Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * mm_init.c - Memory initialisation verification and debugging
4 : *
5 : * Copyright 2008 IBM Corporation, 2008
6 : * Author Mel Gorman <mel@csn.ul.ie>
7 : *
8 : */
9 : #include <linux/kernel.h>
10 : #include <linux/init.h>
11 : #include <linux/kobject.h>
12 : #include <linux/export.h>
13 : #include <linux/memory.h>
14 : #include <linux/notifier.h>
15 : #include <linux/sched.h>
16 : #include <linux/mman.h>
17 : #include <linux/memblock.h>
18 : #include <linux/page-isolation.h>
19 : #include <linux/padata.h>
20 : #include <linux/nmi.h>
21 : #include <linux/buffer_head.h>
22 : #include <linux/kmemleak.h>
23 : #include <linux/kfence.h>
24 : #include <linux/page_ext.h>
25 : #include <linux/pti.h>
26 : #include <linux/pgtable.h>
27 : #include <linux/swap.h>
28 : #include <linux/cma.h>
29 : #include "internal.h"
30 : #include "slab.h"
31 : #include "shuffle.h"
32 :
33 : #include <asm/setup.h>
34 :
35 : #ifdef CONFIG_DEBUG_MEMORY_INIT
36 : int __meminitdata mminit_loglevel;
37 :
38 : /* The zonelists are simply reported, validation is manual. */
39 1 : void __init mminit_verify_zonelist(void)
40 : {
41 : int nid;
42 :
43 1 : if (mminit_loglevel < MMINIT_VERIFY)
44 : return;
45 :
46 0 : for_each_online_node(nid) {
47 : pg_data_t *pgdat = NODE_DATA(nid);
48 : struct zone *zone;
49 : struct zoneref *z;
50 : struct zonelist *zonelist;
51 : int i, listid, zoneid;
52 :
53 : BUILD_BUG_ON(MAX_ZONELISTS > 2);
54 0 : for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
55 :
56 : /* Identify the zone and nodelist */
57 0 : zoneid = i % MAX_NR_ZONES;
58 0 : listid = i / MAX_NR_ZONES;
59 0 : zonelist = &pgdat->node_zonelists[listid];
60 0 : zone = &pgdat->node_zones[zoneid];
61 0 : if (!populated_zone(zone))
62 0 : continue;
63 :
64 : /* Print information about the zonelist */
65 0 : printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
66 : listid > 0 ? "thisnode" : "general", nid,
67 : zone->name);
68 :
69 : /* Iterate the zonelist */
70 0 : for_each_zone_zonelist(zone, z, zonelist, zoneid)
71 0 : pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
72 0 : pr_cont("\n");
73 : }
74 : }
75 : }
76 :
77 1 : void __init mminit_verify_pageflags_layout(void)
78 : {
79 : int shift, width;
80 : unsigned long or_mask, add_mask;
81 :
82 1 : shift = 8 * sizeof(unsigned long);
83 1 : width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
84 : - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
85 1 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
86 : "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
87 : SECTIONS_WIDTH,
88 : NODES_WIDTH,
89 : ZONES_WIDTH,
90 : LAST_CPUPID_WIDTH,
91 : KASAN_TAG_WIDTH,
92 : LRU_GEN_WIDTH,
93 : LRU_REFS_WIDTH,
94 : NR_PAGEFLAGS);
95 1 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
96 : "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
97 : SECTIONS_SHIFT,
98 : NODES_SHIFT,
99 : ZONES_SHIFT,
100 : LAST_CPUPID_SHIFT,
101 : KASAN_TAG_WIDTH);
102 1 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
103 : "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
104 : (unsigned long)SECTIONS_PGSHIFT,
105 : (unsigned long)NODES_PGSHIFT,
106 : (unsigned long)ZONES_PGSHIFT,
107 : (unsigned long)LAST_CPUPID_PGSHIFT,
108 : (unsigned long)KASAN_TAG_PGSHIFT);
109 1 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
110 : "Node/Zone ID: %lu -> %lu\n",
111 : (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
112 : (unsigned long)ZONEID_PGOFF);
113 1 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
114 : "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
115 : shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
116 : #ifdef NODE_NOT_IN_PAGE_FLAGS
117 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
118 : "Node not in page flags");
119 : #endif
120 : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
121 : mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
122 : "Last cpupid not in page flags");
123 : #endif
124 :
125 : if (SECTIONS_WIDTH) {
126 : shift -= SECTIONS_WIDTH;
127 : BUG_ON(shift != SECTIONS_PGSHIFT);
128 : }
129 : if (NODES_WIDTH) {
130 : shift -= NODES_WIDTH;
131 : BUG_ON(shift != NODES_PGSHIFT);
132 : }
133 : if (ZONES_WIDTH) {
134 1 : shift -= ZONES_WIDTH;
135 : BUG_ON(shift != ZONES_PGSHIFT);
136 : }
137 :
138 : /* Check for bitmask overlaps */
139 1 : or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
140 : (NODES_MASK << NODES_PGSHIFT) |
141 : (SECTIONS_MASK << SECTIONS_PGSHIFT);
142 1 : add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
143 : (NODES_MASK << NODES_PGSHIFT) +
144 : (SECTIONS_MASK << SECTIONS_PGSHIFT);
145 : BUG_ON(or_mask != add_mask);
146 1 : }
147 :
148 0 : static __init int set_mminit_loglevel(char *str)
149 : {
150 0 : get_option(&str, &mminit_loglevel);
151 0 : return 0;
152 : }
153 : early_param("mminit_loglevel", set_mminit_loglevel);
154 : #endif /* CONFIG_DEBUG_MEMORY_INIT */
155 :
156 : struct kobject *mm_kobj;
157 : EXPORT_SYMBOL_GPL(mm_kobj);
158 :
159 : #ifdef CONFIG_SMP
160 : s32 vm_committed_as_batch = 32;
161 :
162 : void mm_compute_batch(int overcommit_policy)
163 : {
164 : u64 memsized_batch;
165 : s32 nr = num_present_cpus();
166 : s32 batch = max_t(s32, nr*2, 32);
167 : unsigned long ram_pages = totalram_pages();
168 :
169 : /*
170 : * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
171 : * (total memory/#cpus), and lift it to 25% for other policies
172 : * to easy the possible lock contention for percpu_counter
173 : * vm_committed_as, while the max limit is INT_MAX
174 : */
175 : if (overcommit_policy == OVERCOMMIT_NEVER)
176 : memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
177 : else
178 : memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
179 :
180 : vm_committed_as_batch = max_t(s32, memsized_batch, batch);
181 : }
182 :
183 : static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
184 : unsigned long action, void *arg)
185 : {
186 : switch (action) {
187 : case MEM_ONLINE:
188 : case MEM_OFFLINE:
189 : mm_compute_batch(sysctl_overcommit_memory);
190 : break;
191 : default:
192 : break;
193 : }
194 : return NOTIFY_OK;
195 : }
196 :
197 : static int __init mm_compute_batch_init(void)
198 : {
199 : mm_compute_batch(sysctl_overcommit_memory);
200 : hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
201 : return 0;
202 : }
203 :
204 : __initcall(mm_compute_batch_init);
205 :
206 : #endif
207 :
208 1 : static int __init mm_sysfs_init(void)
209 : {
210 1 : mm_kobj = kobject_create_and_add("mm", kernel_kobj);
211 1 : if (!mm_kobj)
212 : return -ENOMEM;
213 :
214 1 : return 0;
215 : }
216 : postcore_initcall(mm_sysfs_init);
217 :
218 : static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
219 : static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
220 : static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
221 :
222 : static unsigned long required_kernelcore __initdata;
223 : static unsigned long required_kernelcore_percent __initdata;
224 : static unsigned long required_movablecore __initdata;
225 : static unsigned long required_movablecore_percent __initdata;
226 :
227 : static unsigned long nr_kernel_pages __initdata;
228 : static unsigned long nr_all_pages __initdata;
229 : static unsigned long dma_reserve __initdata;
230 :
231 : static bool deferred_struct_pages __meminitdata;
232 :
233 : static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234 :
235 0 : static int __init cmdline_parse_core(char *p, unsigned long *core,
236 : unsigned long *percent)
237 : {
238 : unsigned long long coremem;
239 : char *endptr;
240 :
241 0 : if (!p)
242 : return -EINVAL;
243 :
244 : /* Value may be a percentage of total memory, otherwise bytes */
245 0 : coremem = simple_strtoull(p, &endptr, 0);
246 0 : if (*endptr == '%') {
247 : /* Paranoid check for percent values greater than 100 */
248 0 : WARN_ON(coremem > 100);
249 :
250 0 : *percent = coremem;
251 : } else {
252 0 : coremem = memparse(p, &p);
253 : /* Paranoid check that UL is enough for the coremem value */
254 0 : WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255 :
256 0 : *core = coremem >> PAGE_SHIFT;
257 0 : *percent = 0UL;
258 : }
259 : return 0;
260 : }
261 :
262 : /*
263 : * kernelcore=size sets the amount of memory for use for allocations that
264 : * cannot be reclaimed or migrated.
265 : */
266 0 : static int __init cmdline_parse_kernelcore(char *p)
267 : {
268 : /* parse kernelcore=mirror */
269 0 : if (parse_option_str(p, "mirror")) {
270 0 : mirrored_kernelcore = true;
271 0 : return 0;
272 : }
273 :
274 0 : return cmdline_parse_core(p, &required_kernelcore,
275 : &required_kernelcore_percent);
276 : }
277 : early_param("kernelcore", cmdline_parse_kernelcore);
278 :
279 : /*
280 : * movablecore=size sets the amount of memory for use for allocations that
281 : * can be reclaimed or migrated.
282 : */
283 0 : static int __init cmdline_parse_movablecore(char *p)
284 : {
285 0 : return cmdline_parse_core(p, &required_movablecore,
286 : &required_movablecore_percent);
287 : }
288 : early_param("movablecore", cmdline_parse_movablecore);
289 :
290 : /*
291 : * early_calculate_totalpages()
292 : * Sum pages in active regions for movable zone.
293 : * Populate N_MEMORY for calculating usable_nodes.
294 : */
295 1 : static unsigned long __init early_calculate_totalpages(void)
296 : {
297 1 : unsigned long totalpages = 0;
298 : unsigned long start_pfn, end_pfn;
299 : int i, nid;
300 :
301 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
302 1 : unsigned long pages = end_pfn - start_pfn;
303 :
304 1 : totalpages += pages;
305 : if (pages)
306 : node_set_state(nid, N_MEMORY);
307 : }
308 1 : return totalpages;
309 : }
310 :
311 : /*
312 : * This finds a zone that can be used for ZONE_MOVABLE pages. The
313 : * assumption is made that zones within a node are ordered in monotonic
314 : * increasing memory addresses so that the "highest" populated zone is used
315 : */
316 1 : static void __init find_usable_zone_for_movable(void)
317 : {
318 : int zone_index;
319 2 : for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
320 2 : if (zone_index == ZONE_MOVABLE)
321 1 : continue;
322 :
323 2 : if (arch_zone_highest_possible_pfn[zone_index] >
324 1 : arch_zone_lowest_possible_pfn[zone_index])
325 : break;
326 : }
327 :
328 : VM_BUG_ON(zone_index == -1);
329 1 : movable_zone = zone_index;
330 1 : }
331 :
332 : /*
333 : * Find the PFN the Movable zone begins in each node. Kernel memory
334 : * is spread evenly between nodes as long as the nodes have enough
335 : * memory. When they don't, some nodes will have more kernelcore than
336 : * others
337 : */
338 1 : static void __init find_zone_movable_pfns_for_nodes(void)
339 : {
340 : int i, nid;
341 : unsigned long usable_startpfn;
342 : unsigned long kernelcore_node, kernelcore_remaining;
343 : /* save the state before borrow the nodemask */
344 1 : nodemask_t saved_node_state = node_states[N_MEMORY];
345 1 : unsigned long totalpages = early_calculate_totalpages();
346 1 : int usable_nodes = nodes_weight(node_states[N_MEMORY]);
347 : struct memblock_region *r;
348 :
349 : /* Need to find movable_zone earlier when movable_node is specified. */
350 1 : find_usable_zone_for_movable();
351 :
352 : /*
353 : * If movable_node is specified, ignore kernelcore and movablecore
354 : * options.
