NULL;
     626             :                 }
     627             :         }
     628             : 
     629           0 :         if (is_zero_pfn(pfn))
     630             :                 return NULL;
     631             : 
     632             : check_pfn:
     633           0 :         if (unlikely(pfn > highest_memmap_pfn)) {
     634           0 :                 print_bad_pte(vma, addr, pte, NULL);
     635           0 :                 return NULL;
     636             :         }
     637             : 
     638             :         /*
     639             :          * NOTE! We still have PageReserved() pages in the page tables.
     640             :          * eg. VDSO mappings can cause them to exist.
     641             :          */
     642             : out:
     643           0 :         return pfn_to_page(pfn);
     644             : }
     645             : 
     646           0 : struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
     647             :                             pte_t pte)
     648             : {
     649           0 :         struct page *page = vm_normal_page(vma, addr, pte);
     650             : 
     651           0 :         if (page)
     652           0 :                 return page_folio(page);
     653             :         return NULL;
     654             : }
     655             : 
     656             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     657             : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
     658             :                                 pmd_t pmd)
     659             : {
     660             :         unsigned long pfn = pmd_pfn(pmd);
     661             : 
     662             :         /*
     663             :          * There is no pmd_special() but there may be special pmds, e.g.
     664             :          * in a direct-access (dax) mapping, so let's just replicate the
     665             :          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
     666             :          */
     667             :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     668             :                 if (vma->vm_flags & VM_MIXEDMAP) {
     669             :                         if (!pfn_valid(pfn))
     670             :                                 return NULL;
     671             :                         goto out;
     672             :                 } else {
     673             :                         unsigned long off;
     674             :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     675             :                         if (pfn == vma->vm_pgoff + off)
     676             :                                 return NULL;
     677             :                         if (!is_cow_mapping(vma->vm_flags))
     678             :                                 return NULL;
     679             :                 }
     680             :         }
     681             : 
     682             :         if (pmd_devmap(pmd))
     683             :                 return NULL;
     684             :         if (is_huge_zero_pmd(pmd))
     685             :                 return NULL;
     686             :         if (unlikely(pfn > highest_memmap_pfn))
     687             :                 return NULL;
     688             : 
     689             :         /*
     690             :          * NOTE! We still have PageReserved() pages in the page tables.
     691             :          * eg. VDSO mappings can cause them to exist.
     692             :          */
     693             : out:
     694             :         return pfn_to_page(pfn);
     695             : }
     696             : #endif
     697             : 
     698             : static void restore_exclusive_pte(struct vm_area_struct *vma,
     699             :                                   struct page *page, unsigned long address,
     700             :                                   pte_t *ptep)
     701             : {
     702             :         pte_t pte;
     703             :         swp_entry_t entry;
     704             : 
     705             :         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
     706             :         if (pte_swp_soft_dirty(*ptep))
     707             :                 pte = pte_mksoft_dirty(pte);
     708             : 
     709             :         entry = pte_to_swp_entry(*ptep);
     710             :         if (pte_swp_uffd_wp(*ptep))
     711             :                 pte = pte_mkuffd_wp(pte);
     712             :         else if (is_writable_device_exclusive_entry(entry))
     713             :                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
     714             : 
     715             :         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
     716             : 
     717             :         /*
     718             :          * No need to take a page reference as one was already
     719             :          * created when the swap entry was made.
     720             :          */
     721             :         if (PageAnon(page))
     722             :                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
     723             :         else
     724             :                 /*
     725             :                  * Currently device exclusive access only supports anonymous
     726             :                  * memory so the entry shouldn't point to a filebacked page.
     727             :                  */
     728             :                 WARN_ON_ONCE(1);
     729             : 
     730             :         set_pte_at(vma->vm_mm, address, ptep, pte);
     731             : 
     732             :         /*
     733             :          * No need to invalidate - it was non-present before. However
     734             :          * secondary CPUs may have mappings that need invalidating.
     735             :          */
     736             :         update_mmu_cache(vma, address, ptep);
     737             : }
     738             : 
     739             : /*
     740             :  * Tries to restore an exclusive pte if the page lock can be acquired without
     741             :  * sleeping.
     742             :  */
     743             : static int
     744             : try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
     745             :                         unsigned long addr)
     746             : {
     747             :         swp_entry_t entry = pte_to_swp_entry(*src_pte);
     748             :         struct page *page = pfn_swap_entry_to_page(entry);
     749             : 
     750             :         if (trylock_page(page)) {
     751             :                 restore_exclusive_pte(vma, page, addr, src_pte);
     752             :                 unlock_page(page);
     753             :                 return 0;
     754             :         }
     755             : 
     756             :         return -EBUSY;
     757             : }
     758             : 
     759             : /*
     760             :  * copy one vm_area from one task to the other. Assumes the page tables
     761             :  * already present in the new task to be cleared in the whole range
     762             :  * covered by this vma.
     763             :  */
     764             : 
     765             : static unsigned long
     766           0 : copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
     767             :                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
     768             :                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
     769             : {
     770           0 :         unsigned long vm_flags = dst_vma->vm_flags;
     771           0 :         pte_t pte = *src_pte;
     772             :         struct page *page;
     773           0 :         swp_entry_t entry = pte_to_swp_entry(pte);
     774             : 
     775           0 :         if (likely(!non_swap_entry(entry))) {
     776           0 :                 if (swap_duplicate(entry) < 0)
     777             :                         return -EIO;
     778             : 
     779             :                 /* make sure dst_mm is on swapoff's mmlist. */
     780           0 :                 if (unlikely(list_empty(&dst_mm->mmlist))) {
     781           0 :                         spin_lock(&mmlist_lock);
     782           0 :                         if (list_empty(&dst_mm->mmlist))
     783           0 :                                 list_add(&dst_mm->mmlist,
     784             :                                                 &src_mm->mmlist);
     785             :                         spin_unlock(&mmlist_lock);
     786             :                 }
     787             :                 /* Mark the swap entry as shared. */
     788           0 :                 if (pte_swp_exclusive(*src_pte)) {
     789           0 :                         pte = pte_swp_clear_exclusive(*src_pte);
     790           0 :                         set_pte_at(src_mm, addr, src_pte, pte);
     791             :                 }
     792           0 :                 rss[MM_SWAPENTS]++;
     793           0 :         } else if (is_migration_entry(entry)) {
     794           0 :                 page = pfn_swap_entry_to_page(entry);
     795             : 
     796           0 :                 rss[mm_counter(page)]++;
     797             : 
     798           0 :                 if (!is_readable_migration_entry(entry) &&
     799           0 :                                 is_cow_mapping(vm_flags)) {
     800             :                         /*
     801             :                          * COW mappings require pages in both parent and child
     802             :                          * to be set to read. A previously exclusive entry is
     803             :                          * now shared.
     804             :                          */
     805           0 :                         entry = make_readable_migration_entry(
     806             :                                                         swp_offset(entry));
     807           0 :                         pte = swp_entry_to_pte(entry);
     808           0 :                         if (pte_swp_soft_dirty(*src_pte))
     809             :                                 pte = pte_swp_mksoft_dirty(pte);
     810             :                         if (pte_swp_uffd_wp(*src_pte))
     811             :                                 pte = pte_swp_mkuffd_wp(pte);
     812           0 :                         set_pte_at(src_mm, addr, src_pte, pte);
     813             :                 }
     814           0 :         } else if (is_device_private_entry(entry)) {
     815             :                 page = pfn_swap_entry_to_page(entry);
     816             : 
     817             :                 /*
     818             :                  * Update rss count even for unaddressable pages, as
     819             :                  * they should treated just like normal pages in this
     820             :                  * respect.
     821             :                  *
     822             :                  * We will likely want to have some new rss counters
     823             :                  * for unaddressable pages, at some point. But for now
     824             :                  * keep things as they are.
     825             :                  */
     826             :                 get_page(page);
     827             :                 rss[mm_counter(page)]++;
     828             :                 /* Cannot fail as these pages cannot get pinned. */
     829             :                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
     830             : 
     831             :                 /*
     832             :                  * We do not preserve soft-dirty information, because so
     833             :                  * far, checkpoint/restore is the only feature that
     834             :                  * requires that. And checkpoint/restore does not work
     835             :                  * when a device driver is involved (you cannot easily
     836             :                  * save and restore device driver state).
     837             :                  */
     838             :                 if (is_writable_device_private_entry(entry) &&
     839             :                     is_cow_mapping(vm_flags)) {
     840             :                         entry = make_readable_device_private_entry(
     841             :                                                         swp_offset(entry));
     842             :                         pte = swp_entry_to_pte(entry);
     843             :                         if (pte_swp_uffd_wp(*src_pte))
     844             :                                 pte = pte_swp_mkuffd_wp(pte);
     845             :                         set_pte_at(src_mm, addr, src_pte, pte);
     846             :                 }
     847           0 :         } else if (is_device_exclusive_entry(entry)) {
     848             :                 /*
     849             :                  * Make device exclusive entries present by restoring the
     850             :                  * original entry then copying as for a present pte. Device
     851             :                  * exclusive entries currently only support private writable
     852             :                  * (ie. COW) mappings.
     853             :                  */
     854             :                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
     855             :                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
     856             :                         return -EBUSY;
     857             :                 return -ENOENT;
     858           0 :         } else if (is_pte_marker_entry(entry)) {
     859           0 :                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
     860           0 :                         set_pte_at(dst_mm, addr, dst_pte, pte);
     861             :                 return 0;
     862             :         }
     863           0 :         if (!userfaultfd_wp(dst_vma))
     864             :                 pte = pte_swp_clear_uffd_wp(pte);
     865           0 :         set_pte_at(dst_mm, addr, dst_pte, pte);
     866             :         return 0;
     867             : }
     868             : 
     869             : /*
     870             :  * Copy a present and normal page.
     871             :  *
     872             :  * NOTE! The usual case is that this isn't required;
     873             :  * instead, the caller can just increase the page refcount
     874             :  * and re-use the pte the traditional way.
     875             :  *
     876             :  * And if we need a pre-allocated page but don't yet have
     877             :  * one, return a negative error to let the preallocation
     878             :  * code know so that it can do so outside the page table
     879             :  * lock.
     880             :  */
     881             : static inline int
     882           0 : copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     883             :                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     884             :                   struct folio **prealloc, struct page *page)
     885             : {
     886             :         struct folio *new_folio;
     887             :         pte_t pte;
     888             : 
     889           0 :         new_folio = *prealloc;
     890           0 :         if (!new_folio)
     891             :                 return -EAGAIN;
     892             : 
     893             :         /*
     894             :          * We have a prealloc page, all good!  Take it
     895             :          * over and copy the page & arm it.
     896             :          */
     897           0 :         *prealloc = NULL;
     898           0 :         copy_user_highpage(&new_folio->page, page, addr, src_vma);
     899           0 :         __folio_mark_uptodate(new_folio);
     900           0 :         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
     901           0 :         folio_add_lru_vma(new_folio, dst_vma);
     902           0 :         rss[MM_ANONPAGES]++;
     903             : 
     904             :         /* All done, just insert the new page copy in the child */
     905           0 :         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
     906           0 :         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
     907           0 :         if (userfaultfd_pte_wp(dst_vma, *src_pte))
     908             :                 /* Uffd-wp needs to be delivered to dest pte as well */
     909             :                 pte = pte_mkuffd_wp(pte);
     910           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     911             :         return 0;
     912             : }
     913             : 
     914             : /*
     915             :  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
     916             :  * is required to copy this pte.
     917             :  */
     918             : static inline int
     919           0 : copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     920             :                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     921             :                  struct folio **prealloc)
     922             : {
     923           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
     924           0 :         unsigned long vm_flags = src_vma->vm_flags;
     925           0 :         pte_t pte = *src_pte;
     926             :         struct page *page;
     927             :         struct folio *folio;
     928             : 
     929           0 :         page = vm_normal_page(src_vma, addr, pte);
     930           0 :         if (page)
     931           0 :                 folio = page_folio(page);
     932           0 :         if (page && folio_test_anon(folio)) {
     933             :                 /*
     934             :                  * If this page may have been pinned by the parent process,
     935             :                  * copy the page immediately for the child so that we'll always
     936             :                  * guarantee the pinned page won't be randomly replaced in the
     937             :                  * future.
     938             :                  */
     939           0 :                 folio_get(folio);
     940           0 :                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
     941             :                         /* Page may be pinned, we have to copy. */
     942           0 :                         folio_put(folio);
     943           0 :                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
     944             :                                                  addr, rss, prealloc, page);
     945             :                 }
     946           0 :                 rss[MM_ANONPAGES]++;
     947           0 :         } else if (page) {
     948           0 :                 folio_get(folio);
     949           0 :                 page_dup_file_rmap(page, false);
     950           0 :                 rss[mm_counter_file(page)]++;
     951             :         }
     952             : 
     953             :         /*
     954             :          * If it's a COW mapping, write protect it both
     955             :          * in the parent and the child
     956             :          */
     957           0 :         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
     958           0 :                 ptep_set_wrprotect(src_mm, addr, src_pte);
     959             :                 pte = pte_wrprotect(pte);
     960             :         }
     961             :         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
     962             : 
     963             :         /*
     964             :          * If it's a shared mapping, mark it clean in
     965             :          * the child
     966             :          */
     967           0 :         if (vm_flags & VM_SHARED)
     968             :                 pte = pte_mkclean(pte);
     969           0 :         pte = pte_mkold(pte);
     970             : 
     971           0 :         if (!userfaultfd_wp(dst_vma))
     972             :                 pte = pte_clear_uffd_wp(pte);
     973             : 
     974           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     975             :         return 0;
     976             : }
     977             : 
     978             : static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
     979             :                 struct vm_area_struct *vma, unsigned long addr)
     980             : {
     981             :         struct folio *new_folio;
     982             : 
     983           0 :         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
     984           0 :         if (!new_folio)
     985             :                 return NULL;
     986             : 
     987           0 :         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
     988             :                 folio_put(new_folio);
     989             :                 return NULL;
     990             :         }
     991           0 :         folio_throttle_swaprate(new_folio, GFP_KERNEL);
     992             : 
     993             :         return new_folio;
     994             : }
     995             : 
     996             : static int
     997           0 : copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     998             :                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
     999             :                unsigned long end)
    1000             : {
    1001           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1002           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1003             :         pte_t *orig_src_pte, *orig_dst_pte;
    1004             :         pte_t *src_pte, *dst_pte;
    1005             :         spinlock_t *src_ptl, *dst_ptl;
    1006           0 :         int progress, ret = 0;
    1007             :         int rss[NR_MM_COUNTERS];
    1008           0 :         swp_entry_t entry = (swp_entry_t){0};
    1009           0 :         struct folio *prealloc = NULL;
    1010             : 
    1011             : again:
    1012           0 :         progress = 0;
    1013           0 :         init_rss_vec(rss);
    1014             : 
    1015           0 :         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
    1016           0 :         if (!dst_pte) {
    1017             :                 ret = -ENOMEM;
    1018             :                 goto out;
    1019             :         }
    1020           0 :         src_pte = pte_offset_map(src_pmd, addr);
    1021           0 :         src_ptl = pte_lockptr(src_mm, src_pmd);
    1022           0 :         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    1023           0 :         orig_src_pte = src_pte;
    1024           0 :         orig_dst_pte = dst_pte;
    1025             :         arch_enter_lazy_mmu_mode();
    1026             : 
    1027             :         do {
    1028             :                 /*
    1029             :                  * We are holding two locks at this point - either of them
    1030             :                  * could generate latencies in another task on another CPU.
    1031             :                  */
    1032           0 :                 if (progress >= 32) {
    1033           0 :                         progress = 0;
    1034           0 :                         if (need_resched() ||
    1035             :                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
    1036             :                                 break;
    1037             :                 }
    1038           0 :                 if (pte_none(*src_pte)) {
    1039           0 :                         progress++;
    1040           0 :                         continue;
    1041             :                 }
    1042           0 :                 if (unlikely(!pte_present(*src_pte))) {
    1043           0 :                         ret = copy_nonpresent_pte(dst_mm, src_mm,
    1044             :                                                   dst_pte, src_pte,
    1045             :                                                   dst_vma, src_vma,
    1046             :                                                   addr, rss);
    1047           0 :                         if (ret == -EIO) {
    1048             :                                 entry = pte_to_swp_entry(*src_pte);
    1049             :                                 break;
    1050           0 :                         } else if (ret == -EBUSY) {
    1051             :                                 break;
    1052           0 :                         } else if (!ret) {
    1053           0 :                                 progress += 8;
    1054           0 :                                 continue;
    1055             :                         }
    1056             : 
    1057             :                         /*
    1058             :                          * Device exclusive entry restored, continue by copying
    1059             :                          * the now present pte.
    1060             :                          */
    1061           0 :                         WARN_ON_ONCE(ret != -ENOENT);
    1062             :                 }
    1063             :                 /* copy_present_pte() will clear `*prealloc' if consumed */
    1064           0 :                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
    1065             :                                        addr, rss, &prealloc);
    1066             :                 /*
    1067             :                  * If we need a pre-allocated page for this pte, drop the
    1068             :                  * locks, allocate, and try again.
    1069             :                  */
    1070           0 :                 if (unlikely(ret == -EAGAIN))
    1071             :                         break;
    1072           0 :                 if (unlikely(prealloc)) {
    1073             :                         /*
    1074             :                          * pre-alloc page cannot be reused by next time so as
    1075             :                          * to strictly follow mempolicy (e.g., alloc_page_vma()
    1076             :                          * will allocate page according to address).  This
    1077             :                          * could only happen if one pinned pte changed.
    1078             :                          */
    1079           0 :                         folio_put(prealloc);
    1080           0 :                         prealloc = NULL;
    1081             :                 }
    1082           0 :                 progress += 8;
    1083           0 :         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
    1084             : 
    1085             :         arch_leave_lazy_mmu_mode();
    1086           0 :         spin_unlock(src_ptl);
    1087             :         pte_unmap(orig_src_pte);
    1088           0 :         add_mm_rss_vec(dst_mm, rss);
    1089           0 :         pte_unmap_unlock(orig_dst_pte, dst_ptl);
    1090           0 :         cond_resched();
    1091             : 
    1092           0 :         if (ret == -EIO) {
    1093             :                 VM_WARN_ON_ONCE(!entry.val);
    1094           0 :                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
    1095             :                         ret = -ENOMEM;
    1096             :                         goto out;
    1097             :                 }
    1098           0 :                 entry.val = 0;
    1099           0 :         } else if (ret == -EBUSY) {
    1100             :                 goto out;
    1101           0 :         } else if (ret ==  -EAGAIN) {
    1102           0 :                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
    1103           0 :                 if (!prealloc)
    1104             :                         return -ENOMEM;
    1105             :         } else if (ret) {
    1106             :                 VM_WARN_ON_ONCE(1);
    1107             :         }
    1108             : 
    1109             :         /* We've captured and resolved the error. Reset, try again. */
    1110           0 :         ret = 0;
    1111             : 
    1112           0 :         if (addr != end)
    1113             :                 goto again;
    1114             : out:
    1115           0 :         if (unlikely(prealloc))
    1116           0 :                 folio_put(prealloc);
    1117             :         return ret;
    1118             : }
    1119             : 
    1120             : static inline int
    1121           0 : copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1122             :                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
    1123             :                unsigned long end)
    1124             : {
    1125           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1126           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1127             :         pmd_t *src_pmd, *dst_pmd;
    1128             :         unsigned long next;
    1129             : 
    1130           0 :         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
    1131           0 :         if (!dst_pmd)
    1132             :                 return -ENOMEM;
    1133           0 :         src_pmd = pmd_offset(src_pud, addr);
    1134             :         do {
    1135           0 :                 next = pmd_addr_end(addr, end);
    1136           0 :                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
    1137           0 :                         || pmd_devmap(*src_pmd)) {
    1138             :                         int err;
    1139             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
    1140             :                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
    1141             :                                             addr, dst_vma, src_vma);
    1142             :                         if (err == -ENOMEM)
    1143             :                                 return -ENOMEM;
    1144             :                         if (!err)
    1145             :                                 continue;
    1146             :                         /* fall through */
    1147             :                 }
    1148           0 :                 if (pmd_none_or_clear_bad(src_pmd))
    1149           0 :                         continue;
    1150           0 :                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
    1151             :                                    addr, next))
    1152             :                         return -ENOMEM;
    1153           0 :         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
    1154             :         return 0;
    1155             : }
    1156             : 
    1157             : static inline int
    1158           0 : copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1159             :                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
    1160             :                unsigned long end)
    1161             : {
    1162           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1163           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1164             :         pud_t *src_pud, *dst_pud;
    1165             :         unsigned long next;
    1166             : 
    1167           0 :         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
    1168           0 :         if (!dst_pud)
    1169             :                 return -ENOMEM;
    1170           0 :         src_pud = pud_offset(src_p4d, addr);
    1171             :         do {
    1172           0 :                 next = pud_addr_end(addr, end);
    1173           0 :                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
    1174             :                         int err;
    1175             : 
    1176             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
    1177             :                         err = copy_huge_pud(dst_mm, src_mm,
    1178             :                                             dst_pud, src_pud, addr, src_vma);
    1179             :                         if (err == -ENOMEM)
    1180             :                                 return -ENOMEM;
    1181             :                         if (!err)
    1182             :                                 continue;
    1183             :                         /* fall through */
    1184             :                 }
    1185           0 :                 if (pud_none_or_clear_bad(src_pud))
    1186           0 :                         continue;
    1187           0 :                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
    1188             :                                    addr, next))
    1189             :                         return -ENOMEM;
    1190           0 :         } while (dst_pud++, src_pud++, addr = next, addr != end);
    1191           0 :         return 0;
    1192             : }
    1193             : 
    1194             : static inline int
    1195             : copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1196             :                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
    1197             :                unsigned long end)
    1198             : {
    1199           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1200             :         p4d_t *src_p4d, *dst_p4d;
    1201             :         unsigned long next;
    1202             : 
    1203           0 :         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
    1204           0 :         if (!dst_p4d)
    1205             :                 return -ENOMEM;
    1206           0 :         src_p4d = p4d_offset(src_pgd, addr);
    1207             :         do {
    1208           0 :                 next = p4d_addr_end(addr, end);
    1209           0 :                 if (p4d_none_or_clear_bad(src_p4d))
    1210             :                         continue;
    1211           0 :                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
    1212             :                                    addr, next))
    1213             :                         return -ENOMEM;
    1214           0 :         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
    1215             :         return 0;
    1216             : }
    1217             : 
    1218             : /*
    1219             :  * Return true if the vma needs to copy the pgtable during this fork().  Return
    1220             :  * false when we can speed up fork() by allowing lazy page faults later until
    1221             :  * when the child accesses the memory range.
    1222             :  */
    1223             : static bool
    1224             : vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
    1225             : {
    1226             :         /*
    1227             :          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
    1228             :          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
    1229             :          * contains uffd-wp protection information, that's something we can't
    1230             :          * retrieve from page cache, and skip copying will lose those info.
    1231             :          */
    1232           0 :         if (userfaultfd_wp(dst_vma))
    1233             :                 return true;
    1234             : 
    1235           0 :         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
    1236             :                 return true;
    1237             : 
    1238           0 :         if (src_vma->anon_vma)
    1239             :                 return true;
    1240             : 
    1241             :         /*
    1242             :          * Don't copy ptes where a page fault will fill them correctly.  Fork
    1243             :          * becomes much lighter when there are big shared or private readonly
    1244             :          * mappings. The tradeoff is that copy_page_range is more efficient
    1245             :          * than faulting.
    1246             :          */
    1247             :         return false;
    1248             : }
    1249             : 
    1250             : int
    1251           0 : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
    1252             : {
    1253             :         pgd_t *src_pgd, *dst_pgd;
    1254             :         unsigned long next;
    1255           0 :         unsigned long addr = src_vma->vm_start;
    1256           0 :         unsigned long end = src_vma->vm_end;
    1257           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1258           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1259             :         struct mmu_notifier_range range;
    1260             :         bool is_cow;
    1261             :         int ret;
    1262             : 
    1263           0 :         if (!vma_needs_copy(dst_vma, src_vma))
    1264             :                 return 0;
    1265             : 
    1266           0 :         if (is_vm_hugetlb_page(src_vma))
    1267             :                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
    1268             : 
    1269             :         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
    1270             :                 /*
    1271             :                  * We do not free on error cases below as remove_vma
    1272             :                  * gets called on error from higher level routine
    1273             :                  */
    1274             :                 ret = track_pfn_copy(src_vma);
    1275             :                 if (ret)
    1276             :                         return ret;
    1277             :         }
    1278             : 
    1279             :         /*
    1280             :          * We need to invalidate the secondary MMU mappings only when
    1281             :          * there could be a permission downgrade on the ptes of the
    1282             :          * parent mm. And a permission downgrade will only happen if
    1283             :          * is_cow_mapping() returns true.
    1284             :          */
    1285           0 :         is_cow = is_cow_mapping(src_vma->vm_flags);
    1286             : 
    1287           0 :         if (is_cow) {
    1288           0 :                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
    1289             :                                         0, src_mm, addr, end);
    1290           0 :                 mmu_notifier_invalidate_range_start(&range);
    1291             :                 /*
    1292             :                  * Disabling preemption is not needed for the write side, as
    1293             :                  * the read side doesn't spin, but goes to the mmap_lock.
    1294             :                  *
    1295             :                  * Use the raw variant of the seqcount_t write API to avoid
    1296             :                  * lockdep complaining about preemptibility.
