LCOV - code coverage report
Current view: top level - mm - page-writeback.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 51 811 6.3 %
Date: 2023-07-19 18:55:55 Functions: 6 66 9.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * mm/page-writeback.c
       4             :  *
       5             :  * Copyright (C) 2002, Linus Torvalds.
       6             :  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
       7             :  *
       8             :  * Contains functions related to writing back dirty pages at the
       9             :  * address_space level.
      10             :  *
      11             :  * 10Apr2002    Andrew Morton
      12             :  *              Initial version
      13             :  */
      14             : 
      15             : #include <linux/kernel.h>
      16             : #include <linux/math64.h>
      17             : #include <linux/export.h>
      18             : #include <linux/spinlock.h>
      19             : #include <linux/fs.h>
      20             : #include <linux/mm.h>
      21             : #include <linux/swap.h>
      22             : #include <linux/slab.h>
      23             : #include <linux/pagemap.h>
      24             : #include <linux/writeback.h>
      25             : #include <linux/init.h>
      26             : #include <linux/backing-dev.h>
      27             : #include <linux/task_io_accounting_ops.h>
      28             : #include <linux/blkdev.h>
      29             : #include <linux/mpage.h>
      30             : #include <linux/rmap.h>
      31             : #include <linux/percpu.h>
      32             : #include <linux/smp.h>
      33             : #include <linux/sysctl.h>
      34             : #include <linux/cpu.h>
      35             : #include <linux/syscalls.h>
      36             : #include <linux/pagevec.h>
      37             : #include <linux/timer.h>
      38             : #include <linux/sched/rt.h>
      39             : #include <linux/sched/signal.h>
      40             : #include <linux/mm_inline.h>
      41             : #include <trace/events/writeback.h>
      42             : 
      43             : #include "internal.h"
      44             : 
      45             : /*
      46             :  * Sleep at most 200ms at a time in balance_dirty_pages().
      47             :  */
      48             : #define MAX_PAUSE               max(HZ/5, 1)
      49             : 
      50             : /*
      51             :  * Try to keep balance_dirty_pages() call intervals higher than this many pages
      52             :  * by raising pause time to max_pause when falls below it.
      53             :  */
      54             : #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
      55             : 
      56             : /*
      57             :  * Estimate write bandwidth at 200ms intervals.
      58             :  */
      59             : #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
      60             : 
      61             : #define RATELIMIT_CALC_SHIFT    10
      62             : 
      63             : /*
      64             :  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
      65             :  * will look to see if it needs to force writeback or throttling.
      66             :  */
      67             : static long ratelimit_pages = 32;
      68             : 
      69             : /* The following parameters are exported via /proc/sys/vm */
      70             : 
      71             : /*
      72             :  * Start background writeback (via writeback threads) at this percentage
      73             :  */
      74             : static int dirty_background_ratio = 10;
      75             : 
      76             : /*
      77             :  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
      78             :  * dirty_background_ratio * the amount of dirtyable memory
      79             :  */
      80             : static unsigned long dirty_background_bytes;
      81             : 
      82             : /*
      83             :  * free highmem will not be subtracted from the total free memory
      84             :  * for calculating free ratios if vm_highmem_is_dirtyable is true
      85             :  */
      86             : static int vm_highmem_is_dirtyable;
      87             : 
      88             : /*
      89             :  * The generator of dirty data starts writeback at this percentage
      90             :  */
      91             : static int vm_dirty_ratio = 20;
      92             : 
      93             : /*
      94             :  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
      95             :  * vm_dirty_ratio * the amount of dirtyable memory
      96             :  */
      97             : static unsigned long vm_dirty_bytes;
      98             : 
      99             : /*
     100             :  * The interval between `kupdate'-style writebacks
     101             :  */
     102             : unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
     103             : 
     104             : EXPORT_SYMBOL_GPL(dirty_writeback_interval);
     105             : 
     106             : /*
     107             :  * The longest time for which data is allowed to remain dirty
     108             :  */
     109             : unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
     110             : 
     111             : /*
     112             :  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
     113             :  * a full sync is triggered after this time elapses without any disk activity.
     114             :  */
     115             : int laptop_mode;
     116             : 
     117             : EXPORT_SYMBOL(laptop_mode);
     118             : 
     119             : /* End of sysctl-exported parameters */
     120             : 
     121             : struct wb_domain global_wb_domain;
     122             : 
     123             : /* consolidated parameters for balance_dirty_pages() and its subroutines */
     124             : struct dirty_throttle_control {
     125             : #ifdef CONFIG_CGROUP_WRITEBACK
     126             :         struct wb_domain        *dom;
     127             :         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
     128             : #endif
     129             :         struct bdi_writeback    *wb;
     130             :         struct fprop_local_percpu *wb_completions;
     131             : 
     132             :         unsigned long           avail;          /* dirtyable */
     133             :         unsigned long           dirty;          /* file_dirty + write + nfs */
     134             :         unsigned long           thresh;         /* dirty threshold */
     135             :         unsigned long           bg_thresh;      /* dirty background threshold */
     136             : 
     137             :         unsigned long           wb_dirty;       /* per-wb counterparts */
     138             :         unsigned long           wb_thresh;
     139             :         unsigned long           wb_bg_thresh;
     140             : 
     141             :         unsigned long           pos_ratio;
     142             : };
     143             : 
     144             : /*
     145             :  * Length of period for aging writeout fractions of bdis. This is an
     146             :  * arbitrarily chosen number. The longer the period, the slower fractions will
     147             :  * reflect changes in current writeout rate.
     148             :  */
     149             : #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
     150             : 
     151             : #ifdef CONFIG_CGROUP_WRITEBACK
     152             : 
     153             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     154             :                                 .dom = &global_wb_domain,           \
     155             :                                 .wb_completions = &(__wb)->completions
     156             : 
     157             : #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
     158             : 
     159             : #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
     160             :                                 .dom = mem_cgroup_wb_domain(__wb),      \
     161             :                                 .wb_completions = &(__wb)->memcg_completions, \
     162             :                                 .gdtc = __gdtc
     163             : 
     164             : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     165             : {
     166             :         return dtc->dom;
     167             : }
     168             : 
     169             : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     170             : {
     171             :         return dtc->dom;
     172             : }
     173             : 
     174             : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     175             : {
     176             :         return mdtc->gdtc;
     177             : }
     178             : 
     179             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     180             : {
     181             :         return &wb->memcg_completions;
     182             : }
     183             : 
     184             : static void wb_min_max_ratio(struct bdi_writeback *wb,
     185             :                              unsigned long *minp, unsigned long *maxp)
     186             : {
     187             :         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
     188             :         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
     189             :         unsigned long long min = wb->bdi->min_ratio;
     190             :         unsigned long long max = wb->bdi->max_ratio;
     191             : 
     192             :         /*
     193             :          * @wb may already be clean by the time control reaches here and
     194             :          * the total may not include its bw.
     195             :          */
     196             :         if (this_bw < tot_bw) {
     197             :                 if (min) {
     198             :                         min *= this_bw;
     199             :                         min = div64_ul(min, tot_bw);
     200             :                 }
     201             :                 if (max < 100 * BDI_RATIO_SCALE) {
     202             :                         max *= this_bw;
     203             :                         max = div64_ul(max, tot_bw);
     204             :                 }
     205             :         }
     206             : 
     207             :         *minp = min;
     208             :         *maxp = max;
     209             : }
     210             : 
     211             : #else   /* CONFIG_CGROUP_WRITEBACK */
     212             : 
     213             : #define GDTC_INIT(__wb)         .wb = (__wb),                           \
     214             :                                 .wb_completions = &(__wb)->completions
     215             : #define GDTC_INIT_NO_WB
     216             : #define MDTC_INIT(__wb, __gdtc)
     217             : 
     218             : static bool mdtc_valid(struct dirty_throttle_control *dtc)
     219             : {
     220             :         return false;
     221             : }
     222             : 
     223             : static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
     224             : {
     225             :         return &global_wb_domain;
     226             : }
     227             : 
     228             : static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
     229             : {
     230             :         return NULL;
     231             : }
     232             : 
     233             : static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
     234             : {
     235             :         return NULL;
     236             : }
     237             : 
     238             : static void wb_min_max_ratio(struct bdi_writeback *wb,
     239             :                              unsigned long *minp, unsigned long *maxp)
     240             : {
     241           0 :         *minp = wb->bdi->min_ratio;
     242           0 :         *maxp = wb->bdi->max_ratio;
     243             : }
     244             : 
     245             : #endif  /* CONFIG_CGROUP_WRITEBACK */
     246             : 
     247             : /*
     248             :  * In a memory zone, there is a certain amount of pages we consider
     249             :  * available for the page cache, which is essentially the number of
     250             :  * free and reclaimable pages, minus some zone reserves to protect
     251             :  * lowmem and the ability to uphold the zone's watermarks without
     252             :  * requiring writeback.
     253             :  *
     254             :  * This number of dirtyable pages is the base value of which the
     255             :  * user-configurable dirty ratio is the effective number of pages that
     256             :  * are allowed to be actually dirtied.  Per individual zone, or
     257             :  * globally by using the sum of dirtyable pages over all zones.