355 : */
356 : if (movable_node_is_enabled()) {
357 : for_each_mem_region(r) {
358 : if (!memblock_is_hotpluggable(r))
359 : continue;
360 :
361 : nid = memblock_get_region_node(r);
362 :
363 : usable_startpfn = PFN_DOWN(r->base);
364 : zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
365 : min(usable_startpfn, zone_movable_pfn[nid]) :
366 : usable_startpfn;
367 : }
368 :
369 : goto out2;
370 : }
371 :
372 : /*
373 : * If kernelcore=mirror is specified, ignore movablecore option
374 : */
375 1 : if (mirrored_kernelcore) {
376 0 : bool mem_below_4gb_not_mirrored = false;
377 :
378 0 : for_each_mem_region(r) {
379 0 : if (memblock_is_mirror(r))
380 0 : continue;
381 :
382 0 : nid = memblock_get_region_node(r);
383 :
384 0 : usable_startpfn = memblock_region_memory_base_pfn(r);
385 :
386 0 : if (usable_startpfn < PHYS_PFN(SZ_4G)) {
387 0 : mem_below_4gb_not_mirrored = true;
388 0 : continue;
389 : }
390 :
391 0 : zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
392 0 : min(usable_startpfn, zone_movable_pfn[nid]) :
393 : usable_startpfn;
394 : }
395 :
396 0 : if (mem_below_4gb_not_mirrored)
397 0 : pr_warn("This configuration results in unmirrored kernel memory.\n");
398 :
399 : goto out2;
400 : }
401 :
402 : /*
403 : * If kernelcore=nn% or movablecore=nn% was specified, calculate the
404 : * amount of necessary memory.
405 : */
406 1 : if (required_kernelcore_percent)
407 0 : required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
408 : 10000UL;
409 1 : if (required_movablecore_percent)
410 0 : required_movablecore = (totalpages * 100 * required_movablecore_percent) /
411 : 10000UL;
412 :
413 : /*
414 : * If movablecore= was specified, calculate what size of
415 : * kernelcore that corresponds so that memory usable for
416 : * any allocation type is evenly spread. If both kernelcore
417 : * and movablecore are specified, then the value of kernelcore
418 : * will be used for required_kernelcore if it's greater than
419 : * what movablecore would have allowed.
420 : */
421 1 : if (required_movablecore) {
422 : unsigned long corepages;
423 :
424 : /*
425 : * Round-up so that ZONE_MOVABLE is at least as large as what
426 : * was requested by the user
427 : */
428 : required_movablecore =
429 0 : roundup(required_movablecore, MAX_ORDER_NR_PAGES);
430 0 : required_movablecore = min(totalpages, required_movablecore);
431 0 : corepages = totalpages - required_movablecore;
432 :
433 0 : required_kernelcore = max(required_kernelcore, corepages);
434 : }
435 :
436 : /*
437 : * If kernelcore was not specified or kernelcore size is larger
438 : * than totalpages, there is no ZONE_MOVABLE.
439 : */
440 1 : if (!required_kernelcore || required_kernelcore >= totalpages)
441 : goto out;
442 :
443 : /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
444 0 : usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
445 :
446 : restart:
447 : /* Spread kernelcore memory as evenly as possible throughout nodes */
448 0 : kernelcore_node = required_kernelcore / usable_nodes;
449 0 : for_each_node_state(nid, N_MEMORY) {
450 : unsigned long start_pfn, end_pfn;
451 :
452 : /*
453 : * Recalculate kernelcore_node if the division per node
454 : * now exceeds what is necessary to satisfy the requested
455 : * amount of memory for the kernel
456 : */
457 0 : if (required_kernelcore < kernelcore_node)
458 0 : kernelcore_node = required_kernelcore / usable_nodes;
459 :
460 : /*
461 : * As the map is walked, we track how much memory is usable
462 : * by the kernel using kernelcore_remaining. When it is
463 : * 0, the rest of the node is usable by ZONE_MOVABLE
464 : */
465 0 : kernelcore_remaining = kernelcore_node;
466 :
467 : /* Go through each range of PFNs within this node */
468 0 : for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
469 : unsigned long size_pages;
470 :
471 0 : start_pfn = max(start_pfn, zone_movable_pfn[nid]);
472 0 : if (start_pfn >= end_pfn)
473 0 : continue;
474 :
475 : /* Account for what is only usable for kernelcore */
476 0 : if (start_pfn < usable_startpfn) {
477 : unsigned long kernel_pages;
478 0 : kernel_pages = min(end_pfn, usable_startpfn)
479 : - start_pfn;
480 :
481 0 : kernelcore_remaining -= min(kernel_pages,
482 : kernelcore_remaining);
483 0 : required_kernelcore -= min(kernel_pages,
484 : required_kernelcore);
485 :
486 : /* Continue if range is now fully accounted */
487 0 : if (end_pfn <= usable_startpfn) {
488 :
489 : /*
490 : * Push zone_movable_pfn to the end so
491 : * that if we have to rebalance
492 : * kernelcore across nodes, we will
493 : * not double account here
494 : */
495 0 : zone_movable_pfn[nid] = end_pfn;
496 0 : continue;
497 : }
498 0 : start_pfn = usable_startpfn;
499 : }
500 :
501 : /*
502 : * The usable PFN range for ZONE_MOVABLE is from
503 : * start_pfn->end_pfn. Calculate size_pages as the
504 : * number of pages used as kernelcore
505 : */
506 0 : size_pages = end_pfn - start_pfn;
507 0 : if (size_pages > kernelcore_remaining)
508 0 : size_pages = kernelcore_remaining;
509 0 : zone_movable_pfn[nid] = start_pfn + size_pages;
510 :
511 : /*
512 : * Some kernelcore has been met, update counts and
513 : * break if the kernelcore for this node has been
514 : * satisfied
515 : */
516 0 : required_kernelcore -= min(required_kernelcore,
517 : size_pages);
518 0 : kernelcore_remaining -= size_pages;
519 0 : if (!kernelcore_remaining)
520 : break;
521 : }
522 : }
523 :
524 : /*
525 : * If there is still required_kernelcore, we do another pass with one
526 : * less node in the count. This will push zone_movable_pfn[nid] further
527 : * along on the nodes that still have memory until kernelcore is
528 : * satisfied
529 : */
530 0 : usable_nodes--;
531 0 : if (usable_nodes && required_kernelcore > usable_nodes)
532 : goto restart;
533 :
534 : out2:
535 : /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
536 0 : for (nid = 0; nid < MAX_NUMNODES; nid++) {
537 : unsigned long start_pfn, end_pfn;
538 :
539 0 : zone_movable_pfn[nid] =
540 0 : roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
541 :
542 0 : get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
543 0 : if (zone_movable_pfn[nid] >= end_pfn)
544 0 : zone_movable_pfn[nid] = 0;
545 : }
546 :
547 : out:
548 : /* restore the node_state */
549 1 : node_states[N_MEMORY] = saved_node_state;
550 1 : }
551 :
552 265940 : static void __meminit __init_single_page(struct page *page, unsigned long pfn,
553 : unsigned long zone, int nid)
554 : {
555 265940 : mm_zero_struct_page(page);
556 531880 : set_page_links(page, zone, nid, pfn);
557 265940 : init_page_count(page);
558 265940 : page_mapcount_reset(page);
559 265940 : page_cpupid_reset_last(page);
560 265940 : page_kasan_tag_reset(page);
561 :
562 531880 : INIT_LIST_HEAD(&page->lru);
563 : #ifdef WANT_PAGE_VIRTUAL
564 : /* The shift won't overflow because ZONE_NORMAL is below 4G. */
565 : if (!is_highmem_idx(zone))
566 : set_page_address(page, __va(pfn << PAGE_SHIFT));
567 : #endif
568 265940 : }
569 :
570 : #ifdef CONFIG_NUMA
571 : /*
572 : * During memory init memblocks map pfns to nids. The search is expensive and
573 : * this caches recent lookups. The implementation of __early_pfn_to_nid
574 : * treats start/end as pfns.
575 : */
576 : struct mminit_pfnnid_cache {
577 : unsigned long last_start;
578 : unsigned long last_end;
579 : int last_nid;
580 : };
581 :
582 : static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
583 :
584 : /*
585 : * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
586 : */
587 : static int __meminit __early_pfn_to_nid(unsigned long pfn,
588 : struct mminit_pfnnid_cache *state)
589 : {
590 : unsigned long start_pfn, end_pfn;
591 : int nid;
592 :
593 : if (state->last_start <= pfn && pfn < state->last_end)
594 : return state->last_nid;
595 :
596 : nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
597 : if (nid != NUMA_NO_NODE) {
598 : state->last_start = start_pfn;
599 : state->last_end = end_pfn;
600 : state->last_nid = nid;
601 : }
602 :
603 : return nid;
604 : }
605 :
606 : int __meminit early_pfn_to_nid(unsigned long pfn)
607 : {
608 : static DEFINE_SPINLOCK(early_pfn_lock);
609 : int nid;
610 :
611 : spin_lock(&early_pfn_lock);
612 : nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
613 : if (nid < 0)
614 : nid = first_online_node;
615 : spin_unlock(&early_pfn_lock);
616 :
617 : return nid;
618 : }
619 :
620 : int hashdist = HASHDIST_DEFAULT;
621 :
622 : static int __init set_hashdist(char *str)
623 : {
624 : if (!str)
625 : return 0;
626 : hashdist = simple_strtoul(str, &str, 0);
627 : return 1;
628 : }
629 : __setup("hashdist=", set_hashdist);
630 :
631 : static inline void fixup_hashdist(void)
632 : {
633 : if (num_node_state(N_MEMORY) == 1)
634 : hashdist = 0;
635 : }
636 : #else
637 : static inline void fixup_hashdist(void) {}
638 : #endif /* CONFIG_NUMA */
639 :
640 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
641 : static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
642 : {
643 : pgdat->first_deferred_pfn = ULONG_MAX;
644 : }
645 :
646 : /* Returns true if the struct page for the pfn is initialised */
647 : static inline bool __meminit early_page_initialised(unsigned long pfn)
648 : {
649 : int nid = early_pfn_to_nid(pfn);
650 :
651 : if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
652 : return false;
653 :
654 : return true;
655 : }
656 :
657 : /*
658 : * Returns true when the remaining initialisation should be deferred until
659 : * later in the boot cycle when it can be parallelised.
660 : */
661 : static bool __meminit
662 : defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
663 : {
664 : static unsigned long prev_end_pfn, nr_initialised;
665 :
666 : if (early_page_ext_enabled())
667 : return false;
668 : /*
669 : * prev_end_pfn static that contains the end of previous zone
670 : * No need to protect because called very early in boot before smp_init.
671 : */
672 : if (prev_end_pfn != end_pfn) {
673 : prev_end_pfn = end_pfn;
674 : nr_initialised = 0;
675 : }
676 :
677 : /* Always populate low zones for address-constrained allocations */
678 : if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
679 : return false;
680 :
681 : if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
682 : return true;
683 : /*
684 : * We start only with one section of pages, more pages are added as
685 : * needed until the rest of deferred pages are initialized.
686 : */
687 : nr_initialised++;
688 : if ((nr_initialised > PAGES_PER_SECTION) &&
689 : (pfn & (PAGES_PER_SECTION - 1)) == 0) {
690 : NODE_DATA(nid)->first_deferred_pfn = pfn;
691 : return true;
692 : }
693 : return false;
694 : }
695 :
696 : static void __meminit init_reserved_page(unsigned long pfn)
697 : {
698 : pg_data_t *pgdat;
699 : int nid, zid;
700 :
701 : if (early_page_initialised(pfn))
702 : return;
703 :
704 : nid = early_pfn_to_nid(pfn);
705 : pgdat = NODE_DATA(nid);
706 :
707 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
708 : struct zone *zone = &pgdat->node_zones[zid];
709 :
710 : if (zone_spans_pfn(zone, pfn))
711 : break;
712 : }
713 : __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
714 : }
715 : #else
716 : static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
717 :
718 : static inline bool early_page_initialised(unsigned long pfn)
719 : {
720 : return true;
721 : }
722 :
723 : static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
724 : {
725 : return false;
726 : }
727 :
728 : static inline void init_reserved_page(unsigned long pfn)
729 : {
730 : }
731 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
732 :
733 : /*
734 : * Initialised pages do not have PageReserved set. This function is
735 : * called for each range allocated by the bootmem allocator and
736 : * marks the pages PageReserved. The remaining valid pages are later
737 : * sent to the buddy page allocator.