    1297             :                  */
    1298           0 :                 mmap_assert_write_locked(src_mm);
    1299           0 :                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
    1300             :         }
    1301             : 
    1302           0 :         ret = 0;
    1303           0 :         dst_pgd = pgd_offset(dst_mm, addr);
    1304           0 :         src_pgd = pgd_offset(src_mm, addr);
    1305             :         do {
    1306           0 :                 next = pgd_addr_end(addr, end);
    1307           0 :                 if (pgd_none_or_clear_bad(src_pgd))
    1308             :                         continue;
    1309           0 :                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
    1310             :                                             addr, next))) {
    1311             :                         untrack_pfn_clear(dst_vma);
    1312             :                         ret = -ENOMEM;
    1313             :                         break;
    1314             :                 }
    1315           0 :         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
    1316             : 
    1317           0 :         if (is_cow) {
    1318           0 :                 raw_write_seqcount_end(&src_mm->write_protect_seq);
    1319           0 :                 mmu_notifier_invalidate_range_end(&range);
    1320             :         }
    1321             :         return ret;
    1322             : }
    1323             : 
    1324             : /* Whether we should zap all COWed (private) pages too */
    1325             : static inline bool should_zap_cows(struct zap_details *details)
    1326             : {
    1327             :         /* By default, zap all pages */
    1328           0 :         if (!details)
    1329             :                 return true;
    1330             : 
    1331             :         /* Or, we zap COWed pages only if the caller wants to */
    1332           0 :         return details->even_cows;
    1333             : }
    1334             : 
    1335             : /* Decides whether we should zap this page with the page pointer specified */
    1336           0 : static inline bool should_zap_page(struct zap_details *details, struct page *page)
    1337             : {
    1338             :         /* If we can make a decision without *page.. */
    1339           0 :         if (should_zap_cows(details))
    1340             :                 return true;
    1341             : 
    1342             :         /* E.g. the caller passes NULL for the case of a zero page */
    1343           0 :         if (!page)
    1344             :                 return true;
    1345             : 
    1346             :         /* Otherwise we should only zap non-anon pages */
    1347           0 :         return !PageAnon(page);
    1348             : }
    1349             : 
    1350             : static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
    1351             : {
    1352             :         if (!details)
    1353             :                 return false;
    1354             : 
    1355             :         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
    1356             : }
    1357             : 
    1358             : /*
    1359             :  * This function makes sure that we'll replace the none pte with an uffd-wp
    1360             :  * swap special pte marker when necessary. Must be with the pgtable lock held.
    1361             :  */
    1362             : static inline void
    1363             : zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
    1364             :                               unsigned long addr, pte_t *pte,
    1365             :                               struct zap_details *details, pte_t pteval)
    1366             : {
    1367             :         /* Zap on anonymous always means dropping everything */
    1368           0 :         if (vma_is_anonymous(vma))
    1369             :                 return;
    1370             : 
    1371             :         if (zap_drop_file_uffd_wp(details))
    1372             :                 return;
    1373             : 
    1374             :         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
    1375             : }
    1376             : 
    1377           0 : static unsigned long zap_pte_range(struct mmu_gather *tlb,
    1378             :                                 struct vm_area_struct *vma, pmd_t *pmd,
    1379             :                                 unsigned long addr, unsigned long end,
    1380             :                                 struct zap_details *details)
    1381             : {
    1382           0 :         struct mm_struct *mm = tlb->mm;
    1383           0 :         int force_flush = 0;
    1384             :         int rss[NR_MM_COUNTERS];
    1385             :         spinlock_t *ptl;
    1386             :         pte_t *start_pte;
    1387             :         pte_t *pte;
    1388             :         swp_entry_t entry;
    1389             : 
    1390           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
    1391             : again:
    1392           0 :         init_rss_vec(rss);
    1393           0 :         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
    1394           0 :         pte = start_pte;
    1395           0 :         flush_tlb_batched_pending(mm);
    1396             :         arch_enter_lazy_mmu_mode();
    1397             :         do {
    1398           0 :                 pte_t ptent = *pte;
    1399             :                 struct page *page;
    1400             : 
    1401           0 :                 if (pte_none(ptent))
    1402           0 :                         continue;
    1403             : 
    1404           0 :                 if (need_resched())
    1405             :                         break;
    1406             : 
    1407           0 :                 if (pte_present(ptent)) {
    1408             :                         unsigned int delay_rmap;
    1409             : 
    1410           0 :                         page = vm_normal_page(vma, addr, ptent);
    1411           0 :                         if (unlikely(!should_zap_page(details, page)))
    1412           0 :                                 continue;
    1413           0 :                         ptent = ptep_get_and_clear_full(mm, addr, pte,
    1414           0 :                                                         tlb->fullmm);
    1415           0 :                         tlb_remove_tlb_entry(tlb, pte, addr);
    1416           0 :                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
    1417             :                                                       ptent);
    1418           0 :                         if (unlikely(!page))
    1419           0 :                                 continue;
    1420             : 
    1421           0 :                         delay_rmap = 0;
    1422           0 :                         if (!PageAnon(page)) {
    1423           0 :                                 if (pte_dirty(ptent)) {
    1424           0 :                                         set_page_dirty(page);
    1425             :                                         if (tlb_delay_rmap(tlb)) {
    1426             :                                                 delay_rmap = 1;
    1427             :                                                 force_flush = 1;
    1428             :                                         }
    1429             :                                 }
    1430           0 :                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
    1431           0 :                                         mark_page_accessed(page);
    1432             :                         }
    1433           0 :                         rss[mm_counter(page)]--;
    1434             :                         if (!delay_rmap) {
    1435           0 :                                 page_remove_rmap(page, vma, false);
    1436           0 :                                 if (unlikely(page_mapcount(page) < 0))
    1437           0 :                                         print_bad_pte(vma, addr, ptent, page);
    1438             :                         }
    1439           0 :                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
    1440             :                                 force_flush = 1;
    1441             :                                 addr += PAGE_SIZE;
    1442             :                                 break;
    1443             :                         }
    1444           0 :                         continue;
    1445             :                 }
    1446             : 
    1447           0 :                 entry = pte_to_swp_entry(ptent);
    1448           0 :                 if (is_device_private_entry(entry) ||
    1449           0 :                     is_device_exclusive_entry(entry)) {
    1450             :                         page = pfn_swap_entry_to_page(entry);
    1451             :                         if (unlikely(!should_zap_page(details, page)))
    1452             :                                 continue;
    1453             :                         /*
    1454             :                          * Both device private/exclusive mappings should only
    1455             :                          * work with anonymous page so far, so we don't need to
    1456             :                          * consider uffd-wp bit when zap. For more information,
    1457             :                          * see zap_install_uffd_wp_if_needed().
    1458             :                          */
    1459             :                         WARN_ON_ONCE(!vma_is_anonymous(vma));
    1460             :                         rss[mm_counter(page)]--;
    1461             :                         if (is_device_private_entry(entry))
    1462             :                                 page_remove_rmap(page, vma, false);
    1463             :                         put_page(page);
    1464           0 :                 } else if (!non_swap_entry(entry)) {
    1465             :                         /* Genuine swap entry, hence a private anon page */
    1466           0 :                         if (!should_zap_cows(details))
    1467           0 :                                 continue;
    1468           0 :                         rss[MM_SWAPENTS]--;
    1469           0 :                         if (unlikely(!free_swap_and_cache(entry)))
    1470           0 :                                 print_bad_pte(vma, addr, ptent, NULL);
    1471           0 :                 } else if (is_migration_entry(entry)) {
    1472           0 :                         page = pfn_swap_entry_to_page(entry);
    1473           0 :                         if (!should_zap_page(details, page))
    1474           0 :                                 continue;
    1475           0 :                         rss[mm_counter(page)]--;
    1476           0 :                 } else if (pte_marker_entry_uffd_wp(entry)) {
    1477             :                         /*
    1478             :                          * For anon: always drop the marker; for file: only
    1479             :                          * drop the marker if explicitly requested.
    1480             :                          */
    1481             :                         if (!vma_is_anonymous(vma) &&
    1482             :                             !zap_drop_file_uffd_wp(details))
    1483             :                                 continue;
    1484           0 :                 } else if (is_hwpoison_entry(entry) ||
    1485           0 :                            is_swapin_error_entry(entry)) {
    1486           0 :                         if (!should_zap_cows(details))
    1487           0 :                                 continue;
    1488             :                 } else {
    1489             :                         /* We should have covered all the swap entry types */
    1490           0 :                         WARN_ON_ONCE(1);
    1491             :                 }
    1492           0 :                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
    1493           0 :                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
    1494           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    1495             : 
    1496           0 :         add_mm_rss_vec(mm, rss);
    1497             :         arch_leave_lazy_mmu_mode();
    1498             : 
    1499             :         /* Do the actual TLB flush before dropping ptl */
    1500           0 :         if (force_flush) {
    1501           0 :                 tlb_flush_mmu_tlbonly(tlb);
    1502           0 :                 tlb_flush_rmaps(tlb, vma);
    1503             :         }
    1504           0 :         pte_unmap_unlock(start_pte, ptl);
    1505             : 
    1506             :         /*
    1507             :          * If we forced a TLB flush (either due to running out of
    1508             :          * batch buffers or because we needed to flush dirty TLB
    1509             :          * entries before releasing the ptl), free the batched
    1510             :          * memory too. Restart if we didn't do everything.
    1511             :          */
    1512           0 :         if (force_flush) {
    1513           0 :                 force_flush = 0;
    1514           0 :                 tlb_flush_mmu(tlb);
    1515             :         }
    1516             : 
    1517           0 :         if (addr != end) {
    1518           0 :                 cond_resched();
    1519           0 :                 goto again;
    1520             :         }
    1521             : 
    1522           0 :         return addr;
    1523             : }
    1524             : 
    1525           0 : static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
    1526             :                                 struct vm_area_struct *vma, pud_t *pud,
    1527             :                                 unsigned long addr, unsigned long end,
    1528             :                                 struct zap_details *details)
    1529             : {
    1530             :         pmd_t *pmd;
    1531             :         unsigned long next;
    1532             : 
    1533           0 :         pmd = pmd_offset(pud, addr);
    1534             :         do {
    1535           0 :                 next = pmd_addr_end(addr, end);
    1536           0 :                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
    1537             :                         if (next - addr != HPAGE_PMD_SIZE)
    1538             :                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
    1539             :                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
    1540             :                                 goto next;
    1541             :                         /* fall through */
    1542             :                 } else if (details && details->single_folio &&
    1543             :                            folio_test_pmd_mappable(details->single_folio) &&
    1544             :                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
    1545             :                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
    1546             :                         /*
    1547             :                          * Take and drop THP pmd lock so that we cannot return
    1548             :                          * prematurely, while zap_huge_pmd() has cleared *pmd,
    1549             :                          * but not yet decremented compound_mapcount().
    1550             :                          */
    1551             :                         spin_unlock(ptl);
    1552             :                 }
    1553             : 
    1554             :                 /*
    1555             :                  * Here there can be other concurrent MADV_DONTNEED or
    1556             :                  * trans huge page faults running, and if the pmd is
    1557             :                  * none or trans huge it can change under us. This is
    1558             :                  * because MADV_DONTNEED holds the mmap_lock in read
    1559             :                  * mode.
    1560             :                  */
    1561           0 :                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    1562             :                         goto next;
    1563           0 :                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
    1564             : next:
    1565           0 :                 cond_resched();
    1566           0 :         } while (pmd++, addr = next, addr != end);
    1567             : 
    1568           0 :         return addr;
    1569             : }
    1570             : 
    1571           0 : static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
    1572             :                                 struct vm_area_struct *vma, p4d_t *p4d,
    1573             :                                 unsigned long addr, unsigned long end,
    1574             :                                 struct zap_details *details)
    1575             : {
    1576             :         pud_t *pud;
    1577             :         unsigned long next;
    1578             : 
    1579           0 :         pud = pud_offset(p4d, addr);
    1580             :         do {
    1581           0 :                 next = pud_addr_end(addr, end);
    1582           0 :                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
    1583             :                         if (next - addr != HPAGE_PUD_SIZE) {
    1584             :                                 mmap_assert_locked(tlb->mm);
    1585             :                                 split_huge_pud(vma, pud, addr);
    1586             :                         } else if (zap_huge_pud(tlb, vma, pud, addr))
    1587             :                                 goto next;
    1588             :                         /* fall through */
    1589             :                 }
    1590           0 :                 if (pud_none_or_clear_bad(pud))
    1591           0 :                         continue;
    1592           0 :                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
    1593             : next:
    1594           0 :                 cond_resched();
    1595           0 :         } while (pud++, addr = next, addr != end);
    1596             : 
    1597           0 :         return addr;
    1598             : }
    1599             : 
    1600             : static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
    1601             :                                 struct vm_area_struct *vma, pgd_t *pgd,
    1602             :                                 unsigned long addr, unsigned long end,
    1603             :                                 struct zap_details *details)
    1604             : {
    1605             :         p4d_t *p4d;
    1606             :         unsigned long next;
    1607             : 
    1608             :         p4d = p4d_offset(pgd, addr);
    1609             :         do {
    1610           0 :                 next = p4d_addr_end(addr, end);
    1611           0 :                 if (p4d_none_or_clear_bad(p4d))
    1612             :                         continue;
    1613           0 :                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
    1614           0 :         } while (p4d++, addr = next, addr != end);
    1615             : 
    1616             :         return addr;
    1617             : }
    1618             : 
    1619           0 : void unmap_page_range(struct mmu_gather *tlb,
    1620             :                              struct vm_area_struct *vma,
    1621             :                              unsigned long addr, unsigned long end,
    1622             :                              struct zap_details *details)
    1623             : {
    1624             :         pgd_t *pgd;
    1625             :         unsigned long next;
    1626             : 
    1627           0 :         BUG_ON(addr >= end);
    1628           0 :         tlb_start_vma(tlb, vma);
    1629           0 :         pgd = pgd_offset(vma->vm_mm, addr);
    1630             :         do {
    1631           0 :                 next = pgd_addr_end(addr, end);
    1632           0 :                 if (pgd_none_or_clear_bad(pgd))
    1633             :                         continue;
    1634           0 :                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
    1635           0 :         } while (pgd++, addr = next, addr != end);
    1636           0 :         tlb_end_vma(tlb, vma);
    1637           0 : }
    1638             : 
    1639             : 
    1640           0 : static void unmap_single_vma(struct mmu_gather *tlb,
    1641             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1642             :                 unsigned long end_addr,
    1643             :                 struct zap_details *details, bool mm_wr_locked)
    1644             : {
    1645           0 :         unsigned long start = max(vma->vm_start, start_addr);
    1646             :         unsigned long end;
    1647             : 
    1648           0 :         if (start >= vma->vm_end)
    1649             :                 return;
    1650           0 :         end = min(vma->vm_end, end_addr);
    1651           0 :         if (end <= vma->vm_start)
    1652             :                 return;
    1653             : 
    1654             :         if (vma->vm_file)
    1655             :                 uprobe_munmap(vma, start, end);
    1656             : 
    1657             :         if (unlikely(vma->vm_flags & VM_PFNMAP))
    1658             :                 untrack_pfn(vma, 0, 0, mm_wr_locked);
    1659             : 
    1660           0 :         if (start != end) {
    1661           0 :                 if (unlikely(is_vm_hugetlb_page(vma))) {
    1662             :                         /*
    1663             :                          * It is undesirable to test vma->vm_file as it
    1664             :                          * should be non-null for valid hugetlb area.
    1665             :                          * However, vm_file will be NULL in the error
    1666             :                          * cleanup path of mmap_region. When
    1667             :                          * hugetlbfs ->mmap method fails,
    1668             :                          * mmap_region() nullifies vma->vm_file
    1669             :                          * before calling this function to clean up.
    1670             :                          * Since no pte has actually been setup, it is
    1671             :                          * safe to do nothing in this case.
    1672             :                          */
    1673             :                         if (vma->vm_file) {
    1674             :                                 zap_flags_t zap_flags = details ?
    1675             :                                     details->zap_flags : 0;
    1676             :                                 __unmap_hugepage_range_final(tlb, vma, start, end,
    1677             :                                                              NULL, zap_flags);
    1678             :                         }
    1679             :                 } else
    1680           0 :                         unmap_page_range(tlb, vma, start, end, details);
    1681             :         }
    1682             : }
    1683             : 
    1684             : /**
    1685             :  * unmap_vmas - unmap a range of memory covered by a list of vma's
    1686             :  * @tlb: address of the caller's struct mmu_gather
    1687             :  * @mt: the maple tree
    1688             :  * @vma: the starting vma
    1689             :  * @start_addr: virtual address at which to start unmapping
    1690             :  * @end_addr: virtual address at which to end unmapping
    1691             :  *
    1692             :  * Unmap all pages in the vma list.
    1693             :  *
    1694             :  * Only addresses between `start' and `end' will be unmapped.
    1695             :  *
    1696             :  * The VMA list must be sorted in ascending virtual address order.
    1697             :  *
    1698             :  * unmap_vmas() assumes that the caller will flush the whole unmapped address
    1699             :  * range after unmap_vmas() returns.  So the only responsibility here is to
    1700             :  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
    1701             :  * drops the lock and schedules.
    1702             :  */
    1703           0 : void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
    1704             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1705             :                 unsigned long end_addr, bool mm_wr_locked)
    1706             : {
    1707             :         struct mmu_notifier_range range;
    1708           0 :         struct zap_details details = {
    1709             :                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
    1710             :                 /* Careful - we need to zap private pages too! */
    1711             :                 .even_cows = true,
    1712             :         };
    1713           0 :         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
    1714             : 
    1715             :         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
    1716             :                                 start_addr, end_addr);
    1717             :         mmu_notifier_invalidate_range_start(&range);
    1718             :         do {
    1719           0 :                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
    1720             :                                  mm_wr_locked);
    1721           0 :         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
    1722           0 :         mmu_notifier_invalidate_range_end(&range);
    1723           0 : }
    1724             : 
    1725             : /**
    1726             :  * zap_page_range_single - remove user pages in a given range
    1727             :  * @vma: vm_area_struct holding the applicable pages
    1728             :  * @address: starting address of pages to zap
    1729             :  * @size: number of bytes to zap
    1730             :  * @details: details of shared cache invalidation
    1731             :  *
    1732             :  * The range must fit into one VMA.
    1733             :  */
    1734           0 : void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
    1735             :                 unsigned long size, struct zap_details *details)
    1736             : {
    1737           0 :         const unsigned long end = address + size;
    1738             :         struct mmu_notifier_range range;
    1739             :         struct mmu_gather tlb;
    1740             : 
    1741           0 :         lru_add_drain();
    1742           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
    1743             :                                 address, end);
    1744           0 :         if (is_vm_hugetlb_page(vma))
    1745             :                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
    1746             :                                                      &range.end);
    1747           0 :         tlb_gather_mmu(&tlb, vma->vm_mm);
    1748           0 :         update_hiwater_rss(vma->vm_mm);
    1749           0 :         mmu_notifier_invalidate_range_start(&range);
    1750             :         /*
    1751             :          * unmap 'address-end' not 'range.start-range.end' as range
    1752             :          * could have been expanded for hugetlb pmd sharing.
    1753             :          */
    1754           0 :         unmap_single_vma(&tlb, vma, address, end, details, false);
    1755           0 :         mmu_notifier_invalidate_range_end(&range);
    1756           0 :         tlb_finish_mmu(&tlb);
    1757           0 : }
    1758             : 
    1759             : /**
    1760             :  * zap_vma_ptes - remove ptes mapping the vma
    1761             :  * @vma: vm_area_struct holding ptes to be zapped
    1762             :  * @address: starting address of pages to zap
    1763             :  * @size: number of bytes to zap
    1764             :  *
    1765             :  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
    1766             :  *
    1767             :  * The entire address range must be fully contained within the vma.
    1768             :  *
    1769             :  */
    1770           0 : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    1771             :                 unsigned long size)
    1772             : {
    1773           0 :         if (!range_in_vma(vma, address, address + size) ||
    1774           0 :                         !(vma->vm_flags & VM_PFNMAP))
    1775             :                 return;
    1776             : 
    1777           0 :         zap_page_range_single(vma, address, size, NULL);
    1778             : }
    1779             : EXPORT_SYMBOL_GPL(zap_vma_ptes);
    1780             : 
    1781           0 : static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
    1782             : {
    1783             :         pgd_t *pgd;
    1784             :         p4d_t *p4d;
    1785             :         pud_t *pud;
    1786             :         pmd_t *pmd;
    1787             : 
    1788           0 :         pgd = pgd_offset(mm, addr);
    1789           0 :         p4d = p4d_alloc(mm, pgd, addr);
    1790           0 :         if (!p4d)
    1791             :                 return NULL;
    1792           0 :         pud = pud_alloc(mm, p4d, addr);
    1793             :         if (!pud)
    1794             :                 return NULL;
    1795           0 :         pmd = pmd_alloc(mm, pud, addr);
    1796           0 :         if (!pmd)
    1797             :                 return NULL;
    1798             : 
    1799             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    1800           0 :         return pmd;
    1801             : }
    1802             : 
    1803           0 : pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    1804             :                         spinlock_t **ptl)
    1805             : {
    1806           0 :         pmd_t *pmd = walk_to_pmd(mm, addr);
    1807             : 
    1808           0 :         if (!pmd)
    1809             :                 return NULL;
    1810           0 :         return pte_alloc_map_lock(mm, pmd, addr, ptl);
    1811             : }
    1812             : 
    1813           0 : static int validate_page_before_insert(struct page *page)
    1814             : {
    1815           0 :         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
    1816             :                 return -EINVAL;
    1817             :         flush_dcache_page(page);
    1818             :         return 0;
    1819             : }
    1820             : 
    1821           0 : static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
    1822             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1823             : {
    1824           0 :         if (!pte_none(*pte))
    1825             :                 return -EBUSY;
    1826             :         /* Ok, finally just insert the thing.. */
    1827           0 :         get_page(page);
    1828           0 :         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
    1829           0 :         page_add_file_rmap(page, vma, false);
    1830           0 :         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
    1831             :         return 0;
    1832             : }
    1833             : 
    1834             : /*
    1835             :  * This is the old fallback for page remapping.
    1836             :  *
    1837             :  * For historical reasons, it only allows reserved pages. Only
    1838             :  * old drivers should use this, and they needed to mark their
    1839             :  * pages reserved for the old functions anyway.
    1840             :  */
    1841           0 : static int insert_page(struct vm_area_struct *vma, unsigned long addr,
    1842             :                         struct page *page, pgprot_t prot)
    1843             : {
    1844             :         int retval;
    1845             :         pte_t *pte;
    1846             :         spinlock_t *ptl;
    1847             : 
    1848           0 :         retval = validate_page_before_insert(page);
    1849           0 :         if (retval)
    1850             :                 goto out;
    1851           0 :         retval = -ENOMEM;
    1852           0 :         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
    1853           0 :         if (!pte)
    1854             :                 goto out;
    1855           0 :         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1856           0 :         pte_unmap_unlock(pte, ptl);
    1857             : out:
    1858           0 :         return retval;
    1859             : }
    1860             : 
    1861             : #ifdef pte_index
    1862           0 : static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
    1863             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1864             : {
    1865             :         int err;
    1866             : 
    1867           0 :         if (!page_count(page))
    1868             :                 return -EINVAL;
    1869           0 :         err = validate_page_before_insert(page);
    1870           0 :         if (err)
    1871             :                 return err;
    1872           0 :         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1873             : }
    1874             : 
    1875             : /* insert_pages() amortizes the cost of spinlock operations
    1876             :  * when inserting pages in a loop. Arch *must* define pte_index.
    1877             :  */
    1878           0 : static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1879             :                         struct page **pages, unsigned long *num, pgprot_t prot)
    1880             : {
    1881           0 :         pmd_t *pmd = NULL;
    1882             :         pte_t *start_pte, *pte;
    1883             :         spinlock_t *pte_lock;
    1884           0 :         struct mm_struct *const mm = vma->vm_mm;
    1885           0 :         unsigned long curr_page_idx = 0;
    1886           0 :         unsigned long remaining_pages_total = *num;
    1887             :         unsigned long pages_to_write_in_pmd;
    1888             :         int ret;
    1889             : more:
    1890           0 :         ret = -EFAULT;
    1891           0 :         pmd = walk_to_pmd(mm, addr);
    1892           0 :         if (!pmd)
    1893             :                 goto out;
    1894             : 
    1895           0 :         pages_to_write_in_pmd = min_t(unsigned long,
    1896             :                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
    1897             : 
    1898             :         /* Allocate the PTE if necessary; takes PMD lock once only. */
    1899           0 :         ret = -ENOMEM;
    1900           0 :         if (pte_alloc(mm, pmd))
    1901             :                 goto out;
    1902             : 
    1903           0 :         while (pages_to_write_in_pmd) {
    1904           0 :                 int pte_idx = 0;
    1905           0 :                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
    1906             : 
    1907           0 :                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
    1908           0 :                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
    1909           0 :                         int err = insert_page_in_batch_locked(vma, pte,
    1910           0 :                                 addr, pages[curr_page_idx], prot);
    1911           0 :                         if (unlikely(err)) {
    1912           0 :                                 pte_unmap_unlock(start_pte, pte_lock);
    1913           0 :                                 ret = err;
    1914           0 :                                 remaining_pages_total -= pte_idx;
    1915           0 :                                 goto out;
    1916             :                         }
    1917           0 :                         addr += PAGE_SIZE;
    1918           0 :                         ++curr_page_idx;
    1919             :                 }
    1920           0 :                 pte_unmap_unlock(start_pte, pte_lock);
    1921           0 :                 pages_to_write_in_pmd -= batch_size;
    1922           0 :                 remaining_pages_total -= batch_size;
    1923             :         }
    1924           0 :         if (remaining_pages_total)
    1925             :                 goto more;
    1926             :         ret = 0;
    1927             : out:
    1928           0 :         *num = remaining_pages_total;
    1929           0 :         return ret;
    1930             : }
    1931             : #endif  /* ifdef pte_index */
    1932             : 
    1933             : /**
    1934             :  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
    1935             :  * @vma: user vma to map to
    1936             :  * @addr: target start user address of these pages
    1937             :  * @pages: source kernel pages
    1938             :  * @num: in: number of pages to map. out: number of pages that were *not*
    1939             :  * mapped. (0 means all pages were successfully mapped).
    1940             :  *
    1941             :  * Preferred over vm_insert_page() when inserting multiple pages.
    1942             :  *
    1943             :  * In case of error, we may have mapped a subset of the provided
    1944             :  * pages. It is the caller's responsibility to account for this case.
    1945             :  *
    1946             :  * The same restrictions apply as in vm_insert_page().