     258             :  *
     259             :  * Because the user is allowed to specify the dirty limit globally as
     260             :  * absolute number of bytes, calculating the per-zone dirty limit can
     261             :  * require translating the configured limit into a percentage of
     262             :  * global dirtyable memory first.
     263             :  */
     264             : 
     265             : /**
     266             :  * node_dirtyable_memory - number of dirtyable pages in a node
     267             :  * @pgdat: the node
     268             :  *
     269             :  * Return: the node's number of pages potentially available for dirty
     270             :  * page cache.  This is the base value for the per-node dirty limits.
     271             :  */
     272             : static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
     273             : {
     274           0 :         unsigned long nr_pages = 0;
     275             :         int z;
     276             : 
     277           0 :         for (z = 0; z < MAX_NR_ZONES; z++) {
     278           0 :                 struct zone *zone = pgdat->node_zones + z;
     279             : 
     280           0 :                 if (!populated_zone(zone))
     281           0 :                         continue;
     282             : 
     283           0 :                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
     284             :         }
     285             : 
     286             :         /*
     287             :          * Pages reserved for the kernel should not be considered
     288             :          * dirtyable, to prevent a situation where reclaim has to
     289             :          * clean pages in order to balance the zones.
     290             :          */
     291           0 :         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
     292             : 
     293           0 :         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
     294           0 :         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
     295             : 
     296             :         return nr_pages;
     297             : }
     298             : 
     299             : static unsigned long highmem_dirtyable_memory(unsigned long total)
     300             : {
     301             : #ifdef CONFIG_HIGHMEM
     302             :         int node;
     303             :         unsigned long x = 0;
     304             :         int i;
     305             : 
     306             :         for_each_node_state(node, N_HIGH_MEMORY) {
     307             :                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
     308             :                         struct zone *z;
     309             :                         unsigned long nr_pages;
     310             : 
     311             :                         if (!is_highmem_idx(i))
     312             :                                 continue;
     313             : 
     314             :                         z = &NODE_DATA(node)->node_zones[i];
     315             :                         if (!populated_zone(z))
     316             :                                 continue;
     317             : 
     318             :                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
     319             :                         /* watch for underflows */
     320             :                         nr_pages -= min(nr_pages, high_wmark_pages(z));
     321             :                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
     322             :                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
     323             :                         x += nr_pages;
     324             :                 }
     325             :         }
     326             : 
     327             :         /*
     328             :          * Make sure that the number of highmem pages is never larger
     329             :          * than the number of the total dirtyable memory. This can only
     330             :          * occur in very strange VM situations but we want to make sure
     331             :          * that this does not occur.
     332             :          */
     333             :         return min(x, total);
     334             : #else
     335             :         return 0;
     336             : #endif
     337             : }
     338             : 
     339             : /**
     340             :  * global_dirtyable_memory - number of globally dirtyable pages
     341             :  *
     342             :  * Return: the global number of pages potentially available for dirty
     343             :  * page cache.  This is the base value for the global dirty limits.
     344             :  */
     345             : static unsigned long global_dirtyable_memory(void)
     346             : {
     347             :         unsigned long x;
     348             : 
     349           1 :         x = global_zone_page_state(NR_FREE_PAGES);
     350             :         /*
     351             :          * Pages reserved for the kernel should not be considered
     352             :          * dirtyable, to prevent a situation where reclaim has to
     353             :          * clean pages in order to balance the zones.
     354             :          */
     355           1 :         x -= min(x, totalreserve_pages);
     356             : 
     357           1 :         x += global_node_page_state(NR_INACTIVE_FILE);
     358           1 :         x += global_node_page_state(NR_ACTIVE_FILE);
     359             : 
     360             :         if (!vm_highmem_is_dirtyable)
     361             :                 x -= highmem_dirtyable_memory(x);
     362             : 
     363           1 :         return x + 1;   /* Ensure that we never return 0 */
     364             : }
     365             : 
     366             : /**
     367             :  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
     368             :  * @dtc: dirty_throttle_control of interest
     369             :  *
     370             :  * Calculate @dtc->thresh and ->bg_thresh considering
     371             :  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
     372             :  * must ensure that @dtc->avail is set before calling this function.  The
     373             :  * dirty limits will be lifted by 1/4 for real-time tasks.
     374             :  */
     375           1 : static void domain_dirty_limits(struct dirty_throttle_control *dtc)
     376             : {
     377           1 :         const unsigned long available_memory = dtc->avail;
     378           1 :         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
     379           1 :         unsigned long bytes = vm_dirty_bytes;
     380           1 :         unsigned long bg_bytes = dirty_background_bytes;
     381             :         /* convert ratios to per-PAGE_SIZE for higher precision */
     382           1 :         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
     383           1 :         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
     384             :         unsigned long thresh;
     385             :         unsigned long bg_thresh;
     386             :         struct task_struct *tsk;
     387             : 
     388             :         /* gdtc is !NULL iff @dtc is for memcg domain */
     389             :         if (gdtc) {
     390             :                 unsigned long global_avail = gdtc->avail;
     391             : 
     392             :                 /*
     393             :                  * The byte settings can't be applied directly to memcg
     394             :                  * domains.  Convert them to ratios by scaling against
     395             :                  * globally available memory.  As the ratios are in
     396             :                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
     397             :                  * number of pages.
     398             :                  */
     399             :                 if (bytes)
     400             :                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
     401             :                                     PAGE_SIZE);
     402             :                 if (bg_bytes)
     403             :                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
     404             :                                        PAGE_SIZE);
     405             :                 bytes = bg_bytes = 0;
     406             :         }
     407             : 
     408           1 :         if (bytes)
     409           0 :                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
     410             :         else
     411           1 :                 thresh = (ratio * available_memory) / PAGE_SIZE;
     412             : 
     413           1 :         if (bg_bytes)
     414           0 :                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
     415             :         else
     416           1 :                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
     417             : 
     418           1 :         if (bg_thresh >= thresh)
     419           0 :                 bg_thresh = thresh / 2;
     420           1 :         tsk = current;
     421           2 :         if (rt_task(tsk)) {
     422           0 :                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
     423           0 :                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
     424             :         }
     425           1 :         dtc->thresh = thresh;
     426           1 :         dtc->bg_thresh = bg_thresh;
     427             : 
     428             :         /* we should eventually report the domain in the TP */
     429             :         if (!gdtc)
     430             :                 trace_global_dirty_state(bg_thresh, thresh);
     431           1 : }
     432             : 
     433             : /**
     434             :  * global_dirty_limits - background-writeback and dirty-throttling thresholds
     435             :  * @pbackground: out parameter for bg_thresh
     436             :  * @pdirty: out parameter for thresh
     437             :  *
     438             :  * Calculate bg_thresh and thresh for global_wb_domain.  See
     439             :  * domain_dirty_limits() for details.
     440             :  */
     441           1 : void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
     442             : {
     443           1 :         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
     444             : 
     445           1 :         gdtc.avail = global_dirtyable_memory();
     446           1 :         domain_dirty_limits(&gdtc);
     447             : 
     448           1 :         *pbackground = gdtc.bg_thresh;
     449           1 :         *pdirty = gdtc.thresh;
     450           1 : }
     451             : 
     452             : /**
     453             :  * node_dirty_limit - maximum number of dirty pages allowed in a node
     454             :  * @pgdat: the node
     455             :  *
     456             :  * Return: the maximum number of dirty pages allowed in a node, based
     457             :  * on the node's dirtyable memory.
     458             :  */
     459           0 : static unsigned long node_dirty_limit(struct pglist_data *pgdat)
     460             : {
     461           0 :         unsigned long node_memory = node_dirtyable_memory(pgdat);
     462           0 :         struct task_struct *tsk = current;
     463             :         unsigned long dirty;
     464             : 
     465           0 :         if (vm_dirty_bytes)
     466           0 :                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
     467           0 :                         node_memory / global_dirtyable_memory();
     468             :         else
     469           0 :                 dirty = vm_dirty_ratio * node_memory / 100;
     470             : 
     471           0 :         if (rt_task(tsk))
     472           0 :                 dirty += dirty / 4;
     473             : 
     474           0 :         return dirty;
     475             : }
     476             : 
     477             : /**
     478             :  * node_dirty_ok - tells whether a node is within its dirty limits
     479             :  * @pgdat: the node to check
     480             :  *
     481             :  * Return: %true when the dirty pages in @pgdat are within the node's
     482             :  * dirty limit, %false if the limit is exceeded.