738 : */
739 11 : void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
740 : {
741 11 : unsigned long start_pfn = PFN_DOWN(start);
742 11 : unsigned long end_pfn = PFN_UP(end);
743 :
744 11488 : for (; start_pfn < end_pfn; start_pfn++) {
745 11477 : if (pfn_valid(start_pfn)) {
746 11477 : struct page *page = pfn_to_page(start_pfn);
747 :
748 11477 : init_reserved_page(start_pfn);
749 :
750 : /* Avoid false-positive PageTail() */
751 22954 : INIT_LIST_HEAD(&page->lru);
752 :
753 : /*
754 : * no need for atomic set_bit because the struct
755 : * page is not visible yet so nobody should
756 : * access it yet.
757 : */
758 : __SetPageReserved(page);
759 : }
760 : }
761 11 : }
762 :
763 : /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
764 : static bool __meminit
765 265940 : overlap_memmap_init(unsigned long zone, unsigned long *pfn)
766 : {
767 : static struct memblock_region *r;
768 :
769 265940 : if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
770 0 : if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
771 0 : for_each_mem_region(r) {
772 0 : if (*pfn < memblock_region_memory_end_pfn(r))
773 : break;
774 : }
775 : }
776 0 : if (*pfn >= memblock_region_memory_base_pfn(r) &&
777 0 : memblock_is_mirror(r)) {
778 0 : *pfn = memblock_region_memory_end_pfn(r);
779 0 : return true;
780 : }
781 : }
782 : return false;
783 : }
784 :
785 : /*
786 : * Only struct pages that correspond to ranges defined by memblock.memory
787 : * are zeroed and initialized by going through __init_single_page() during
788 : * memmap_init_zone_range().
789 : *
790 : * But, there could be struct pages that correspond to holes in
791 : * memblock.memory. This can happen because of the following reasons:
792 : * - physical memory bank size is not necessarily the exact multiple of the
793 : * arbitrary section size
794 : * - early reserved memory may not be listed in memblock.memory
795 : * - memory layouts defined with memmap= kernel parameter may not align
796 : * nicely with memmap sections
797 : *
798 : * Explicitly initialize those struct pages so that:
799 : * - PG_Reserved is set
800 : * - zone and node links point to zone and node that span the page if the
801 : * hole is in the middle of a zone
802 : * - zone and node links point to adjacent zone/node if the hole falls on
803 : * the zone boundary; the pages in such holes will be prepended to the
804 : * zone/node above the hole except for the trailing pages in the last
805 : * section that will be appended to the zone/node below.
806 : */
807 1 : static void __init init_unavailable_range(unsigned long spfn,
808 : unsigned long epfn,
809 : int zone, int node)
810 : {
811 : unsigned long pfn;
812 1 : u64 pgcnt = 0;
813 :
814 1 : for (pfn = spfn; pfn < epfn; pfn++) {
815 0 : if (!pfn_valid(pageblock_start_pfn(pfn))) {
816 0 : pfn = pageblock_end_pfn(pfn) - 1;
817 0 : continue;
818 : }
819 0 : __init_single_page(pfn_to_page(pfn), pfn, zone, node);
820 0 : __SetPageReserved(pfn_to_page(pfn));
821 0 : pgcnt++;
822 : }
823 :
824 1 : if (pgcnt)
825 0 : pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
826 : node, zone_names[zone], pgcnt);
827 1 : }
828 :
829 : /*
830 : * Initially all pages are reserved - free ones are freed
831 : * up by memblock_free_all() once the early boot process is
832 : * done. Non-atomic initialization, single-pass.
833 : *
834 : * All aligned pageblocks are initialized to the specified migratetype
835 : * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
836 : * zone stats (e.g., nr_isolate_pageblock) are touched.
837 : */
838 1 : void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
839 : unsigned long start_pfn, unsigned long zone_end_pfn,
840 : enum meminit_context context,
841 : struct vmem_altmap *altmap, int migratetype)
842 : {
843 1 : unsigned long pfn, end_pfn = start_pfn + size;
844 : struct page *page;
845 :
846 1 : if (highest_memmap_pfn < end_pfn - 1)
847 1 : highest_memmap_pfn = end_pfn - 1;
848 :
849 : #ifdef CONFIG_ZONE_DEVICE
850 : /*
851 : * Honor reservation requested by the driver for this ZONE_DEVICE
852 : * memory. We limit the total number of pages to initialize to just
853 : * those that might contain the memory mapping. We will defer the
854 : * ZONE_DEVICE page initialization until after we have released
855 : * the hotplug lock.
856 : */
857 : if (zone == ZONE_DEVICE) {
858 : if (!altmap)
859 : return;
860 :
861 : if (start_pfn == altmap->base_pfn)
862 : start_pfn += altmap->reserve;
863 : end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
864 : }
865 : #endif
866 :
867 265942 : for (pfn = start_pfn; pfn < end_pfn; ) {
868 : /*
869 : * There can be holes in boot-time mem_map[]s handed to this
870 : * function. They do not exist on hotplugged memory.
871 : */
872 265940 : if (context == MEMINIT_EARLY) {
873 265940 : if (overlap_memmap_init(zone, &pfn))
874 0 : continue;
875 : if (defer_init(nid, pfn, zone_end_pfn)) {
876 : deferred_struct_pages = true;
877 : break;
878 : }
879 : }
880 :
881 265940 : page = pfn_to_page(pfn);
882 265940 : __init_single_page(page, pfn, zone, nid);
883 265940 : if (context == MEMINIT_HOTPLUG)
884 : __SetPageReserved(page);
885 :
886 : /*
887 : * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
888 : * such that unmovable allocations won't be scattered all
889 : * over the place during system boot.
890 : */
891 265940 : if (pageblock_aligned(pfn)) {
892 260 : set_pageblock_migratetype(page, migratetype);
893 260 : cond_resched();
894 : }
895 265940 : pfn++;
896 : }
897 1 : }
898 :
899 1 : static void __init memmap_init_zone_range(struct zone *zone,
900 : unsigned long start_pfn,
901 : unsigned long end_pfn,
902 : unsigned long *hole_pfn)
903 : {
904 1 : unsigned long zone_start_pfn = zone->zone_start_pfn;
905 1 : unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
906 1 : int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
907 :
908 1 : start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
909 1 : end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
910 :
911 1 : if (start_pfn >= end_pfn)
912 : return;
913 :
914 1 : memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
915 : zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
916 :
917 1 : if (*hole_pfn < start_pfn)
918 0 : init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
919 :
920 1 : *hole_pfn = end_pfn;
921 : }
922 :
923 1 : static void __init memmap_init(void)
924 : {
925 : unsigned long start_pfn, end_pfn;
926 1 : unsigned long hole_pfn = 0;
927 1 : int i, j, zone_id = 0, nid;
928 :
929 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
930 : struct pglist_data *node = NODE_DATA(nid);
931 :
932 2 : for (j = 0; j < MAX_NR_ZONES; j++) {
933 2 : struct zone *zone = node->node_zones + j;
934 :
935 2 : if (!populated_zone(zone))
936 1 : continue;
937 :
938 1 : memmap_init_zone_range(zone, start_pfn, end_pfn,
939 : &hole_pfn);
940 1 : zone_id = j;
941 : }
942 : }
943 :
944 : #ifdef CONFIG_SPARSEMEM
945 : /*
946 : * Initialize the memory map for hole in the range [memory_end,
947 : * section_end].
948 : * Append the pages in this hole to the highest zone in the last
949 : * node.
950 : * The call to init_unavailable_range() is outside the ifdef to
951 : * silence the compiler warining about zone_id set but not used;
952 : * for FLATMEM it is a nop anyway
953 : */
954 : end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
955 : if (hole_pfn < end_pfn)
956 : #endif
957 1 : init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
958 1 : }
959 :
960 : #ifdef CONFIG_ZONE_DEVICE
961 : static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
962 : unsigned long zone_idx, int nid,
963 : struct dev_pagemap *pgmap)
964 : {
965 :
966 : __init_single_page(page, pfn, zone_idx, nid);
967 :
968 : /*
969 : * Mark page reserved as it will need to wait for onlining
970 : * phase for it to be fully associated with a zone.
971 : *
972 : * We can use the non-atomic __set_bit operation for setting
973 : * the flag as we are still initializing the pages.
974 : */
975 : __SetPageReserved(page);
976 :
977 : /*
978 : * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
979 : * and zone_device_data. It is a bug if a ZONE_DEVICE page is
980 : * ever freed or placed on a driver-private list.
981 : */
982 : page->pgmap = pgmap;
983 : page->zone_device_data = NULL;
984 :
985 : /*
986 : * Mark the block movable so that blocks are reserved for
987 : * movable at startup. This will force kernel allocations
988 : * to reserve their blocks rather than leaking throughout
989 : * the address space during boot when many long-lived
990 : * kernel allocations are made.
991 : *
992 : * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
993 : * because this is done early in section_activate()
994 : */
995 : if (pageblock_aligned(pfn)) {
996 : set_pageblock_migratetype(page, MIGRATE_MOVABLE);
997 : cond_resched();
998 : }
999 :
1000 : /*
1001 : * ZONE_DEVICE pages are released directly to the driver page allocator
1002 : * which will set the page count to 1 when allocating the page.
1003 : */
1004 : if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1005 : pgmap->type == MEMORY_DEVICE_COHERENT)
1006 : set_page_count(page, 0);
1007 : }
1008 :
1009 : /*
1010 : * With compound page geometry and when struct pages are stored in ram most
1011 : * tail pages are reused. Consequently, the amount of unique struct pages to
1012 : * initialize is a lot smaller that the total amount of struct pages being
1013 : * mapped. This is a paired / mild layering violation with explicit knowledge
1014 : * of how the sparse_vmemmap internals handle compound pages in the lack
1015 : * of an altmap. See vmemmap_populate_compound_pages().
1016 : */
1017 : static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1018 : struct dev_pagemap *pgmap)
1019 : {
1020 : if (!vmemmap_can_optimize(altmap, pgmap))
1021 : return pgmap_vmemmap_nr(pgmap);
1022 :
1023 : return 2 * (PAGE_SIZE / sizeof(struct page));
1024 : }
1025 :
1026 : static void __ref memmap_init_compound(struct page *head,
1027 : unsigned long head_pfn,
1028 : unsigned long zone_idx, int nid,
1029 : struct dev_pagemap *pgmap,
1030 : unsigned long nr_pages)
1031 : {
1032 : unsigned long pfn, end_pfn = head_pfn + nr_pages;
1033 : unsigned int order = pgmap->vmemmap_shift;
1034 :
1035 : __SetPageHead(head);
1036 : for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1037 : struct page *page = pfn_to_page(pfn);
1038 :
1039 : __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1040 : prep_compound_tail(head, pfn - head_pfn);
1041 : set_page_count(page, 0);
1042 :
1043 : /*
1044 : * The first tail page stores important compound page info.
1045 : * Call prep_compound_head() after the first tail page has
1046 : * been initialized, to not have the data overwritten.
1047 : */
1048 : if (pfn == head_pfn + 1)
1049 : prep_compound_head(head, order);
1050 : }
1051 : }
1052 :
1053 : void __ref memmap_init_zone_device(struct zone *zone,
1054 : unsigned long start_pfn,
1055 : unsigned long nr_pages,
1056 : struct dev_pagemap *pgmap)
1057 : {
1058 : unsigned long pfn, end_pfn = start_pfn + nr_pages;
1059 : struct pglist_data *pgdat = zone->zone_pgdat;
1060 : struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1061 : unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1062 : unsigned long zone_idx = zone_idx(zone);
1063 : unsigned long start = jiffies;
1064 : int nid = pgdat->node_id;
1065 :
1066 : if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1067 : return;
1068 :
1069 : /*
1070 : * The call to memmap_init should have already taken care
1071 : * of the pages reserved for the memmap, so we can just jump to
1072 : * the end of that region and start processing the device pages.