    1947             :  */
    1948           0 : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1949             :                         struct page **pages, unsigned long *num)
    1950             : {
    1951             : #ifdef pte_index
    1952           0 :         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
    1953             : 
    1954           0 :         if (addr < vma->vm_start || end_addr >= vma->vm_end)
    1955             :                 return -EFAULT;
    1956           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    1957           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    1958           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    1959           0 :                 vm_flags_set(vma, VM_MIXEDMAP);
    1960             :         }
    1961             :         /* Defer page refcount checking till we're about to map that page. */
    1962           0 :         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
    1963             : #else
    1964             :         unsigned long idx = 0, pgcount = *num;
    1965             :         int err = -EINVAL;
    1966             : 
    1967             :         for (; idx < pgcount; ++idx) {
    1968             :                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
    1969             :                 if (err)
    1970             :                         break;
    1971             :         }
    1972             :         *num = pgcount - idx;
    1973             :         return err;
    1974             : #endif  /* ifdef pte_index */
    1975             : }
    1976             : EXPORT_SYMBOL(vm_insert_pages);
    1977             : 
    1978             : /**
    1979             :  * vm_insert_page - insert single page into user vma
    1980             :  * @vma: user vma to map to
    1981             :  * @addr: target user address of this page
    1982             :  * @page: source kernel page
    1983             :  *
    1984             :  * This allows drivers to insert individual pages they've allocated
    1985             :  * into a user vma.
    1986             :  *
    1987             :  * The page has to be a nice clean _individual_ kernel allocation.
    1988             :  * If you allocate a compound page, you need to have marked it as
    1989             :  * such (__GFP_COMP), or manually just split the page up yourself
    1990             :  * (see split_page()).
    1991             :  *
    1992             :  * NOTE! Traditionally this was done with "remap_pfn_range()" which
    1993             :  * took an arbitrary page protection parameter. This doesn't allow
    1994             :  * that. Your vma protection will have to be set up correctly, which
    1995             :  * means that if you want a shared writable mapping, you'd better
    1996             :  * ask for a shared writable mapping!
    1997             :  *
    1998             :  * The page does not need to be reserved.
    1999             :  *
    2000             :  * Usually this function is called from f_op->mmap() handler
    2001             :  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
    2002             :  * Caller must set VM_MIXEDMAP on vma if it wants to call this
    2003             :  * function from other places, for example from page-fault handler.
    2004             :  *
    2005             :  * Return: %0 on success, negative error code otherwise.
    2006             :  */
    2007           0 : int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
    2008             :                         struct page *page)
    2009             : {
    2010           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2011             :                 return -EFAULT;
    2012           0 :         if (!page_count(page))
    2013             :                 return -EINVAL;
    2014           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    2015           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    2016           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    2017           0 :                 vm_flags_set(vma, VM_MIXEDMAP);
    2018             :         }
    2019           0 :         return insert_page(vma, addr, page, vma->vm_page_prot);
    2020             : }
    2021             : EXPORT_SYMBOL(vm_insert_page);
    2022             : 
    2023             : /*
    2024             :  * __vm_map_pages - maps range of kernel pages into user vma
    2025             :  * @vma: user vma to map to
    2026             :  * @pages: pointer to array of source kernel pages
    2027             :  * @num: number of pages in page array
    2028             :  * @offset: user's requested vm_pgoff
    2029             :  *
    2030             :  * This allows drivers to map range of kernel pages into a user vma.
    2031             :  *
    2032             :  * Return: 0 on success and error code otherwise.
    2033             :  */
    2034           0 : static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2035             :                                 unsigned long num, unsigned long offset)
    2036             : {
    2037           0 :         unsigned long count = vma_pages(vma);
    2038           0 :         unsigned long uaddr = vma->vm_start;
    2039             :         int ret, i;
    2040             : 
    2041             :         /* Fail if the user requested offset is beyond the end of the object */
    2042           0 :         if (offset >= num)
    2043             :                 return -ENXIO;
    2044             : 
    2045             :         /* Fail if the user requested size exceeds available object size */
    2046           0 :         if (count > num - offset)
    2047             :                 return -ENXIO;
    2048             : 
    2049           0 :         for (i = 0; i < count; i++) {
    2050           0 :                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
    2051           0 :                 if (ret < 0)
    2052             :                         return ret;
    2053           0 :                 uaddr += PAGE_SIZE;
    2054             :         }
    2055             : 
    2056             :         return 0;
    2057             : }
    2058             : 
    2059             : /**
    2060             :  * vm_map_pages - maps range of kernel pages starts with non zero offset
    2061             :  * @vma: user vma to map to
    2062             :  * @pages: pointer to array of source kernel pages
    2063             :  * @num: number of pages in page array
    2064             :  *
    2065             :  * Maps an object consisting of @num pages, catering for the user's
    2066             :  * requested vm_pgoff
    2067             :  *
    2068             :  * If we fail to insert any page into the vma, the function will return
    2069             :  * immediately leaving any previously inserted pages present.  Callers
    2070             :  * from the mmap handler may immediately return the error as their caller
    2071             :  * will destroy the vma, removing any successfully inserted pages. Other
    2072             :  * callers should make their own arrangements for calling unmap_region().
    2073             :  *
    2074             :  * Context: Process context. Called by mmap handlers.
    2075             :  * Return: 0 on success and error code otherwise.
    2076             :  */
    2077           0 : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2078             :                                 unsigned long num)
    2079             : {
    2080           0 :         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
    2081             : }
    2082             : EXPORT_SYMBOL(vm_map_pages);
    2083             : 
    2084             : /**
    2085             :  * vm_map_pages_zero - map range of kernel pages starts with zero offset
    2086             :  * @vma: user vma to map to
    2087             :  * @pages: pointer to array of source kernel pages
    2088             :  * @num: number of pages in page array
    2089             :  *
    2090             :  * Similar to vm_map_pages(), except that it explicitly sets the offset
    2091             :  * to 0. This function is intended for the drivers that did not consider
    2092             :  * vm_pgoff.
    2093             :  *
    2094             :  * Context: Process context. Called by mmap handlers.
    2095             :  * Return: 0 on success and error code otherwise.
    2096             :  */
    2097           0 : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    2098             :                                 unsigned long num)
    2099             : {
    2100           0 :         return __vm_map_pages(vma, pages, num, 0);
    2101             : }
    2102             : EXPORT_SYMBOL(vm_map_pages_zero);
    2103             : 
    2104           0 : static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2105             :                         pfn_t pfn, pgprot_t prot, bool mkwrite)
    2106             : {
    2107           0 :         struct mm_struct *mm = vma->vm_mm;
    2108             :         pte_t *pte, entry;
    2109             :         spinlock_t *ptl;
    2110             : 
    2111           0 :         pte = get_locked_pte(mm, addr, &ptl);
    2112           0 :         if (!pte)
    2113             :                 return VM_FAULT_OOM;
    2114           0 :         if (!pte_none(*pte)) {
    2115           0 :                 if (mkwrite) {
    2116             :                         /*
    2117             :                          * For read faults on private mappings the PFN passed
    2118             :                          * in may not match the PFN we have mapped if the
    2119             :                          * mapped PFN is a writeable COW page.  In the mkwrite
    2120             :                          * case we are creating a writable PTE for a shared
    2121             :                          * mapping and we expect the PFNs to match. If they
    2122             :                          * don't match, we are likely racing with block
    2123             :                          * allocation and mapping invalidation so just skip the
    2124             :                          * update.
    2125             :                          */
    2126           0 :                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
    2127           0 :                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
    2128             :                                 goto out_unlock;
    2129             :                         }
    2130           0 :                         entry = pte_mkyoung(*pte);
    2131           0 :                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2132           0 :                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
    2133             :                                 update_mmu_cache(vma, addr, pte);
    2134             :                 }
    2135             :                 goto out_unlock;
    2136             :         }
    2137             : 
    2138             :         /* Ok, finally just insert the thing.. */
    2139           0 :         if (pfn_t_devmap(pfn))
    2140             :                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
    2141             :         else
    2142           0 :                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
    2143             : 
    2144           0 :         if (mkwrite) {
    2145           0 :                 entry = pte_mkyoung(entry);
    2146           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2147             :         }
    2148             : 
    2149           0 :         set_pte_at(mm, addr, pte, entry);
    2150             :         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
    2151             : 
    2152             : out_unlock:
    2153           0 :         pte_unmap_unlock(pte, ptl);
    2154           0 :         return VM_FAULT_NOPAGE;
    2155             : }
    2156             : 
    2157             : /**
    2158             :  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
    2159             :  * @vma: user vma to map to
    2160             :  * @addr: target user address of this page
    2161             :  * @pfn: source kernel pfn
    2162             :  * @pgprot: pgprot flags for the inserted page
    2163             :  *
    2164             :  * This is exactly like vmf_insert_pfn(), except that it allows drivers
    2165             :  * to override pgprot on a per-page basis.
    2166             :  *
    2167             :  * This only makes sense for IO mappings, and it makes no sense for
    2168             :  * COW mappings.  In general, using multiple vmas is preferable;
    2169             :  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
    2170             :  * impractical.
    2171             :  *
    2172             :  * pgprot typically only differs from @vma->vm_page_prot when drivers set
    2173             :  * caching- and encryption bits different than those of @vma->vm_page_prot,
    2174             :  * because the caching- or encryption mode may not be known at mmap() time.
    2175             :  *
    2176             :  * This is ok as long as @vma->vm_page_prot is not used by the core vm
    2177             :  * to set caching and encryption bits for those vmas (except for COW pages).
    2178             :  * This is ensured by core vm only modifying these page table entries using
    2179             :  * functions that don't touch caching- or encryption bits, using pte_modify()
    2180             :  * if needed. (See for example mprotect()).
    2181             :  *
    2182             :  * Also when new page-table entries are created, this is only done using the
    2183             :  * fault() callback, and never using the value of vma->vm_page_prot,
    2184             :  * except for page-table entries that point to anonymous pages as the result
    2185             :  * of COW.
    2186             :  *
    2187             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2188             :  * Return: vm_fault_t value.
    2189             :  */
    2190           0 : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
    2191             :                         unsigned long pfn, pgprot_t pgprot)
    2192             : {
    2193             :         /*
    2194             :          * Technically, architectures with pte_special can avoid all these
    2195             :          * restrictions (same for remap_pfn_range).  However we would like
    2196             :          * consistency in testing and feature parity among all, so we should
    2197             :          * try to keep these invariants in place for everybody.
    2198             :          */
    2199           0 :         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
    2200           0 :         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
    2201             :                                                 (VM_PFNMAP|VM_MIXEDMAP));
    2202           0 :         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
    2203           0 :         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
    2204             : 
    2205           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2206             :                 return VM_FAULT_SIGBUS;
    2207             : 
    2208           0 :         if (!pfn_modify_allowed(pfn, pgprot))
    2209             :                 return VM_FAULT_SIGBUS;
    2210             : 
    2211           0 :         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
    2212             : 
    2213           0 :         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
    2214             :                         false);
    2215             : }
    2216             : EXPORT_SYMBOL(vmf_insert_pfn_prot);
    2217             : 
    2218             : /**
    2219             :  * vmf_insert_pfn - insert single pfn into user vma
    2220             :  * @vma: user vma to map to
    2221             :  * @addr: target user address of this page
    2222             :  * @pfn: source kernel pfn
    2223             :  *
    2224             :  * Similar to vm_insert_page, this allows drivers to insert individual pages
    2225             :  * they've allocated into a user vma. Same comments apply.
    2226             :  *
    2227             :  * This function should only be called from a vm_ops->fault handler, and
    2228             :  * in that case the handler should return the result of this function.
    2229             :  *
    2230             :  * vma cannot be a COW mapping.
    2231             :  *
    2232             :  * As this is called only for pages that do not currently exist, we
    2233             :  * do not need to flush old virtual caches or the TLB.
    2234             :  *
    2235             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2236             :  * Return: vm_fault_t value.
    2237             :  */
    2238           0 : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2239             :                         unsigned long pfn)
    2240             : {
    2241           0 :         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
    2242             : }
    2243             : EXPORT_SYMBOL(vmf_insert_pfn);
    2244             : 
    2245             : static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
    2246             : {
    2247             :         /* these checks mirror the abort conditions in vm_normal_page */
    2248           0 :         if (vma->vm_flags & VM_MIXEDMAP)
    2249             :                 return true;
    2250           0 :         if (pfn_t_devmap(pfn))
    2251             :                 return true;
    2252           0 :         if (pfn_t_special(pfn))
    2253             :                 return true;
    2254           0 :         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
    2255             :                 return true;
    2256             :         return false;
    2257             : }
    2258             : 
    2259           0 : static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
    2260             :                 unsigned long addr, pfn_t pfn, bool mkwrite)
    2261             : {
    2262           0 :         pgprot_t pgprot = vma->vm_page_prot;
    2263             :         int err;
    2264             : 
    2265           0 :         BUG_ON(!vm_mixed_ok(vma, pfn));
    2266             : 
    2267           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2268             :                 return VM_FAULT_SIGBUS;
    2269             : 
    2270           0 :         track_pfn_insert(vma, &pgprot, pfn);
    2271             : 
    2272           0 :         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
    2273             :                 return VM_FAULT_SIGBUS;
    2274             : 
    2275             :         /*
    2276             :          * If we don't have pte special, then we have to use the pfn_valid()
    2277             :          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
    2278             :          * refcount the page if pfn_valid is true (hence insert_page rather
    2279             :          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
    2280             :          * without pte special, it would there be refcounted as a normal page.
    2281             :          */
    2282             :         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
    2283           0 :             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
    2284             :                 struct page *page;
    2285             : 
    2286             :                 /*
    2287             :                  * At this point we are committed to insert_page()
    2288             :                  * regardless of whether the caller specified flags that
    2289             :                  * result in pfn_t_has_page() == false.
    2290             :                  */
    2291           0 :                 page = pfn_to_page(pfn_t_to_pfn(pfn));
    2292           0 :                 err = insert_page(vma, addr, page, pgprot);
    2293             :         } else {
    2294           0 :                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
    2295             :         }
    2296             : 
    2297           0 :         if (err == -ENOMEM)
    2298             :                 return VM_FAULT_OOM;
    2299           0 :         if (err < 0 && err != -EBUSY)
    2300             :                 return VM_FAULT_SIGBUS;
    2301             : 
    2302           0 :         return VM_FAULT_NOPAGE;
    2303             : }
    2304             : 
    2305           0 : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    2306             :                 pfn_t pfn)
    2307             : {
    2308           0 :         return __vm_insert_mixed(vma, addr, pfn, false);
    2309             : }
    2310             : EXPORT_SYMBOL(vmf_insert_mixed);
    2311             : 
    2312             : /*
    2313             :  *  If the insertion of PTE failed because someone else already added a
    2314             :  *  different entry in the mean time, we treat that as success as we assume
    2315             :  *  the same entry was actually inserted.
    2316             :  */
    2317           0 : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
    2318             :                 unsigned long addr, pfn_t pfn)
    2319             : {
    2320           0 :         return __vm_insert_mixed(vma, addr, pfn, true);
    2321             : }
    2322             : EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
    2323             : 
    2324             : /*
    2325             :  * maps a range of physical memory into the requested pages. the old
    2326             :  * mappings are removed. any references to nonexistent pages results
    2327             :  * in null mappings (currently treated as "copy-on-access")
    2328             :  */
    2329           0 : static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2330             :                         unsigned long addr, unsigned long end,
    2331             :                         unsigned long pfn, pgprot_t prot)
    2332             : {
    2333             :         pte_t *pte, *mapped_pte;
    2334             :         spinlock_t *ptl;
    2335           0 :         int err = 0;
    2336             : 
    2337           0 :         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2338           0 :         if (!pte)
    2339             :                 return -ENOMEM;
    2340             :         arch_enter_lazy_mmu_mode();
    2341             :         do {
    2342           0 :                 BUG_ON(!pte_none(*pte));
    2343           0 :                 if (!pfn_modify_allowed(pfn, prot)) {
    2344             :                         err = -EACCES;
    2345             :                         break;
    2346             :                 }
    2347           0 :                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
    2348           0 :                 pfn++;
    2349           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    2350             :         arch_leave_lazy_mmu_mode();
    2351           0 :         pte_unmap_unlock(mapped_pte, ptl);
    2352           0 :         return err;
    2353             : }
    2354             : 
    2355           0 : static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
    2356             :                         unsigned long addr, unsigned long end,
    2357             :                         unsigned long pfn, pgprot_t prot)
    2358             : {
    2359             :         pmd_t *pmd;
    2360             :         unsigned long next;
    2361             :         int err;
    2362             : 
    2363           0 :         pfn -= addr >> PAGE_SHIFT;
    2364           0 :         pmd = pmd_alloc(mm, pud, addr);
    2365           0 :         if (!pmd)
    2366             :                 return -ENOMEM;
    2367             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    2368             :         do {
    2369           0 :                 next = pmd_addr_end(addr, end);
    2370           0 :                 err = remap_pte_range(mm, pmd, addr, next,
    2371           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2372           0 :                 if (err)
    2373             :                         return err;
    2374           0 :         } while (pmd++, addr = next, addr != end);
    2375             :         return 0;
    2376             : }
    2377             : 
    2378             : static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2379             :                         unsigned long addr, unsigned long end,
    2380             :                         unsigned long pfn, pgprot_t prot)
    2381             : {
    2382             :         pud_t *pud;
    2383             :         unsigned long next;
    2384             :         int err;
    2385             : 
    2386           0 :         pfn -= addr >> PAGE_SHIFT;
    2387           0 :         pud = pud_alloc(mm, p4d, addr);
    2388             :         if (!pud)
    2389             :                 return -ENOMEM;
    2390             :         do {
    2391           0 :                 next = pud_addr_end(addr, end);
    2392           0 :                 err = remap_pmd_range(mm, pud, addr, next,
    2393             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2394           0 :                 if (err)
    2395             :                         return err;
    2396           0 :         } while (pud++, addr = next, addr != end);
    2397             :         return 0;
    2398             : }
    2399             : 
    2400           0 : static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2401             :                         unsigned long addr, unsigned long end,
    2402             :                         unsigned long pfn, pgprot_t prot)
    2403             : {
    2404             :         p4d_t *p4d;
    2405             :         unsigned long next;
    2406             :         int err;
    2407             : 
    2408           0 :         pfn -= addr >> PAGE_SHIFT;
    2409           0 :         p4d = p4d_alloc(mm, pgd, addr);
    2410           0 :         if (!p4d)
    2411             :                 return -ENOMEM;
    2412             :         do {
    2413           0 :                 next = p4d_addr_end(addr, end);
    2414           0 :                 err = remap_pud_range(mm, p4d, addr, next,
    2415             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2416           0 :                 if (err)
    2417             :                         return err;
    2418           0 :         } while (p4d++, addr = next, addr != end);
    2419           0 :         return 0;
    2420             : }
    2421             : 
    2422             : /*
    2423             :  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
    2424             :  * must have pre-validated the caching bits of the pgprot_t.
    2425             :  */
    2426           0 : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
    2427             :                 unsigned long pfn, unsigned long size, pgprot_t prot)
    2428             : {
    2429             :         pgd_t *pgd;
    2430             :         unsigned long next;
    2431           0 :         unsigned long end = addr + PAGE_ALIGN(size);
    2432           0 :         struct mm_struct *mm = vma->vm_mm;
    2433             :         int err;
    2434             : 
    2435           0 :         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
    2436             :                 return -EINVAL;
    2437             : 
    2438             :         /*
    2439             :          * Physically remapped pages are special. Tell the
    2440             :          * rest of the world about it:
    2441             :          *   VM_IO tells people not to look at these pages
    2442             :          *      (accesses can have side effects).
    2443             :          *   VM_PFNMAP tells the core MM that the base pages are just
    2444             :          *      raw PFN mappings, and do not have a "struct page" associated
    2445             :          *      with them.
    2446             :          *   VM_DONTEXPAND
    2447             :          *      Disable vma merging and expanding with mremap().
    2448             :          *   VM_DONTDUMP
    2449             :          *      Omit vma from core dump, even when VM_IO turned off.
    2450             :          *
    2451             :          * There's a horrible special case to handle copy-on-write
    2452             :          * behaviour that some programs depend on. We mark the "original"
    2453             :          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
    2454             :          * See vm_normal_page() for details.
    2455             :          */
    2456           0 :         if (is_cow_mapping(vma->vm_flags)) {
    2457           0 :                 if (addr != vma->vm_start || end != vma->vm_end)
    2458             :                         return -EINVAL;
    2459           0 :                 vma->vm_pgoff = pfn;
    2460             :         }
    2461             : 
    2462           0 :         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
    2463             : 
    2464           0 :         BUG_ON(addr >= end);
    2465           0 :         pfn -= addr >> PAGE_SHIFT;
    2466           0 :         pgd = pgd_offset(mm, addr);
    2467           0 :         flush_cache_range(vma, addr, end);
    2468             :         do {
    2469           0 :                 next = pgd_addr_end(addr, end);
    2470           0 :                 err = remap_p4d_range(mm, pgd, addr, next,
    2471           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2472           0 :                 if (err)
    2473             :                         return err;
    2474           0 :         } while (pgd++, addr = next, addr != end);
    2475             : 
    2476             :         return 0;
    2477             : }
    2478             : 
    2479             : /**
    2480             :  * remap_pfn_range - remap kernel memory to userspace
    2481             :  * @vma: user vma to map to
    2482             :  * @addr: target page aligned user address to start at
    2483             :  * @pfn: page frame number of kernel physical memory address
    2484             :  * @size: size of mapping area
    2485             :  * @prot: page protection flags for this mapping
    2486             :  *
    2487             :  * Note: this is only safe if the mm semaphore is held when called.
    2488             :  *
    2489             :  * Return: %0 on success, negative error code otherwise.
    2490             :  */
    2491           0 : int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
    2492             :                     unsigned long pfn, unsigned long size, pgprot_t prot)
    2493             : {
    2494             :         int err;
    2495             : 
    2496           0 :         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
    2497             :         if (err)
    2498             :                 return -EINVAL;
    2499             : 
    2500           0 :         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
    2501             :         if (err)
    2502             :                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
    2503             :         return err;
    2504             : }
    2505             : EXPORT_SYMBOL(remap_pfn_range);
    2506             : 
    2507             : /**
    2508             :  * vm_iomap_memory - remap memory to userspace
    2509             :  * @vma: user vma to map to
    2510             :  * @start: start of the physical memory to be mapped
    2511             :  * @len: size of area
    2512             :  *
    2513             :  * This is a simplified io_remap_pfn_range() for common driver use. The
    2514             :  * driver just needs to give us the physical memory range to be mapped,
    2515             :  * we'll figure out the rest from the vma information.
    2516             :  *
    2517             :  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
    2518             :  * whatever write-combining details or similar.
    2519             :  *
    2520             :  * Return: %0 on success, negative error code otherwise.
    2521             :  */
    2522           0 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
    2523             : {
    2524             :         unsigned long vm_len, pfn, pages;
    2525             : 
    2526             :         /* Check that the physical memory area passed in looks valid */
    2527           0 :         if (start + len < start)
    2528             :                 return -EINVAL;
    2529             :         /*
    2530             :          * You *really* shouldn't map things that aren't page-aligned,
    2531             :          * but we've historically allowed it because IO memory might
    2532             :          * just have smaller alignment.
    2533             :          */
    2534           0 :         len += start & ~PAGE_MASK;
    2535           0 :         pfn = start >> PAGE_SHIFT;
    2536           0 :         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
    2537           0 :         if (pfn + pages < pfn)
    2538             :                 return -EINVAL;
    2539             : 
    2540             :         /* We start the mapping 'vm_pgoff' pages into the area */
    2541           0 :         if (vma->vm_pgoff > pages)
    2542             :                 return -EINVAL;
    2543           0 :         pfn += vma->vm_pgoff;
    2544           0 :         pages -= vma->vm_pgoff;
    2545             : 
    2546             :         /* Can we fit all of the mapping? */
    2547           0 :         vm_len = vma->vm_end - vma->vm_start;
    2548           0 :         if (vm_len >> PAGE_SHIFT > pages)
    2549             :                 return -EINVAL;
    2550             : 
    2551             :         /* Ok, let it rip */
    2552           0 :         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
    2553             : }
    2554             : EXPORT_SYMBOL(vm_iomap_memory);
    2555             : 
    2556           0 : static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2557             :                                      unsigned long addr, unsigned long end,
    2558             :                                      pte_fn_t fn, void *data, bool create,
    2559             :                                      pgtbl_mod_mask *mask)
    2560             : {
    2561             :         pte_t *pte, *mapped_pte;
    2562           0 :         int err = 0;
    2563             :         spinlock_t *ptl;
    2564             : 
    2565           0 :         if (create) {
    2566           0 :                 mapped_pte = pte = (mm == &init_mm) ?
    2567           0 :                         pte_alloc_kernel_track(pmd, addr, mask) :
    2568           0 :                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2569           0 :                 if (!pte)
    2570             :                         return -ENOMEM;
    2571             :         } else {
    2572             :                 mapped_pte = pte = (mm == &init_mm) ?