     483             :  */
     484           0 : bool node_dirty_ok(struct pglist_data *pgdat)
     485             : {
     486           0 :         unsigned long limit = node_dirty_limit(pgdat);
     487           0 :         unsigned long nr_pages = 0;
     488             : 
     489           0 :         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
     490           0 :         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
     491             : 
     492           0 :         return nr_pages <= limit;
     493             : }
     494             : 
     495             : #ifdef CONFIG_SYSCTL
     496           0 : static int dirty_background_ratio_handler(struct ctl_table *table, int write,
     497             :                 void *buffer, size_t *lenp, loff_t *ppos)
     498             : {
     499             :         int ret;
     500             : 
     501           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     502           0 :         if (ret == 0 && write)
     503           0 :                 dirty_background_bytes = 0;
     504           0 :         return ret;
     505             : }
     506             : 
     507           0 : static int dirty_background_bytes_handler(struct ctl_table *table, int write,
     508             :                 void *buffer, size_t *lenp, loff_t *ppos)
     509             : {
     510             :         int ret;
     511             : 
     512           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     513           0 :         if (ret == 0 && write)
     514           0 :                 dirty_background_ratio = 0;
     515           0 :         return ret;
     516             : }
     517             : 
     518           0 : static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
     519             :                 size_t *lenp, loff_t *ppos)
     520             : {
     521           0 :         int old_ratio = vm_dirty_ratio;
     522             :         int ret;
     523             : 
     524           0 :         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
     525           0 :         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
     526           0 :                 writeback_set_ratelimit();
     527           0 :                 vm_dirty_bytes = 0;
     528             :         }
     529           0 :         return ret;
     530             : }
     531             : 
     532           0 : static int dirty_bytes_handler(struct ctl_table *table, int write,
     533             :                 void *buffer, size_t *lenp, loff_t *ppos)
     534             : {
     535           0 :         unsigned long old_bytes = vm_dirty_bytes;
     536             :         int ret;
     537             : 
     538           0 :         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
     539           0 :         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
     540           0 :                 writeback_set_ratelimit();
     541           0 :                 vm_dirty_ratio = 0;
     542             :         }
     543           0 :         return ret;
     544             : }
     545             : #endif
     546             : 
     547             : static unsigned long wp_next_time(unsigned long cur_time)
     548             : {
     549           0 :         cur_time += VM_COMPLETIONS_PERIOD_LEN;
     550             :         /* 0 has a special meaning... */
     551           0 :         if (!cur_time)
     552             :                 return 1;
     553             :         return cur_time;
     554             : }
     555             : 
     556           0 : static void wb_domain_writeout_add(struct wb_domain *dom,
     557             :                                    struct fprop_local_percpu *completions,
     558             :                                    unsigned int max_prop_frac, long nr)
     559             : {
     560           0 :         __fprop_add_percpu_max(&dom->completions, completions,
     561             :                                max_prop_frac, nr);
     562             :         /* First event after period switching was turned off? */
     563           0 :         if (unlikely(!dom->period_time)) {
     564             :                 /*
     565             :                  * We can race with other __bdi_writeout_inc calls here but
     566             :                  * it does not cause any harm since the resulting time when
     567             :                  * timer will fire and what is in writeout_period_time will be
     568             :                  * roughly the same.
     569             :                  */
     570           0 :                 dom->period_time = wp_next_time(jiffies);
     571           0 :                 mod_timer(&dom->period_timer, dom->period_time);
     572             :         }
     573           0 : }
     574             : 
     575             : /*
     576             :  * Increment @wb's writeout completion count and the global writeout
     577             :  * completion count. Called from __folio_end_writeback().
     578             :  */
     579           0 : static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
     580             : {
     581             :         struct wb_domain *cgdom;
     582             : 
     583           0 :         wb_stat_mod(wb, WB_WRITTEN, nr);
     584           0 :         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
     585           0 :                                wb->bdi->max_prop_frac, nr);
     586             : 
     587           0 :         cgdom = mem_cgroup_wb_domain(wb);
     588             :         if (cgdom)
     589             :                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
     590             :                                        wb->bdi->max_prop_frac, nr);
     591           0 : }
     592             : 
     593           0 : void wb_writeout_inc(struct bdi_writeback *wb)
     594             : {
     595             :         unsigned long flags;
     596             : 
     597           0 :         local_irq_save(flags);
     598           0 :         __wb_writeout_add(wb, 1);
     599           0 :         local_irq_restore(flags);
     600           0 : }
     601             : EXPORT_SYMBOL_GPL(wb_writeout_inc);
     602             : 
     603             : /*
     604             :  * On idle system, we can be called long after we scheduled because we use
     605             :  * deferred timers so count with missed periods.
     606             :  */
     607           0 : static void writeout_period(struct timer_list *t)
     608             : {
     609           0 :         struct wb_domain *dom = from_timer(dom, t, period_timer);
     610           0 :         int miss_periods = (jiffies - dom->period_time) /
     611             :                                                  VM_COMPLETIONS_PERIOD_LEN;
     612             : 
     613           0 :         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
     614           0 :                 dom->period_time = wp_next_time(dom->period_time +
     615           0 :                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
     616           0 :                 mod_timer(&dom->period_timer, dom->period_time);
     617             :         } else {
     618             :                 /*
     619             :                  * Aging has zeroed all fractions. Stop wasting CPU on period
     620             :                  * updates.
     621             :                  */
     622           0 :                 dom->period_time = 0;
     623             :         }
     624           0 : }
     625             : 
     626           1 : int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
     627             : {
     628           1 :         memset(dom, 0, sizeof(*dom));
     629             : 
     630           1 :         spin_lock_init(&dom->lock);
     631             : 
     632           1 :         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
     633             : 
     634           1 :         dom->dirty_limit_tstamp = jiffies;
     635             : 
     636           1 :         return fprop_global_init(&dom->completions, gfp);
     637             : }
     638             : 
     639             : #ifdef CONFIG_CGROUP_WRITEBACK
     640             : void wb_domain_exit(struct wb_domain *dom)
     641             : {
     642             :         del_timer_sync(&dom->period_timer);
     643             :         fprop_global_destroy(&dom->completions);
     644             : }
     645             : #endif
     646             : 
     647             : /*
     648             :  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
     649             :  * registered backing devices, which, for obvious reasons, can not
     650             :  * exceed 100%.
     651             :  */
     652             : static unsigned int bdi_min_ratio;
     653             : 
     654             : static int bdi_check_pages_limit(unsigned long pages)
     655             : {
     656           0 :         unsigned long max_dirty_pages = global_dirtyable_memory();
     657             : 
     658           0 :         if (pages > max_dirty_pages)
     659             :                 return -EINVAL;
     660             : 
     661             :         return 0;
     662             : }
     663             : 
     664             : static unsigned long bdi_ratio_from_pages(unsigned long pages)
     665             : {
     666             :         unsigned long background_thresh;
     667             :         unsigned long dirty_thresh;
     668             :         unsigned long ratio;
     669             : 
     670           0 :         global_dirty_limits(&background_thresh, &dirty_thresh);
     671           0 :         ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
     672             : 
     673             :         return ratio;
     674             : }
     675             : 
     676             : static u64 bdi_get_bytes(unsigned int ratio)
     677             : {
     678             :         unsigned long background_thresh;
     679             :         unsigned long dirty_thresh;
     680             :         u64 bytes;
     681             : 
     682           0 :         global_dirty_limits(&background_thresh, &dirty_thresh);
     683           0 :         bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
     684             : 
     685             :         return bytes;
     686             : }
     687             : 
     688           0 : static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
     689             : {
     690             :         unsigned int delta;
     691           0 :         int ret = 0;
     692             : 
     693           0 :         if (min_ratio > 100 * BDI_RATIO_SCALE)
     694             :                 return -EINVAL;
     695           0 :         min_ratio *= BDI_RATIO_SCALE;
     696             : 
     697           0 :         spin_lock_bh(&bdi_lock);
     698           0 :         if (min_ratio > bdi->max_ratio) {
     699             :                 ret = -EINVAL;
     700             :         } else {
     701           0 :                 if (min_ratio < bdi->min_ratio) {
     702           0 :                         delta = bdi->min_ratio - min_ratio;
     703           0 :                         bdi_min_ratio -= delta;
     704           0 :                         bdi->min_ratio = min_ratio;
     705             :                 } else {
     706           0 :                         delta = min_ratio - bdi->min_ratio;
     707           0 :                         if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
     708           0 :                                 bdi_min_ratio += delta;
     709           0 :                                 bdi->min_ratio = min_ratio;
     710             :                         } else {
     711             :                                 ret = -EINVAL;
     712             :                         }
     713             :                 }
     714             :         }
     715           0 :         spin_unlock_bh(&bdi_lock);
     716             : 
     717             :         return ret;
     718             : }
     719             : 
     720           0 : static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
     721             : {
     722           0 :         int ret = 0;
     723             : 
     724           0 :         if (max_ratio > 100 * BDI_RATIO_SCALE)
     725             :                 return -EINVAL;
     726             : 
     727           0 :         spin_lock_bh(&bdi_lock);
     728           0 :         if (bdi->min_ratio > max_ratio) {
     729             :                 ret = -EINVAL;
     730             :         } else {
     731           0 :                 bdi->max_ratio = max_ratio;
     732           0 :                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
     733             :         }
     734           0 :         spin_unlock_bh(&bdi_lock);
     735             : 
     736           0 :         return ret;
     737             : }
     738             : 
     739           0 : int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
     740             : {
     741           0 :         return __bdi_set_min_ratio(bdi, min_ratio);
     742             : }
     743             : 
     744           0 : int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
     745             : {
     746           0 :         return __bdi_set_max_ratio(bdi, max_ratio);
     747             : }
     748             : 
     749           0 : int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
     750             : {
     751           0 :         return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
     752             : }
     753             : 
     754           0 : int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