1073 : */
1074 : if (altmap) {
1075 : start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1076 : nr_pages = end_pfn - start_pfn;
1077 : }
1078 :
1079 : for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1080 : struct page *page = pfn_to_page(pfn);
1081 :
1082 : __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1083 :
1084 : if (pfns_per_compound == 1)
1085 : continue;
1086 :
1087 : memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1088 : compound_nr_pages(altmap, pgmap));
1089 : }
1090 :
1091 : pr_debug("%s initialised %lu pages in %ums\n", __func__,
1092 : nr_pages, jiffies_to_msecs(jiffies - start));
1093 : }
1094 : #endif
1095 :
1096 : /*
1097 : * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1098 : * because it is sized independent of architecture. Unlike the other zones,
1099 : * the starting point for ZONE_MOVABLE is not fixed. It may be different
1100 : * in each node depending on the size of each node and how evenly kernelcore
1101 : * is distributed. This helper function adjusts the zone ranges
1102 : * provided by the architecture for a given node by using the end of the
1103 : * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1104 : * zones within a node are in order of monotonic increases memory addresses
1105 : */
1106 4 : static void __init adjust_zone_range_for_zone_movable(int nid,
1107 : unsigned long zone_type,
1108 : unsigned long node_start_pfn,
1109 : unsigned long node_end_pfn,
1110 : unsigned long *zone_start_pfn,
1111 : unsigned long *zone_end_pfn)
1112 : {
1113 : /* Only adjust if ZONE_MOVABLE is on this node */
1114 4 : if (zone_movable_pfn[nid]) {
1115 : /* Size ZONE_MOVABLE */
1116 0 : if (zone_type == ZONE_MOVABLE) {
1117 0 : *zone_start_pfn = zone_movable_pfn[nid];
1118 0 : *zone_end_pfn = min(node_end_pfn,
1119 : arch_zone_highest_possible_pfn[movable_zone]);
1120 :
1121 : /* Adjust for ZONE_MOVABLE starting within this range */
1122 0 : } else if (!mirrored_kernelcore &&
1123 0 : *zone_start_pfn < zone_movable_pfn[nid] &&
1124 0 : *zone_end_pfn > zone_movable_pfn[nid]) {
1125 0 : *zone_end_pfn = zone_movable_pfn[nid];
1126 :
1127 : /* Check if this whole range is within ZONE_MOVABLE */
1128 0 : } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1129 0 : *zone_start_pfn = *zone_end_pfn;
1130 : }
1131 4 : }
1132 :
1133 : /*
1134 : * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1135 : * then all holes in the requested range will be accounted for.
1136 : */
1137 2 : unsigned long __init __absent_pages_in_range(int nid,
1138 : unsigned long range_start_pfn,
1139 : unsigned long range_end_pfn)
1140 : {
1141 2 : unsigned long nr_absent = range_end_pfn - range_start_pfn;
1142 : unsigned long start_pfn, end_pfn;
1143 : int i;
1144 :
1145 4 : for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1146 2 : start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1147 2 : end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1148 2 : nr_absent -= end_pfn - start_pfn;
1149 : }
1150 2 : return nr_absent;
1151 : }
1152 :
1153 : /**
1154 : * absent_pages_in_range - Return number of page frames in holes within a range
1155 : * @start_pfn: The start PFN to start searching for holes
1156 : * @end_pfn: The end PFN to stop searching for holes
1157 : *
1158 : * Return: the number of pages frames in memory holes within a range.
1159 : */
1160 0 : unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1161 : unsigned long end_pfn)
1162 : {
1163 0 : return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1164 : }
1165 :
1166 : /* Return the number of page frames in holes in a zone on a node */
1167 2 : static unsigned long __init zone_absent_pages_in_node(int nid,
1168 : unsigned long zone_type,
1169 : unsigned long node_start_pfn,
1170 : unsigned long node_end_pfn)
1171 : {
1172 2 : unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1173 2 : unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1174 : unsigned long zone_start_pfn, zone_end_pfn;
1175 : unsigned long nr_absent;
1176 :
1177 : /* When hotadd a new node from cpu_up(), the node should be empty */
1178 2 : if (!node_start_pfn && !node_end_pfn)
1179 : return 0;
1180 :
1181 2 : zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1182 2 : zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1183 :
1184 2 : adjust_zone_range_for_zone_movable(nid, zone_type,
1185 : node_start_pfn, node_end_pfn,
1186 : &zone_start_pfn, &zone_end_pfn);
1187 2 : nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1188 :
1189 : /*
1190 : * ZONE_MOVABLE handling.
1191 : * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1192 : * and vice versa.
1193 : */
1194 2 : if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1195 : unsigned long start_pfn, end_pfn;
1196 : struct memblock_region *r;
1197 :
1198 0 : for_each_mem_region(r) {
1199 0 : start_pfn = clamp(memblock_region_memory_base_pfn(r),
1200 : zone_start_pfn, zone_end_pfn);
1201 0 : end_pfn = clamp(memblock_region_memory_end_pfn(r),
1202 : zone_start_pfn, zone_end_pfn);
1203 :
1204 0 : if (zone_type == ZONE_MOVABLE &&
1205 0 : memblock_is_mirror(r))
1206 0 : nr_absent += end_pfn - start_pfn;
1207 :
1208 0 : if (zone_type == ZONE_NORMAL &&
1209 0 : !memblock_is_mirror(r))
1210 0 : nr_absent += end_pfn - start_pfn;
1211 : }
1212 : }
1213 :
1214 : return nr_absent;
1215 : }
1216 :
1217 : /*
1218 : * Return the number of pages a zone spans in a node, including holes
1219 : * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1220 : */
1221 2 : static unsigned long __init zone_spanned_pages_in_node(int nid,
1222 : unsigned long zone_type,
1223 : unsigned long node_start_pfn,
1224 : unsigned long node_end_pfn,
1225 : unsigned long *zone_start_pfn,
1226 : unsigned long *zone_end_pfn)
1227 : {
1228 2 : unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1229 2 : unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1230 : /* When hotadd a new node from cpu_up(), the node should be empty */
1231 2 : if (!node_start_pfn && !node_end_pfn)
1232 : return 0;
1233 :
1234 : /* Get the start and end of the zone */
1235 2 : *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1236 2 : *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1237 2 : adjust_zone_range_for_zone_movable(nid, zone_type,
1238 : node_start_pfn, node_end_pfn,
1239 : zone_start_pfn, zone_end_pfn);
1240 :
1241 : /* Check that this node has pages within the zone's required range */
1242 2 : if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1243 : return 0;
1244 :
1245 : /* Move the zone boundaries inside the node if necessary */
1246 2 : *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1247 2 : *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1248 :
1249 : /* Return the spanned pages */
1250 2 : return *zone_end_pfn - *zone_start_pfn;
1251 : }
1252 :
1253 1 : static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1254 : unsigned long node_start_pfn,
1255 : unsigned long node_end_pfn)
1256 : {
1257 1 : unsigned long realtotalpages = 0, totalpages = 0;
1258 : enum zone_type i;
1259 :
1260 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
1261 2 : struct zone *zone = pgdat->node_zones + i;
1262 : unsigned long zone_start_pfn, zone_end_pfn;
1263 : unsigned long spanned, absent;
1264 : unsigned long size, real_size;
1265 :
1266 2 : spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1267 : node_start_pfn,
1268 : node_end_pfn,
1269 : &zone_start_pfn,
1270 : &zone_end_pfn);
1271 2 : absent = zone_absent_pages_in_node(pgdat->node_id, i,
1272 : node_start_pfn,
1273 : node_end_pfn);
1274 :
1275 2 : size = spanned;
1276 2 : real_size = size - absent;
1277 :
1278 2 : if (size)
1279 1 : zone->zone_start_pfn = zone_start_pfn;
1280 : else
1281 1 : zone->zone_start_pfn = 0;
1282 2 : zone->spanned_pages = size;
1283 2 : zone->present_pages = real_size;
1284 : #if defined(CONFIG_MEMORY_HOTPLUG)
1285 : zone->present_early_pages = real_size;
1286 : #endif
1287 :
1288 2 : totalpages += size;
1289 2 : realtotalpages += real_size;
1290 : }
1291 :
1292 1 : pgdat->node_spanned_pages = totalpages;
1293 1 : pgdat->node_present_pages = realtotalpages;
1294 : pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1295 1 : }
1296 :
1297 : static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1298 : unsigned long present_pages)
1299 : {
1300 2 : unsigned long pages = spanned_pages;
1301 :
1302 : /*
1303 : * Provide a more accurate estimation if there are holes within
1304 : * the zone and SPARSEMEM is in use. If there are holes within the
1305 : * zone, each populated memory region may cost us one or two extra
1306 : * memmap pages due to alignment because memmap pages for each
1307 : * populated regions may not be naturally aligned on page boundary.
1308 : * So the (present_pages >> 4) heuristic is a tradeoff for that.
1309 : */
1310 : if (spanned_pages > present_pages + (present_pages >> 4) &&
1311 : IS_ENABLED(CONFIG_SPARSEMEM))
1312 : pages = present_pages;
1313 :
1314 2 : return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1315 : }
1316 :
1317 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1318 : static void pgdat_init_split_queue(struct pglist_data *pgdat)
1319 : {
1320 : struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1321 :
1322 : spin_lock_init(&ds_queue->split_queue_lock);
1323 : INIT_LIST_HEAD(&ds_queue->split_queue);
1324 : ds_queue->split_queue_len = 0;
1325 : }
1326 : #else
1327 : static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1328 : #endif
1329 :
1330 : #ifdef CONFIG_COMPACTION
1331 : static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1332 : {
1333 1 : init_waitqueue_head(&pgdat->kcompactd_wait);
1334 : }
1335 : #else
1336 : static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1337 : #endif
1338 :
1339 1 : static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1340 : {
1341 : int i;
1342 :
1343 1 : pgdat_resize_init(pgdat);
1344 1 : pgdat_kswapd_lock_init(pgdat);
1345 :
1346 1 : pgdat_init_split_queue(pgdat);
1347 1 : pgdat_init_kcompactd(pgdat);
1348 :
1349 1 : init_waitqueue_head(&pgdat->kswapd_wait);
1350 1 : init_waitqueue_head(&pgdat->pfmemalloc_wait);
1351 :
1352 5 : for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1353 4 : init_waitqueue_head(&pgdat->reclaim_wait[i]);
1354 :
1355 1 : pgdat_page_ext_init(pgdat);
1356 1 : lruvec_init(&pgdat->__lruvec);
1357 1 : }
1358 :
1359 2 : static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1360 : unsigned long remaining_pages)
1361 : {
1362 4 : atomic_long_set(&zone->managed_pages, remaining_pages);
1363 2 : zone_set_nid(zone, nid);
1364 2 : zone->name = zone_names[idx];
1365 2 : zone->zone_pgdat = NODE_DATA(nid);
1366 2 : spin_lock_init(&zone->lock);
1367 2 : zone_seqlock_init(zone);
1368 2 : zone_pcp_init(zone);
1369 2 : }
1370 :
1371 1 : static void __meminit zone_init_free_lists(struct zone *zone)
1372 : {
1373 : unsigned int order, t;
1374 45 : for_each_migratetype_order(order, t) {
1375 88 : INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1376 44 : zone->free_area[order].nr_free = 0;
1377 : }
1378 1 : }
1379 :
1380 1 : void __meminit init_currently_empty_zone(struct zone *zone,
1381 : unsigned long zone_start_pfn,
1382 : unsigned long size)
1383 : {
1384 1 : struct pglist_data *pgdat = zone->zone_pgdat;
1385 1 : int zone_idx = zone_idx(zone) + 1;
1386 :
1387 1 : if (zone_idx > pgdat->nr_zones)
1388 1 : pgdat->nr_zones = zone_idx;
1389 :
1390 1 : zone->zone_start_pfn = zone_start_pfn;
1391 :
1392 1 : mminit_dprintk(MMINIT_TRACE, "memmap_init",
1393 : "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1394 : pgdat->node_id,
1395 : (unsigned long)zone_idx(zone),
1396 : zone_start_pfn, (zone_start_pfn + size));
1397 :
1398 1 : zone_init_free_lists(zone);
1399 1 : zone->initialized = 1;
1400 1 : }
1401 :
1402 : #ifndef CONFIG_SPARSEMEM
1403 : /*
1404 : * Calculate the size of the zone->blockflags rounded to an unsigned long
1405 : * Start by making sure zonesize is a multiple of pageblock_order by rounding
1406 : * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1407 : * round what is now in bits to nearest long in bits, then return it in
1408 : * bytes.