    2573           0 :                         pte_offset_kernel(pmd, addr) :
    2574           0 :                         pte_offset_map_lock(mm, pmd, addr, &ptl);
    2575             :         }
    2576             : 
    2577           0 :         BUG_ON(pmd_huge(*pmd));
    2578             : 
    2579             :         arch_enter_lazy_mmu_mode();
    2580             : 
    2581           0 :         if (fn) {
    2582             :                 do {
    2583           0 :                         if (create || !pte_none(*pte)) {
    2584           0 :                                 err = fn(pte++, addr, data);
    2585           0 :                                 if (err)
    2586             :                                         break;
    2587             :                         }
    2588           0 :                 } while (addr += PAGE_SIZE, addr != end);
    2589             :         }
    2590           0 :         *mask |= PGTBL_PTE_MODIFIED;
    2591             : 
    2592             :         arch_leave_lazy_mmu_mode();
    2593             : 
    2594           0 :         if (mm != &init_mm)
    2595           0 :                 pte_unmap_unlock(mapped_pte, ptl);
    2596             :         return err;
    2597             : }
    2598             : 
    2599           0 : static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
    2600             :                                      unsigned long addr, unsigned long end,
    2601             :                                      pte_fn_t fn, void *data, bool create,
    2602             :                                      pgtbl_mod_mask *mask)
    2603             : {
    2604             :         pmd_t *pmd;
    2605             :         unsigned long next;
    2606           0 :         int err = 0;
    2607             : 
    2608           0 :         BUG_ON(pud_huge(*pud));
    2609             : 
    2610           0 :         if (create) {
    2611           0 :                 pmd = pmd_alloc_track(mm, pud, addr, mask);
    2612           0 :                 if (!pmd)
    2613             :                         return -ENOMEM;
    2614             :         } else {
    2615           0 :                 pmd = pmd_offset(pud, addr);
    2616             :         }
    2617             :         do {
    2618           0 :                 next = pmd_addr_end(addr, end);
    2619           0 :                 if (pmd_none(*pmd) && !create)
    2620           0 :                         continue;
    2621           0 :                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
    2622             :                         return -EINVAL;
    2623           0 :                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
    2624           0 :                         if (!create)
    2625           0 :                                 continue;
    2626           0 :                         pmd_clear_bad(pmd);
    2627             :                 }
    2628           0 :                 err = apply_to_pte_range(mm, pmd, addr, next,
    2629             :                                          fn, data, create, mask);
    2630           0 :                 if (err)
    2631             :                         break;
    2632           0 :         } while (pmd++, addr = next, addr != end);
    2633             : 
    2634             :         return err;
    2635             : }
    2636             : 
    2637           0 : static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2638             :                                      unsigned long addr, unsigned long end,
    2639             :                                      pte_fn_t fn, void *data, bool create,
    2640             :                                      pgtbl_mod_mask *mask)
    2641             : {
    2642             :         pud_t *pud;
    2643             :         unsigned long next;
    2644           0 :         int err = 0;
    2645             : 
    2646           0 :         if (create) {
    2647           0 :                 pud = pud_alloc_track(mm, p4d, addr, mask);
    2648           0 :                 if (!pud)
    2649             :                         return -ENOMEM;
    2650             :         } else {
    2651             :                 pud = pud_offset(p4d, addr);
    2652             :         }
    2653             :         do {
    2654           0 :                 next = pud_addr_end(addr, end);
    2655           0 :                 if (pud_none(*pud) && !create)
    2656           0 :                         continue;
    2657           0 :                 if (WARN_ON_ONCE(pud_leaf(*pud)))
    2658             :                         return -EINVAL;
    2659           0 :                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
    2660           0 :                         if (!create)
    2661           0 :                                 continue;
    2662             :                         pud_clear_bad(pud);
    2663             :                 }
    2664           0 :                 err = apply_to_pmd_range(mm, pud, addr, next,
    2665             :                                          fn, data, create, mask);
    2666           0 :                 if (err)
    2667             :                         break;
    2668           0 :         } while (pud++, addr = next, addr != end);
    2669             : 
    2670             :         return err;
    2671             : }
    2672             : 
    2673             : static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2674             :                                      unsigned long addr, unsigned long end,
    2675             :                                      pte_fn_t fn, void *data, bool create,
    2676             :                                      pgtbl_mod_mask *mask)
    2677             : {
    2678             :         p4d_t *p4d;
    2679             :         unsigned long next;
    2680           0 :         int err = 0;
    2681             : 
    2682           0 :         if (create) {
    2683           0 :                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
    2684           0 :                 if (!p4d)
    2685             :                         return -ENOMEM;
    2686             :         } else {
    2687             :                 p4d = p4d_offset(pgd, addr);
    2688             :         }
    2689             :         do {
    2690           0 :                 next = p4d_addr_end(addr, end);
    2691           0 :                 if (p4d_none(*p4d) && !create)
    2692             :                         continue;
    2693           0 :                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
    2694             :                         return -EINVAL;
    2695           0 :                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
    2696             :                         if (!create)
    2697             :                                 continue;
    2698             :                         p4d_clear_bad(p4d);
    2699             :                 }
    2700           0 :                 err = apply_to_pud_range(mm, p4d, addr, next,
    2701             :                                          fn, data, create, mask);
    2702             :                 if (err)
    2703             :                         break;
    2704             :         } while (p4d++, addr = next, addr != end);
    2705             : 
    2706             :         return err;
    2707             : }
    2708             : 
    2709           0 : static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2710             :                                  unsigned long size, pte_fn_t fn,
    2711             :                                  void *data, bool create)
    2712             : {
    2713             :         pgd_t *pgd;
    2714           0 :         unsigned long start = addr, next;
    2715           0 :         unsigned long end = addr + size;
    2716           0 :         pgtbl_mod_mask mask = 0;
    2717           0 :         int err = 0;
    2718             : 
    2719           0 :         if (WARN_ON(addr >= end))
    2720             :                 return -EINVAL;
    2721             : 
    2722           0 :         pgd = pgd_offset(mm, addr);
    2723             :         do {
    2724           0 :                 next = pgd_addr_end(addr, end);
    2725           0 :                 if (pgd_none(*pgd) && !create)
    2726             :                         continue;
    2727           0 :                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
    2728             :                         return -EINVAL;
    2729           0 :                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
    2730             :                         if (!create)
    2731             :                                 continue;
    2732             :                         pgd_clear_bad(pgd);
    2733             :                 }
    2734           0 :                 err = apply_to_p4d_range(mm, pgd, addr, next,
    2735             :                                          fn, data, create, &mask);
    2736           0 :                 if (err)
    2737             :                         break;
    2738           0 :         } while (pgd++, addr = next, addr != end);
    2739             : 
    2740             :         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
    2741             :                 arch_sync_kernel_mappings(start, start + size);
    2742             : 
    2743             :         return err;
    2744             : }
    2745             : 
    2746             : /*
    2747             :  * Scan a region of virtual memory, filling in page tables as necessary
    2748             :  * and calling a provided function on each leaf page table.
    2749             :  */
    2750           0 : int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2751             :                         unsigned long size, pte_fn_t fn, void *data)
    2752             : {
    2753           0 :         return __apply_to_page_range(mm, addr, size, fn, data, true);
    2754             : }
    2755             : EXPORT_SYMBOL_GPL(apply_to_page_range);
    2756             : 
    2757             : /*
    2758             :  * Scan a region of virtual memory, calling a provided function on
    2759             :  * each leaf page table where it exists.
    2760             :  *
    2761             :  * Unlike apply_to_page_range, this does _not_ fill in page tables
    2762             :  * where they are absent.
    2763             :  */
    2764           0 : int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
    2765             :                                  unsigned long size, pte_fn_t fn, void *data)
    2766             : {
    2767           0 :         return __apply_to_page_range(mm, addr, size, fn, data, false);
    2768             : }
    2769             : EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
    2770             : 
    2771             : /*
    2772             :  * handle_pte_fault chooses page fault handler according to an entry which was
    2773             :  * read non-atomically.  Before making any commitment, on those architectures
    2774             :  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
    2775             :  * parts, do_swap_page must check under lock before unmapping the pte and
    2776             :  * proceeding (but do_wp_page is only called after already making such a check;
    2777             :  * and do_anonymous_page can safely check later on).
    2778             :  */
    2779             : static inline int pte_unmap_same(struct vm_fault *vmf)
    2780             : {
    2781           0 :         int same = 1;
    2782             : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
    2783             :         if (sizeof(pte_t) > sizeof(unsigned long)) {
    2784             :                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    2785             :                 spin_lock(ptl);
    2786             :                 same = pte_same(*vmf->pte, vmf->orig_pte);
    2787             :                 spin_unlock(ptl);
    2788             :         }
    2789             : #endif
    2790             :         pte_unmap(vmf->pte);
    2791           0 :         vmf->pte = NULL;
    2792             :         return same;
    2793             : }
    2794             : 
    2795             : /*
    2796             :  * Return:
    2797             :  *      0:              copied succeeded
    2798             :  *      -EHWPOISON:     copy failed due to hwpoison in source page
    2799             :  *      -EAGAIN:        copied failed (some other reason)
    2800             :  */
    2801           0 : static inline int __wp_page_copy_user(struct page *dst, struct page *src,
    2802             :                                       struct vm_fault *vmf)
    2803             : {
    2804             :         int ret;
    2805             :         void *kaddr;
    2806             :         void __user *uaddr;
    2807           0 :         bool locked = false;
    2808           0 :         struct vm_area_struct *vma = vmf->vma;
    2809           0 :         struct mm_struct *mm = vma->vm_mm;
    2810           0 :         unsigned long addr = vmf->address;
    2811             : 
    2812           0 :         if (likely(src)) {
    2813           0 :                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
    2814             :                         memory_failure_queue(page_to_pfn(src), 0);
    2815             :                         return -EHWPOISON;
    2816             :                 }
    2817           0 :                 return 0;
    2818             :         }
    2819             : 
    2820             :         /*
    2821             :          * If the source page was a PFN mapping, we don't have
    2822             :          * a "struct page" for it. We do a best-effort copy by
    2823             :          * just copying from the original user address. If that
    2824             :          * fails, we just zero-fill it. Live with it.
    2825             :          */
    2826           0 :         kaddr = kmap_atomic(dst);
    2827           0 :         uaddr = (void __user *)(addr & PAGE_MASK);
    2828             : 
    2829             :         /*
    2830             :          * On architectures with software "accessed" bits, we would
    2831             :          * take a double page fault, so mark it accessed here.
    2832             :          */
    2833           0 :         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
    2834             :                 pte_t entry;
    2835             : 
    2836           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2837           0 :                 locked = true;
    2838           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2839             :                         /*
    2840             :                          * Other thread has already handled the fault
    2841             :                          * and update local tlb only
    2842             :                          */
    2843           0 :                         update_mmu_tlb(vma, addr, vmf->pte);
    2844           0 :                         ret = -EAGAIN;
    2845           0 :                         goto pte_unlock;
    2846             :                 }
    2847             : 
    2848           0 :                 entry = pte_mkyoung(vmf->orig_pte);
    2849           0 :                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
    2850             :                         update_mmu_cache(vma, addr, vmf->pte);
    2851             :         }
    2852             : 
    2853             :         /*
    2854             :          * This really shouldn't fail, because the page is there
    2855             :          * in the page tables. But it might just be unreadable,
    2856             :          * in which case we just give up and fill the result with
    2857             :          * zeroes.
    2858             :          */
    2859           0 :         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2860           0 :                 if (locked)
    2861             :                         goto warn;
    2862             : 
    2863             :                 /* Re-validate under PTL if the page is still mapped */
    2864           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2865           0 :                 locked = true;
    2866           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2867             :                         /* The PTE changed under us, update local tlb */
    2868             :                         update_mmu_tlb(vma, addr, vmf->pte);
    2869             :                         ret = -EAGAIN;
    2870             :                         goto pte_unlock;
    2871             :                 }
    2872             : 
    2873             :                 /*
    2874             :                  * The same page can be mapped back since last copy attempt.
    2875             :                  * Try to copy again under PTL.
    2876             :                  */
    2877           0 :                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2878             :                         /*
    2879             :                          * Give a warn in case there can be some obscure
    2880             :                          * use-case
    2881             :                          */
    2882             : warn:
    2883           0 :                         WARN_ON_ONCE(1);
    2884           0 :                         clear_page(kaddr);
    2885             :                 }
    2886             :         }
    2887             : 
    2888             :         ret = 0;
    2889             : 
    2890             : pte_unlock:
    2891           0 :         if (locked)
    2892           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    2893           0 :         kunmap_atomic(kaddr);
    2894           0 :         flush_dcache_page(dst);
    2895             : 
    2896           0 :         return ret;
    2897             : }
    2898             : 
    2899             : static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
    2900             : {
    2901           0 :         struct file *vm_file = vma->vm_file;
    2902             : 
    2903           0 :         if (vm_file)
    2904           0 :                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
    2905             : 
    2906             :         /*
    2907             :          * Special mappings (e.g. VDSO) do not have any file so fake
    2908             :          * a default GFP_KERNEL for them.
    2909             :          */
    2910             :         return GFP_KERNEL;
    2911             : }
    2912             : 
    2913             : /*
    2914             :  * Notify the address space that the page is about to become writable so that
    2915             :  * it can prohibit this or wait for the page to get into an appropriate state.
    2916             :  *
    2917             :  * We do this without the lock held, so that it can sleep if it needs to.
    2918             :  */
    2919           0 : static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
    2920             : {
    2921             :         vm_fault_t ret;
    2922           0 :         struct page *page = vmf->page;
    2923           0 :         unsigned int old_flags = vmf->flags;
    2924             : 
    2925           0 :         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
    2926             : 
    2927           0 :         if (vmf->vma->vm_file &&
    2928           0 :             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
    2929             :                 return VM_FAULT_SIGBUS;
    2930             : 
    2931           0 :         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
    2932             :         /* Restore original flags so that caller is not surprised */
    2933           0 :         vmf->flags = old_flags;
    2934           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
    2935             :                 return ret;
    2936           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
    2937           0 :                 lock_page(page);
    2938           0 :                 if (!page->mapping) {
    2939           0 :                         unlock_page(page);
    2940           0 :                         return 0; /* retry */
    2941             :                 }
    2942           0 :                 ret |= VM_FAULT_LOCKED;
    2943             :         } else
    2944             :                 VM_BUG_ON_PAGE(!PageLocked(page), page);
    2945             :         return ret;
    2946             : }
    2947             : 
    2948             : /*
    2949             :  * Handle dirtying of a page in shared file mapping on a write fault.
    2950             :  *
    2951             :  * The function expects the page to be locked and unlocks it.
    2952             :  */
    2953           0 : static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
    2954             : {
    2955           0 :         struct vm_area_struct *vma = vmf->vma;
    2956             :         struct address_space *mapping;
    2957           0 :         struct page *page = vmf->page;
    2958             :         bool dirtied;
    2959           0 :         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
    2960             : 
    2961           0 :         dirtied = set_page_dirty(page);
    2962             :         VM_BUG_ON_PAGE(PageAnon(page), page);
    2963             :         /*
    2964             :          * Take a local copy of the address_space - page.mapping may be zeroed
    2965             :          * by truncate after unlock_page().   The address_space itself remains
    2966             :          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
    2967             :          * release semantics to prevent the compiler from undoing this copying.
    2968             :          */
    2969           0 :         mapping = page_rmapping(page);
    2970           0 :         unlock_page(page);
    2971             : 
    2972           0 :         if (!page_mkwrite)
    2973           0 :                 file_update_time(vma->vm_file);
    2974             : 
    2975             :         /*
    2976             :          * Throttle page dirtying rate down to writeback speed.
    2977             :          *
    2978             :          * mapping may be NULL here because some device drivers do not
    2979             :          * set page.mapping but still dirty their pages
    2980             :          *
    2981             :          * Drop the mmap_lock before waiting on IO, if we can. The file
    2982             :          * is pinning the mapping, as per above.
    2983             :          */
    2984           0 :         if ((dirtied || page_mkwrite) && mapping) {
    2985             :                 struct file *fpin;
    2986             : 
    2987           0 :                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
    2988           0 :                 balance_dirty_pages_ratelimited(mapping);
    2989           0 :                 if (fpin) {
    2990           0 :                         fput(fpin);
    2991           0 :                         return VM_FAULT_COMPLETED;
    2992             :                 }
    2993             :         }
    2994             : 
    2995             :         return 0;
    2996             : }
    2997             : 
    2998             : /*
    2999             :  * Handle write page faults for pages that can be reused in the current vma
    3000             :  *
    3001             :  * This can happen either due to the mapping being with the VM_SHARED flag,
    3002             :  * or due to us being the last reference standing to the page. In either
    3003             :  * case, all we need to do here is to mark the page as writable and update
    3004             :  * any related book-keeping.
    3005             :  */
    3006           0 : static inline void wp_page_reuse(struct vm_fault *vmf)
    3007             :         __releases(vmf->ptl)
    3008             : {
    3009           0 :         struct vm_area_struct *vma = vmf->vma;
    3010           0 :         struct page *page = vmf->page;
    3011             :         pte_t entry;
    3012             : 
    3013             :         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
    3014             :         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
    3015             : 
    3016             :         /*
    3017             :          * Clear the pages cpupid information as the existing
    3018             :          * information potentially belongs to a now completely
    3019             :          * unrelated process.
    3020             :          */
    3021             :         if (page)
    3022             :                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
    3023             : 
    3024           0 :         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    3025           0 :         entry = pte_mkyoung(vmf->orig_pte);
    3026           0 :         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    3027           0 :         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
    3028             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3029           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3030           0 :         count_vm_event(PGREUSE);
    3031           0 : }
    3032             : 
    3033             : /*
    3034             :  * Handle the case of a page which we actually need to copy to a new page,
    3035             :  * either due to COW or unsharing.
    3036             :  *
    3037             :  * Called with mmap_lock locked and the old page referenced, but
    3038             :  * without the ptl held.
    3039             :  *
    3040             :  * High level logic flow:
    3041             :  *
    3042             :  * - Allocate a page, copy the content of the old page to the new one.
    3043             :  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
    3044             :  * - Take the PTL. If the pte changed, bail out and release the allocated page
    3045             :  * - If the pte is still the way we remember it, update the page table and all
    3046             :  *   relevant references. This includes dropping the reference the page-table
    3047             :  *   held to the old page, as well as updating the rmap.
    3048             :  * - In any case, unlock the PTL and drop the reference we took to the old page.
    3049             :  */
    3050           0 : static vm_fault_t wp_page_copy(struct vm_fault *vmf)
    3051             : {
    3052           0 :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    3053           0 :         struct vm_area_struct *vma = vmf->vma;
    3054           0 :         struct mm_struct *mm = vma->vm_mm;
    3055           0 :         struct folio *old_folio = NULL;
    3056           0 :         struct folio *new_folio = NULL;
    3057             :         pte_t entry;
    3058           0 :         int page_copied = 0;
    3059             :         struct mmu_notifier_range range;
    3060             :         int ret;
    3061             : 
    3062             :         delayacct_wpcopy_start();
    3063             : 
    3064           0 :         if (vmf->page)
    3065           0 :                 old_folio = page_folio(vmf->page);
    3066           0 :         if (unlikely(anon_vma_prepare(vma)))
    3067             :                 goto oom;
    3068             : 
    3069           0 :         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
    3070           0 :                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
    3071           0 :                 if (!new_folio)
    3072             :                         goto oom;
    3073             :         } else {
    3074           0 :                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
    3075             :                                 vmf->address, false);
    3076           0 :                 if (!new_folio)
    3077             :                         goto oom;
    3078             : 
    3079           0 :                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
    3080           0 :                 if (ret) {
    3081             :                         /*
    3082             :                          * COW failed, if the fault was solved by other,
    3083             :                          * it's fine. If not, userspace would re-fault on
    3084             :                          * the same address and we will handle the fault
    3085             :                          * from the second attempt.
    3086             :                          * The -EHWPOISON case will not be retried.
    3087             :                          */
    3088           0 :                         folio_put(new_folio);
    3089           0 :                         if (old_folio)
    3090             :                                 folio_put(old_folio);
    3091             : 
    3092             :                         delayacct_wpcopy_end();
    3093           0 :                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
    3094             :                 }
    3095             :                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
    3096             :         }
    3097             : 
    3098           0 :         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
    3099             :                 goto oom_free_new;
    3100           0 :         folio_throttle_swaprate(new_folio, GFP_KERNEL);
    3101             : 
    3102           0 :         __folio_mark_uptodate(new_folio);
    3103             : 
    3104           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
    3105             :                                 vmf->address & PAGE_MASK,
    3106             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
    3107           0 :         mmu_notifier_invalidate_range_start(&range);
    3108             : 
    3109             :         /*
    3110             :          * Re-check the pte - we dropped the lock
    3111             :          */
    3112           0 :         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
    3113           0 :         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    3114           0 :                 if (old_folio) {
    3115           0 :                         if (!folio_test_anon(old_folio)) {
    3116           0 :                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
    3117             :                                 inc_mm_counter(mm, MM_ANONPAGES);
    3118             :                         }
    3119             :                 } else {
    3120             :                         inc_mm_counter(mm, MM_ANONPAGES);
    3121             :                 }
    3122           0 :                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    3123           0 :                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
    3124             :                 entry = pte_sw_mkyoung(entry);
    3125           0 :                 if (unlikely(unshare)) {
    3126             :                         if (pte_soft_dirty(vmf->orig_pte))
    3127             :                                 entry = pte_mksoft_dirty(entry);
    3128             :                         if (pte_uffd_wp(vmf->orig_pte))
    3129             :                                 entry = pte_mkuffd_wp(entry);
    3130             :                 } else {
    3131           0 :                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    3132             :                 }
    3133             : 
    3134             :                 /*
    3135             :                  * Clear the pte entry and flush it first, before updating the
    3136             :                  * pte with the new entry, to keep TLBs on different CPUs in
    3137             :                  * sync. This code used to set the new PTE then flush TLBs, but
    3138             :                  * that left a window where the new PTE could be loaded into
    3139             :                  * some TLBs while the old PTE remains in others.
    3140             :                  */
    3141           0 :                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
    3142           0 :                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
    3143           0 :                 folio_add_lru_vma(new_folio, vma);
    3144             :                 /*
    3145             :                  * We call the notify macro here because, when using secondary
    3146             :                  * mmu page tables (such as kvm shadow page tables), we want the
    3147             :                  * new page to be mapped directly into the secondary page table.
    3148             :                  */
    3149           0 :                 BUG_ON(unshare && pte_write(entry));
    3150           0 :                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
    3151             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3152           0 :                 if (old_folio) {
    3153             :                         /*
    3154             :                          * Only after switching the pte to the new page may
    3155             :                          * we remove the mapcount here. Otherwise another
    3156             :                          * process may come and find the rmap count decremented
    3157             :                          * before the pte is switched to the new page, and
    3158             :                          * "reuse" the old page writing into it while our pte
    3159             :                          * here still points into it and can be read by other
    3160             :                          * threads.
    3161             :                          *
    3162             :                          * The critical issue is to order this
    3163             :                          * page_remove_rmap with the ptp_clear_flush above.
    3164             :                          * Those stores are ordered by (if nothing else,)
    3165             :                          * the barrier present in the atomic_add_negative
    3166             :                          * in page_remove_rmap.
    3167             :                          *
    3168             :                          * Then the TLB flush in ptep_clear_flush ensures that
    3169             :                          * no process can access the old page before the
    3170             :                          * decremented mapcount is visible. And the old page
    3171             :                          * cannot be reused until after the decremented
    3172             :                          * mapcount is visible. So transitively, TLBs to
    3173             :                          * old page will be flushed before it can be reused.
    3174             :                          */
    3175           0 :                         page_remove_rmap(vmf->page, vma, false);
    3176             :                 }
    3177             : 
    3178             :                 /* Free the old page.. */
    3179             :                 new_folio = old_folio;
    3180             :                 page_copied = 1;
    3181             :         } else {
    3182             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    3183             :         }
    3184             : 
    3185           0 :         if (new_folio)
    3186             :                 folio_put(new_folio);
    3187             : 
    3188           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3189             :         /*
    3190             :          * No need to double call mmu_notifier->invalidate_range() callback as
    3191             :          * the above ptep_clear_flush_notify() did already call it.
    3192             :          */
    3193           0 :         mmu_notifier_invalidate_range_only_end(&range);
    3194           0 :         if (old_folio) {
    3195           0 :                 if (page_copied)
    3196           0 :                         free_swap_cache(&old_folio->page);
    3197             :                 folio_put(old_folio);
    3198             :         }
    3199             : 
    3200             :         delayacct_wpcopy_end();
    3201             :         return 0;
    3202             : oom_free_new:
    3203             :         folio_put(new_folio);
    3204             : oom:
    3205           0 :         if (old_folio)
    3206             :                 folio_put(old_folio);
    3207             : 
    3208             :         delayacct_wpcopy_end();
    3209             :         return VM_FAULT_OOM;
    3210             : }
    3211             : 
    3212             : /**
    3213             :  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
    3214             :  *                        writeable once the page is prepared
    3215             :  *
    3216             :  * @vmf: structure describing the fault
    3217             :  *
    3218             :  * This function handles all that is needed to finish a write page fault in a
    3219             :  * shared mapping due to PTE being read-only once the mapped page is prepared.
    3220             :  * It handles locking of PTE and modifying it.
    3221             :  *
    3222             :  * The function expects the page to be locked or other protection against
    3223             :  * concurrent faults / writeback (such as DAX radix tree locks).
    3224             :  *
    3225             :  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
    3226             :  * we acquired PTE lock.
    3227             :  */
    3228           0 : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
    3229             : {
    3230           0 :         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
    3231           0 :         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
    3232             :                                        &vmf->ptl);
    3233             :         /*
    3234             :          * We might have raced with another page fault while we released the
    3235             :          * pte_offset_map_lock.
    3236             :          */
    3237           0 :         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
    3238           0 :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    3239           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3240           0 :                 return VM_FAULT_NOPAGE;
    3241             :         }
    3242           0 :         wp_page_reuse(vmf);
    3243           0 :         return 0;
    3244             : }
    3245             : 
    3246             : /*
    3247             :  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
    3248             :  * mapping
    3249             :  */
    3250           0 : static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
    3251             : {
    3252           0 :         struct vm_area_struct *vma = vmf->vma;
    3253             : 
    3254           0 :         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
    3255             :                 vm_fault_t ret;
    3256             : 
    3257           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3258           0 :                 vmf->flags |= FAULT_FLAG_MKWRITE;
    3259           0 :                 ret = vma->vm_ops->pfn_mkwrite(vmf);
    3260           0 :                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
    3261             :                         return ret;
    3262           0 :                 return finish_mkwrite_fault(vmf);
    3263             :         }
    3264           0 :         wp_page_reuse(vmf);
    3265           0 :         return 0;
    3266             : }
    3267             : 
    3268           0 : static vm_fault_t wp_page_shared(struct vm_fault *vmf)
    3269             :         __releases(vmf->ptl)
    3270             : {
    3271           0 :         struct vm_area_struct *vma = vmf->vma;
    3272           0 :         vm_fault_t ret = 0;
    3273             : 
    3274           0 :         get_page(vmf->page);
    3275             : 
    3276           0 :         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
    3277             :                 vm_fault_t tmp;
    3278             : 
    3279           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3280           0 :                 tmp = do_page_mkwrite(vmf);
    3281           0 :                 if (unlikely(!tmp || (tmp &
    3282             :                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    3283           0 :                         put_page(vmf->page);
    3284           0 :                         return tmp;
    3285             :                 }
    3286           0 :                 tmp = finish_mkwrite_fault(vmf);
    3287           0 :                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
    3288           0 :                         unlock_page(vmf->page);
    3289           0 :                         put_page(vmf->page);
    3290           0 :                         return tmp;
    3291             :                 }
    3292             :         } else {
    3293           0 :                 wp_page_reuse(vmf);
    3294           0 :                 lock_page(vmf->page);
    3295             :         }
    3296           0 :         ret |= fault_dirty_shared_page(vmf);
    3297           0 :         put_page(vmf->page);
    3298             : 
    3299           0 :         return ret;
    3300             : }
    3301             : 
    3302             : /*
    3303             :  * This routine handles present pages, when
    3304             :  * * users try to write to a shared page (FAULT_FLAG_WRITE)
    3305             :  * * GUP wants to take a R/O pin on a possibly shared anonymous page
    3306             :  *   (FAULT_FLAG_UNSHARE)
    3307             :  *
    3308             :  * It is done by copying the page to a new address and decrementing the
    3309             :  * shared-page counter for the old page.