     755             : {
     756           0 :         return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
     757             : }
     758             : EXPORT_SYMBOL(bdi_set_max_ratio);
     759             : 
     760           0 : u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
     761             : {
     762           0 :         return bdi_get_bytes(bdi->min_ratio);
     763             : }
     764             : 
     765           0 : int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
     766             : {
     767             :         int ret;
     768           0 :         unsigned long pages = min_bytes >> PAGE_SHIFT;
     769             :         unsigned long min_ratio;
     770             : 
     771           0 :         ret = bdi_check_pages_limit(pages);
     772           0 :         if (ret)
     773             :                 return ret;
     774             : 
     775           0 :         min_ratio = bdi_ratio_from_pages(pages);
     776           0 :         return __bdi_set_min_ratio(bdi, min_ratio);
     777             : }
     778             : 
     779           0 : u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
     780             : {
     781           0 :         return bdi_get_bytes(bdi->max_ratio);
     782             : }
     783             : 
     784           0 : int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
     785             : {
     786             :         int ret;
     787           0 :         unsigned long pages = max_bytes >> PAGE_SHIFT;
     788             :         unsigned long max_ratio;
     789             : 
     790           0 :         ret = bdi_check_pages_limit(pages);
     791           0 :         if (ret)
     792             :                 return ret;
     793             : 
     794           0 :         max_ratio = bdi_ratio_from_pages(pages);
     795           0 :         return __bdi_set_max_ratio(bdi, max_ratio);
     796             : }
     797             : 
     798           0 : int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
     799             : {
     800           0 :         if (strict_limit > 1)
     801             :                 return -EINVAL;
     802             : 
     803           0 :         spin_lock_bh(&bdi_lock);
     804           0 :         if (strict_limit)
     805           0 :                 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
     806             :         else
     807           0 :                 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
     808           0 :         spin_unlock_bh(&bdi_lock);
     809             : 
     810           0 :         return 0;
     811             : }
     812             : 
     813             : static unsigned long dirty_freerun_ceiling(unsigned long thresh,
     814             :                                            unsigned long bg_thresh)
     815             : {
     816           0 :         return (thresh + bg_thresh) / 2;
     817             : }
     818             : 
     819             : static unsigned long hard_dirty_limit(struct wb_domain *dom,
     820             :                                       unsigned long thresh)
     821             : {
     822           0 :         return max(thresh, dom->dirty_limit);
     823             : }
     824             : 
     825             : /*
     826             :  * Memory which can be further allocated to a memcg domain is capped by
     827             :  * system-wide clean memory excluding the amount being used in the domain.
     828             :  */
     829             : static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
     830             :                             unsigned long filepages, unsigned long headroom)
     831             : {
     832             :         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
     833             :         unsigned long clean = filepages - min(filepages, mdtc->dirty);
     834             :         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
     835             :         unsigned long other_clean = global_clean - min(global_clean, clean);
     836             : 
     837             :         mdtc->avail = filepages + min(headroom, other_clean);
     838             : }
     839             : 
     840             : /**
     841             :  * __wb_calc_thresh - @wb's share of dirty throttling threshold
     842             :  * @dtc: dirty_throttle_context of interest
     843             :  *
     844             :  * Note that balance_dirty_pages() will only seriously take it as a hard limit
     845             :  * when sleeping max_pause per page is not enough to keep the dirty pages under
     846             :  * control. For example, when the device is completely stalled due to some error
     847             :  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
     848             :  * In the other normal situations, it acts more gently by throttling the tasks
     849             :  * more (rather than completely block them) when the wb dirty pages go high.
     850             :  *
     851             :  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
     852             :  * - starving fast devices
     853             :  * - piling up dirty pages (that will take long time to sync) on slow devices
     854             :  *
     855             :  * The wb's share of dirty limit will be adapting to its throughput and
     856             :  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
     857             :  *
     858             :  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
     859             :  * dirty balancing includes all PG_dirty and PG_writeback pages.
     860             :  */
     861           0 : static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
     862             : {
     863           0 :         struct wb_domain *dom = dtc_dom(dtc);
     864           0 :         unsigned long thresh = dtc->thresh;
     865             :         u64 wb_thresh;
     866             :         unsigned long numerator, denominator;
     867             :         unsigned long wb_min_ratio, wb_max_ratio;
     868             : 
     869             :         /*
     870             :          * Calculate this BDI's share of the thresh ratio.
     871             :          */
     872           0 :         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
     873             :                               &numerator, &denominator);
     874             : 
     875           0 :         wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
     876           0 :         wb_thresh *= numerator;
     877           0 :         wb_thresh = div64_ul(wb_thresh, denominator);
     878             : 
     879           0 :         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
     880             : 
     881           0 :         wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
     882           0 :         if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
     883           0 :                 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
     884             : 
     885           0 :         return wb_thresh;
     886             : }
     887             : 
     888           0 : unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
     889             : {
     890           0 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
     891             :                                                .thresh = thresh };
     892           0 :         return __wb_calc_thresh(&gdtc);
     893             : }
     894             : 
     895             : /*
     896             :  *                           setpoint - dirty 3
     897             :  *        f(dirty) := 1.0 + (----------------)
     898             :  *                           limit - setpoint
     899             :  *
     900             :  * it's a 3rd order polynomial that subjects to
     901             :  *
     902             :  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
     903             :  * (2) f(setpoint) = 1.0 => the balance point
     904             :  * (3) f(limit)    = 0   => the hard limit
     905             :  * (4) df/dx      <= 0        => negative feedback control
     906             :  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
     907             :  *     => fast response on large errors; small oscillation near setpoint
     908             :  */
     909             : static long long pos_ratio_polynom(unsigned long setpoint,
     910             :                                           unsigned long dirty,
     911             :                                           unsigned long limit)
     912             : {
     913             :         long long pos_ratio;
     914             :         long x;
     915             : 
     916           0 :         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
     917           0 :                       (limit - setpoint) | 1);
     918           0 :         pos_ratio = x;
     919           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     920           0 :         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
     921           0 :         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
     922             : 
     923           0 :         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
     924             : }
     925             : 
     926             : /*
     927             :  * Dirty position control.
     928             :  *
     929             :  * (o) global/bdi setpoints
     930             :  *
     931             :  * We want the dirty pages be balanced around the global/wb setpoints.
     932             :  * When the number of dirty pages is higher/lower than the setpoint, the
     933             :  * dirty position control ratio (and hence task dirty ratelimit) will be
     934             :  * decreased/increased to bring the dirty pages back to the setpoint.
     935             :  *
     936             :  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
     937             :  *
     938             :  *     if (dirty < setpoint) scale up   pos_ratio
     939             :  *     if (dirty > setpoint) scale down pos_ratio
     940             :  *
     941             :  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
     942             :  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
     943             :  *
     944             :  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
     945             :  *
     946             :  * (o) global control line
     947             :  *
     948             :  *     ^ pos_ratio
     949             :  *     |
     950             :  *     |            |<===== global dirty control scope ======>|
     951             :  * 2.0  * * * * * * *
     952             :  *     |            .*
     953             :  *     |            . *
     954             :  *     |            .   *
     955             :  *     |            .     *
     956             :  *     |            .        *
     957             :  *     |            .            *
     958             :  * 1.0 ................................*
     959             :  *     |            .                  .     *
     960             :  *     |            .                  .          *
     961             :  *     |            .                  .              *
     962             :  *     |            .                  .                 *
     963             :  *     |            .                  .                    *
     964             :  *   0 +------------.------------------.----------------------*------------->
     965             :  *           freerun^          setpoint^                 limit^   dirty pages
     966             :  *
     967             :  * (o) wb control line
     968             :  *
     969             :  *     ^ pos_ratio
     970             :  *     |
     971             :  *     |            *
     972             :  *     |              *
     973             :  *     |                *
     974             :  *     |                  *
     975             :  *     |                    * |<=========== span ============>|
     976             :  * 1.0 .......................*
     977             :  *     |                      . *
     978             :  *     |                      .   *
     979             :  *     |                      .     *
     980             :  *     |                      .       *
     981             :  *     |                      .         *
     982             :  *     |                      .           *
     983             :  *     |                      .             *
     984             :  *     |                      .               *
     985             :  *     |                      .                 *
     986             :  *     |                      .                   *
     987             :  *     |                      .                     *
     988             :  * 1/4 ...............................................* * * * * * * * * * * *
     989             :  *     |                      .                         .
     990             :  *     |                      .                           .
     991             :  *     |                      .                             .
     992             :  *   0 +----------------------.-------------------------------.------------->
     993             :  *                wb_setpoint^                    x_intercept^
     994             :  *
     995             :  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
     996             :  * be smoothly throttled down to normal if it starts high in situations like
     997             :  * - start writing to a slow SD card and a fast disk at the same time. The SD
     998             :  *   card's wb_dirty may rush to many times higher than wb_setpoint.