1409 : */
1410 1 : static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1411 : {
1412 : unsigned long usemapsize;
1413 :
1414 1 : zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1415 1 : usemapsize = roundup(zonesize, pageblock_nr_pages);
1416 1 : usemapsize = usemapsize >> pageblock_order;
1417 1 : usemapsize *= NR_PAGEBLOCK_BITS;
1418 1 : usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
1419 :
1420 1 : return usemapsize / 8;
1421 : }
1422 :
1423 1 : static void __ref setup_usemap(struct zone *zone)
1424 : {
1425 1 : unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1426 : zone->spanned_pages);
1427 1 : zone->pageblock_flags = NULL;
1428 1 : if (usemapsize) {
1429 1 : zone->pageblock_flags =
1430 2 : memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1431 : zone_to_nid(zone));
1432 1 : if (!zone->pageblock_flags)
1433 0 : panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1434 : usemapsize, zone->name, zone_to_nid(zone));
1435 : }
1436 1 : }
1437 : #else
1438 : static inline void setup_usemap(struct zone *zone) {}
1439 : #endif /* CONFIG_SPARSEMEM */
1440 :
1441 : #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1442 :
1443 : /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1444 : void __init set_pageblock_order(void)
1445 : {
1446 : unsigned int order = MAX_ORDER;
1447 :
1448 : /* Check that pageblock_nr_pages has not already been setup */
1449 : if (pageblock_order)
1450 : return;
1451 :
1452 : /* Don't let pageblocks exceed the maximum allocation granularity. */
1453 : if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1454 : order = HUGETLB_PAGE_ORDER;
1455 :
1456 : /*
1457 : * Assume the largest contiguous order of interest is a huge page.
1458 : * This value may be variable depending on boot parameters on IA64 and
1459 : * powerpc.
1460 : */
1461 : pageblock_order = order;
1462 : }
1463 : #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1464 :
1465 : /*
1466 : * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1467 : * is unused as pageblock_order is set at compile-time. See
1468 : * include/linux/pageblock-flags.h for the values of pageblock_order based on
1469 : * the kernel config
1470 : */
1471 0 : void __init set_pageblock_order(void)
1472 : {
1473 0 : }
1474 :
1475 : #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1476 :
1477 : /*
1478 : * Set up the zone data structures
1479 : * - init pgdat internals
1480 : * - init all zones belonging to this node
1481 : *
1482 : * NOTE: this function is only called during memory hotplug
1483 : */
1484 : #ifdef CONFIG_MEMORY_HOTPLUG
1485 : void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1486 : {
1487 : int nid = pgdat->node_id;
1488 : enum zone_type z;
1489 : int cpu;
1490 :
1491 : pgdat_init_internals(pgdat);
1492 :
1493 : if (pgdat->per_cpu_nodestats == &boot_nodestats)
1494 : pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1495 :
1496 : /*
1497 : * Reset the nr_zones, order and highest_zoneidx before reuse.
1498 : * Note that kswapd will init kswapd_highest_zoneidx properly
1499 : * when it starts in the near future.
1500 : */
1501 : pgdat->nr_zones = 0;
1502 : pgdat->kswapd_order = 0;
1503 : pgdat->kswapd_highest_zoneidx = 0;
1504 : pgdat->node_start_pfn = 0;
1505 : for_each_online_cpu(cpu) {
1506 : struct per_cpu_nodestat *p;
1507 :
1508 : p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1509 : memset(p, 0, sizeof(*p));
1510 : }
1511 :
1512 : for (z = 0; z < MAX_NR_ZONES; z++)
1513 : zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
1514 : }
1515 : #endif
1516 :
1517 : /*
1518 : * Set up the zone data structures:
1519 : * - mark all pages reserved
1520 : * - mark all memory queues empty
1521 : * - clear the memory bitmaps
1522 : *
1523 : * NOTE: pgdat should get zeroed by caller.
1524 : * NOTE: this function is only called during early init.
1525 : */
1526 1 : static void __init free_area_init_core(struct pglist_data *pgdat)
1527 : {
1528 : enum zone_type j;
1529 1 : int nid = pgdat->node_id;
1530 :
1531 1 : pgdat_init_internals(pgdat);
1532 1 : pgdat->per_cpu_nodestats = &boot_nodestats;
1533 :
1534 3 : for (j = 0; j < MAX_NR_ZONES; j++) {
1535 2 : struct zone *zone = pgdat->node_zones + j;
1536 : unsigned long size, freesize, memmap_pages;
1537 :
1538 2 : size = zone->spanned_pages;
1539 2 : freesize = zone->present_pages;
1540 :
1541 : /*
1542 : * Adjust freesize so that it accounts for how much memory
1543 : * is used by this zone for memmap. This affects the watermark
1544 : * and per-cpu initialisations
1545 : */
1546 4 : memmap_pages = calc_memmap_size(size, freesize);
1547 2 : if (!is_highmem_idx(j)) {
1548 2 : if (freesize >= memmap_pages) {
1549 2 : freesize -= memmap_pages;
1550 : if (memmap_pages)
1551 : pr_debug(" %s zone: %lu pages used for memmap\n",
1552 : zone_names[j], memmap_pages);
1553 : } else
1554 0 : pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
1555 : zone_names[j], memmap_pages, freesize);
1556 : }
1557 :
1558 : /* Account for reserved pages */
1559 2 : if (j == 0 && freesize > dma_reserve) {
1560 1 : freesize -= dma_reserve;
1561 : pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1562 : }
1563 :
1564 2 : if (!is_highmem_idx(j))
1565 2 : nr_kernel_pages += freesize;
1566 : /* Charge for highmem memmap if there are enough kernel pages */
1567 : else if (nr_kernel_pages > memmap_pages * 2)
1568 : nr_kernel_pages -= memmap_pages;
1569 2 : nr_all_pages += freesize;
1570 :
1571 : /*
1572 : * Set an approximate value for lowmem here, it will be adjusted
1573 : * when the bootmem allocator frees pages into the buddy system.
1574 : * And all highmem pages will be managed by the buddy system.
1575 : */
1576 2 : zone_init_internals(zone, j, nid, freesize);
1577 :
1578 2 : if (!size)
1579 1 : continue;
1580 :
1581 : set_pageblock_order();
1582 1 : setup_usemap(zone);
1583 1 : init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1584 : }
1585 1 : }
1586 :
1587 1 : void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1588 : phys_addr_t min_addr, int nid, bool exact_nid)
1589 : {
1590 : void *ptr;
1591 :
1592 1 : if (exact_nid)
1593 0 : ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1594 : MEMBLOCK_ALLOC_ACCESSIBLE,
1595 : nid);
1596 : else
1597 1 : ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1598 : MEMBLOCK_ALLOC_ACCESSIBLE,
1599 : nid);
1600 :
1601 : if (ptr && size > 0)
1602 : page_init_poison(ptr, size);
1603 :
1604 1 : return ptr;
1605 : }
1606 :
1607 : #ifdef CONFIG_FLATMEM
1608 1 : static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1609 : {
1610 1 : unsigned long __maybe_unused start = 0;
1611 1 : unsigned long __maybe_unused offset = 0;
1612 :
1613 : /* Skip empty nodes */
1614 1 : if (!pgdat->node_spanned_pages)
1615 : return;
1616 :
1617 1 : start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1618 1 : offset = pgdat->node_start_pfn - start;
1619 : /* ia64 gets its own node_mem_map, before this, without bootmem */
1620 1 : if (!pgdat->node_mem_map) {
1621 : unsigned long size, end;
1622 : struct page *map;
1623 :
1624 : /*
1625 : * The zone's endpoints aren't required to be MAX_ORDER
1626 : * aligned but the node_mem_map endpoints must be in order
1627 : * for the buddy allocator to function correctly.
1628 : */
1629 2 : end = pgdat_end_pfn(pgdat);
1630 1 : end = ALIGN(end, MAX_ORDER_NR_PAGES);
1631 1 : size = (end - start) * sizeof(struct page);
1632 1 : map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1633 : pgdat->node_id, false);
1634 1 : if (!map)
1635 0 : panic("Failed to allocate %ld bytes for node %d memory map\n",
1636 : size, pgdat->node_id);
1637 1 : pgdat->node_mem_map = map + offset;
1638 : }
1639 : pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1640 : __func__, pgdat->node_id, (unsigned long)pgdat,
1641 : (unsigned long)pgdat->node_mem_map);
1642 : #ifndef CONFIG_NUMA
1643 : /*
1644 : * With no DISCONTIG, the global mem_map is just set as node 0's
1645 : */
1646 1 : if (pgdat == NODE_DATA(0)) {
1647 1 : mem_map = NODE_DATA(0)->node_mem_map;
1648 1 : if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1649 0 : mem_map -= offset;
1650 : }
1651 : #endif
1652 : }
1653 : #else
1654 : static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1655 : #endif /* CONFIG_FLATMEM */
1656 :
1657 : /**
1658 : * get_pfn_range_for_nid - Return the start and end page frames for a node
1659 : * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1660 : * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1661 : * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1662 : *
1663 : * It returns the start and end page frame of a node based on information
1664 : * provided by memblock_set_node(). If called for a node
1665 : * with no available memory, a warning is printed and the start and end
1666 : * PFNs will be 0.
1667 : */
1668 1 : void __init get_pfn_range_for_nid(unsigned int nid,
1669 : unsigned long *start_pfn, unsigned long *end_pfn)
1670 : {
1671 : unsigned long this_start_pfn, this_end_pfn;
1672 : int i;
1673 :
1674 1 : *start_pfn = -1UL;
1675 1 : *end_pfn = 0;
1676 :
1677 2 : for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1678 1 : *start_pfn = min(*start_pfn, this_start_pfn);
1679 1 : *end_pfn = max(*end_pfn, this_end_pfn);
1680 : }
1681 :
1682 1 : if (*start_pfn == -1UL)
1683 0 : *start_pfn = 0;
1684 1 : }
1685 :
1686 1 : static void __init free_area_init_node(int nid)
1687 : {
1688 1 : pg_data_t *pgdat = NODE_DATA(nid);
1689 1 : unsigned long start_pfn = 0;
1690 1 : unsigned long end_pfn = 0;
1691 :
1692 : /* pg_data_t should be reset to zero when it's allocated */
1693 1 : WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1694 :
1695 1 : get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1696 :
1697 1 : pgdat->node_id = nid;
1698 1 : pgdat->node_start_pfn = start_pfn;
1699 1 : pgdat->per_cpu_nodestats = NULL;
1700 :
1701 1 : if (start_pfn != end_pfn) {
1702 1 : pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1703 : (u64)start_pfn << PAGE_SHIFT,
1704 : end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1705 : } else {
1706 0 : pr_info("Initmem setup node %d as memoryless\n", nid);
1707 : }
1708 :
1709 1 : calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1710 :
1711 1 : alloc_node_mem_map(pgdat);
1712 : pgdat_set_deferred_range(pgdat);
1713 :
1714 1 : free_area_init_core(pgdat);
1715 : lru_gen_init_pgdat(pgdat);
1716 1 : }
1717 :
1718 : /* Any regular or high memory on that node ? */
1719 : static void check_for_memory(pg_data_t *pgdat, int nid)
1720 : {
1721 : enum zone_type zone_type;
1722 :
1723 0 : for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1724 1 : struct zone *zone = &pgdat->node_zones[zone_type];
1725 1 : if (populated_zone(zone)) {
1726 : if (IS_ENABLED(CONFIG_HIGHMEM))
1727 : node_set_state(nid, N_HIGH_MEMORY);
1728 : if (zone_type <= ZONE_NORMAL)
1729 : node_set_state(nid, N_NORMAL_MEMORY);
1730 : break;
1731 : }
1732 : }
1733 : }
1734 :
1735 : #if MAX_NUMNODES > 1
1736 : /*
1737 : * Figure out the number of possible node ids.