    3310             :  *
    3311             :  * Note that this routine assumes that the protection checks have been
    3312             :  * done by the caller (the low-level page fault routine in most cases).
    3313             :  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
    3314             :  * done any necessary COW.
    3315             :  *
    3316             :  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
    3317             :  * though the page will change only once the write actually happens. This
    3318             :  * avoids a few races, and potentially makes it more efficient.
    3319             :  *
    3320             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3321             :  * but allow concurrent faults), with pte both mapped and locked.
    3322             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    3323             :  */
    3324           0 : static vm_fault_t do_wp_page(struct vm_fault *vmf)
    3325             :         __releases(vmf->ptl)
    3326             : {
    3327           0 :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    3328           0 :         struct vm_area_struct *vma = vmf->vma;
    3329           0 :         struct folio *folio = NULL;
    3330             : 
    3331             :         if (likely(!unshare)) {
    3332             :                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
    3333             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3334             :                         return handle_userfault(vmf, VM_UFFD_WP);
    3335             :                 }
    3336             : 
    3337             :                 /*
    3338             :                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
    3339             :                  * is flushed in this case before copying.
    3340             :                  */
    3341             :                 if (unlikely(userfaultfd_wp(vmf->vma) &&
    3342             :                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
    3343             :                         flush_tlb_page(vmf->vma, vmf->address);
    3344             :         }
    3345             : 
    3346           0 :         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
    3347             : 
    3348             :         /*
    3349             :          * Shared mapping: we are guaranteed to have VM_WRITE and
    3350             :          * FAULT_FLAG_WRITE set at this point.
    3351             :          */
    3352           0 :         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    3353             :                 /*
    3354             :                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
    3355             :                  * VM_PFNMAP VMA.
    3356             :                  *
    3357             :                  * We should not cow pages in a shared writeable mapping.
    3358             :                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
    3359             :                  */
    3360           0 :                 if (!vmf->page)
    3361           0 :                         return wp_pfn_shared(vmf);
    3362           0 :                 return wp_page_shared(vmf);
    3363             :         }
    3364             : 
    3365           0 :         if (vmf->page)
    3366           0 :                 folio = page_folio(vmf->page);
    3367             : 
    3368             :         /*
    3369             :          * Private mapping: create an exclusive anonymous page copy if reuse
    3370             :          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
    3371             :          */
    3372           0 :         if (folio && folio_test_anon(folio)) {
    3373             :                 /*
    3374             :                  * If the page is exclusive to this process we must reuse the
    3375             :                  * page without further checks.
    3376             :                  */
    3377           0 :                 if (PageAnonExclusive(vmf->page))
    3378             :                         goto reuse;
    3379             : 
    3380             :                 /*
    3381             :                  * We have to verify under folio lock: these early checks are
    3382             :                  * just an optimization to avoid locking the folio and freeing
    3383             :                  * the swapcache if there is little hope that we can reuse.
    3384             :                  *
    3385             :                  * KSM doesn't necessarily raise the folio refcount.
    3386             :                  */
    3387           0 :                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
    3388             :                         goto copy;
    3389           0 :                 if (!folio_test_lru(folio))
    3390             :                         /*
    3391             :                          * Note: We cannot easily detect+handle references from
    3392             :                          * remote LRU pagevecs or references to LRU folios.
    3393             :                          */
    3394           0 :                         lru_add_drain();
    3395           0 :                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
    3396             :                         goto copy;
    3397           0 :                 if (!folio_trylock(folio))
    3398             :                         goto copy;
    3399           0 :                 if (folio_test_swapcache(folio))
    3400           0 :                         folio_free_swap(folio);
    3401           0 :                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
    3402           0 :                         folio_unlock(folio);
    3403           0 :                         goto copy;
    3404             :                 }
    3405             :                 /*
    3406             :                  * Ok, we've got the only folio reference from our mapping
    3407             :                  * and the folio is locked, it's dark out, and we're wearing
    3408             :                  * sunglasses. Hit it.
    3409             :                  */
    3410           0 :                 page_move_anon_rmap(vmf->page, vma);
    3411           0 :                 folio_unlock(folio);
    3412             : reuse:
    3413           0 :                 if (unlikely(unshare)) {
    3414           0 :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3415           0 :                         return 0;
    3416             :                 }
    3417           0 :                 wp_page_reuse(vmf);
    3418           0 :                 return 0;
    3419             :         }
    3420             : copy:
    3421             :         /*
    3422             :          * Ok, we need to copy. Oh, well..
    3423             :          */
    3424           0 :         if (folio)
    3425             :                 folio_get(folio);
    3426             : 
    3427           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3428             : #ifdef CONFIG_KSM
    3429             :         if (folio && folio_test_ksm(folio))
    3430             :                 count_vm_event(COW_KSM);
    3431             : #endif
    3432           0 :         return wp_page_copy(vmf);
    3433             : }
    3434             : 
    3435             : static void unmap_mapping_range_vma(struct vm_area_struct *vma,
    3436             :                 unsigned long start_addr, unsigned long end_addr,
    3437             :                 struct zap_details *details)
    3438             : {
    3439           0 :         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
    3440             : }
    3441             : 
    3442           0 : static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
    3443             :                                             pgoff_t first_index,
    3444             :                                             pgoff_t last_index,
    3445             :                                             struct zap_details *details)
    3446             : {
    3447             :         struct vm_area_struct *vma;
    3448             :         pgoff_t vba, vea, zba, zea;
    3449             : 
    3450           0 :         vma_interval_tree_foreach(vma, root, first_index, last_index) {
    3451           0 :                 vba = vma->vm_pgoff;
    3452           0 :                 vea = vba + vma_pages(vma) - 1;
    3453           0 :                 zba = max(first_index, vba);
    3454           0 :                 zea = min(last_index, vea);
    3455             : 
    3456           0 :                 unmap_mapping_range_vma(vma,
    3457           0 :                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
    3458           0 :                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
    3459             :                                 details);
    3460             :         }
    3461           0 : }
    3462             : 
    3463             : /**
    3464             :  * unmap_mapping_folio() - Unmap single folio from processes.
    3465             :  * @folio: The locked folio to be unmapped.
    3466             :  *
    3467             :  * Unmap this folio from any userspace process which still has it mmaped.
    3468             :  * Typically, for efficiency, the range of nearby pages has already been
    3469             :  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
    3470             :  * truncation or invalidation holds the lock on a folio, it may find that
    3471             :  * the page has been remapped again: and then uses unmap_mapping_folio()
    3472             :  * to unmap it finally.
    3473             :  */
    3474           0 : void unmap_mapping_folio(struct folio *folio)
    3475             : {
    3476           0 :         struct address_space *mapping = folio->mapping;
    3477           0 :         struct zap_details details = { };
    3478             :         pgoff_t first_index;
    3479             :         pgoff_t last_index;
    3480             : 
    3481             :         VM_BUG_ON(!folio_test_locked(folio));
    3482             : 
    3483           0 :         first_index = folio->index;
    3484           0 :         last_index = folio->index + folio_nr_pages(folio) - 1;
    3485             : 
    3486             :         details.even_cows = false;
    3487           0 :         details.single_folio = folio;
    3488           0 :         details.zap_flags = ZAP_FLAG_DROP_MARKER;
    3489             : 
    3490           0 :         i_mmap_lock_read(mapping);
    3491           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3492           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3493             :                                          last_index, &details);
    3494           0 :         i_mmap_unlock_read(mapping);
    3495           0 : }
    3496             : 
    3497             : /**
    3498             :  * unmap_mapping_pages() - Unmap pages from processes.
    3499             :  * @mapping: The address space containing pages to be unmapped.
    3500             :  * @start: Index of first page to be unmapped.
    3501             :  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
    3502             :  * @even_cows: Whether to unmap even private COWed pages.
    3503             :  *
    3504             :  * Unmap the pages in this address space from any userspace process which
    3505             :  * has them mmaped.  Generally, you want to remove COWed pages as well when
    3506             :  * a file is being truncated, but not when invalidating pages from the page
    3507             :  * cache.
    3508             :  */
    3509           0 : void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
    3510             :                 pgoff_t nr, bool even_cows)
    3511             : {
    3512           0 :         struct zap_details details = { };
    3513           0 :         pgoff_t first_index = start;
    3514           0 :         pgoff_t last_index = start + nr - 1;
    3515             : 
    3516           0 :         details.even_cows = even_cows;
    3517           0 :         if (last_index < first_index)
    3518           0 :                 last_index = ULONG_MAX;
    3519             : 
    3520           0 :         i_mmap_lock_read(mapping);
    3521           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3522           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3523             :                                          last_index, &details);
    3524           0 :         i_mmap_unlock_read(mapping);
    3525           0 : }
    3526             : EXPORT_SYMBOL_GPL(unmap_mapping_pages);
    3527             : 
    3528             : /**
    3529             :  * unmap_mapping_range - unmap the portion of all mmaps in the specified
    3530             :  * address_space corresponding to the specified byte range in the underlying
    3531             :  * file.
    3532             :  *
    3533             :  * @mapping: the address space containing mmaps to be unmapped.
    3534             :  * @holebegin: byte in first page to unmap, relative to the start of
    3535             :  * the underlying file.  This will be rounded down to a PAGE_SIZE
    3536             :  * boundary.  Note that this is different from truncate_pagecache(), which
    3537             :  * must keep the partial page.  In contrast, we must get rid of
    3538             :  * partial pages.
    3539             :  * @holelen: size of prospective hole in bytes.  This will be rounded
    3540             :  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
    3541             :  * end of the file.
    3542             :  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
    3543             :  * but 0 when invalidating pagecache, don't throw away private data.
    3544             :  */
    3545           0 : void unmap_mapping_range(struct address_space *mapping,
    3546             :                 loff_t const holebegin, loff_t const holelen, int even_cows)
    3547             : {
    3548           0 :         pgoff_t hba = holebegin >> PAGE_SHIFT;
    3549           0 :         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3550             : 
    3551             :         /* Check for overflow. */
    3552             :         if (sizeof(holelen) > sizeof(hlen)) {
    3553             :                 long long holeend =
    3554             :                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3555             :                 if (holeend & ~(long long)ULONG_MAX)
    3556             :                         hlen = ULONG_MAX - hba + 1;
    3557             :         }
    3558             : 
    3559           0 :         unmap_mapping_pages(mapping, hba, hlen, even_cows);
    3560           0 : }
    3561             : EXPORT_SYMBOL(unmap_mapping_range);
    3562             : 
    3563             : /*
    3564             :  * Restore a potential device exclusive pte to a working pte entry
    3565             :  */
    3566             : static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
    3567             : {
    3568             :         struct folio *folio = page_folio(vmf->page);
    3569             :         struct vm_area_struct *vma = vmf->vma;
    3570             :         struct mmu_notifier_range range;
    3571             : 
    3572             :         /*
    3573             :          * We need a reference to lock the folio because we don't hold
    3574             :          * the PTL so a racing thread can remove the device-exclusive
    3575             :          * entry and unmap it. If the folio is free the entry must
    3576             :          * have been removed already. If it happens to have already
    3577             :          * been re-allocated after being freed all we do is lock and
    3578             :          * unlock it.
    3579             :          */
    3580             :         if (!folio_try_get(folio))
    3581             :                 return 0;
    3582             : 
    3583             :         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
    3584             :                 folio_put(folio);
    3585             :                 return VM_FAULT_RETRY;
    3586             :         }
    3587             :         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
    3588             :                                 vma->vm_mm, vmf->address & PAGE_MASK,
    3589             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
    3590             :         mmu_notifier_invalidate_range_start(&range);
    3591             : 
    3592             :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3593             :                                 &vmf->ptl);
    3594             :         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3595             :                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
    3596             : 
    3597             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3598             :         folio_unlock(folio);
    3599             :         folio_put(folio);
    3600             : 
    3601             :         mmu_notifier_invalidate_range_end(&range);
    3602             :         return 0;
    3603             : }
    3604             : 
    3605           0 : static inline bool should_try_to_free_swap(struct folio *folio,
    3606             :                                            struct vm_area_struct *vma,
    3607             :                                            unsigned int fault_flags)
    3608             : {
    3609           0 :         if (!folio_test_swapcache(folio))
    3610             :                 return false;
    3611           0 :         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
    3612           0 :             folio_test_mlocked(folio))
    3613             :                 return true;
    3614             :         /*
    3615             :          * If we want to map a page that's in the swapcache writable, we
    3616             :          * have to detect via the refcount if we're really the exclusive
    3617             :          * user. Try freeing the swapcache to get rid of the swapcache
    3618             :          * reference only in case it's likely that we'll be the exlusive user.
    3619             :          */
    3620           0 :         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
    3621           0 :                 folio_ref_count(folio) == 2;
    3622             : }
    3623             : 
    3624             : static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
    3625             : {
    3626             :         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
    3627             :                                        vmf->address, &vmf->ptl);
    3628             :         /*
    3629             :          * Be careful so that we will only recover a special uffd-wp pte into a
    3630             :          * none pte.  Otherwise it means the pte could have changed, so retry.
    3631             :          *
    3632             :          * This should also cover the case where e.g. the pte changed
    3633             :          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
    3634             :          * So is_pte_marker() check is not enough to safely drop the pte.
    3635             :          */
    3636             :         if (pte_same(vmf->orig_pte, *vmf->pte))
    3637             :                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
    3638             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3639             :         return 0;
    3640             : }
    3641             : 
    3642           0 : static vm_fault_t do_pte_missing(struct vm_fault *vmf)
    3643             : {
    3644           0 :         if (vma_is_anonymous(vmf->vma))
    3645           0 :                 return do_anonymous_page(vmf);
    3646             :         else
    3647           0 :                 return do_fault(vmf);
    3648             : }
    3649             : 
    3650             : /*
    3651             :  * This is actually a page-missing access, but with uffd-wp special pte
    3652             :  * installed.  It means this pte was wr-protected before being unmapped.
    3653             :  */
    3654             : static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
    3655             : {
    3656             :         /*
    3657             :          * Just in case there're leftover special ptes even after the region
    3658             :          * got unregistered - we can simply clear them.
    3659             :          */
    3660             :         if (unlikely(!userfaultfd_wp(vmf->vma)))
    3661             :                 return pte_marker_clear(vmf);
    3662             : 
    3663             :         return do_pte_missing(vmf);
    3664             : }
    3665             : 
    3666           0 : static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
    3667             : {
    3668           0 :         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
    3669           0 :         unsigned long marker = pte_marker_get(entry);
    3670             : 
    3671             :         /*
    3672             :          * PTE markers should never be empty.  If anything weird happened,
    3673             :          * the best thing to do is to kill the process along with its mm.
    3674             :          */
    3675           0 :         if (WARN_ON_ONCE(!marker))
    3676             :                 return VM_FAULT_SIGBUS;
    3677             : 
    3678             :         /* Higher priority than uffd-wp when data corrupted */
    3679             :         if (marker & PTE_MARKER_SWAPIN_ERROR)
    3680             :                 return VM_FAULT_SIGBUS;
    3681             : 
    3682             :         if (pte_marker_entry_uffd_wp(entry))
    3683             :                 return pte_marker_handle_uffd_wp(vmf);
    3684             : 
    3685             :         /* This is an unknown pte marker */
    3686             :         return VM_FAULT_SIGBUS;
    3687             : }
    3688             : 
    3689             : /*
    3690             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3691             :  * but allow concurrent faults), and pte mapped but not yet locked.
    3692             :  * We return with pte unmapped and unlocked.
    3693             :  *
    3694             :  * We return with the mmap_lock locked or unlocked in the same cases
    3695             :  * as does filemap_fault().
    3696             :  */
    3697           0 : vm_fault_t do_swap_page(struct vm_fault *vmf)
    3698             : {
    3699           0 :         struct vm_area_struct *vma = vmf->vma;
    3700           0 :         struct folio *swapcache, *folio = NULL;
    3701             :         struct page *page;
    3702           0 :         struct swap_info_struct *si = NULL;
    3703           0 :         rmap_t rmap_flags = RMAP_NONE;
    3704           0 :         bool exclusive = false;
    3705             :         swp_entry_t entry;
    3706             :         pte_t pte;
    3707             :         int locked;
    3708           0 :         vm_fault_t ret = 0;
    3709           0 :         void *shadow = NULL;
    3710             : 
    3711           0 :         if (!pte_unmap_same(vmf))
    3712             :                 goto out;
    3713             : 
    3714           0 :         if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
    3715             :                 ret = VM_FAULT_RETRY;
    3716             :                 goto out;
    3717             :         }
    3718             : 
    3719           0 :         entry = pte_to_swp_entry(vmf->orig_pte);
    3720           0 :         if (unlikely(non_swap_entry(entry))) {
    3721           0 :                 if (is_migration_entry(entry)) {
    3722           0 :                         migration_entry_wait(vma->vm_mm, vmf->pmd,
    3723             :                                              vmf->address);
    3724           0 :                 } else if (is_device_exclusive_entry(entry)) {
    3725             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3726             :                         ret = remove_device_exclusive_entry(vmf);
    3727           0 :                 } else if (is_device_private_entry(entry)) {
    3728             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3729             :                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3730             :                                         vmf->address, &vmf->ptl);
    3731             :                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    3732             :                                 spin_unlock(vmf->ptl);
    3733             :                                 goto out;
    3734             :                         }
    3735             : 
    3736             :                         /*
    3737             :                          * Get a page reference while we know the page can't be
    3738             :                          * freed.
    3739             :                          */
    3740             :                         get_page(vmf->page);
    3741             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3742             :                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
    3743             :                         put_page(vmf->page);
    3744           0 :                 } else if (is_hwpoison_entry(entry)) {
    3745             :                         ret = VM_FAULT_HWPOISON;
    3746           0 :                 } else if (is_pte_marker_entry(entry)) {
    3747           0 :                         ret = handle_pte_marker(vmf);
    3748             :                 } else {
    3749           0 :                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
    3750           0 :                         ret = VM_FAULT_SIGBUS;
    3751             :                 }
    3752             :                 goto out;
    3753             :         }
    3754             : 
    3755             :         /* Prevent swapoff from happening to us. */
    3756           0 :         si = get_swap_device(entry);
    3757           0 :         if (unlikely(!si))
    3758             :                 goto out;
    3759             : 
    3760           0 :         folio = swap_cache_get_folio(entry, vma, vmf->address);
    3761           0 :         if (folio)
    3762           0 :                 page = folio_file_page(folio, swp_offset(entry));
    3763           0 :         swapcache = folio;
    3764             : 
    3765           0 :         if (!folio) {
    3766           0 :                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
    3767           0 :                     __swap_count(entry) == 1) {
    3768             :                         /* skip swapcache */
    3769           0 :                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
    3770             :                                                 vma, vmf->address, false);
    3771           0 :                         page = &folio->page;
    3772           0 :                         if (folio) {
    3773           0 :                                 __folio_set_locked(folio);
    3774           0 :                                 __folio_set_swapbacked(folio);
    3775             : 
    3776           0 :                                 if (mem_cgroup_swapin_charge_folio(folio,
    3777             :                                                         vma->vm_mm, GFP_KERNEL,
    3778             :                                                         entry)) {
    3779             :                                         ret = VM_FAULT_OOM;
    3780             :                                         goto out_page;
    3781             :                                 }
    3782           0 :                                 mem_cgroup_swapin_uncharge_swap(entry);
    3783             : 
    3784           0 :                                 shadow = get_shadow_from_swap_cache(entry);
    3785           0 :                                 if (shadow)
    3786           0 :                                         workingset_refault(folio, shadow);
    3787             : 
    3788           0 :                                 folio_add_lru(folio);
    3789             : 
    3790             :                                 /* To provide entry to swap_readpage() */
    3791           0 :                                 folio_set_swap_entry(folio, entry);
    3792           0 :                                 swap_readpage(page, true, NULL);
    3793           0 :                                 folio->private = NULL;
    3794             :                         }
    3795             :                 } else {
    3796           0 :                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    3797             :                                                 vmf);
    3798           0 :                         if (page)
    3799           0 :                                 folio = page_folio(page);
    3800             :                         swapcache = folio;
    3801             :                 }
    3802             : 
    3803           0 :                 if (!folio) {
    3804             :                         /*
    3805             :                          * Back out if somebody else faulted in this pte
    3806             :                          * while we released the pte lock.
    3807             :                          */
    3808           0 :                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3809             :                                         vmf->address, &vmf->ptl);
    3810           0 :                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3811           0 :                                 ret = VM_FAULT_OOM;
    3812             :                         goto unlock;
    3813             :                 }
    3814             : 
    3815             :                 /* Had to read the page from swap area: Major fault */
    3816           0 :                 ret = VM_FAULT_MAJOR;
    3817           0 :                 count_vm_event(PGMAJFAULT);
    3818           0 :                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
    3819             :         } else if (PageHWPoison(page)) {
    3820             :                 /*
    3821             :                  * hwpoisoned dirty swapcache pages are kept for killing
    3822             :                  * owner processes (which may be unknown at hwpoison time)
    3823             :                  */
    3824             :                 ret = VM_FAULT_HWPOISON;
    3825             :                 goto out_release;
    3826             :         }
    3827             : 
    3828           0 :         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
    3829             : 
    3830           0 :         if (!locked) {
    3831           0 :                 ret |= VM_FAULT_RETRY;
    3832           0 :                 goto out_release;
    3833             :         }
    3834             : 
    3835           0 :         if (swapcache) {
    3836             :                 /*
    3837             :                  * Make sure folio_free_swap() or swapoff did not release the
    3838             :                  * swapcache from under us.  The page pin, and pte_same test
    3839             :                  * below, are not enough to exclude that.  Even if it is still
    3840             :                  * swapcache, we need to check that the page's swap has not
    3841             :                  * changed.
    3842             :                  */
    3843           0 :                 if (unlikely(!folio_test_swapcache(folio) ||
    3844             :                              page_private(page) != entry.val))
    3845             :                         goto out_page;
    3846             : 
    3847             :                 /*
    3848             :                  * KSM sometimes has to copy on read faults, for example, if
    3849             :                  * page->index of !PageKSM() pages would be nonlinear inside the
    3850             :                  * anon VMA -- PageKSM() is lost on actual swapout.
    3851             :                  */
    3852           0 :                 page = ksm_might_need_to_copy(page, vma, vmf->address);
    3853           0 :                 if (unlikely(!page)) {
    3854             :                         ret = VM_FAULT_OOM;
    3855             :                         goto out_page;
    3856           0 :                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
    3857             :                         ret = VM_FAULT_HWPOISON;
    3858             :                         goto out_page;
    3859             :                 }
    3860           0 :                 folio = page_folio(page);
    3861             : 
    3862             :                 /*
    3863             :                  * If we want to map a page that's in the swapcache writable, we
    3864             :                  * have to detect via the refcount if we're really the exclusive
    3865             :                  * owner. Try removing the extra reference from the local LRU
    3866             :                  * pagevecs if required.
    3867             :                  */
    3868           0 :                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
    3869           0 :                     !folio_test_ksm(folio) && !folio_test_lru(folio))
    3870           0 :                         lru_add_drain();
    3871             :         }
    3872             : 
    3873           0 :         folio_throttle_swaprate(folio, GFP_KERNEL);
    3874             : 
    3875             :         /*
    3876             :          * Back out if somebody else already faulted in this pte.
    3877             :          */
    3878           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3879             :                         &vmf->ptl);
    3880           0 :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
    3881             :                 goto out_nomap;
    3882             : 
    3883           0 :         if (unlikely(!folio_test_uptodate(folio))) {
    3884             :                 ret = VM_FAULT_SIGBUS;
    3885             :                 goto out_nomap;
    3886             :         }
    3887             : 
    3888             :         /*
    3889             :          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
    3890             :          * must never point at an anonymous page in the swapcache that is
    3891             :          * PG_anon_exclusive. Sanity check that this holds and especially, that
    3892             :          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
    3893             :          * check after taking the PT lock and making sure that nobody
    3894             :          * concurrently faulted in this page and set PG_anon_exclusive.
    3895             :          */
    3896           0 :         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
    3897           0 :         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
    3898             : 
    3899             :         /*
    3900             :          * Check under PT lock (to protect against concurrent fork() sharing
    3901             :          * the swap entry concurrently) for certainly exclusive pages.
    3902             :          */
    3903           0 :         if (!folio_test_ksm(folio)) {
    3904           0 :                 exclusive = pte_swp_exclusive(vmf->orig_pte);
    3905           0 :                 if (folio != swapcache) {
    3906             :                         /*
    3907             :                          * We have a fresh page that is not exposed to the
    3908             :                          * swapcache -> certainly exclusive.
    3909             :                          */
    3910             :                         exclusive = true;
    3911           0 :                 } else if (exclusive && folio_test_writeback(folio) &&
    3912           0 :                           data_race(si->flags & SWP_STABLE_WRITES)) {
    3913             :                         /*
    3914             :                          * This is tricky: not all swap backends support
    3915             :                          * concurrent page modifications while under writeback.
    3916             :                          *
    3917             :                          * So if we stumble over such a page in the swapcache
    3918             :                          * we must not set the page exclusive, otherwise we can
    3919             :                          * map it writable without further checks and modify it
    3920             :                          * while still under writeback.
    3921             :                          *
    3922             :                          * For these problematic swap backends, simply drop the
    3923             :                          * exclusive marker: this is perfectly fine as we start
    3924             :                          * writeback only if we fully unmapped the page and
    3925             :                          * there are no unexpected references on the page after
    3926             :                          * unmapping succeeded. After fully unmapped, no
    3927             :                          * further GUP references (FOLL_GET and FOLL_PIN) can
    3928             :                          * appear, so dropping the exclusive marker and mapping
    3929             :                          * it only R/O is fine.
    3930             :                          */
    3931           0 :                         exclusive = false;
    3932             :                 }
    3933             :         }
    3934             : 
    3935             :         /*
    3936             :          * Remove the swap entry and conditionally try to free up the swapcache.