     999             :  * - the wb dirty thresh drops quickly due to change of JBOD workload
    1000             :  */
    1001           0 : static void wb_position_ratio(struct dirty_throttle_control *dtc)
    1002             : {
    1003           0 :         struct bdi_writeback *wb = dtc->wb;
    1004           0 :         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
    1005           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
    1006           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
    1007           0 :         unsigned long wb_thresh = dtc->wb_thresh;
    1008             :         unsigned long x_intercept;
    1009             :         unsigned long setpoint;         /* dirty pages' target balance point */
    1010             :         unsigned long wb_setpoint;
    1011             :         unsigned long span;
    1012             :         long long pos_ratio;            /* for scaling up/down the rate limit */
    1013             :         long x;
    1014             : 
    1015           0 :         dtc->pos_ratio = 0;
    1016             : 
    1017           0 :         if (unlikely(dtc->dirty >= limit))
    1018             :                 return;
    1019             : 
    1020             :         /*
    1021             :          * global setpoint
    1022             :          *
    1023             :          * See comment for pos_ratio_polynom().
    1024             :          */
    1025           0 :         setpoint = (freerun + limit) / 2;
    1026           0 :         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
    1027             : 
    1028             :         /*
    1029             :          * The strictlimit feature is a tool preventing mistrusted filesystems
    1030             :          * from growing a large number of dirty pages before throttling. For
    1031             :          * such filesystems balance_dirty_pages always checks wb counters
    1032             :          * against wb limits. Even if global "nr_dirty" is under "freerun".
    1033             :          * This is especially important for fuse which sets bdi->max_ratio to
    1034             :          * 1% by default. Without strictlimit feature, fuse writeback may
    1035             :          * consume arbitrary amount of RAM because it is accounted in
    1036             :          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
    1037             :          *
    1038             :          * Here, in wb_position_ratio(), we calculate pos_ratio based on
    1039             :          * two values: wb_dirty and wb_thresh. Let's consider an example:
    1040             :          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
    1041             :          * limits are set by default to 10% and 20% (background and throttle).
    1042             :          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
    1043             :          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
    1044             :          * about ~6K pages (as the average of background and throttle wb
    1045             :          * limits). The 3rd order polynomial will provide positive feedback if
    1046             :          * wb_dirty is under wb_setpoint and vice versa.
    1047             :          *
    1048             :          * Note, that we cannot use global counters in these calculations
    1049             :          * because we want to throttle process writing to a strictlimit wb
    1050             :          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
    1051             :          * in the example above).
    1052             :          */
    1053           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
    1054             :                 long long wb_pos_ratio;
    1055             : 
    1056           0 :                 if (dtc->wb_dirty < 8) {
    1057           0 :                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
    1058             :                                            2 << RATELIMIT_CALC_SHIFT);
    1059           0 :                         return;
    1060             :                 }
    1061             : 
    1062           0 :                 if (dtc->wb_dirty >= wb_thresh)
    1063             :                         return;
    1064             : 
    1065           0 :                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
    1066             :                                                     dtc->wb_bg_thresh);
    1067             : 
    1068           0 :                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
    1069             :                         return;
    1070             : 
    1071           0 :                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
    1072             :                                                  wb_thresh);
    1073             : 
    1074             :                 /*
    1075             :                  * Typically, for strictlimit case, wb_setpoint << setpoint
    1076             :                  * and pos_ratio >> wb_pos_ratio. In the other words global
    1077             :                  * state ("dirty") is not limiting factor and we have to
    1078             :                  * make decision based on wb counters. But there is an
    1079             :                  * important case when global pos_ratio should get precedence:
    1080             :                  * global limits are exceeded (e.g. due to activities on other
    1081             :                  * wb's) while given strictlimit wb is below limit.
    1082             :                  *
    1083             :                  * "pos_ratio * wb_pos_ratio" would work for the case above,
    1084             :                  * but it would look too non-natural for the case of all
    1085             :                  * activity in the system coming from a single strictlimit wb
    1086             :                  * with bdi->max_ratio == 100%.
    1087             :                  *
    1088             :                  * Note that min() below somewhat changes the dynamics of the
    1089             :                  * control system. Normally, pos_ratio value can be well over 3
    1090             :                  * (when globally we are at freerun and wb is well below wb
    1091             :                  * setpoint). Now the maximum pos_ratio in the same situation
    1092             :                  * is 2. We might want to tweak this if we observe the control
    1093             :                  * system is too slow to adapt.
    1094             :                  */
    1095           0 :                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
    1096           0 :                 return;
    1097             :         }
    1098             : 
    1099             :         /*
    1100             :          * We have computed basic pos_ratio above based on global situation. If
    1101             :          * the wb is over/under its share of dirty pages, we want to scale
    1102             :          * pos_ratio further down/up. That is done by the following mechanism.
    1103             :          */
    1104             : 
    1105             :         /*
    1106             :          * wb setpoint
    1107             :          *
    1108             :          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
    1109             :          *
    1110             :          *                        x_intercept - wb_dirty
    1111             :          *                     := --------------------------
    1112             :          *                        x_intercept - wb_setpoint
    1113             :          *
    1114             :          * The main wb control line is a linear function that subjects to
    1115             :          *
    1116             :          * (1) f(wb_setpoint) = 1.0
    1117             :          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
    1118             :          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
    1119             :          *
    1120             :          * For single wb case, the dirty pages are observed to fluctuate
    1121             :          * regularly within range
    1122             :          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
    1123             :          * for various filesystems, where (2) can yield in a reasonable 12.5%
    1124             :          * fluctuation range for pos_ratio.
    1125             :          *
    1126             :          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
    1127             :          * own size, so move the slope over accordingly and choose a slope that
    1128             :          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
    1129             :          */
    1130           0 :         if (unlikely(wb_thresh > dtc->thresh))
    1131           0 :                 wb_thresh = dtc->thresh;
    1132             :         /*
    1133             :          * It's very possible that wb_thresh is close to 0 not because the
    1134             :          * device is slow, but that it has remained inactive for long time.
    1135             :          * Honour such devices a reasonable good (hopefully IO efficient)
    1136             :          * threshold, so that the occasional writes won't be blocked and active
    1137             :          * writes can rampup the threshold quickly.
    1138             :          */
    1139           0 :         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
    1140             :         /*
    1141             :          * scale global setpoint to wb's:
    1142             :          *      wb_setpoint = setpoint * wb_thresh / thresh
    1143             :          */
    1144           0 :         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
    1145           0 :         wb_setpoint = setpoint * (u64)x >> 16;
    1146             :         /*
    1147             :          * Use span=(8*write_bw) in single wb case as indicated by
    1148             :          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
    1149             :          *
    1150             :          *        wb_thresh                    thresh - wb_thresh
    1151             :          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
    1152             :          *         thresh                           thresh
    1153             :          */
    1154           0 :         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
    1155           0 :         x_intercept = wb_setpoint + span;
    1156             : 
    1157           0 :         if (dtc->wb_dirty < x_intercept - span / 4) {
    1158           0 :                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
    1159           0 :                                       (x_intercept - wb_setpoint) | 1);
    1160             :         } else
    1161           0 :                 pos_ratio /= 4;
    1162             : 
    1163             :         /*
    1164             :          * wb reserve area, safeguard against dirty pool underrun and disk idle
    1165             :          * It may push the desired control point of global dirty pages higher
    1166             :          * than setpoint.
    1167             :          */
    1168           0 :         x_intercept = wb_thresh / 2;
    1169           0 :         if (dtc->wb_dirty < x_intercept) {
    1170           0 :                 if (dtc->wb_dirty > x_intercept / 8)
    1171           0 :                         pos_ratio = div_u64(pos_ratio * x_intercept,
    1172             :                                             dtc->wb_dirty);
    1173             :                 else
    1174           0 :                         pos_ratio *= 8;
    1175             :         }
    1176             : 
    1177           0 :         dtc->pos_ratio = pos_ratio;
    1178             : }
    1179             : 
    1180           0 : static void wb_update_write_bandwidth(struct bdi_writeback *wb,
    1181             :                                       unsigned long elapsed,
    1182             :                                       unsigned long written)
    1183             : {
    1184           0 :         const unsigned long period = roundup_pow_of_two(3 * HZ);
    1185           0 :         unsigned long avg = wb->avg_write_bandwidth;
    1186           0 :         unsigned long old = wb->write_bandwidth;
    1187             :         u64 bw;
    1188             : 
    1189             :         /*
    1190             :          * bw = written * HZ / elapsed
    1191             :          *
    1192             :          *                   bw * elapsed + write_bandwidth * (period - elapsed)
    1193             :          * write_bandwidth = ---------------------------------------------------
    1194             :          *                                          period
    1195             :          *
    1196             :          * @written may have decreased due to folio_account_redirty().
    1197             :          * Avoid underflowing @bw calculation.