1738 : */
1739 : void __init setup_nr_node_ids(void)
1740 : {
1741 : unsigned int highest;
1742 :
1743 : highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1744 : nr_node_ids = highest + 1;
1745 : }
1746 : #endif
1747 :
1748 : static void __init free_area_init_memoryless_node(int nid)
1749 : {
1750 : free_area_init_node(nid);
1751 : }
1752 :
1753 : /*
1754 : * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1755 : * such cases we allow max_zone_pfn sorted in the descending order
1756 : */
1757 : static bool arch_has_descending_max_zone_pfns(void)
1758 : {
1759 : return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1760 : }
1761 :
1762 : /**
1763 : * free_area_init - Initialise all pg_data_t and zone data
1764 : * @max_zone_pfn: an array of max PFNs for each zone
1765 : *
1766 : * This will call free_area_init_node() for each active node in the system.
1767 : * Using the page ranges provided by memblock_set_node(), the size of each
1768 : * zone in each node and their holes is calculated. If the maximum PFN
1769 : * between two adjacent zones match, it is assumed that the zone is empty.
1770 : * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1771 : * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1772 : * starts where the previous one ended. For example, ZONE_DMA32 starts
1773 : * at arch_max_dma_pfn.
1774 : */
1775 1 : void __init free_area_init(unsigned long *max_zone_pfn)
1776 : {
1777 : unsigned long start_pfn, end_pfn;
1778 : int i, nid, zone;
1779 : bool descending;
1780 :
1781 : /* Record where the zone boundaries are */
1782 1 : memset(arch_zone_lowest_possible_pfn, 0,
1783 : sizeof(arch_zone_lowest_possible_pfn));
1784 1 : memset(arch_zone_highest_possible_pfn, 0,
1785 : sizeof(arch_zone_highest_possible_pfn));
1786 :
1787 1 : start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1788 1 : descending = arch_has_descending_max_zone_pfns();
1789 :
1790 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
1791 : if (descending)
1792 : zone = MAX_NR_ZONES - i - 1;
1793 : else
1794 2 : zone = i;
1795 :
1796 2 : if (zone == ZONE_MOVABLE)
1797 1 : continue;
1798 :
1799 1 : end_pfn = max(max_zone_pfn[zone], start_pfn);
1800 1 : arch_zone_lowest_possible_pfn[zone] = start_pfn;
1801 1 : arch_zone_highest_possible_pfn[zone] = end_pfn;
1802 :
1803 1 : start_pfn = end_pfn;
1804 : }
1805 :
1806 : /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1807 1 : memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1808 1 : find_zone_movable_pfns_for_nodes();
1809 :
1810 : /* Print out the zone ranges */
1811 1 : pr_info("Zone ranges:\n");
1812 3 : for (i = 0; i < MAX_NR_ZONES; i++) {
1813 2 : if (i == ZONE_MOVABLE)
1814 1 : continue;
1815 1 : pr_info(" %-8s ", zone_names[i]);
1816 2 : if (arch_zone_lowest_possible_pfn[i] ==
1817 1 : arch_zone_highest_possible_pfn[i])
1818 0 : pr_cont("empty\n");
1819 : else
1820 1 : pr_cont("[mem %#018Lx-%#018Lx]\n",
1821 : (u64)arch_zone_lowest_possible_pfn[i]
1822 : << PAGE_SHIFT,
1823 : ((u64)arch_zone_highest_possible_pfn[i]
1824 : << PAGE_SHIFT) - 1);
1825 : }
1826 :
1827 : /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1828 1 : pr_info("Movable zone start for each node\n");
1829 2 : for (i = 0; i < MAX_NUMNODES; i++) {
1830 1 : if (zone_movable_pfn[i])
1831 0 : pr_info(" Node %d: %#018Lx\n", i,
1832 : (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1833 : }
1834 :
1835 : /*
1836 : * Print out the early node map, and initialize the
1837 : * subsection-map relative to active online memory ranges to
1838 : * enable future "sub-section" extensions of the memory map.
1839 : */
1840 1 : pr_info("Early memory node ranges\n");
1841 2 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1842 1 : pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1843 : (u64)start_pfn << PAGE_SHIFT,
1844 : ((u64)end_pfn << PAGE_SHIFT) - 1);
1845 : subsection_map_init(start_pfn, end_pfn - start_pfn);
1846 : }
1847 :
1848 : /* Initialise every node */
1849 1 : mminit_verify_pageflags_layout();
1850 : setup_nr_node_ids();
1851 2 : for_each_node(nid) {
1852 : pg_data_t *pgdat;
1853 :
1854 1 : if (!node_online(nid)) {
1855 : pr_info("Initializing node %d as memoryless\n", nid);
1856 :
1857 : /* Allocator not initialized yet */
1858 : pgdat = arch_alloc_nodedata(nid);
1859 : if (!pgdat)
1860 : panic("Cannot allocate %zuB for node %d.\n",
1861 : sizeof(*pgdat), nid);
1862 : arch_refresh_nodedata(nid, pgdat);
1863 : free_area_init_memoryless_node(nid);
1864 :
1865 : /*
1866 : * We do not want to confuse userspace by sysfs
1867 : * files/directories for node without any memory
1868 : * attached to it, so this node is not marked as
1869 : * N_MEMORY and not marked online so that no sysfs
1870 : * hierarchy will be created via register_one_node for
1871 : * it. The pgdat will get fully initialized by
1872 : * hotadd_init_pgdat() when memory is hotplugged into
1873 : * this node.
1874 : */
1875 : continue;
1876 : }
1877 :
1878 1 : pgdat = NODE_DATA(nid);
1879 1 : free_area_init_node(nid);
1880 :
1881 : /* Any memory on that node */
1882 : if (pgdat->node_present_pages)
1883 : node_set_state(nid, N_MEMORY);
1884 2 : check_for_memory(pgdat, nid);
1885 : }
1886 :
1887 1 : memmap_init();
1888 :
1889 : /* disable hash distribution for systems with a single node */
1890 : fixup_hashdist();
1891 1 : }
1892 :
1893 : /**
1894 : * node_map_pfn_alignment - determine the maximum internode alignment
1895 : *
1896 : * This function should be called after node map is populated and sorted.
1897 : * It calculates the maximum power of two alignment which can distinguish
1898 : * all the nodes.
1899 : *
1900 : * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1901 : * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1902 : * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1903 : * shifted, 1GiB is enough and this function will indicate so.
1904 : *
1905 : * This is used to test whether pfn -> nid mapping of the chosen memory
1906 : * model has fine enough granularity to avoid incorrect mapping for the
1907 : * populated node map.
1908 : *
1909 : * Return: the determined alignment in pfn's. 0 if there is no alignment
1910 : * requirement (single node).
1911 : */
1912 0 : unsigned long __init node_map_pfn_alignment(void)
1913 : {
1914 0 : unsigned long accl_mask = 0, last_end = 0;
1915 : unsigned long start, end, mask;
1916 0 : int last_nid = NUMA_NO_NODE;
1917 : int i, nid;
1918 :
1919 0 : for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1920 0 : if (!start || last_nid < 0 || last_nid == nid) {
1921 0 : last_nid = nid;
1922 0 : last_end = end;
1923 0 : continue;
1924 : }
1925 :
1926 : /*
1927 : * Start with a mask granular enough to pin-point to the
1928 : * start pfn and tick off bits one-by-one until it becomes
1929 : * too coarse to separate the current node from the last.
1930 : */
1931 0 : mask = ~((1 << __ffs(start)) - 1);
1932 0 : while (mask && last_end <= (start & (mask << 1)))
1933 : mask <<= 1;
1934 :
1935 : /* accumulate all internode masks */
1936 0 : accl_mask |= mask;
1937 : }
1938 :
1939 : /* convert mask to number of pages */
1940 0 : return ~accl_mask + 1;
1941 : }
1942 :
1943 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1944 : static void __init deferred_free_range(unsigned long pfn,
1945 : unsigned long nr_pages)
1946 : {
1947 : struct page *page;
1948 : unsigned long i;
1949 :
1950 : if (!nr_pages)
1951 : return;
1952 :
1953 : page = pfn_to_page(pfn);
1954 :
1955 : /* Free a large naturally-aligned chunk if possible */
1956 : if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1957 : for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1958 : set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1959 : __free_pages_core(page, MAX_ORDER);
1960 : return;
1961 : }
1962 :
1963 : for (i = 0; i < nr_pages; i++, page++, pfn++) {
1964 : if (pageblock_aligned(pfn))
1965 : set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1966 : __free_pages_core(page, 0);
1967 : }
1968 : }
1969 :
1970 : /* Completion tracking for deferred_init_memmap() threads */
1971 : static atomic_t pgdat_init_n_undone __initdata;
1972 : static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1973 :
1974 : static inline void __init pgdat_init_report_one_done(void)
1975 : {
1976 : if (atomic_dec_and_test(&pgdat_init_n_undone))
1977 : complete(&pgdat_init_all_done_comp);
1978 : }
1979 :
1980 : /*
1981 : * Returns true if page needs to be initialized or freed to buddy allocator.
1982 : *
1983 : * We check if a current MAX_ORDER block is valid by only checking the validity
1984 : * of the head pfn.
1985 : */
1986 : static inline bool __init deferred_pfn_valid(unsigned long pfn)
1987 : {
1988 : if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
1989 : return false;
1990 : return true;
1991 : }
1992 :
1993 : /*
1994 : * Free pages to buddy allocator. Try to free aligned pages in
1995 : * MAX_ORDER_NR_PAGES sizes.
1996 : */
1997 : static void __init deferred_free_pages(unsigned long pfn,
1998 : unsigned long end_pfn)
1999 : {
2000 : unsigned long nr_free = 0;
2001 :
2002 : for (; pfn < end_pfn; pfn++) {
2003 : if (!deferred_pfn_valid(pfn)) {
2004 : deferred_free_range(pfn - nr_free, nr_free);
2005 : nr_free = 0;
2006 : } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2007 : deferred_free_range(pfn - nr_free, nr_free);
2008 : nr_free = 1;
2009 : } else {
2010 : nr_free++;
2011 : }
2012 : }
2013 : /* Free the last block of pages to allocator */
2014 : deferred_free_range(pfn - nr_free, nr_free);
2015 : }
2016 :
2017 : /*
2018 : * Initialize struct pages. We minimize pfn page lookups and scheduler checks
2019 : * by performing it only once every MAX_ORDER_NR_PAGES.
2020 : * Return number of pages initialized.
2021 : */
2022 : static unsigned long __init deferred_init_pages(struct zone *zone,
2023 : unsigned long pfn,
2024 : unsigned long end_pfn)
2025 : {
2026 : int nid = zone_to_nid(zone);
2027 : unsigned long nr_pages = 0;
2028 : int zid = zone_idx(zone);
2029 : struct page *page = NULL;
2030 :
2031 : for (; pfn < end_pfn; pfn++) {
2032 : if (!deferred_pfn_valid(pfn)) {
2033 : page = NULL;
2034 : continue;
2035 : } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2036 : page = pfn_to_page(pfn);
2037 : } else {
2038 : page++;
2039 : }
2040 : __init_single_page(page, pfn, zid, nid);
2041 : nr_pages++;
2042 : }
2043 : return (nr_pages);
2044 : }
2045 :
2046 : /*
2047 : * This function is meant to pre-load the iterator for the zone init.
2048 : * Specifically it walks through the ranges until we are caught up to the
2049 : * first_init_pfn value and exits there. If we never encounter the value we
2050 : * return false indicating there are no valid ranges left.
2051 : */
2052 : static bool __init
2053 : deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2054 : unsigned long *spfn, unsigned long *epfn,
2055 : unsigned long first_init_pfn)
2056 : {
2057 : u64 j;
2058 :
2059 : /*
2060 : * Start out by walking through the ranges in this zone that have
2061 : * already been initialized. We don't need to do anything with them
2062 : * so we just need to flush them out of the system.