    3937             :          * We're already holding a reference on the page but haven't mapped it
    3938             :          * yet.
    3939             :          */
    3940           0 :         swap_free(entry);
    3941           0 :         if (should_try_to_free_swap(folio, vma, vmf->flags))
    3942           0 :                 folio_free_swap(folio);
    3943             : 
    3944           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    3945           0 :         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    3946           0 :         pte = mk_pte(page, vma->vm_page_prot);
    3947             : 
    3948             :         /*
    3949             :          * Same logic as in do_wp_page(); however, optimize for pages that are
    3950             :          * certainly not shared either because we just allocated them without
    3951             :          * exposing them to the swapcache or because the swap entry indicates
    3952             :          * exclusivity.
    3953             :          */
    3954           0 :         if (!folio_test_ksm(folio) &&
    3955           0 :             (exclusive || folio_ref_count(folio) == 1)) {
    3956           0 :                 if (vmf->flags & FAULT_FLAG_WRITE) {
    3957           0 :                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
    3958           0 :                         vmf->flags &= ~FAULT_FLAG_WRITE;
    3959             :                 }
    3960             :                 rmap_flags |= RMAP_EXCLUSIVE;
    3961             :         }
    3962           0 :         flush_icache_page(vma, page);
    3963           0 :         if (pte_swp_soft_dirty(vmf->orig_pte))
    3964             :                 pte = pte_mksoft_dirty(pte);
    3965             :         if (pte_swp_uffd_wp(vmf->orig_pte))
    3966             :                 pte = pte_mkuffd_wp(pte);
    3967           0 :         vmf->orig_pte = pte;
    3968             : 
    3969             :         /* ksm created a completely new copy */
    3970           0 :         if (unlikely(folio != swapcache && swapcache)) {
    3971           0 :                 page_add_new_anon_rmap(page, vma, vmf->address);
    3972           0 :                 folio_add_lru_vma(folio, vma);
    3973             :         } else {
    3974           0 :                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
    3975             :         }
    3976             : 
    3977             :         VM_BUG_ON(!folio_test_anon(folio) ||
    3978             :                         (pte_write(pte) && !PageAnonExclusive(page)));
    3979           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
    3980           0 :         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
    3981             : 
    3982           0 :         folio_unlock(folio);
    3983           0 :         if (folio != swapcache && swapcache) {
    3984             :                 /*
    3985             :                  * Hold the lock to avoid the swap entry to be reused
    3986             :                  * until we take the PT lock for the pte_same() check
    3987             :                  * (to avoid false positives from pte_same). For
    3988             :                  * further safety release the lock after the swap_free
    3989             :                  * so that the swap count won't change under a
    3990             :                  * parallel locked swapcache.
    3991             :                  */
    3992           0 :                 folio_unlock(swapcache);
    3993             :                 folio_put(swapcache);
    3994             :         }
    3995             : 
    3996           0 :         if (vmf->flags & FAULT_FLAG_WRITE) {
    3997           0 :                 ret |= do_wp_page(vmf);
    3998           0 :                 if (ret & VM_FAULT_ERROR)
    3999           0 :                         ret &= VM_FAULT_ERROR;
    4000             :                 goto out;
    4001             :         }
    4002             : 
    4003             :         /* No need to invalidate - it was non-present before */
    4004             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4005             : unlock:
    4006           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4007             : out:
    4008           0 :         if (si)
    4009             :                 put_swap_device(si);
    4010             :         return ret;
    4011             : out_nomap:
    4012           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4013             : out_page:
    4014           0 :         folio_unlock(folio);
    4015             : out_release:
    4016           0 :         folio_put(folio);
    4017           0 :         if (folio != swapcache && swapcache) {
    4018           0 :                 folio_unlock(swapcache);
    4019             :                 folio_put(swapcache);
    4020             :         }
    4021           0 :         if (si)
    4022             :                 put_swap_device(si);
    4023             :         return ret;
    4024             : }
    4025             : 
    4026             : /*
    4027             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    4028             :  * but allow concurrent faults), and pte mapped but not yet locked.
    4029             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    4030             :  */
    4031           0 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
    4032             : {
    4033           0 :         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
    4034           0 :         struct vm_area_struct *vma = vmf->vma;
    4035             :         struct folio *folio;
    4036           0 :         vm_fault_t ret = 0;
    4037             :         pte_t entry;
    4038             : 
    4039             :         /* File mapping without ->vm_ops ? */
    4040           0 :         if (vma->vm_flags & VM_SHARED)
    4041             :                 return VM_FAULT_SIGBUS;
    4042             : 
    4043             :         /*
    4044             :          * Use pte_alloc() instead of pte_alloc_map().  We can't run
    4045             :          * pte_offset_map() on pmds where a huge pmd might be created
    4046             :          * from a different thread.
    4047             :          *
    4048             :          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
    4049             :          * parallel threads are excluded by other means.
    4050             :          *
    4051             :          * Here we only have mmap_read_lock(mm).
    4052             :          */
    4053           0 :         if (pte_alloc(vma->vm_mm, vmf->pmd))
    4054             :                 return VM_FAULT_OOM;
    4055             : 
    4056             :         /* See comment in handle_pte_fault() */
    4057           0 :         if (unlikely(pmd_trans_unstable(vmf->pmd)))
    4058             :                 return 0;
    4059             : 
    4060             :         /* Use the zero-page for reads */
    4061           0 :         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
    4062             :                         !mm_forbids_zeropage(vma->vm_mm)) {
    4063           0 :                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
    4064             :                                                 vma->vm_page_prot));
    4065           0 :                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    4066             :                                 vmf->address, &vmf->ptl);
    4067           0 :                 if (vmf_pte_changed(vmf)) {
    4068             :                         update_mmu_tlb(vma, vmf->address, vmf->pte);
    4069             :                         goto unlock;
    4070             :                 }
    4071           0 :                 ret = check_stable_address_space(vma->vm_mm);
    4072           0 :                 if (ret)
    4073             :                         goto unlock;
    4074             :                 /* Deliver the page fault to userland, check inside PT lock */
    4075             :                 if (userfaultfd_missing(vma)) {
    4076             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4077             :                         return handle_userfault(vmf, VM_UFFD_MISSING);
    4078             :                 }
    4079             :                 goto setpte;
    4080             :         }
    4081             : 
    4082             :         /* Allocate our own private page. */
    4083           0 :         if (unlikely(anon_vma_prepare(vma)))
    4084             :                 goto oom;
    4085           0 :         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
    4086           0 :         if (!folio)
    4087             :                 goto oom;
    4088             : 
    4089           0 :         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
    4090             :                 goto oom_free_page;
    4091           0 :         folio_throttle_swaprate(folio, GFP_KERNEL);
    4092             : 
    4093             :         /*
    4094             :          * The memory barrier inside __folio_mark_uptodate makes sure that
    4095             :          * preceding stores to the page contents become visible before
    4096             :          * the set_pte_at() write.
    4097             :          */
    4098           0 :         __folio_mark_uptodate(folio);
    4099             : 
    4100           0 :         entry = mk_pte(&folio->page, vma->vm_page_prot);
    4101             :         entry = pte_sw_mkyoung(entry);
    4102           0 :         if (vma->vm_flags & VM_WRITE)
    4103           0 :                 entry = pte_mkwrite(pte_mkdirty(entry));
    4104             : 
    4105           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    4106             :                         &vmf->ptl);
    4107           0 :         if (vmf_pte_changed(vmf)) {
    4108             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    4109             :                 goto release;
    4110             :         }
    4111             : 
    4112           0 :         ret = check_stable_address_space(vma->vm_mm);
    4113           0 :         if (ret)
    4114             :                 goto release;
    4115             : 
    4116             :         /* Deliver the page fault to userland, check inside PT lock */
    4117           0 :         if (userfaultfd_missing(vma)) {
    4118             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    4119             :                 folio_put(folio);
    4120             :                 return handle_userfault(vmf, VM_UFFD_MISSING);
    4121             :         }
    4122             : 
    4123           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    4124           0 :         folio_add_new_anon_rmap(folio, vma, vmf->address);
    4125           0 :         folio_add_lru_vma(folio, vma);
    4126             : setpte:
    4127             :         if (uffd_wp)
    4128             :                 entry = pte_mkuffd_wp(entry);
    4129           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
    4130             : 
    4131             :         /* No need to invalidate - it was non-present before */
    4132             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4133             : unlock:
    4134           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4135           0 :         return ret;
    4136             : release:
    4137             :         folio_put(folio);
    4138             :         goto unlock;
    4139             : oom_free_page:
    4140             :         folio_put(folio);
    4141             : oom:
    4142             :         return VM_FAULT_OOM;
    4143             : }
    4144             : 
    4145             : /*
    4146             :  * The mmap_lock must have been held on entry, and may have been
    4147             :  * released depending on flags and vma->vm_ops->fault() return value.
    4148             :  * See filemap_fault() and __lock_page_retry().
    4149             :  */
    4150           0 : static vm_fault_t __do_fault(struct vm_fault *vmf)
    4151             : {
    4152           0 :         struct vm_area_struct *vma = vmf->vma;
    4153             :         vm_fault_t ret;
    4154             : 
    4155             :         /*
    4156             :          * Preallocate pte before we take page_lock because this might lead to
    4157             :          * deadlocks for memcg reclaim which waits for pages under writeback:
    4158             :          *                              lock_page(A)
    4159             :          *                              SetPageWriteback(A)
    4160             :          *                              unlock_page(A)
    4161             :          * lock_page(B)
    4162             :          *                              lock_page(B)
    4163             :          * pte_alloc_one
    4164             :          *   shrink_page_list
    4165             :          *     wait_on_page_writeback(A)
    4166             :          *                              SetPageWriteback(B)
    4167             :          *                              unlock_page(B)
    4168             :          *                              # flush A, B to clear the writeback
    4169             :          */
    4170           0 :         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
    4171           0 :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    4172           0 :                 if (!vmf->prealloc_pte)
    4173             :                         return VM_FAULT_OOM;
    4174             :         }
    4175             : 
    4176           0 :         ret = vma->vm_ops->fault(vmf);
    4177           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
    4178             :                             VM_FAULT_DONE_COW)))
    4179             :                 return ret;
    4180             : 
    4181           0 :         if (unlikely(PageHWPoison(vmf->page))) {
    4182             :                 struct page *page = vmf->page;
    4183             :                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
    4184             :                 if (ret & VM_FAULT_LOCKED) {
    4185             :                         if (page_mapped(page))
    4186             :                                 unmap_mapping_pages(page_mapping(page),
    4187             :                                                     page->index, 1, false);
    4188             :                         /* Retry if a clean page was removed from the cache. */
    4189             :                         if (invalidate_inode_page(page))
    4190             :                                 poisonret = VM_FAULT_NOPAGE;
    4191             :                         unlock_page(page);
    4192             :                 }
    4193             :                 put_page(page);
    4194             :                 vmf->page = NULL;
    4195             :                 return poisonret;
    4196             :         }
    4197             : 
    4198           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED)))
    4199           0 :                 lock_page(vmf->page);
    4200             :         else
    4201             :                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
    4202             : 
    4203             :         return ret;
    4204             : }
    4205             : 
    4206             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    4207             : static void deposit_prealloc_pte(struct vm_fault *vmf)
    4208             : {
    4209             :         struct vm_area_struct *vma = vmf->vma;
    4210             : 
    4211             :         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
    4212             :         /*
    4213             :          * We are going to consume the prealloc table,
    4214             :          * count that as nr_ptes.
    4215             :          */
    4216             :         mm_inc_nr_ptes(vma->vm_mm);
    4217             :         vmf->prealloc_pte = NULL;
    4218             : }
    4219             : 
    4220             : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    4221             : {
    4222             :         struct vm_area_struct *vma = vmf->vma;
    4223             :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    4224             :         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
    4225             :         pmd_t entry;
    4226             :         int i;
    4227             :         vm_fault_t ret = VM_FAULT_FALLBACK;
    4228             : 
    4229             :         if (!transhuge_vma_suitable(vma, haddr))
    4230             :                 return ret;
    4231             : 
    4232             :         page = compound_head(page);
    4233             :         if (compound_order(page) != HPAGE_PMD_ORDER)
    4234             :                 return ret;
    4235             : 
    4236             :         /*
    4237             :          * Just backoff if any subpage of a THP is corrupted otherwise
    4238             :          * the corrupted page may mapped by PMD silently to escape the
    4239             :          * check.  This kind of THP just can be PTE mapped.  Access to
    4240             :          * the corrupted subpage should trigger SIGBUS as expected.
    4241             :          */
    4242             :         if (unlikely(PageHasHWPoisoned(page)))
    4243             :                 return ret;
    4244             : 
    4245             :         /*
    4246             :          * Archs like ppc64 need additional space to store information
    4247             :          * related to pte entry. Use the preallocated table for that.
    4248             :          */
    4249             :         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
    4250             :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    4251             :                 if (!vmf->prealloc_pte)
    4252             :                         return VM_FAULT_OOM;
    4253             :         }
    4254             : 
    4255             :         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
    4256             :         if (unlikely(!pmd_none(*vmf->pmd)))
    4257             :                 goto out;
    4258             : 
    4259             :         for (i = 0; i < HPAGE_PMD_NR; i++)
    4260             :                 flush_icache_page(vma, page + i);
    4261             : 
    4262             :         entry = mk_huge_pmd(page, vma->vm_page_prot);
    4263             :         if (write)
    4264             :                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    4265             : 
    4266             :         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
    4267             :         page_add_file_rmap(page, vma, true);
    4268             : 
    4269             :         /*
    4270             :          * deposit and withdraw with pmd lock held
    4271             :          */
    4272             :         if (arch_needs_pgtable_deposit())
    4273             :                 deposit_prealloc_pte(vmf);
    4274             : 
    4275             :         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
    4276             : 
    4277             :         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
    4278             : 
    4279             :         /* fault is handled */
    4280             :         ret = 0;
    4281             :         count_vm_event(THP_FILE_MAPPED);
    4282             : out:
    4283             :         spin_unlock(vmf->ptl);
    4284             :         return ret;
    4285             : }
    4286             : #else
    4287           0 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    4288             : {
    4289           0 :         return VM_FAULT_FALLBACK;
    4290             : }
    4291             : #endif
    4292             : 
    4293           0 : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
    4294             : {
    4295           0 :         struct vm_area_struct *vma = vmf->vma;
    4296           0 :         bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
    4297           0 :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    4298           0 :         bool prefault = vmf->address != addr;
    4299             :         pte_t entry;
    4300             : 
    4301           0 :         flush_icache_page(vma, page);
    4302           0 :         entry = mk_pte(page, vma->vm_page_prot);
    4303             : 
    4304             :         if (prefault && arch_wants_old_prefaulted_pte())
    4305             :                 entry = pte_mkold(entry);
    4306             :         else
    4307             :                 entry = pte_sw_mkyoung(entry);
    4308             : 
    4309           0 :         if (write)
    4310           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    4311             :         if (unlikely(uffd_wp))
    4312             :                 entry = pte_mkuffd_wp(entry);
    4313             :         /* copy-on-write page */
    4314           0 :         if (write && !(vma->vm_flags & VM_SHARED)) {
    4315           0 :                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    4316           0 :                 page_add_new_anon_rmap(page, vma, addr);
    4317           0 :                 lru_cache_add_inactive_or_unevictable(page, vma);
    4318             :         } else {
    4319           0 :                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
    4320           0 :                 page_add_file_rmap(page, vma, false);
    4321             :         }
    4322           0 :         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
    4323           0 : }
    4324             : 
    4325             : static bool vmf_pte_changed(struct vm_fault *vmf)
    4326             : {
    4327           0 :         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
    4328           0 :                 return !pte_same(*vmf->pte, vmf->orig_pte);
    4329             : 
    4330           0 :         return !pte_none(*vmf->pte);
    4331             : }
    4332             : 
    4333             : /**
    4334             :  * finish_fault - finish page fault once we have prepared the page to fault
    4335             :  *
    4336             :  * @vmf: structure describing the fault
    4337             :  *
    4338             :  * This function handles all that is needed to finish a page fault once the
    4339             :  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
    4340             :  * given page, adds reverse page mapping, handles memcg charges and LRU
    4341             :  * addition.
    4342             :  *
    4343             :  * The function expects the page to be locked and on success it consumes a
    4344             :  * reference of a page being mapped (for the PTE which maps it).
    4345             :  *
    4346             :  * Return: %0 on success, %VM_FAULT_ code in case of error.
    4347             :  */
    4348           0 : vm_fault_t finish_fault(struct vm_fault *vmf)
    4349             : {
    4350           0 :         struct vm_area_struct *vma = vmf->vma;
    4351             :         struct page *page;
    4352             :         vm_fault_t ret;
    4353             : 
    4354             :         /* Did we COW the page? */
    4355           0 :         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
    4356           0 :                 page = vmf->cow_page;
    4357             :         else
    4358           0 :                 page = vmf->page;
    4359             : 
    4360             :         /*
    4361             :          * check even for read faults because we might have lost our CoWed
    4362             :          * page
    4363             :          */
    4364           0 :         if (!(vma->vm_flags & VM_SHARED)) {
    4365           0 :                 ret = check_stable_address_space(vma->vm_mm);
    4366           0 :                 if (ret)
    4367             :                         return ret;
    4368             :         }
    4369             : 
    4370           0 :         if (pmd_none(*vmf->pmd)) {
    4371           0 :                 if (PageTransCompound(page)) {
    4372             :                         ret = do_set_pmd(vmf, page);
    4373             :                         if (ret != VM_FAULT_FALLBACK)
    4374             :                                 return ret;
    4375             :                 }
    4376             : 
    4377           0 :                 if (vmf->prealloc_pte)
    4378           0 :                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
    4379           0 :                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
    4380             :                         return VM_FAULT_OOM;
    4381             :         }
    4382             : 
    4383             :         /*
    4384             :          * See comment in handle_pte_fault() for how this scenario happens, we
    4385             :          * need to return NOPAGE so that we drop this page.
    4386             :          */
    4387           0 :         if (pmd_devmap_trans_unstable(vmf->pmd))
    4388             :                 return VM_FAULT_NOPAGE;
    4389             : 
    4390           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    4391             :                                       vmf->address, &vmf->ptl);
    4392             : 
    4393             :         /* Re-check under ptl */
    4394           0 :         if (likely(!vmf_pte_changed(vmf))) {
    4395           0 :                 do_set_pte(vmf, page, vmf->address);
    4396             : 
    4397             :                 /* no need to invalidate: a not-present page won't be cached */
    4398             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    4399             : 
    4400           0 :                 ret = 0;
    4401             :         } else {
    4402             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    4403             :                 ret = VM_FAULT_NOPAGE;
    4404             :         }
    4405             : 
    4406           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4407           0 :         return ret;
    4408             : }
    4409             : 
    4410             : static unsigned long fault_around_pages __read_mostly =
    4411             :         65536 >> PAGE_SHIFT;
    4412             : 
    4413             : #ifdef CONFIG_DEBUG_FS
    4414             : static int fault_around_bytes_get(void *data, u64 *val)
    4415             : {
    4416             :         *val = fault_around_pages << PAGE_SHIFT;
    4417             :         return 0;
    4418             : }
    4419             : 
    4420             : /*
    4421             :  * fault_around_bytes must be rounded down to the nearest page order as it's
    4422             :  * what do_fault_around() expects to see.
    4423             :  */
    4424             : static int fault_around_bytes_set(void *data, u64 val)
    4425             : {
    4426             :         if (val / PAGE_SIZE > PTRS_PER_PTE)
    4427             :                 return -EINVAL;
    4428             : 
    4429             :         /*
    4430             :          * The minimum value is 1 page, however this results in no fault-around
    4431             :          * at all. See should_fault_around().
    4432             :          */
    4433             :         fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
    4434             : 
    4435             :         return 0;
    4436             : }
    4437             : DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
    4438             :                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
    4439             : 
    4440             : static int __init fault_around_debugfs(void)
    4441             : {
    4442             :         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
    4443             :                                    &fault_around_bytes_fops);
    4444             :         return 0;
    4445             : }
    4446             : late_initcall(fault_around_debugfs);
    4447             : #endif
    4448             : 
    4449             : /*
    4450             :  * do_fault_around() tries to map few pages around the fault address. The hope
    4451             :  * is that the pages will be needed soon and this will lower the number of
    4452             :  * faults to handle.
    4453             :  *
    4454             :  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
    4455             :  * not ready to be mapped: not up-to-date, locked, etc.
    4456             :  *
    4457             :  * This function doesn't cross VMA or page table boundaries, in order to call
    4458             :  * map_pages() and acquire a PTE lock only once.
    4459             :  *
    4460             :  * fault_around_pages defines how many pages we'll try to map.
    4461             :  * do_fault_around() expects it to be set to a power of two less than or equal
    4462             :  * to PTRS_PER_PTE.
    4463             :  *
    4464             :  * The virtual address of the area that we map is naturally aligned to
    4465             :  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
    4466             :  * (and therefore to page order).  This way it's easier to guarantee
    4467             :  * that we don't cross page table boundaries.
    4468             :  */
    4469           0 : static vm_fault_t do_fault_around(struct vm_fault *vmf)
    4470             : {
    4471           0 :         pgoff_t nr_pages = READ_ONCE(fault_around_pages);
    4472           0 :         pgoff_t pte_off = pte_index(vmf->address);
    4473             :         /* The page offset of vmf->address within the VMA. */
    4474           0 :         pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
    4475             :         pgoff_t from_pte, to_pte;
    4476             :         vm_fault_t ret;
    4477             : 
    4478             :         /* The PTE offset of the start address, clamped to the VMA. */
    4479           0 :         from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
    4480             :                        pte_off - min(pte_off, vma_off));
    4481             : 
    4482             :         /* The PTE offset of the end address, clamped to the VMA and PTE. */
    4483           0 :         to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
    4484             :                       pte_off + vma_pages(vmf->vma) - vma_off) - 1;
    4485             : 
    4486           0 :         if (pmd_none(*vmf->pmd)) {
    4487           0 :                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
    4488           0 :                 if (!vmf->prealloc_pte)
    4489             :                         return VM_FAULT_OOM;
    4490             :         }
    4491             : 
    4492             :         rcu_read_lock();
    4493           0 :         ret = vmf->vma->vm_ops->map_pages(vmf,
    4494           0 :                         vmf->pgoff + from_pte - pte_off,
    4495           0 :                         vmf->pgoff + to_pte - pte_off);
    4496             :         rcu_read_unlock();
    4497             : 
    4498           0 :         return ret;
    4499             : }
    4500             : 
    4501             : /* Return true if we should do read fault-around, false otherwise */
    4502             : static inline bool should_fault_around(struct vm_fault *vmf)
    4503             : {
    4504             :         /* No ->map_pages?  No way to fault around... */
    4505           0 :         if (!vmf->vma->vm_ops->map_pages)
    4506             :                 return false;
    4507             : 
    4508           0 :         if (uffd_disable_fault_around(vmf->vma))
    4509             :                 return false;
    4510             : 
    4511             :         /* A single page implies no faulting 'around' at all. */
    4512           0 :         return fault_around_pages > 1;
    4513             : }
    4514             : 
    4515           0 : static vm_fault_t do_read_fault(struct vm_fault *vmf)
    4516             : {
    4517           0 :         vm_fault_t ret = 0;
    4518             : 
    4519             :         /*
    4520             :          * Let's call ->map_pages() first and use ->fault() as fallback
    4521             :          * if page by the offset is not ready to be mapped (cold cache or
    4522             :          * something).
    4523             :          */
    4524           0 :         if (should_fault_around(vmf)) {
    4525           0 :                 ret = do_fault_around(vmf);
    4526           0 :                 if (ret)
    4527             :                         return ret;
    4528             :         }
    4529             : 
    4530           0 :         ret = __do_fault(vmf);
    4531           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4532             :                 return ret;
    4533             : 
    4534           0 :         ret |= finish_fault(vmf);
    4535           0 :         unlock_page(vmf->page);
    4536           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4537           0 :                 put_page(vmf->page);
    4538             :         return ret;
    4539             : }
    4540             : 
    4541           0 : static vm_fault_t do_cow_fault(struct vm_fault *vmf)
    4542             : {
    4543           0 :         struct vm_area_struct *vma = vmf->vma;
    4544             :         vm_fault_t ret;
    4545             : 
    4546           0 :         if (unlikely(anon_vma_prepare(vma)))
    4547             :                 return VM_FAULT_OOM;
    4548             : 
    4549           0 :         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
    4550           0 :         if (!vmf->cow_page)
    4551             :                 return VM_FAULT_OOM;
    4552             : 
    4553           0 :         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
    4554             :                                 GFP_KERNEL)) {
    4555             :                 put_page(vmf->cow_page);
    4556             :                 return VM_FAULT_OOM;
    4557             :         }
    4558           0 :         folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
    4559             : 
    4560           0 :         ret = __do_fault(vmf);
    4561           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4562             :                 goto uncharge_out;
    4563           0 :         if (ret & VM_FAULT_DONE_COW)
    4564             :                 return ret;
    4565             : 
    4566           0 :         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
    4567           0 :         __SetPageUptodate(vmf->cow_page);
    4568             : 
    4569           0 :         ret |= finish_fault(vmf);
    4570           0 :         unlock_page(vmf->page);
    4571           0 :         put_page(vmf->page);
    4572           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4573             :                 goto uncharge_out;
    4574             :         return ret;
    4575             : uncharge_out:
    4576           0 :         put_page(vmf->cow_page);
    4577           0 :         return ret;
    4578             : }
    4579             : 
    4580           0 : static vm_fault_t do_shared_fault(struct vm_fault *vmf)
    4581             : {
    4582           0 :         struct vm_area_struct *vma = vmf->vma;
    4583             :         vm_fault_t ret, tmp;
    4584             : 
    4585           0 :         ret = __do_fault(vmf);
    4586           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4587             :                 return ret;
    4588             : 
    4589             :         /*
    4590             :          * Check if the backing address space wants to know that the page is
    4591             :          * about to become writable
    4592             :          */
    4593           0 :         if (vma->vm_ops->page_mkwrite) {
    4594           0 :                 unlock_page(vmf->page);
    4595           0 :                 tmp = do_page_mkwrite(vmf);
    4596           0 :                 if (unlikely(!tmp ||
    4597             :                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    4598           0 :                         put_page(vmf->page);
    4599           0 :                         return tmp;
    4600             :                 }
    4601             :         }
    4602             : 
    4603           0 :         ret |= finish_fault(vmf);
    4604           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
    4605             :                                         VM_FAULT_RETRY))) {
    4606           0 :                 unlock_page(vmf->page);
    4607           0 :                 put_page(vmf->page);
    4608           0 :                 return ret;
    4609             :         }
    4610             : 
    4611           0 :         ret |= fault_dirty_shared_page(vmf);
    4612           0 :         return ret;
    4613             : }
    4614             : 
    4615             : /*
    4616             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    4617             :  * but allow concurrent faults).