    1198             :          */
    1199           0 :         bw = written - min(written, wb->written_stamp);
    1200           0 :         bw *= HZ;
    1201           0 :         if (unlikely(elapsed > period)) {
    1202           0 :                 bw = div64_ul(bw, elapsed);
    1203           0 :                 avg = bw;
    1204           0 :                 goto out;
    1205             :         }
    1206           0 :         bw += (u64)wb->write_bandwidth * (period - elapsed);
    1207           0 :         bw >>= ilog2(period);
    1208             : 
    1209             :         /*
    1210             :          * one more level of smoothing, for filtering out sudden spikes
    1211             :          */
    1212           0 :         if (avg > old && old >= (unsigned long)bw)
    1213           0 :                 avg -= (avg - old) >> 3;
    1214             : 
    1215           0 :         if (avg < old && old <= (unsigned long)bw)
    1216           0 :                 avg += (old - avg) >> 3;
    1217             : 
    1218             : out:
    1219             :         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
    1220           0 :         avg = max(avg, 1LU);
    1221           0 :         if (wb_has_dirty_io(wb)) {
    1222           0 :                 long delta = avg - wb->avg_write_bandwidth;
    1223           0 :                 WARN_ON_ONCE(atomic_long_add_return(delta,
    1224             :                                         &wb->bdi->tot_write_bandwidth) <= 0);
    1225             :         }
    1226           0 :         wb->write_bandwidth = bw;
    1227           0 :         WRITE_ONCE(wb->avg_write_bandwidth, avg);
    1228           0 : }
    1229             : 
    1230             : static void update_dirty_limit(struct dirty_throttle_control *dtc)
    1231             : {
    1232           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1233           0 :         unsigned long thresh = dtc->thresh;
    1234           0 :         unsigned long limit = dom->dirty_limit;
    1235             : 
    1236             :         /*
    1237             :          * Follow up in one step.
    1238             :          */
    1239           0 :         if (limit < thresh) {
    1240             :                 limit = thresh;
    1241             :                 goto update;
    1242             :         }
    1243             : 
    1244             :         /*
    1245             :          * Follow down slowly. Use the higher one as the target, because thresh
    1246             :          * may drop below dirty. This is exactly the reason to introduce
    1247             :          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
    1248             :          */
    1249           0 :         thresh = max(thresh, dtc->dirty);
    1250           0 :         if (limit > thresh) {
    1251           0 :                 limit -= (limit - thresh) >> 5;
    1252             :                 goto update;
    1253             :         }
    1254             :         return;
    1255             : update:
    1256           0 :         dom->dirty_limit = limit;
    1257             : }
    1258             : 
    1259           0 : static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
    1260             :                                       unsigned long now)
    1261             : {
    1262           0 :         struct wb_domain *dom = dtc_dom(dtc);
    1263             : 
    1264             :         /*
    1265             :          * check locklessly first to optimize away locking for the most time
    1266             :          */
    1267           0 :         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
    1268             :                 return;
    1269             : 
    1270           0 :         spin_lock(&dom->lock);
    1271           0 :         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
    1272           0 :                 update_dirty_limit(dtc);
    1273           0 :                 dom->dirty_limit_tstamp = now;
    1274             :         }
    1275           0 :         spin_unlock(&dom->lock);
    1276             : }
    1277             : 
    1278             : /*
    1279             :  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
    1280             :  *
    1281             :  * Normal wb tasks will be curbed at or below it in long term.
    1282             :  * Obviously it should be around (write_bw / N) when there are N dd tasks.
    1283             :  */
    1284           0 : static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
    1285             :                                       unsigned long dirtied,
    1286             :                                       unsigned long elapsed)
    1287             : {
    1288           0 :         struct bdi_writeback *wb = dtc->wb;
    1289           0 :         unsigned long dirty = dtc->dirty;
    1290           0 :         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
    1291           0 :         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
    1292           0 :         unsigned long setpoint = (freerun + limit) / 2;
    1293           0 :         unsigned long write_bw = wb->avg_write_bandwidth;
    1294           0 :         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
    1295             :         unsigned long dirty_rate;
    1296             :         unsigned long task_ratelimit;
    1297             :         unsigned long balanced_dirty_ratelimit;
    1298             :         unsigned long step;
    1299             :         unsigned long x;
    1300             :         unsigned long shift;
    1301             : 
    1302             :         /*
    1303             :          * The dirty rate will match the writeout rate in long term, except
    1304             :          * when dirty pages are truncated by userspace or re-dirtied by FS.
    1305             :          */
    1306           0 :         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
    1307             : 
    1308             :         /*
    1309             :          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
    1310             :          */
    1311           0 :         task_ratelimit = (u64)dirty_ratelimit *
    1312           0 :                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
    1313           0 :         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
    1314             : 
    1315             :         /*
    1316             :          * A linear estimation of the "balanced" throttle rate. The theory is,
    1317             :          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
    1318             :          * dirty_rate will be measured to be (N * task_ratelimit). So the below
    1319             :          * formula will yield the balanced rate limit (write_bw / N).
    1320             :          *
    1321             :          * Note that the expanded form is not a pure rate feedback:
    1322             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
    1323             :          * but also takes pos_ratio into account:
    1324             :          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
    1325             :          *
    1326             :          * (1) is not realistic because pos_ratio also takes part in balancing
    1327             :          * the dirty rate.  Consider the state
    1328             :          *      pos_ratio = 0.5                                              (3)
    1329             :          *      rate = 2 * (write_bw / N)                                    (4)
    1330             :          * If (1) is used, it will stuck in that state! Because each dd will
    1331             :          * be throttled at
    1332             :          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
    1333             :          * yielding
    1334             :          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
    1335             :          * put (6) into (1) we get
    1336             :          *      rate_(i+1) = rate_(i)                                        (7)
    1337             :          *
    1338             :          * So we end up using (2) to always keep
    1339             :          *      rate_(i+1) ~= (write_bw / N)                                 (8)
    1340             :          * regardless of the value of pos_ratio. As long as (8) is satisfied,
    1341             :          * pos_ratio is able to drive itself to 1.0, which is not only where
    1342             :          * the dirty count meet the setpoint, but also where the slope of
    1343             :          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
    1344             :          */
    1345           0 :         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
    1346             :                                            dirty_rate | 1);
    1347             :         /*
    1348             :          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
    1349             :          */
    1350           0 :         if (unlikely(balanced_dirty_ratelimit > write_bw))
    1351           0 :                 balanced_dirty_ratelimit = write_bw;
    1352             : 
    1353             :         /*
    1354             :          * We could safely do this and return immediately:
    1355             :          *
    1356             :          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
    1357             :          *
    1358             :          * However to get a more stable dirty_ratelimit, the below elaborated
    1359             :          * code makes use of task_ratelimit to filter out singular points and
    1360             :          * limit the step size.
    1361             :          *
    1362             :          * The below code essentially only uses the relative value of
    1363             :          *
    1364             :          *      task_ratelimit - dirty_ratelimit
    1365             :          *      = (pos_ratio - 1) * dirty_ratelimit
    1366             :          *
    1367             :          * which reflects the direction and size of dirty position error.
    1368             :          */
    1369             : 
    1370             :         /*
    1371             :          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
    1372             :          * task_ratelimit is on the same side of dirty_ratelimit, too.
    1373             :          * For example, when
    1374             :          * - dirty_ratelimit > balanced_dirty_ratelimit
    1375             :          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
    1376             :          * lowering dirty_ratelimit will help meet both the position and rate
    1377             :          * control targets. Otherwise, don't update dirty_ratelimit if it will
    1378             :          * only help meet the rate target. After all, what the users ultimately
    1379             :          * feel and care are stable dirty rate and small position error.
    1380             :          *
    1381             :          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
    1382             :          * and filter out the singular points of balanced_dirty_ratelimit. Which
    1383             :          * keeps jumping around randomly and can even leap far away at times
    1384             :          * due to the small 200ms estimation period of dirty_rate (we want to
    1385             :          * keep that period small to reduce time lags).
    1386             :          */
    1387           0 :         step = 0;
    1388             : 
    1389             :         /*
    1390             :          * For strictlimit case, calculations above were based on wb counters
    1391             :          * and limits (starting from pos_ratio = wb_position_ratio() and up to
    1392             :          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
    1393             :          * Hence, to calculate "step" properly, we have to use wb_dirty as
    1394             :          * "dirty" and wb_setpoint as "setpoint".
    1395             :          *
    1396             :          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
    1397             :          * it's possible that wb_thresh is close to zero due to inactivity
    1398             :          * of backing device.
    1399             :          */
    1400           0 :         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
    1401           0 :                 dirty = dtc->wb_dirty;
    1402           0 :                 if (dtc->wb_dirty < 8)
    1403           0 :                         setpoint = dtc->wb_dirty + 1;
    1404             :                 else
    1405           0 :                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
    1406             :         }
    1407             : 
    1408           0 :         if (dirty < setpoint) {
    1409           0 :                 x = min3(wb->balanced_dirty_ratelimit,
    1410             :                          balanced_dirty_ratelimit, task_ratelimit);
    1411           0 :                 if (dirty_ratelimit < x)
    1412           0 :                         step = x - dirty_ratelimit;
    1413             :         } else {
    1414           0 :                 x = max3(wb->balanced_dirty_ratelimit,
    1415             :                          balanced_dirty_ratelimit, task_ratelimit);
    1416           0 :                 if (dirty_ratelimit > x)
    1417           0 :                         step = dirty_ratelimit - x;
    1418             :         }
    1419             : 
    1420             :         /*
    1421             :          * Don't pursue 100% rate matching. It's impossible since the balanced
    1422             :          * rate itself is constantly fluctuating. So decrease the track speed
    1423             :          * when it gets close to the target. Helps eliminate pointless tremors.