2063 : */
2064 : for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2065 : if (*epfn <= first_init_pfn)
2066 : continue;
2067 : if (*spfn < first_init_pfn)
2068 : *spfn = first_init_pfn;
2069 : *i = j;
2070 : return true;
2071 : }
2072 :
2073 : return false;
2074 : }
2075 :
2076 : /*
2077 : * Initialize and free pages. We do it in two loops: first we initialize
2078 : * struct page, then free to buddy allocator, because while we are
2079 : * freeing pages we can access pages that are ahead (computing buddy
2080 : * page in __free_one_page()).
2081 : *
2082 : * In order to try and keep some memory in the cache we have the loop
2083 : * broken along max page order boundaries. This way we will not cause
2084 : * any issues with the buddy page computation.
2085 : */
2086 : static unsigned long __init
2087 : deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2088 : unsigned long *end_pfn)
2089 : {
2090 : unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2091 : unsigned long spfn = *start_pfn, epfn = *end_pfn;
2092 : unsigned long nr_pages = 0;
2093 : u64 j = *i;
2094 :
2095 : /* First we loop through and initialize the page values */
2096 : for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2097 : unsigned long t;
2098 :
2099 : if (mo_pfn <= *start_pfn)
2100 : break;
2101 :
2102 : t = min(mo_pfn, *end_pfn);
2103 : nr_pages += deferred_init_pages(zone, *start_pfn, t);
2104 :
2105 : if (mo_pfn < *end_pfn) {
2106 : *start_pfn = mo_pfn;
2107 : break;
2108 : }
2109 : }
2110 :
2111 : /* Reset values and now loop through freeing pages as needed */
2112 : swap(j, *i);
2113 :
2114 : for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2115 : unsigned long t;
2116 :
2117 : if (mo_pfn <= spfn)
2118 : break;
2119 :
2120 : t = min(mo_pfn, epfn);
2121 : deferred_free_pages(spfn, t);
2122 :
2123 : if (mo_pfn <= epfn)
2124 : break;
2125 : }
2126 :
2127 : return nr_pages;
2128 : }
2129 :
2130 : static void __init
2131 : deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2132 : void *arg)
2133 : {
2134 : unsigned long spfn, epfn;
2135 : struct zone *zone = arg;
2136 : u64 i;
2137 :
2138 : deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2139 :
2140 : /*
2141 : * Initialize and free pages in MAX_ORDER sized increments so that we
2142 : * can avoid introducing any issues with the buddy allocator.
2143 : */
2144 : while (spfn < end_pfn) {
2145 : deferred_init_maxorder(&i, zone, &spfn, &epfn);
2146 : cond_resched();
2147 : }
2148 : }
2149 :
2150 : /* An arch may override for more concurrency. */
2151 : __weak int __init
2152 : deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2153 : {
2154 : return 1;
2155 : }
2156 :
2157 : /* Initialise remaining memory on a node */
2158 : static int __init deferred_init_memmap(void *data)
2159 : {
2160 : pg_data_t *pgdat = data;
2161 : const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2162 : unsigned long spfn = 0, epfn = 0;
2163 : unsigned long first_init_pfn, flags;
2164 : unsigned long start = jiffies;
2165 : struct zone *zone;
2166 : int zid, max_threads;
2167 : u64 i;
2168 :
2169 : /* Bind memory initialisation thread to a local node if possible */
2170 : if (!cpumask_empty(cpumask))
2171 : set_cpus_allowed_ptr(current, cpumask);
2172 :
2173 : pgdat_resize_lock(pgdat, &flags);
2174 : first_init_pfn = pgdat->first_deferred_pfn;
2175 : if (first_init_pfn == ULONG_MAX) {
2176 : pgdat_resize_unlock(pgdat, &flags);
2177 : pgdat_init_report_one_done();
2178 : return 0;
2179 : }
2180 :
2181 : /* Sanity check boundaries */
2182 : BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2183 : BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2184 : pgdat->first_deferred_pfn = ULONG_MAX;
2185 :
2186 : /*
2187 : * Once we unlock here, the zone cannot be grown anymore, thus if an
2188 : * interrupt thread must allocate this early in boot, zone must be
2189 : * pre-grown prior to start of deferred page initialization.
2190 : */
2191 : pgdat_resize_unlock(pgdat, &flags);
2192 :
2193 : /* Only the highest zone is deferred so find it */
2194 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2195 : zone = pgdat->node_zones + zid;
2196 : if (first_init_pfn < zone_end_pfn(zone))
2197 : break;
2198 : }
2199 :
2200 : /* If the zone is empty somebody else may have cleared out the zone */
2201 : if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2202 : first_init_pfn))
2203 : goto zone_empty;
2204 :
2205 : max_threads = deferred_page_init_max_threads(cpumask);
2206 :
2207 : while (spfn < epfn) {
2208 : unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2209 : struct padata_mt_job job = {
2210 : .thread_fn = deferred_init_memmap_chunk,
2211 : .fn_arg = zone,
2212 : .start = spfn,
2213 : .size = epfn_align - spfn,
2214 : .align = PAGES_PER_SECTION,
2215 : .min_chunk = PAGES_PER_SECTION,
2216 : .max_threads = max_threads,
2217 : };
2218 :
2219 : padata_do_multithreaded(&job);
2220 : deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 : epfn_align);
2222 : }
2223 : zone_empty:
2224 : /* Sanity check that the next zone really is unpopulated */
2225 : WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2226 :
2227 : pr_info("node %d deferred pages initialised in %ums\n",
2228 : pgdat->node_id, jiffies_to_msecs(jiffies - start));
2229 :
2230 : pgdat_init_report_one_done();
2231 : return 0;
2232 : }
2233 :
2234 : /*
2235 : * If this zone has deferred pages, try to grow it by initializing enough
2236 : * deferred pages to satisfy the allocation specified by order, rounded up to
2237 : * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2238 : * of SECTION_SIZE bytes by initializing struct pages in increments of
2239 : * PAGES_PER_SECTION * sizeof(struct page) bytes.
2240 : *
2241 : * Return true when zone was grown, otherwise return false. We return true even
2242 : * when we grow less than requested, to let the caller decide if there are
2243 : * enough pages to satisfy the allocation.
2244 : *
2245 : * Note: We use noinline because this function is needed only during boot, and
2246 : * it is called from a __ref function _deferred_grow_zone. This way we are
2247 : * making sure that it is not inlined into permanent text section.
2248 : */
2249 : bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2250 : {
2251 : unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2252 : pg_data_t *pgdat = zone->zone_pgdat;
2253 : unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2254 : unsigned long spfn, epfn, flags;
2255 : unsigned long nr_pages = 0;
2256 : u64 i;
2257 :
2258 : /* Only the last zone may have deferred pages */
2259 : if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2260 : return false;
2261 :
2262 : pgdat_resize_lock(pgdat, &flags);
2263 :
2264 : /*
2265 : * If someone grew this zone while we were waiting for spinlock, return
2266 : * true, as there might be enough pages already.
2267 : */
2268 : if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2269 : pgdat_resize_unlock(pgdat, &flags);
2270 : return true;
2271 : }
2272 :
2273 : /* If the zone is empty somebody else may have cleared out the zone */
2274 : if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2275 : first_deferred_pfn)) {
2276 : pgdat->first_deferred_pfn = ULONG_MAX;
2277 : pgdat_resize_unlock(pgdat, &flags);
2278 : /* Retry only once. */
2279 : return first_deferred_pfn != ULONG_MAX;
2280 : }
2281 :
2282 : /*
2283 : * Initialize and free pages in MAX_ORDER sized increments so
2284 : * that we can avoid introducing any issues with the buddy
2285 : * allocator.
2286 : */
2287 : while (spfn < epfn) {
2288 : /* update our first deferred PFN for this section */
2289 : first_deferred_pfn = spfn;
2290 :
2291 : nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2292 : touch_nmi_watchdog();
2293 :
2294 : /* We should only stop along section boundaries */
2295 : if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2296 : continue;
2297 :
2298 : /* If our quota has been met we can stop here */
2299 : if (nr_pages >= nr_pages_needed)
2300 : break;
2301 : }
2302 :
2303 : pgdat->first_deferred_pfn = spfn;
2304 : pgdat_resize_unlock(pgdat, &flags);
2305 :
2306 : return nr_pages > 0;
2307 : }
2308 :
2309 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2310 :
2311 : #ifdef CONFIG_CMA
2312 : void __init init_cma_reserved_pageblock(struct page *page)
2313 : {
2314 : unsigned i = pageblock_nr_pages;
2315 : struct page *p = page;
2316 :
2317 : do {
2318 : __ClearPageReserved(p);
2319 : set_page_count(p, 0);
2320 : } while (++p, --i);
2321 :
2322 : set_pageblock_migratetype(page, MIGRATE_CMA);
2323 : set_page_refcounted(page);
2324 : __free_pages(page, pageblock_order);
2325 :
2326 : adjust_managed_page_count(page, pageblock_nr_pages);
2327 : page_zone(page)->cma_pages += pageblock_nr_pages;
2328 : }
2329 : #endif
2330 :
2331 1 : void __init page_alloc_init_late(void)
2332 : {
2333 : struct zone *zone;
2334 : int nid;
2335 :
2336 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2337 :
2338 : /* There will be num_node_state(N_MEMORY) threads */
2339 : atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2340 : for_each_node_state(nid, N_MEMORY) {
2341 : kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2342 : }
2343 :
2344 : /* Block until all are initialised */
2345 : wait_for_completion(&pgdat_init_all_done_comp);
2346 :
2347 : /*
2348 : * We initialized the rest of the deferred pages. Permanently disable
2349 : * on-demand struct page initialization.
2350 : */
2351 : static_branch_disable(&deferred_pages);
2352 :
2353 : /* Reinit limits that are based on free pages after the kernel is up */
2354 : files_maxfiles_init();
2355 : #endif
2356 :
2357 1 : buffer_init();
2358 :
2359 : /* Discard memblock private memory */
2360 1 : memblock_discard();
2361 :
2362 1 : for_each_node_state(nid, N_MEMORY)
2363 : shuffle_free_memory(NODE_DATA(nid));
2364 :
2365 3 : for_each_populated_zone(zone)
2366 1 : set_zone_contiguous(zone);
2367 :
2368 : /* Initialize page ext after all struct pages are initialized. */
2369 : if (deferred_struct_pages)
2370 : page_ext_init();
2371 1 : }
2372 :
2373 : #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2374 : /*
2375 : * Returns the number of pages that arch has reserved but
2376 : * is not known to alloc_large_system_hash().
2377 : */
2378 : static unsigned long __init arch_reserved_kernel_pages(void)
2379 : {
2380 : return 0;
2381 : }
2382 : #endif
2383 :
2384 : /*
2385 : * Adaptive scale is meant to reduce sizes of hash tables on large memory
2386 : * machines. As memory size is increased the scale is also increased but at
2387 : * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2388 : * quadruples the scale is increased by one, which means the size of hash table
2389 : * only doubles, instead of quadrupling as well.
2390 : * Because 32-bit systems cannot have large physical memory, where this scaling
2391 : * makes sense, it is disabled on such platforms.