    4618             :  * The mmap_lock may have been released depending on flags and our
    4619             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4620             :  * If mmap_lock is released, vma may become invalid (for example
    4621             :  * by other thread calling munmap()).
    4622             :  */
    4623           0 : static vm_fault_t do_fault(struct vm_fault *vmf)
    4624             : {
    4625           0 :         struct vm_area_struct *vma = vmf->vma;
    4626           0 :         struct mm_struct *vm_mm = vma->vm_mm;
    4627             :         vm_fault_t ret;
    4628             : 
    4629             :         /*
    4630             :          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
    4631             :          */
    4632           0 :         if (!vma->vm_ops->fault) {
    4633             :                 /*
    4634             :                  * If we find a migration pmd entry or a none pmd entry, which
    4635             :                  * should never happen, return SIGBUS
    4636             :                  */
    4637           0 :                 if (unlikely(!pmd_present(*vmf->pmd)))
    4638             :                         ret = VM_FAULT_SIGBUS;
    4639             :                 else {
    4640           0 :                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
    4641             :                                                        vmf->pmd,
    4642             :                                                        vmf->address,
    4643             :                                                        &vmf->ptl);
    4644             :                         /*
    4645             :                          * Make sure this is not a temporary clearing of pte
    4646             :                          * by holding ptl and checking again. A R/M/W update
    4647             :                          * of pte involves: take ptl, clearing the pte so that
    4648             :                          * we don't have concurrent modification by hardware
    4649             :                          * followed by an update.
    4650             :                          */
    4651           0 :                         if (unlikely(pte_none(*vmf->pte)))
    4652             :                                 ret = VM_FAULT_SIGBUS;
    4653             :                         else
    4654           0 :                                 ret = VM_FAULT_NOPAGE;
    4655             : 
    4656           0 :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4657             :                 }
    4658           0 :         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
    4659           0 :                 ret = do_read_fault(vmf);
    4660           0 :         else if (!(vma->vm_flags & VM_SHARED))
    4661           0 :                 ret = do_cow_fault(vmf);
    4662             :         else
    4663           0 :                 ret = do_shared_fault(vmf);
    4664             : 
    4665             :         /* preallocated pagetable is unused: free it */
    4666           0 :         if (vmf->prealloc_pte) {
    4667           0 :                 pte_free(vm_mm, vmf->prealloc_pte);
    4668           0 :                 vmf->prealloc_pte = NULL;
    4669             :         }
    4670           0 :         return ret;
    4671             : }
    4672             : 
    4673           0 : int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
    4674             :                       unsigned long addr, int page_nid, int *flags)
    4675             : {
    4676           0 :         get_page(page);
    4677             : 
    4678             :         /* Record the current PID acceesing VMA */
    4679           0 :         vma_set_access_pid_bit(vma);
    4680             : 
    4681             :         count_vm_numa_event(NUMA_HINT_FAULTS);
    4682           0 :         if (page_nid == numa_node_id()) {
    4683             :                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
    4684           0 :                 *flags |= TNF_FAULT_LOCAL;
    4685             :         }
    4686             : 
    4687           0 :         return mpol_misplaced(page, vma, addr);
    4688             : }
    4689             : 
    4690             : static vm_fault_t do_numa_page(struct vm_fault *vmf)
    4691             : {
    4692             :         struct vm_area_struct *vma = vmf->vma;
    4693             :         struct page *page = NULL;
    4694             :         int page_nid = NUMA_NO_NODE;
    4695             :         bool writable = false;
    4696             :         int last_cpupid;
    4697             :         int target_nid;
    4698             :         pte_t pte, old_pte;
    4699             :         int flags = 0;
    4700             : 
    4701             :         /*
    4702             :          * The "pte" at this point cannot be used safely without
    4703             :          * validation through pte_unmap_same(). It's of NUMA type but
    4704             :          * the pfn may be screwed if the read is non atomic.
    4705             :          */
    4706             :         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
    4707             :         spin_lock(vmf->ptl);
    4708             :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4709             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    4710             :                 goto out;
    4711             :         }
    4712             : 
    4713             :         /* Get the normal PTE  */
    4714             :         old_pte = ptep_get(vmf->pte);
    4715             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4716             : 
    4717             :         /*
    4718             :          * Detect now whether the PTE could be writable; this information
    4719             :          * is only valid while holding the PT lock.
    4720             :          */
    4721             :         writable = pte_write(pte);
    4722             :         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
    4723             :             can_change_pte_writable(vma, vmf->address, pte))
    4724             :                 writable = true;
    4725             : 
    4726             :         page = vm_normal_page(vma, vmf->address, pte);
    4727             :         if (!page || is_zone_device_page(page))
    4728             :                 goto out_map;
    4729             : 
    4730             :         /* TODO: handle PTE-mapped THP */
    4731             :         if (PageCompound(page))
    4732             :                 goto out_map;
    4733             : 
    4734             :         /*
    4735             :          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
    4736             :          * much anyway since they can be in shared cache state. This misses
    4737             :          * the case where a mapping is writable but the process never writes
    4738             :          * to it but pte_write gets cleared during protection updates and
    4739             :          * pte_dirty has unpredictable behaviour between PTE scan updates,
    4740             :          * background writeback, dirty balancing and application behaviour.
    4741             :          */
    4742             :         if (!writable)
    4743             :                 flags |= TNF_NO_GROUP;
    4744             : 
    4745             :         /*
    4746             :          * Flag if the page is shared between multiple address spaces. This
    4747             :          * is later used when determining whether to group tasks together
    4748             :          */
    4749             :         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
    4750             :                 flags |= TNF_SHARED;
    4751             : 
    4752             :         page_nid = page_to_nid(page);
    4753             :         /*
    4754             :          * For memory tiering mode, cpupid of slow memory page is used
    4755             :          * to record page access time.  So use default value.
    4756             :          */
    4757             :         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    4758             :             !node_is_toptier(page_nid))
    4759             :                 last_cpupid = (-1 & LAST_CPUPID_MASK);
    4760             :         else
    4761             :                 last_cpupid = page_cpupid_last(page);
    4762             :         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
    4763             :                         &flags);
    4764             :         if (target_nid == NUMA_NO_NODE) {
    4765             :                 put_page(page);
    4766             :                 goto out_map;
    4767             :         }
    4768             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4769             :         writable = false;
    4770             : 
    4771             :         /* Migrate to the requested node */
    4772             :         if (migrate_misplaced_page(page, vma, target_nid)) {
    4773             :                 page_nid = target_nid;
    4774             :                 flags |= TNF_MIGRATED;
    4775             :         } else {
    4776             :                 flags |= TNF_MIGRATE_FAIL;
    4777             :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4778             :                 spin_lock(vmf->ptl);
    4779             :                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4780             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4781             :                         goto out;
    4782             :                 }
    4783             :                 goto out_map;
    4784             :         }
    4785             : 
    4786             : out:
    4787             :         if (page_nid != NUMA_NO_NODE)
    4788             :                 task_numa_fault(last_cpupid, page_nid, 1, flags);
    4789             :         return 0;
    4790             : out_map:
    4791             :         /*
    4792             :          * Make it present again, depending on how arch implements
    4793             :          * non-accessible ptes, some can allow access by kernel mode.
    4794             :          */
    4795             :         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
    4796             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4797             :         pte = pte_mkyoung(pte);
    4798             :         if (writable)
    4799             :                 pte = pte_mkwrite(pte);
    4800             :         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
    4801             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4802             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4803             :         goto out;
    4804             : }
    4805             : 
    4806             : static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
    4807             : {
    4808             :         if (vma_is_anonymous(vmf->vma))
    4809             :                 return do_huge_pmd_anonymous_page(vmf);
    4810             :         if (vmf->vma->vm_ops->huge_fault)
    4811             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4812             :         return VM_FAULT_FALLBACK;
    4813             : }
    4814             : 
    4815             : /* `inline' is required to avoid gcc 4.1.2 build error */
    4816             : static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
    4817             : {
    4818             :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    4819             :         vm_fault_t ret;
    4820             : 
    4821             :         if (vma_is_anonymous(vmf->vma)) {
    4822             :                 if (likely(!unshare) &&
    4823             :                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
    4824             :                         return handle_userfault(vmf, VM_UFFD_WP);
    4825             :                 return do_huge_pmd_wp_page(vmf);
    4826             :         }
    4827             : 
    4828             :         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    4829             :                 if (vmf->vma->vm_ops->huge_fault) {
    4830             :                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4831             :                         if (!(ret & VM_FAULT_FALLBACK))
    4832             :                                 return ret;
    4833             :                 }
    4834             :         }
    4835             : 
    4836             :         /* COW or write-notify handled on pte level: split pmd. */
    4837             :         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
    4838             : 
    4839             :         return VM_FAULT_FALLBACK;
    4840             : }
    4841             : 
    4842             : static vm_fault_t create_huge_pud(struct vm_fault *vmf)
    4843             : {
    4844             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    4845             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    4846             :         /* No support for anonymous transparent PUD pages yet */
    4847             :         if (vma_is_anonymous(vmf->vma))
    4848             :                 return VM_FAULT_FALLBACK;
    4849             :         if (vmf->vma->vm_ops->huge_fault)
    4850             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4851             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    4852             :         return VM_FAULT_FALLBACK;
    4853             : }
    4854             : 
    4855             : static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
    4856             : {
    4857             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    4858             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    4859             :         vm_fault_t ret;
    4860             : 
    4861             :         /* No support for anonymous transparent PUD pages yet */
    4862             :         if (vma_is_anonymous(vmf->vma))
    4863             :                 goto split;
    4864             :         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    4865             :                 if (vmf->vma->vm_ops->huge_fault) {
    4866             :                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4867             :                         if (!(ret & VM_FAULT_FALLBACK))
    4868             :                                 return ret;
    4869             :                 }
    4870             :         }
    4871             : split:
    4872             :         /* COW or write-notify not handled on PUD level: split pud.*/
    4873             :         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
    4874             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
    4875             :         return VM_FAULT_FALLBACK;
    4876             : }
    4877             : 
    4878             : /*
    4879             :  * These routines also need to handle stuff like marking pages dirty
    4880             :  * and/or accessed for architectures that don't do it in hardware (most
    4881             :  * RISC architectures).  The early dirtying is also good on the i386.
    4882             :  *
    4883             :  * There is also a hook called "update_mmu_cache()" that architectures
    4884             :  * with external mmu caches can use to update those (ie the Sparc or
    4885             :  * PowerPC hashed page tables that act as extended TLBs).
    4886             :  *
    4887             :  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
    4888             :  * concurrent faults).
    4889             :  *
    4890             :  * The mmap_lock may have been released depending on flags and our return value.
    4891             :  * See filemap_fault() and __folio_lock_or_retry().
    4892             :  */
    4893           0 : static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
    4894             : {
    4895             :         pte_t entry;
    4896             : 
    4897           0 :         if (unlikely(pmd_none(*vmf->pmd))) {
    4898             :                 /*
    4899             :                  * Leave __pte_alloc() until later: because vm_ops->fault may
    4900             :                  * want to allocate huge page, and if we expose page table
    4901             :                  * for an instant, it will be difficult to retract from
    4902             :                  * concurrent faults and from rmap lookups.
    4903             :                  */
    4904           0 :                 vmf->pte = NULL;
    4905           0 :                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
    4906             :         } else {
    4907             :                 /*
    4908             :                  * If a huge pmd materialized under us just retry later.  Use
    4909             :                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
    4910             :                  * of pmd_trans_huge() to ensure the pmd didn't become
    4911             :                  * pmd_trans_huge under us and then back to pmd_none, as a
    4912             :                  * result of MADV_DONTNEED running immediately after a huge pmd
    4913             :                  * fault in a different thread of this mm, in turn leading to a
    4914             :                  * misleading pmd_trans_huge() retval. All we have to ensure is
    4915             :                  * that it is a regular pmd that we can walk with
    4916             :                  * pte_offset_map() and we can do that through an atomic read
    4917             :                  * in C, which is what pmd_trans_unstable() provides.
    4918             :                  */
    4919           0 :                 if (pmd_devmap_trans_unstable(vmf->pmd))
    4920             :                         return 0;
    4921             :                 /*
    4922             :                  * A regular pmd is established and it can't morph into a huge
    4923             :                  * pmd from under us anymore at this point because we hold the
    4924             :                  * mmap_lock read mode and khugepaged takes it in write mode.
    4925             :                  * So now it's safe to run pte_offset_map().
    4926             :                  */
    4927           0 :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4928           0 :                 vmf->orig_pte = *vmf->pte;
    4929           0 :                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
    4930             : 
    4931             :                 /*
    4932             :                  * some architectures can have larger ptes than wordsize,
    4933             :                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
    4934             :                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
    4935             :                  * accesses.  The code below just needs a consistent view
    4936             :                  * for the ifs and we later double check anyway with the
    4937             :                  * ptl lock held. So here a barrier will do.
    4938             :                  */
    4939           0 :                 barrier();
    4940           0 :                 if (pte_none(vmf->orig_pte)) {
    4941             :                         pte_unmap(vmf->pte);
    4942           0 :                         vmf->pte = NULL;
    4943             :                 }
    4944             :         }
    4945             : 
    4946           0 :         if (!vmf->pte)
    4947           0 :                 return do_pte_missing(vmf);
    4948             : 
    4949           0 :         if (!pte_present(vmf->orig_pte))
    4950           0 :                 return do_swap_page(vmf);
    4951             : 
    4952           0 :         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
    4953             :                 return do_numa_page(vmf);
    4954             : 
    4955           0 :         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    4956           0 :         spin_lock(vmf->ptl);
    4957           0 :         entry = vmf->orig_pte;
    4958           0 :         if (unlikely(!pte_same(*vmf->pte, entry))) {
    4959             :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    4960             :                 goto unlock;
    4961             :         }
    4962           0 :         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
    4963           0 :                 if (!pte_write(entry))
    4964           0 :                         return do_wp_page(vmf);
    4965           0 :                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
    4966             :                         entry = pte_mkdirty(entry);
    4967             :         }
    4968           0 :         entry = pte_mkyoung(entry);
    4969           0 :         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
    4970           0 :                                 vmf->flags & FAULT_FLAG_WRITE)) {
    4971             :                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
    4972             :         } else {
    4973             :                 /* Skip spurious TLB flush for retried page fault */
    4974           0 :                 if (vmf->flags & FAULT_FLAG_TRIED)
    4975             :                         goto unlock;
    4976             :                 /*
    4977             :                  * This is needed only for protection faults but the arch code
    4978             :                  * is not yet telling us if this is a protection fault or not.
    4979             :                  * This still avoids useless tlb flushes for .text page faults
    4980             :                  * with threads.
    4981             :                  */
    4982           0 :                 if (vmf->flags & FAULT_FLAG_WRITE)
    4983           0 :                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
    4984             :                                                      vmf->pte);
    4985             :         }
    4986             : unlock:
    4987           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4988           0 :         return 0;
    4989             : }
    4990             : 
    4991             : /*
    4992             :  * By the time we get here, we already hold the mm semaphore
    4993             :  *
    4994             :  * The mmap_lock may have been released depending on flags and our
    4995             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4996             :  */
    4997           0 : static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
    4998             :                 unsigned long address, unsigned int flags)
    4999             : {
    5000           0 :         struct vm_fault vmf = {
    5001             :                 .vma = vma,
    5002           0 :                 .address = address & PAGE_MASK,
    5003             :                 .real_address = address,
    5004             :                 .flags = flags,
    5005           0 :                 .pgoff = linear_page_index(vma, address),
    5006           0 :                 .gfp_mask = __get_fault_gfp_mask(vma),
    5007             :         };
    5008           0 :         struct mm_struct *mm = vma->vm_mm;
    5009           0 :         unsigned long vm_flags = vma->vm_flags;
    5010             :         pgd_t *pgd;
    5011             :         p4d_t *p4d;
    5012             :         vm_fault_t ret;
    5013             : 
    5014           0 :         pgd = pgd_offset(mm, address);
    5015           0 :         p4d = p4d_alloc(mm, pgd, address);
    5016           0 :         if (!p4d)
    5017             :                 return VM_FAULT_OOM;
    5018             : 
    5019           0 :         vmf.pud = pud_alloc(mm, p4d, address);
    5020             :         if (!vmf.pud)
    5021             :                 return VM_FAULT_OOM;
    5022             : retry_pud:
    5023             :         if (pud_none(*vmf.pud) &&
    5024             :             hugepage_vma_check(vma, vm_flags, false, true, true)) {
    5025             :                 ret = create_huge_pud(&vmf);
    5026             :                 if (!(ret & VM_FAULT_FALLBACK))
    5027             :                         return ret;
    5028             :         } else {
    5029             :                 pud_t orig_pud = *vmf.pud;
    5030             : 
    5031           0 :                 barrier();
    5032           0 :                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
    5033             : 
    5034             :                         /*
    5035             :                          * TODO once we support anonymous PUDs: NUMA case and
    5036             :                          * FAULT_FLAG_UNSHARE handling.
    5037             :                          */
    5038             :                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
    5039             :                                 ret = wp_huge_pud(&vmf, orig_pud);
    5040             :                                 if (!(ret & VM_FAULT_FALLBACK))
    5041             :                                         return ret;
    5042             :                         } else {
    5043             :                                 huge_pud_set_accessed(&vmf, orig_pud);
    5044             :                                 return 0;
    5045             :                         }
    5046             :                 }
    5047             :         }
    5048             : 
    5049           0 :         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
    5050           0 :         if (!vmf.pmd)
    5051             :                 return VM_FAULT_OOM;
    5052             : 
    5053             :         /* Huge pud page fault raced with pmd_alloc? */
    5054           0 :         if (pud_trans_unstable(vmf.pud))
    5055             :                 goto retry_pud;
    5056             : 
    5057             :         if (pmd_none(*vmf.pmd) &&
    5058             :             hugepage_vma_check(vma, vm_flags, false, true, true)) {
    5059             :                 ret = create_huge_pmd(&vmf);
    5060             :                 if (!(ret & VM_FAULT_FALLBACK))
    5061             :                         return ret;
    5062             :         } else {
    5063           0 :                 vmf.orig_pmd = *vmf.pmd;
    5064             : 
    5065           0 :                 barrier();
    5066           0 :                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
    5067             :                         VM_BUG_ON(thp_migration_supported() &&
    5068             :                                           !is_pmd_migration_entry(vmf.orig_pmd));
    5069             :                         if (is_pmd_migration_entry(vmf.orig_pmd))
    5070             :                                 pmd_migration_entry_wait(mm, vmf.pmd);
    5071             :                         return 0;
    5072             :                 }
    5073           0 :                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
    5074             :                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
    5075             :                                 return do_huge_pmd_numa_page(&vmf);
    5076             : 
    5077             :                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
    5078             :                             !pmd_write(vmf.orig_pmd)) {
    5079             :                                 ret = wp_huge_pmd(&vmf);
    5080             :                                 if (!(ret & VM_FAULT_FALLBACK))
    5081             :                                         return ret;
    5082             :                         } else {
    5083             :                                 huge_pmd_set_accessed(&vmf);
    5084             :                                 return 0;
    5085             :                         }
    5086             :                 }
    5087             :         }
    5088             : 
    5089           0 :         return handle_pte_fault(&vmf);
    5090             : }
    5091             : 
    5092             : /**
    5093             :  * mm_account_fault - Do page fault accounting
    5094             :  *
    5095             :  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
    5096             :  *        of perf event counters, but we'll still do the per-task accounting to
    5097             :  *        the task who triggered this page fault.
    5098             :  * @address: the faulted address.
    5099             :  * @flags: the fault flags.
    5100             :  * @ret: the fault retcode.
    5101             :  *
    5102             :  * This will take care of most of the page fault accounting.  Meanwhile, it
    5103             :  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
    5104             :  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
    5105             :  * still be in per-arch page fault handlers at the entry of page fault.
    5106             :  */
    5107           0 : static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
    5108             :                                     unsigned long address, unsigned int flags,
    5109             :                                     vm_fault_t ret)
    5110             : {
    5111             :         bool major;
    5112             : 
    5113             :         /* Incomplete faults will be accounted upon completion. */
    5114           0 :         if (ret & VM_FAULT_RETRY)
    5115             :                 return;
    5116             : 
    5117             :         /*
    5118             :          * To preserve the behavior of older kernels, PGFAULT counters record
    5119             :          * both successful and failed faults, as opposed to perf counters,
    5120             :          * which ignore failed cases.
    5121             :          */
    5122           0 :         count_vm_event(PGFAULT);
    5123           0 :         count_memcg_event_mm(mm, PGFAULT);
    5124             : 
    5125             :         /*
    5126             :          * Do not account for unsuccessful faults (e.g. when the address wasn't
    5127             :          * valid).  That includes arch_vma_access_permitted() failing before
    5128             :          * reaching here. So this is not a "this many hardware page faults"
    5129             :          * counter.  We should use the hw profiling for that.
    5130             :          */
    5131           0 :         if (ret & VM_FAULT_ERROR)
    5132             :                 return;
    5133             : 
    5134             :         /*
    5135             :          * We define the fault as a major fault when the final successful fault
    5136             :          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
    5137             :          * handle it immediately previously).
    5138             :          */
    5139           0 :         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
    5140             : 
    5141           0 :         if (major)
    5142           0 :                 current->maj_flt++;
    5143             :         else
    5144           0 :                 current->min_flt++;
    5145             : 
    5146             :         /*
    5147             :          * If the fault is done for GUP, regs will be NULL.  We only do the
    5148             :          * accounting for the per thread fault counters who triggered the
    5149             :          * fault, and we skip the perf event updates.
    5150             :          */
    5151             :         if (!regs)
    5152             :                 return;
    5153             : 
    5154             :         if (major)
    5155             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
    5156             :         else
    5157             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
    5158             : }
    5159             : 
    5160             : #ifdef CONFIG_LRU_GEN
    5161             : static void lru_gen_enter_fault(struct vm_area_struct *vma)
    5162             : {
    5163             :         /* the LRU algorithm only applies to accesses with recency */
    5164             :         current->in_lru_fault = vma_has_recency(vma);
    5165             : }
    5166             : 
    5167             : static void lru_gen_exit_fault(void)
    5168             : {
    5169             :         current->in_lru_fault = false;
    5170             : }
    5171             : #else
    5172             : static void lru_gen_enter_fault(struct vm_area_struct *vma)
    5173             : {
    5174             : }
    5175             : 
    5176             : static void lru_gen_exit_fault(void)
    5177             : {
    5178             : }
    5179             : #endif /* CONFIG_LRU_GEN */
    5180             : 
    5181           0 : static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
    5182             :                                        unsigned int *flags)
    5183             : {
    5184           0 :         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
    5185           0 :                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
    5186             :                         return VM_FAULT_SIGSEGV;
    5187             :                 /*
    5188             :                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
    5189             :                  * just treat it like an ordinary read-fault otherwise.
    5190             :                  */
    5191           0 :                 if (!is_cow_mapping(vma->vm_flags))
    5192           0 :                         *flags &= ~FAULT_FLAG_UNSHARE;
    5193           0 :         } else if (*flags & FAULT_FLAG_WRITE) {
    5194             :                 /* Write faults on read-only mappings are impossible ... */
    5195           0 :                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
    5196             :                         return VM_FAULT_SIGSEGV;
    5197             :                 /* ... and FOLL_FORCE only applies to COW mappings. */
    5198           0 :                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
    5199             :                                  !is_cow_mapping(vma->vm_flags)))
    5200             :                         return VM_FAULT_SIGSEGV;
    5201             :         }
    5202             :         return 0;
    5203             : }
    5204             : 
    5205             : /*
    5206             :  * By the time we get here, we already hold the mm semaphore
    5207             :  *
    5208             :  * The mmap_lock may have been released depending on flags and our
    5209             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    5210             :  */
    5211           0 : vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
    5212             :                            unsigned int flags, struct pt_regs *regs)
    5213             : {
    5214             :         /* If the fault handler drops the mmap_lock, vma may be freed */
    5215           0 :         struct mm_struct *mm = vma->vm_mm;
    5216             :         vm_fault_t ret;
    5217             : 
    5218           0 :         __set_current_state(TASK_RUNNING);
    5219             : 
    5220           0 :         ret = sanitize_fault_flags(vma, &flags);
    5221           0 :         if (ret)
    5222             :                 goto out;
    5223             : 
    5224           0 :         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
    5225           0 :                                             flags & FAULT_FLAG_INSTRUCTION,
    5226           0 :                                             flags & FAULT_FLAG_REMOTE)) {
    5227             :                 ret = VM_FAULT_SIGSEGV;
    5228             :                 goto out;
    5229             :         }
    5230             : 
    5231             :         /*
    5232             :          * Enable the memcg OOM handling for faults triggered in user
    5233             :          * space.  Kernel faults are handled more gracefully.
    5234             :          */
    5235             :         if (flags & FAULT_FLAG_USER)
    5236             :                 mem_cgroup_enter_user_fault();
    5237             : 
    5238           0 :         lru_gen_enter_fault(vma);
    5239             : 
    5240           0 :         if (unlikely(is_vm_hugetlb_page(vma)))
    5241             :                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
    5242             :         else
    5243           0 :                 ret = __handle_mm_fault(vma, address, flags);
    5244             : 
    5245             :         lru_gen_exit_fault();
    5246             : 
    5247           0 :         if (flags & FAULT_FLAG_USER) {
    5248             :                 mem_cgroup_exit_user_fault();
    5249             :                 /*
    5250             :                  * The task may have entered a memcg OOM situation but
    5251             :                  * if the allocation error was handled gracefully (no
    5252             :                  * VM_FAULT_OOM), there is no need to kill anything.
    5253             :                  * Just clean up the OOM state peacefully.