    1424             :          */
    1425           0 :         shift = dirty_ratelimit / (2 * step + 1);
    1426           0 :         if (shift < BITS_PER_LONG)
    1427           0 :                 step = DIV_ROUND_UP(step >> shift, 8);
    1428             :         else
    1429             :                 step = 0;
    1430             : 
    1431           0 :         if (dirty_ratelimit < balanced_dirty_ratelimit)
    1432           0 :                 dirty_ratelimit += step;
    1433             :         else
    1434           0 :                 dirty_ratelimit -= step;
    1435             : 
    1436           0 :         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
    1437           0 :         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
    1438             : 
    1439           0 :         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
    1440           0 : }
    1441             : 
    1442           0 : static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
    1443             :                                   struct dirty_throttle_control *mdtc,
    1444             :                                   bool update_ratelimit)
    1445             : {
    1446           0 :         struct bdi_writeback *wb = gdtc->wb;
    1447           0 :         unsigned long now = jiffies;
    1448             :         unsigned long elapsed;
    1449             :         unsigned long dirtied;
    1450             :         unsigned long written;
    1451             : 
    1452           0 :         spin_lock(&wb->list_lock);
    1453             : 
    1454             :         /*
    1455             :          * Lockless checks for elapsed time are racy and delayed update after
    1456             :          * IO completion doesn't do it at all (to make sure written pages are
    1457             :          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
    1458             :          * division errors.
    1459             :          */
    1460           0 :         elapsed = max(now - wb->bw_time_stamp, 1UL);
    1461           0 :         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
    1462           0 :         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
    1463             : 
    1464           0 :         if (update_ratelimit) {
    1465           0 :                 domain_update_dirty_limit(gdtc, now);
    1466           0 :                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
    1467             : 
    1468             :                 /*
    1469             :                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
    1470             :                  * compiler has no way to figure that out.  Help it.
    1471             :                  */
    1472             :                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
    1473             :                         domain_update_dirty_limit(mdtc, now);
    1474             :                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
    1475             :                 }
    1476             :         }
    1477           0 :         wb_update_write_bandwidth(wb, elapsed, written);
    1478             : 
    1479           0 :         wb->dirtied_stamp = dirtied;
    1480           0 :         wb->written_stamp = written;
    1481           0 :         WRITE_ONCE(wb->bw_time_stamp, now);
    1482           0 :         spin_unlock(&wb->list_lock);
    1483           0 : }
    1484             : 
    1485           0 : void wb_update_bandwidth(struct bdi_writeback *wb)
    1486             : {
    1487           0 :         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
    1488             : 
    1489           0 :         __wb_update_bandwidth(&gdtc, NULL, false);
    1490           0 : }
    1491             : 
    1492             : /* Interval after which we consider wb idle and don't estimate bandwidth */
    1493             : #define WB_BANDWIDTH_IDLE_JIF (HZ)
    1494             : 
    1495             : static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
    1496             : {
    1497           0 :         unsigned long now = jiffies;
    1498           0 :         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
    1499             : 
    1500           0 :         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
    1501           0 :             !atomic_read(&wb->writeback_inodes)) {
    1502           0 :                 spin_lock(&wb->list_lock);
    1503           0 :                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
    1504           0 :                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
    1505           0 :                 WRITE_ONCE(wb->bw_time_stamp, now);
    1506           0 :                 spin_unlock(&wb->list_lock);
    1507             :         }
    1508             : }
    1509             : 
    1510             : /*
    1511             :  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
    1512             :  * will look to see if it needs to start dirty throttling.
    1513             :  *
    1514             :  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
    1515             :  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
    1516             :  * (the number of pages we may dirty without exceeding the dirty limits).
    1517             :  */
    1518             : static unsigned long dirty_poll_interval(unsigned long dirty,
    1519             :                                          unsigned long thresh)
    1520             : {
    1521           0 :         if (thresh > dirty)
    1522           0 :                 return 1UL << (ilog2(thresh - dirty) >> 1);
    1523             : 
    1524             :         return 1;
    1525             : }
    1526             : 
    1527             : static unsigned long wb_max_pause(struct bdi_writeback *wb,
    1528             :                                   unsigned long wb_dirty)
    1529             : {
    1530           0 :         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
    1531             :         unsigned long t;
    1532             : 
    1533             :         /*
    1534             :          * Limit pause time for small memory systems. If sleeping for too long
    1535             :          * time, a small pool of dirty/writeback pages may go empty and disk go
    1536             :          * idle.
    1537             :          *
    1538             :          * 8 serves as the safety ratio.
    1539             :          */
    1540           0 :         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
    1541           0 :         t++;
    1542             : 
    1543           0 :         return min_t(unsigned long, t, MAX_PAUSE);
    1544             : }
    1545             : 
    1546           0 : static long wb_min_pause(struct bdi_writeback *wb,
    1547             :                          long max_pause,
    1548             :                          unsigned long task_ratelimit,
    1549             :                          unsigned long dirty_ratelimit,
    1550             :                          int *nr_dirtied_pause)
    1551             : {
    1552           0 :         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
    1553           0 :         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
    1554             :         long t;         /* target pause */
    1555             :         long pause;     /* estimated next pause */
    1556             :         int pages;      /* target nr_dirtied_pause */
    1557             : 
    1558             :         /* target for 10ms pause on 1-dd case */
    1559           0 :         t = max(1, HZ / 100);
    1560             : 
    1561             :         /*
    1562             :          * Scale up pause time for concurrent dirtiers in order to reduce CPU
    1563             :          * overheads.
    1564             :          *
    1565             :          * (N * 10ms) on 2^N concurrent tasks.
    1566             :          */
    1567           0 :         if (hi > lo)
    1568           0 :                 t += (hi - lo) * (10 * HZ) / 1024;
    1569             : 
    1570             :         /*
    1571             :          * This is a bit convoluted. We try to base the next nr_dirtied_pause
    1572             :          * on the much more stable dirty_ratelimit. However the next pause time
    1573             :          * will be computed based on task_ratelimit and the two rate limits may
    1574             :          * depart considerably at some time. Especially if task_ratelimit goes
    1575             :          * below dirty_ratelimit/2 and the target pause is max_pause, the next
    1576             :          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
    1577             :          * result task_ratelimit won't be executed faithfully, which could
    1578             :          * eventually bring down dirty_ratelimit.
    1579             :          *
    1580             :          * We apply two rules to fix it up:
    1581             :          * 1) try to estimate the next pause time and if necessary, use a lower
    1582             :          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
    1583             :          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
    1584             :          * 2) limit the target pause time to max_pause/2, so that the normal
    1585             :          *    small fluctuations of task_ratelimit won't trigger rule (1) and
    1586             :          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
    1587             :          */
    1588           0 :         t = min(t, 1 + max_pause / 2);
    1589           0 :         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1590             : 
    1591             :         /*
    1592             :          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
    1593             :          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
    1594             :          * When the 16 consecutive reads are often interrupted by some dirty
    1595             :          * throttling pause during the async writes, cfq will go into idles
    1596             :          * (deadline is fine). So push nr_dirtied_pause as high as possible
    1597             :          * until reaches DIRTY_POLL_THRESH=32 pages.
    1598             :          */
    1599           0 :         if (pages < DIRTY_POLL_THRESH) {
    1600           0 :                 t = max_pause;
    1601           0 :                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
    1602           0 :                 if (pages > DIRTY_POLL_THRESH) {
    1603           0 :                         pages = DIRTY_POLL_THRESH;
    1604           0 :                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
    1605             :                 }
    1606             :         }
    1607             : 
    1608           0 :         pause = HZ * pages / (task_ratelimit + 1);
    1609           0 :         if (pause > max_pause) {
    1610           0 :                 t = max_pause;
    1611           0 :                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
    1612             :         }
    1613             : 
    1614           0 :         *nr_dirtied_pause = pages;
    1615             :         /*
    1616             :          * The minimal pause time will normally be half the target pause time.
    1617             :          */
    1618           0 :         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
    1619             : }
    1620             : 
    1621           0 : static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
    1622             : {
    1623           0 :         struct bdi_writeback *wb = dtc->wb;
    1624             :         unsigned long wb_reclaimable;
    1625             : 
    1626             :         /*
    1627             :          * wb_thresh is not treated as some limiting factor as
    1628             :          * dirty_thresh, due to reasons
    1629             :          * - in JBOD setup, wb_thresh can fluctuate a lot
    1630             :          * - in a system with HDD and USB key, the USB key may somehow
    1631             :          *   go into state (wb_dirty >> wb_thresh) either because
    1632             :          *   wb_dirty starts high, or because wb_thresh drops low.