2392 : */
2393 : #if __BITS_PER_LONG > 32
2394 : #define ADAPT_SCALE_BASE (64ul << 30)
2395 : #define ADAPT_SCALE_SHIFT 2
2396 : #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2397 : #endif
2398 :
2399 : /*
2400 : * allocate a large system hash table from bootmem
2401 : * - it is assumed that the hash table must contain an exact power-of-2
2402 : * quantity of entries
2403 : * - limit is the number of hash buckets, not the total allocation size
2404 : */
2405 5 : void *__init alloc_large_system_hash(const char *tablename,
2406 : unsigned long bucketsize,
2407 : unsigned long numentries,
2408 : int scale,
2409 : int flags,
2410 : unsigned int *_hash_shift,
2411 : unsigned int *_hash_mask,
2412 : unsigned long low_limit,
2413 : unsigned long high_limit)
2414 : {
2415 5 : unsigned long long max = high_limit;
2416 : unsigned long log2qty, size;
2417 : void *table;
2418 : gfp_t gfp_flags;
2419 : bool virt;
2420 : bool huge;
2421 :
2422 : /* allow the kernel cmdline to have a say */
2423 5 : if (!numentries) {
2424 : /* round applicable memory size up to nearest megabyte */
2425 4 : numentries = nr_kernel_pages;
2426 4 : numentries -= arch_reserved_kernel_pages();
2427 :
2428 : /* It isn't necessary when PAGE_SIZE >= 1MB */
2429 : if (PAGE_SIZE < SZ_1M)
2430 4 : numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2431 :
2432 : #if __BITS_PER_LONG > 32
2433 4 : if (!high_limit) {
2434 : unsigned long adapt;
2435 :
2436 4 : for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2437 0 : adapt <<= ADAPT_SCALE_SHIFT)
2438 0 : scale++;
2439 : }
2440 : #endif
2441 :
2442 : /* limit to 1 bucket per 2^scale bytes of low memory */
2443 4 : if (scale > PAGE_SHIFT)
2444 4 : numentries >>= (scale - PAGE_SHIFT);
2445 : else
2446 0 : numentries <<= (PAGE_SHIFT - scale);
2447 :
2448 : /* Make sure we've got at least a 0-order allocation.. */
2449 4 : if (unlikely(flags & HASH_SMALL)) {
2450 : /* Makes no sense without HASH_EARLY */
2451 0 : WARN_ON(!(flags & HASH_EARLY));
2452 0 : if (!(numentries >> *_hash_shift)) {
2453 0 : numentries = 1UL << *_hash_shift;
2454 0 : BUG_ON(!numentries);
2455 : }
2456 4 : } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2457 0 : numentries = PAGE_SIZE / bucketsize;
2458 : }
2459 10 : numentries = roundup_pow_of_two(numentries);
2460 :
2461 : /* limit allocation size to 1/16 total memory by default */
2462 5 : if (max == 0) {
2463 4 : max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2464 4 : do_div(max, bucketsize);
2465 : }
2466 5 : max = min(max, 0x80000000ULL);
2467 :
2468 5 : if (numentries < low_limit)
2469 0 : numentries = low_limit;
2470 5 : if (numentries > max)
2471 0 : numentries = max;
2472 :
2473 10 : log2qty = ilog2(numentries);
2474 :
2475 5 : gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2476 : do {
2477 5 : virt = false;
2478 5 : size = bucketsize << log2qty;
2479 5 : if (flags & HASH_EARLY) {
2480 2 : if (flags & HASH_ZERO)
2481 2 : table = memblock_alloc(size, SMP_CACHE_BYTES);
2482 : else
2483 0 : table = memblock_alloc_raw(size,
2484 : SMP_CACHE_BYTES);
2485 3 : } else if (get_order(size) > MAX_ORDER || hashdist) {
2486 0 : table = vmalloc_huge(size, gfp_flags);
2487 0 : virt = true;
2488 : if (table)
2489 : huge = is_vm_area_hugepages(table);
2490 : } else {
2491 : /*
2492 : * If bucketsize is not a power-of-two, we may free
2493 : * some pages at the end of hash table which
2494 : * alloc_pages_exact() automatically does
2495 : */
2496 3 : table = alloc_pages_exact(size, gfp_flags);
2497 3 : kmemleak_alloc(table, size, 1, gfp_flags);
2498 : }
2499 5 : } while (!table && size > PAGE_SIZE && --log2qty);
2500 :
2501 5 : if (!table)
2502 0 : panic("Failed to allocate %s hash table\n", tablename);
2503 :
2504 10 : pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2505 : tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2506 : virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2507 :
2508 5 : if (_hash_shift)
2509 5 : *_hash_shift = log2qty;
2510 5 : if (_hash_mask)
2511 3 : *_hash_mask = (1 << log2qty) - 1;
2512 :
2513 5 : return table;
2514 : }
2515 :
2516 : /**
2517 : * set_dma_reserve - set the specified number of pages reserved in the first zone
2518 : * @new_dma_reserve: The number of pages to mark reserved
2519 : *
2520 : * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2521 : * In the DMA zone, a significant percentage may be consumed by kernel image
2522 : * and other unfreeable allocations which can skew the watermarks badly. This
2523 : * function may optionally be used to account for unfreeable pages in the
2524 : * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2525 : * smaller per-cpu batchsize.
2526 : */
2527 0 : void __init set_dma_reserve(unsigned long new_dma_reserve)
2528 : {
2529 0 : dma_reserve = new_dma_reserve;
2530 0 : }
2531 :
2532 260 : void __init memblock_free_pages(struct page *page, unsigned long pfn,
2533 : unsigned int order)
2534 : {
2535 260 : if (!early_page_initialised(pfn))
2536 : return;
2537 260 : if (!kmsan_memblock_free_pages(page, order)) {
2538 : /* KMSAN will take care of these pages. */
2539 : return;
2540 : }
2541 260 : __free_pages_core(page, order);
2542 : }
2543 :
2544 : static bool _init_on_alloc_enabled_early __read_mostly
2545 : = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2546 0 : static int __init early_init_on_alloc(char *buf)
2547 : {
2548 :
2549 0 : return kstrtobool(buf, &_init_on_alloc_enabled_early);
2550 : }
2551 : early_param("init_on_alloc", early_init_on_alloc);
2552 :
2553 : static bool _init_on_free_enabled_early __read_mostly
2554 : = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2555 0 : static int __init early_init_on_free(char *buf)
2556 : {
2557 0 : return kstrtobool(buf, &_init_on_free_enabled_early);
2558 : }
2559 : early_param("init_on_free", early_init_on_free);
2560 :
2561 : DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2562 :
2563 : /*
2564 : * Enable static keys related to various memory debugging and hardening options.
2565 : * Some override others, and depend on early params that are evaluated in the
2566 : * order of appearance. So we need to first gather the full picture of what was
2567 : * enabled, and then make decisions.
2568 : */
2569 1 : static void __init mem_debugging_and_hardening_init(void)
2570 : {
2571 1 : bool page_poisoning_requested = false;
2572 1 : bool want_check_pages = false;
2573 :
2574 : #ifdef CONFIG_PAGE_POISONING
2575 : /*
2576 : * Page poisoning is debug page alloc for some arches. If
2577 : * either of those options are enabled, enable poisoning.
2578 : */
2579 : if (page_poisoning_enabled() ||
2580 : (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2581 : debug_pagealloc_enabled())) {
2582 : static_branch_enable(&_page_poisoning_enabled);
2583 : page_poisoning_requested = true;
2584 : want_check_pages = true;
2585 : }
2586 : #endif
2587 :
2588 1 : if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2589 : page_poisoning_requested) {
2590 : pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2591 : "will take precedence over init_on_alloc and init_on_free\n");
2592 : _init_on_alloc_enabled_early = false;
2593 : _init_on_free_enabled_early = false;
2594 : }
2595 :
2596 1 : if (_init_on_alloc_enabled_early) {
2597 0 : want_check_pages = true;
2598 0 : static_branch_enable(&init_on_alloc);
2599 : } else {
2600 1 : static_branch_disable(&init_on_alloc);
2601 : }
2602 :
2603 1 : if (_init_on_free_enabled_early) {
2604 0 : want_check_pages = true;
2605 0 : static_branch_enable(&init_on_free);
2606 : } else {
2607 1 : static_branch_disable(&init_on_free);
2608 : }
2609 :
2610 : if (IS_ENABLED(CONFIG_KMSAN) &&
2611 : (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2612 : pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2613 :
2614 : #ifdef CONFIG_DEBUG_PAGEALLOC
2615 : if (debug_pagealloc_enabled()) {
2616 : want_check_pages = true;
2617 : static_branch_enable(&_debug_pagealloc_enabled);
2618 :
2619 : if (debug_guardpage_minorder())
2620 : static_branch_enable(&_debug_guardpage_enabled);
2621 : }
2622 : #endif
2623 :
2624 : /*
2625 : * Any page debugging or hardening option also enables sanity checking
2626 : * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2627 : * enabled already.
2628 : */
2629 1 : if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2630 0 : static_branch_enable(&check_pages_enabled);
2631 1 : }
2632 :
2633 : /* Report memory auto-initialization states for this boot. */
2634 1 : static void __init report_meminit(void)
2635 : {
2636 : const char *stack;
2637 :
2638 : if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2639 : stack = "all(pattern)";
2640 : else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2641 : stack = "all(zero)";
2642 : else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2643 : stack = "byref_all(zero)";
2644 : else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2645 : stack = "byref(zero)";
2646 : else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2647 : stack = "__user(zero)";
2648 : else
2649 1 : stack = "off";
2650 :
2651 2 : pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2652 : stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2653 : want_init_on_free() ? "on" : "off");
2654 1 : if (want_init_on_free())
2655 0 : pr_info("mem auto-init: clearing system memory may take some time...\n");
2656 1 : }
2657 :
2658 1 : static void __init mem_init_print_info(void)
2659 : {
2660 : unsigned long physpages, codesize, datasize, rosize, bss_size;
2661 : unsigned long init_code_size, init_data_size;
2662 :
2663 1 : physpages = get_num_physpages();
2664 1 : codesize = _etext - _stext;
2665 1 : datasize = _edata - _sdata;
2666 1 : rosize = __end_rodata - __start_rodata;
2667 1 : bss_size = __bss_stop - __bss_start;
2668 1 : init_data_size = __init_end - __init_begin;
2669 1 : init_code_size = _einittext - _sinittext;
2670 :
2671 : /*
2672 : * Detect special cases and adjust section sizes accordingly:
2673 : * 1) .init.* may be embedded into .data sections
2674 : * 2) .init.text.* may be out of [__init_begin, __init_end],
2675 : * please refer to arch/tile/kernel/vmlinux.lds.S.
2676 : * 3) .rodata.* may be embedded into .text or .data sections.
2677 : */
2678 : #define adj_init_size(start, end, size, pos, adj) \
2679 : do { \
2680 : if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2681 : size -= adj; \
2682 : } while (0)
2683 :
2684 1 : adj_init_size(__init_begin, __init_end, init_data_size,
2685 : _sinittext, init_code_size);
2686 1 : adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2687 1 : adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2688 1 : adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2689 1 : adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2690 :
2691 : #undef adj_init_size
2692 :
2693 3 : pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2694 : #ifdef CONFIG_HIGHMEM
2695 : ", %luK highmem"
2696 : #endif
2697 : ")\n",
2698 : K(nr_free_pages()), K(physpages),
2699 : codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2700 : (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2701 : K(physpages - totalram_pages() - totalcma_pages),
2702 : K(totalcma_pages)
2703 : #ifdef CONFIG_HIGHMEM
2704 : , K(totalhigh_pages())
2705 : #endif
2706 : );
2707 1 : }
2708 :
2709 : /*
2710 : * Set up kernel memory allocators
2711 : */
2712 1 : void __init mm_core_init(void)
2713 : {
2714 : /* Initializations relying on SMP setup */
2715 1 : build_all_zonelists(NULL);
2716 1 : page_alloc_init_cpuhp();
2717 :
2718 : /*
2719 : * page_ext requires contiguous pages,
2720 : * bigger than MAX_ORDER unless SPARSEMEM.
2721 : */
2722 : page_ext_init_flatmem();
2723 1 : mem_debugging_and_hardening_init();
2724 : kfence_alloc_pool();
2725 1 : report_meminit();
2726 : kmsan_init_shadow();
2727 1 : stack_depot_early_init();
2728 1 : mem_init();
2729 1 : mem_init_print_info();
2730 1 : kmem_cache_init();
2731 : /*
2732 : * page_owner must be initialized after buddy is ready, and also after
2733 : * slab is ready so that stack_depot_init() works properly
2734 : */
2735 : page_ext_init_flatmem_late();
2736 : kmemleak_init();
2737 : ptlock_cache_init();
2738 1 : pgtable_cache_init();
2739 : debug_objects_mem_init();
2740 1 : vmalloc_init();
2741 : /* If no deferred init page_ext now, as vmap is fully initialized */
2742 : if (!deferred_struct_pages)
2743 : page_ext_init();
2744 : /* Should be run before the first non-init thread is created */
2745 : init_espfix_bsp();
2746 : /* Should be run after espfix64 is set up. */
2747 : pti_init();
2748 : kmsan_init_runtime();
2749 1 : mm_cache_init();
2750 1 : }
|