    5254             :                  */
    5255           0 :                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
    5256             :                         mem_cgroup_oom_synchronize(false);
    5257             :         }
    5258             : out:
    5259           0 :         mm_account_fault(mm, regs, address, flags, ret);
    5260             : 
    5261           0 :         return ret;
    5262             : }
    5263             : EXPORT_SYMBOL_GPL(handle_mm_fault);
    5264             : 
    5265             : #ifdef CONFIG_PER_VMA_LOCK
    5266             : /*
    5267             :  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
    5268             :  * stable and not isolated. If the VMA is not found or is being modified the
    5269             :  * function returns NULL.
    5270             :  */
    5271             : struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
    5272             :                                           unsigned long address)
    5273             : {
    5274             :         MA_STATE(mas, &mm->mm_mt, address, address);
    5275             :         struct vm_area_struct *vma;
    5276             : 
    5277             :         rcu_read_lock();
    5278             : retry:
    5279             :         vma = mas_walk(&mas);
    5280             :         if (!vma)
    5281             :                 goto inval;
    5282             : 
    5283             :         /* Only anonymous vmas are supported for now */
    5284             :         if (!vma_is_anonymous(vma))
    5285             :                 goto inval;
    5286             : 
    5287             :         /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
    5288             :         if (!vma->anon_vma)
    5289             :                 goto inval;
    5290             : 
    5291             :         if (!vma_start_read(vma))
    5292             :                 goto inval;
    5293             : 
    5294             :         /*
    5295             :          * Due to the possibility of userfault handler dropping mmap_lock, avoid
    5296             :          * it for now and fall back to page fault handling under mmap_lock.
    5297             :          */
    5298             :         if (userfaultfd_armed(vma)) {
    5299             :                 vma_end_read(vma);
    5300             :                 goto inval;
    5301             :         }
    5302             : 
    5303             :         /* Check since vm_start/vm_end might change before we lock the VMA */
    5304             :         if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
    5305             :                 vma_end_read(vma);
    5306             :                 goto inval;
    5307             :         }
    5308             : 
    5309             :         /* Check if the VMA got isolated after we found it */
    5310             :         if (vma->detached) {
    5311             :                 vma_end_read(vma);
    5312             :                 count_vm_vma_lock_event(VMA_LOCK_MISS);
    5313             :                 /* The area was replaced with another one */
    5314             :                 goto retry;
    5315             :         }
    5316             : 
    5317             :         rcu_read_unlock();
    5318             :         return vma;
    5319             : inval:
    5320             :         rcu_read_unlock();
    5321             :         count_vm_vma_lock_event(VMA_LOCK_ABORT);
    5322             :         return NULL;
    5323             : }
    5324             : #endif /* CONFIG_PER_VMA_LOCK */
    5325             : 
    5326             : #ifndef __PAGETABLE_P4D_FOLDED
    5327             : /*
    5328             :  * Allocate p4d page table.
    5329             :  * We've already handled the fast-path in-line.
    5330             :  */
    5331             : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
    5332             : {
    5333             :         p4d_t *new = p4d_alloc_one(mm, address);
    5334             :         if (!new)
    5335             :                 return -ENOMEM;
    5336             : 
    5337             :         spin_lock(&mm->page_table_lock);
    5338             :         if (pgd_present(*pgd)) {        /* Another has populated it */
    5339             :                 p4d_free(mm, new);
    5340             :         } else {
    5341             :                 smp_wmb(); /* See comment in pmd_install() */
    5342             :                 pgd_populate(mm, pgd, new);
    5343             :         }
    5344             :         spin_unlock(&mm->page_table_lock);
    5345             :         return 0;
    5346             : }
    5347             : #endif /* __PAGETABLE_P4D_FOLDED */
    5348             : 
    5349             : #ifndef __PAGETABLE_PUD_FOLDED
    5350             : /*
    5351             :  * Allocate page upper directory.
    5352             :  * We've already handled the fast-path in-line.
    5353             :  */
    5354             : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
    5355             : {
    5356             :         pud_t *new = pud_alloc_one(mm, address);
    5357             :         if (!new)
    5358             :                 return -ENOMEM;
    5359             : 
    5360             :         spin_lock(&mm->page_table_lock);
    5361             :         if (!p4d_present(*p4d)) {
    5362             :                 mm_inc_nr_puds(mm);
    5363             :                 smp_wmb(); /* See comment in pmd_install() */
    5364             :                 p4d_populate(mm, p4d, new);
    5365             :         } else  /* Another has populated it */
    5366             :                 pud_free(mm, new);
    5367             :         spin_unlock(&mm->page_table_lock);
    5368             :         return 0;
    5369             : }
    5370             : #endif /* __PAGETABLE_PUD_FOLDED */
    5371             : 
    5372             : #ifndef __PAGETABLE_PMD_FOLDED
    5373             : /*
    5374             :  * Allocate page middle directory.
    5375             :  * We've already handled the fast-path in-line.
    5376             :  */
    5377           1 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    5378             : {
    5379             :         spinlock_t *ptl;
    5380           1 :         pmd_t *new = pmd_alloc_one(mm, address);
    5381           1 :         if (!new)
    5382             :                 return -ENOMEM;
    5383             : 
    5384           2 :         ptl = pud_lock(mm, pud);
    5385           1 :         if (!pud_present(*pud)) {
    5386           1 :                 mm_inc_nr_pmds(mm);
    5387           1 :                 smp_wmb(); /* See comment in pmd_install() */
    5388           1 :                 pud_populate(mm, pud, new);
    5389             :         } else {        /* Another has populated it */
    5390           0 :                 pmd_free(mm, new);
    5391             :         }
    5392           1 :         spin_unlock(ptl);
    5393           1 :         return 0;
    5394             : }
    5395             : #endif /* __PAGETABLE_PMD_FOLDED */
    5396             : 
    5397             : /**
    5398             :  * follow_pte - look up PTE at a user virtual address
    5399             :  * @mm: the mm_struct of the target address space
    5400             :  * @address: user virtual address
    5401             :  * @ptepp: location to store found PTE
    5402             :  * @ptlp: location to store the lock for the PTE
    5403             :  *
    5404             :  * On a successful return, the pointer to the PTE is stored in @ptepp;
    5405             :  * the corresponding lock is taken and its location is stored in @ptlp.
    5406             :  * The contents of the PTE are only stable until @ptlp is released;
    5407             :  * any further use, if any, must be protected against invalidation
    5408             :  * with MMU notifiers.
    5409             :  *
    5410             :  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
    5411             :  * should be taken for read.
    5412             :  *
    5413             :  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
    5414             :  * it is not a good general-purpose API.
    5415             :  *
    5416             :  * Return: zero on success, -ve otherwise.
    5417             :  */
    5418           0 : int follow_pte(struct mm_struct *mm, unsigned long address,
    5419             :                pte_t **ptepp, spinlock_t **ptlp)
    5420             : {
    5421             :         pgd_t *pgd;
    5422             :         p4d_t *p4d;
    5423             :         pud_t *pud;
    5424             :         pmd_t *pmd;
    5425             :         pte_t *ptep;
    5426             : 
    5427           0 :         pgd = pgd_offset(mm, address);
    5428             :         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    5429             :                 goto out;
    5430             : 
    5431           0 :         p4d = p4d_offset(pgd, address);
    5432             :         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
    5433             :                 goto out;
    5434             : 
    5435           0 :         pud = pud_offset(p4d, address);
    5436           0 :         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
    5437             :                 goto out;
    5438             : 
    5439           0 :         pmd = pmd_offset(pud, address);
    5440             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    5441             : 
    5442           0 :         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
    5443             :                 goto out;
    5444             : 
    5445           0 :         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
    5446           0 :         if (!pte_present(*ptep))
    5447             :                 goto unlock;
    5448           0 :         *ptepp = ptep;
    5449           0 :         return 0;
    5450             : unlock:
    5451           0 :         pte_unmap_unlock(ptep, *ptlp);
    5452             : out:
    5453             :         return -EINVAL;
    5454             : }
    5455             : EXPORT_SYMBOL_GPL(follow_pte);
    5456             : 
    5457             : /**
    5458             :  * follow_pfn - look up PFN at a user virtual address
    5459             :  * @vma: memory mapping
    5460             :  * @address: user virtual address
    5461             :  * @pfn: location to store found PFN
    5462             :  *
    5463             :  * Only IO mappings and raw PFN mappings are allowed.
    5464             :  *
    5465             :  * This function does not allow the caller to read the permissions
    5466             :  * of the PTE.  Do not use it.
    5467             :  *
    5468             :  * Return: zero and the pfn at @pfn on success, -ve otherwise.
    5469             :  */
    5470           0 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    5471             :         unsigned long *pfn)
    5472             : {
    5473           0 :         int ret = -EINVAL;
    5474             :         spinlock_t *ptl;
    5475             :         pte_t *ptep;
    5476             : 
    5477           0 :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5478             :                 return ret;
    5479             : 
    5480           0 :         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
    5481           0 :         if (ret)
    5482             :                 return ret;
    5483           0 :         *pfn = pte_pfn(*ptep);
    5484           0 :         pte_unmap_unlock(ptep, ptl);
    5485           0 :         return 0;
    5486             : }
    5487             : EXPORT_SYMBOL(follow_pfn);
    5488             : 
    5489             : #ifdef CONFIG_HAVE_IOREMAP_PROT
    5490             : int follow_phys(struct vm_area_struct *vma,
    5491             :                 unsigned long address, unsigned int flags,
    5492             :                 unsigned long *prot, resource_size_t *phys)
    5493             : {
    5494             :         int ret = -EINVAL;
    5495             :         pte_t *ptep, pte;
    5496             :         spinlock_t *ptl;
    5497             : 
    5498             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5499             :                 goto out;
    5500             : 
    5501             :         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
    5502             :                 goto out;
    5503             :         pte = *ptep;
    5504             : 
    5505             :         if ((flags & FOLL_WRITE) && !pte_write(pte))
    5506             :                 goto unlock;
    5507             : 
    5508             :         *prot = pgprot_val(pte_pgprot(pte));
    5509             :         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5510             : 
    5511             :         ret = 0;
    5512             : unlock:
    5513             :         pte_unmap_unlock(ptep, ptl);
    5514             : out:
    5515             :         return ret;
    5516             : }
    5517             : 
    5518             : /**
    5519             :  * generic_access_phys - generic implementation for iomem mmap access
    5520             :  * @vma: the vma to access
    5521             :  * @addr: userspace address, not relative offset within @vma
    5522             :  * @buf: buffer to read/write
    5523             :  * @len: length of transfer
    5524             :  * @write: set to FOLL_WRITE when writing, otherwise reading
    5525             :  *
    5526             :  * This is a generic implementation for &vm_operations_struct.access for an
    5527             :  * iomem mapping. This callback is used by access_process_vm() when the @vma is
    5528             :  * not page based.
    5529             :  */
    5530             : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    5531             :                         void *buf, int len, int write)
    5532             : {
    5533             :         resource_size_t phys_addr;
    5534             :         unsigned long prot = 0;
    5535             :         void __iomem *maddr;
    5536             :         pte_t *ptep, pte;
    5537             :         spinlock_t *ptl;
    5538             :         int offset = offset_in_page(addr);
    5539             :         int ret = -EINVAL;
    5540             : 
    5541             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5542             :                 return -EINVAL;
    5543             : 
    5544             : retry:
    5545             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5546             :                 return -EINVAL;
    5547             :         pte = *ptep;
    5548             :         pte_unmap_unlock(ptep, ptl);
    5549             : 
    5550             :         prot = pgprot_val(pte_pgprot(pte));
    5551             :         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5552             : 
    5553             :         if ((write & FOLL_WRITE) && !pte_write(pte))
    5554             :                 return -EINVAL;
    5555             : 
    5556             :         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
    5557             :         if (!maddr)
    5558             :                 return -ENOMEM;
    5559             : 
    5560             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5561             :                 goto out_unmap;
    5562             : 
    5563             :         if (!pte_same(pte, *ptep)) {
    5564             :                 pte_unmap_unlock(ptep, ptl);
    5565             :                 iounmap(maddr);
    5566             : 
    5567             :                 goto retry;
    5568             :         }
    5569             : 
    5570             :         if (write)
    5571             :                 memcpy_toio(maddr + offset, buf, len);
    5572             :         else
    5573             :                 memcpy_fromio(buf, maddr + offset, len);
    5574             :         ret = len;
    5575             :         pte_unmap_unlock(ptep, ptl);
    5576             : out_unmap:
    5577             :         iounmap(maddr);
    5578             : 
    5579             :         return ret;
    5580             : }
    5581             : EXPORT_SYMBOL_GPL(generic_access_phys);
    5582             : #endif
    5583             : 
    5584             : /*
    5585             :  * Access another process' address space as given in mm.
    5586             :  */
    5587           0 : int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
    5588             :                        int len, unsigned int gup_flags)
    5589             : {
    5590             :         struct vm_area_struct *vma;
    5591           0 :         void *old_buf = buf;
    5592           0 :         int write = gup_flags & FOLL_WRITE;
    5593             : 
    5594           0 :         if (mmap_read_lock_killable(mm))
    5595             :                 return 0;
    5596             : 
    5597             :         /* ignore errors, just check how much was successfully transferred */
    5598           0 :         while (len) {
    5599             :                 int bytes, ret, offset;
    5600             :                 void *maddr;
    5601           0 :                 struct page *page = NULL;
    5602             : 
    5603           0 :                 ret = get_user_pages_remote(mm, addr, 1,
    5604             :                                 gup_flags, &page, &vma, NULL);
    5605           0 :                 if (ret <= 0) {
    5606             : #ifndef CONFIG_HAVE_IOREMAP_PROT
    5607             :                         break;
    5608             : #else
    5609             :                         /*
    5610             :                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
    5611             :                          * we can access using slightly different code.
    5612             :                          */
    5613             :                         vma = vma_lookup(mm, addr);
    5614             :                         if (!vma)
    5615             :                                 break;
    5616             :                         if (vma->vm_ops && vma->vm_ops->access)
    5617             :                                 ret = vma->vm_ops->access(vma, addr, buf,
    5618             :                                                           len, write);
    5619             :                         if (ret <= 0)
    5620             :                                 break;
    5621             :                         bytes = ret;
    5622             : #endif
    5623             :                 } else {
    5624           0 :                         bytes = len;
    5625           0 :                         offset = addr & (PAGE_SIZE-1);
    5626           0 :                         if (bytes > PAGE_SIZE-offset)
    5627           0 :                                 bytes = PAGE_SIZE-offset;
    5628             : 
    5629           0 :                         maddr = kmap(page);
    5630           0 :                         if (write) {
    5631           0 :                                 copy_to_user_page(vma, page, addr,
    5632             :                                                   maddr + offset, buf, bytes);
    5633           0 :                                 set_page_dirty_lock(page);
    5634             :                         } else {
    5635           0 :                                 copy_from_user_page(vma, page, addr,
    5636             :                                                     buf, maddr + offset, bytes);
    5637             :                         }
    5638           0 :                         kunmap(page);
    5639           0 :                         put_page(page);
    5640             :                 }
    5641           0 :                 len -= bytes;
    5642           0 :                 buf += bytes;
    5643           0 :                 addr += bytes;
    5644             :         }
    5645           0 :         mmap_read_unlock(mm);
    5646             : 
    5647           0 :         return buf - old_buf;
    5648             : }
    5649             : 
    5650             : /**
    5651             :  * access_remote_vm - access another process' address space
    5652             :  * @mm:         the mm_struct of the target address space
    5653             :  * @addr:       start address to access
    5654             :  * @buf:        source or destination buffer
    5655             :  * @len:        number of bytes to transfer
    5656             :  * @gup_flags:  flags modifying lookup behaviour
    5657             :  *
    5658             :  * The caller must hold a reference on @mm.
    5659             :  *
    5660             :  * Return: number of bytes copied from source to destination.
    5661             :  */
    5662           0 : int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    5663             :                 void *buf, int len, unsigned int gup_flags)
    5664             : {
    5665           0 :         return __access_remote_vm(mm, addr, buf, len, gup_flags);
    5666             : }
    5667             : 
    5668             : /*
    5669             :  * Access another process' address space.
    5670             :  * Source/target buffer must be kernel space,
    5671             :  * Do not walk the page table directly, use get_user_pages
    5672             :  */
    5673           0 : int access_process_vm(struct task_struct *tsk, unsigned long addr,
    5674             :                 void *buf, int len, unsigned int gup_flags)
    5675             : {
    5676             :         struct mm_struct *mm;
    5677             :         int ret;
    5678             : 
    5679           0 :         mm = get_task_mm(tsk);
    5680           0 :         if (!mm)
    5681             :                 return 0;
    5682             : 
    5683           0 :         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
    5684             : 
    5685           0 :         mmput(mm);
    5686             : 
    5687           0 :         return ret;
    5688             : }
    5689             : EXPORT_SYMBOL_GPL(access_process_vm);
    5690             : 
    5691             : /*
    5692             :  * Print the name of a VMA.
    5693             :  */
    5694           0 : void print_vma_addr(char *prefix, unsigned long ip)
    5695             : {
    5696           0 :         struct mm_struct *mm = current->mm;
    5697             :         struct vm_area_struct *vma;
    5698             : 
    5699             :         /*
    5700             :          * we might be running from an atomic context so we cannot sleep
    5701             :          */
    5702           0 :         if (!mmap_read_trylock(mm))
    5703             :                 return;
    5704             : 
    5705           0 :         vma = find_vma(mm, ip);
    5706           0 :         if (vma && vma->vm_file) {
    5707           0 :                 struct file *f = vma->vm_file;
    5708           0 :                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
    5709           0 :                 if (buf) {
    5710             :                         char *p;
    5711             : 
    5712           0 :                         p = file_path(f, buf, PAGE_SIZE);
    5713           0 :                         if (IS_ERR(p))
    5714           0 :                                 p = "?";
    5715           0 :                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
    5716             :                                         vma->vm_start,
    5717             :                                         vma->vm_end - vma->vm_start);
    5718           0 :                         free_page((unsigned long)buf);
    5719             :                 }
    5720             :         }
    5721             :         mmap_read_unlock(mm);
    5722             : }
    5723             : 
    5724             : #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5725             : void __might_fault(const char *file, int line)
    5726             : {
    5727             :         if (pagefault_disabled())
    5728             :                 return;
    5729             :         __might_sleep(file, line);
    5730             : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5731             :         if (current->mm)
    5732             :                 might_lock_read(&current->mm->mmap_lock);
    5733             : #endif
    5734             : }
    5735             : EXPORT_SYMBOL(__might_fault);
    5736             : #endif
    5737             : 
    5738             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    5739             : /*
    5740             :  * Process all subpages of the specified huge page with the specified
    5741             :  * operation.  The target subpage will be processed last to keep its
    5742             :  * cache lines hot.
    5743             :  */
    5744             : static inline int process_huge_page(
    5745             :         unsigned long addr_hint, unsigned int pages_per_huge_page,
    5746             :         int (*process_subpage)(unsigned long addr, int idx, void *arg),
    5747             :         void *arg)
    5748             : {
    5749             :         int i, n, base, l, ret;
    5750             :         unsigned long addr = addr_hint &
    5751             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5752             : 
    5753             :         /* Process target subpage last to keep its cache lines hot */
    5754             :         might_sleep();
    5755             :         n = (addr_hint - addr) / PAGE_SIZE;
    5756             :         if (2 * n <= pages_per_huge_page) {
    5757             :                 /* If target subpage in first half of huge page */
    5758             :                 base = 0;
    5759             :                 l = n;
    5760             :                 /* Process subpages at the end of huge page */
    5761             :                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
    5762             :                         cond_resched();
    5763             :                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
    5764             :                         if (ret)
    5765             :                                 return ret;
    5766             :                 }
    5767             :         } else {
    5768             :                 /* If target subpage in second half of huge page */
    5769             :                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
    5770             :                 l = pages_per_huge_page - n;
    5771             :                 /* Process subpages at the begin of huge page */
    5772             :                 for (i = 0; i < base; i++) {
    5773             :                         cond_resched();
    5774             :                         ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
    5775             :                         if (ret)
    5776             :                                 return ret;
    5777             :                 }
    5778             :         }
    5779             :         /*
    5780             :          * Process remaining subpages in left-right-left-right pattern
    5781             :          * towards the target subpage
    5782             :          */
    5783             :         for (i = 0; i < l; i++) {
    5784             :                 int left_idx = base + i;
    5785             :                 int right_idx = base + 2 * l - 1 - i;
    5786             : 
    5787             :                 cond_resched();
    5788             :                 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
    5789             :                 if (ret)
    5790             :                         return ret;
    5791             :                 cond_resched();
    5792             :                 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
    5793             :                 if (ret)
    5794             :                         return ret;
    5795             :         }
    5796             :         return 0;
    5797             : }
    5798             : 
    5799             : static void clear_gigantic_page(struct page *page,
    5800             :                                 unsigned long addr,
    5801             :                                 unsigned int pages_per_huge_page)
    5802             : {
    5803             :         int i;
    5804             :         struct page *p;
    5805             : 
    5806             :         might_sleep();
    5807             :         for (i = 0; i < pages_per_huge_page; i++) {
    5808             :                 p = nth_page(page, i);
    5809             :                 cond_resched();
    5810             :                 clear_user_highpage(p, addr + i * PAGE_SIZE);
    5811             :         }
    5812             : }
    5813             : 
    5814             : static int clear_subpage(unsigned long addr, int idx, void *arg)
    5815             : {
    5816             :         struct page *page = arg;
    5817             : 
    5818             :         clear_user_highpage(page + idx, addr);
    5819             :         return 0;
    5820             : }
    5821             : 
    5822             : void clear_huge_page(struct page *page,
    5823             :                      unsigned long addr_hint, unsigned int pages_per_huge_page)
    5824             : {
    5825             :         unsigned long addr = addr_hint &
    5826             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5827             : 
    5828             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    5829             :                 clear_gigantic_page(page, addr, pages_per_huge_page);
    5830             :                 return;
    5831             :         }
    5832             : 
    5833             :         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
    5834             : }
    5835             : 
    5836             : static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
    5837             :                                      unsigned long addr,
    5838             :                                      struct vm_area_struct *vma,
    5839             :                                      unsigned int pages_per_huge_page)
    5840             : {
    5841             :         int i;
    5842             :         struct page *dst_page;
    5843             :         struct page *src_page;
    5844             : 
    5845             :         for (i = 0; i < pages_per_huge_page; i++) {
    5846             :                 dst_page = folio_page(dst, i);
    5847             :                 src_page = folio_page(src, i);
    5848             : 
    5849             :                 cond_resched();
    5850             :                 if (copy_mc_user_highpage(dst_page, src_page,
    5851             :                                           addr + i*PAGE_SIZE, vma)) {
    5852             :                         memory_failure_queue(page_to_pfn(src_page), 0);
    5853             :                         return -EHWPOISON;
    5854             :                 }
    5855             :         }
    5856             :         return 0;
    5857             : }
    5858             : 
    5859             : struct copy_subpage_arg {
    5860             :         struct page *dst;
    5861             :         struct page *src;
    5862             :         struct vm_area_struct *vma;
    5863             : };
    5864             : 
    5865             : static int copy_subpage(unsigned long addr, int idx, void *arg)
    5866             : {
    5867             :         struct copy_subpage_arg *copy_arg = arg;
    5868             : 
    5869             :         if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
    5870             :                                   addr, copy_arg->vma)) {
    5871             :                 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
    5872             :                 return -EHWPOISON;
    5873             :         }
    5874             :         return 0;
    5875             : }
    5876             : 
    5877             : int copy_user_large_folio(struct folio *dst, struct folio *src,
    5878             :                           unsigned long addr_hint, struct vm_area_struct *vma)
    5879             : {
    5880             :         unsigned int pages_per_huge_page = folio_nr_pages(dst);
    5881             :         unsigned long addr = addr_hint &
    5882             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5883             :         struct copy_subpage_arg arg = {
    5884             :                 .dst = &dst->page,
    5885             :                 .src = &src->page,
    5886             :                 .vma = vma,
    5887             :         };
    5888             : 
    5889             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
    5890             :                 return copy_user_gigantic_page(dst, src, addr, vma,
    5891             :                                                pages_per_huge_page);
    5892             : 
    5893             :         return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
    5894             : }
    5895             : 
    5896             : long copy_folio_from_user(struct folio *dst_folio,
    5897             :                            const void __user *usr_src,
    5898             :                            bool allow_pagefault)
    5899             : {
    5900             :         void *kaddr;
    5901             :         unsigned long i, rc = 0;
    5902             :         unsigned int nr_pages = folio_nr_pages(dst_folio);
    5903             :         unsigned long ret_val = nr_pages * PAGE_SIZE;
    5904             :         struct page *subpage;
    5905             : 
    5906             :         for (i = 0; i < nr_pages; i++) {
    5907             :                 subpage = folio_page(dst_folio, i);
    5908             :                 kaddr = kmap_local_page(subpage);
    5909             :                 if (!allow_pagefault)
    5910             :                         pagefault_disable();
    5911             :                 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
    5912             :                 if (!allow_pagefault)
    5913             :                         pagefault_enable();
    5914             :                 kunmap_local(kaddr);
    5915             : 
    5916             :                 ret_val -= (PAGE_SIZE - rc);
    5917             :                 if (rc)
    5918             :                         break;
    5919             : 
    5920             :                 flush_dcache_page(subpage);
    5921             : 
    5922             :                 cond_resched();
    5923             :         }
    5924             :         return ret_val;
    5925             : }
    5926             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    5927             : 
    5928             : #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
    5929             : 
    5930             : static struct kmem_cache *page_ptl_cachep;
    5931             : 
    5932             : void __init ptlock_cache_init(void)
    5933             : {
    5934             :         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
    5935             :                         SLAB_PANIC, NULL);
    5936             : }
    5937             : 
    5938             : bool ptlock_alloc(struct page *page)
    5939             : {
    5940             :         spinlock_t *ptl;
    5941             : 
    5942             :         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
    5943             :         if (!ptl)
    5944             :                 return false;
    5945             :         page->ptl = ptl;
    5946             :         return true;
    5947             : }
    5948             : 
    5949             : void ptlock_free(struct page *page)
    5950             : {
    5951             :         kmem_cache_free(page_ptl_cachep, page->ptl);
    5952             : }
    5953             : #endif

Generated by: LCOV version 1.14