    1633             :          *   In this case we don't want to hard throttle the USB key
    1634             :          *   dirtiers for 100 seconds until wb_dirty drops under
    1635             :          *   wb_thresh. Instead the auxiliary wb control line in
    1636             :          *   wb_position_ratio() will let the dirtier task progress
    1637             :          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
    1638             :          */
    1639           0 :         dtc->wb_thresh = __wb_calc_thresh(dtc);
    1640           0 :         dtc->wb_bg_thresh = dtc->thresh ?
    1641           0 :                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
    1642             : 
    1643             :         /*
    1644             :          * In order to avoid the stacked BDI deadlock we need
    1645             :          * to ensure we accurately count the 'dirty' pages when
    1646             :          * the threshold is low.
    1647             :          *
    1648             :          * Otherwise it would be possible to get thresh+n pages
    1649             :          * reported dirty, even though there are thresh-m pages
    1650             :          * actually dirty; with m+n sitting in the percpu
    1651             :          * deltas.
    1652             :          */
    1653           0 :         if (dtc->wb_thresh < 2 * wb_stat_error()) {
    1654           0 :                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    1655           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
    1656             :         } else {
    1657           0 :                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    1658           0 :                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
    1659             :         }
    1660           0 : }
    1661             : 
    1662             : /*
    1663             :  * balance_dirty_pages() must be called by processes which are generating dirty
    1664             :  * data.  It looks at the number of dirty pages in the machine and will force
    1665             :  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
    1666             :  * If we're over `background_thresh' then the writeback threads are woken to
    1667             :  * perform some writeout.
    1668             :  */
    1669           0 : static int balance_dirty_pages(struct bdi_writeback *wb,
    1670             :                                unsigned long pages_dirtied, unsigned int flags)
    1671             : {
    1672           0 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    1673             :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    1674           0 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    1675           0 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    1676             :                                                      &mdtc_stor : NULL;
    1677             :         struct dirty_throttle_control *sdtc;
    1678             :         unsigned long nr_reclaimable;   /* = file_dirty */
    1679             :         long period;
    1680             :         long pause;
    1681             :         long max_pause;
    1682             :         long min_pause;
    1683             :         int nr_dirtied_pause;
    1684           0 :         bool dirty_exceeded = false;
    1685             :         unsigned long task_ratelimit;
    1686             :         unsigned long dirty_ratelimit;
    1687           0 :         struct backing_dev_info *bdi = wb->bdi;
    1688           0 :         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
    1689           0 :         unsigned long start_time = jiffies;
    1690           0 :         int ret = 0;
    1691             : 
    1692             :         for (;;) {
    1693           0 :                 unsigned long now = jiffies;
    1694             :                 unsigned long dirty, thresh, bg_thresh;
    1695           0 :                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
    1696           0 :                 unsigned long m_thresh = 0;
    1697           0 :                 unsigned long m_bg_thresh = 0;
    1698             : 
    1699           0 :                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
    1700           0 :                 gdtc->avail = global_dirtyable_memory();
    1701           0 :                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
    1702             : 
    1703           0 :                 domain_dirty_limits(gdtc);
    1704             : 
    1705           0 :                 if (unlikely(strictlimit)) {
    1706           0 :                         wb_dirty_limits(gdtc);
    1707             : 
    1708           0 :                         dirty = gdtc->wb_dirty;
    1709           0 :                         thresh = gdtc->wb_thresh;
    1710           0 :                         bg_thresh = gdtc->wb_bg_thresh;
    1711             :                 } else {
    1712           0 :                         dirty = gdtc->dirty;
    1713           0 :                         thresh = gdtc->thresh;
    1714           0 :                         bg_thresh = gdtc->bg_thresh;
    1715             :                 }
    1716             : 
    1717             :                 if (mdtc) {
    1718             :                         unsigned long filepages, headroom, writeback;
    1719             : 
    1720             :                         /*
    1721             :                          * If @wb belongs to !root memcg, repeat the same
    1722             :                          * basic calculations for the memcg domain.
    1723             :                          */
    1724             :                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
    1725             :                                             &mdtc->dirty, &writeback);
    1726             :                         mdtc->dirty += writeback;
    1727             :                         mdtc_calc_avail(mdtc, filepages, headroom);
    1728             : 
    1729             :                         domain_dirty_limits(mdtc);
    1730             : 
    1731             :                         if (unlikely(strictlimit)) {
    1732             :                                 wb_dirty_limits(mdtc);
    1733             :                                 m_dirty = mdtc->wb_dirty;
    1734             :                                 m_thresh = mdtc->wb_thresh;
    1735             :                                 m_bg_thresh = mdtc->wb_bg_thresh;
    1736             :                         } else {
    1737             :                                 m_dirty = mdtc->dirty;
    1738             :                                 m_thresh = mdtc->thresh;
    1739             :                                 m_bg_thresh = mdtc->bg_thresh;
    1740             :                         }
    1741             :                 }
    1742             : 
    1743             :                 /*
    1744             :                  * In laptop mode, we wait until hitting the higher threshold
    1745             :                  * before starting background writeout, and then write out all
    1746             :                  * the way down to the lower threshold.  So slow writers cause
    1747             :                  * minimal disk activity.
    1748             :                  *
    1749             :                  * In normal mode, we start background writeout at the lower
    1750             :                  * background_thresh, to keep the amount of dirty memory low.
    1751             :                  */
    1752           0 :                 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
    1753           0 :                     !writeback_in_progress(wb))
    1754           0 :                         wb_start_background_writeback(wb);
    1755             : 
    1756             :                 /*
    1757             :                  * Throttle it only when the background writeback cannot
    1758             :                  * catch-up. This avoids (excessively) small writeouts
    1759             :                  * when the wb limits are ramping up in case of !strictlimit.
    1760             :                  *
    1761             :                  * In strictlimit case make decision based on the wb counters
    1762             :                  * and limits. Small writeouts when the wb limits are ramping
    1763             :                  * up are the price we consciously pay for strictlimit-ing.
    1764             :                  *
    1765             :                  * If memcg domain is in effect, @dirty should be under
    1766             :                  * both global and memcg freerun ceilings.
    1767             :                  */
    1768           0 :                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
    1769             :                     (!mdtc ||
    1770             :                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
    1771             :                         unsigned long intv;
    1772             :                         unsigned long m_intv;
    1773             : 
    1774             : free_running:
    1775           0 :                         intv = dirty_poll_interval(dirty, thresh);
    1776           0 :                         m_intv = ULONG_MAX;
    1777             : 
    1778           0 :                         current->dirty_paused_when = now;
    1779           0 :                         current->nr_dirtied = 0;
    1780             :                         if (mdtc)
    1781             :                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
    1782           0 :                         current->nr_dirtied_pause = min(intv, m_intv);
    1783           0 :                         break;
    1784             :                 }
    1785             : 
    1786             :                 /* Start writeback even when in laptop mode */
    1787           0 :                 if (unlikely(!writeback_in_progress(wb)))
    1788           0 :                         wb_start_background_writeback(wb);
    1789             : 
    1790           0 :                 mem_cgroup_flush_foreign(wb);
    1791             : 
    1792             :                 /*
    1793             :                  * Calculate global domain's pos_ratio and select the
    1794             :                  * global dtc by default.
    1795             :                  */
    1796           0 :                 if (!strictlimit) {
    1797           0 :                         wb_dirty_limits(gdtc);
    1798             : 
    1799           0 :                         if ((current->flags & PF_LOCAL_THROTTLE) &&
    1800           0 :                             gdtc->wb_dirty <
    1801           0 :                             dirty_freerun_ceiling(gdtc->wb_thresh,
    1802             :                                                   gdtc->wb_bg_thresh))
    1803             :                                 /*
    1804             :                                  * LOCAL_THROTTLE tasks must not be throttled
    1805             :                                  * when below the per-wb freerun ceiling.
    1806             :                                  */
    1807             :                                 goto free_running;
    1808             :                 }
    1809             : 
    1810           0 :                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
    1811           0 :                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
    1812             : 
    1813           0 :                 wb_position_ratio(gdtc);
    1814           0 :                 sdtc = gdtc;
    1815             : 
    1816             :                 if (mdtc) {
    1817             :                         /*
    1818             :                          * If memcg domain is in effect, calculate its
    1819             :                          * pos_ratio.  @wb should satisfy constraints from
    1820             :                          * both global and memcg domains.  Choose the one
    1821             :                          * w/ lower pos_ratio.
    1822             :                          */
    1823             :                         if (!strictlimit) {
    1824             :                                 wb_dirty_limits(mdtc);
    1825             : 
    1826             :                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
    1827             :                                     mdtc->wb_dirty <
    1828             :                                     dirty_freerun_ceiling(mdtc->wb_thresh,
    1829             :                                                           mdtc->wb_bg_thresh))
    1830             :                                         /*
    1831             :                                          * LOCAL_THROTTLE tasks must not be
    1832             :                                          * throttled when below the per-wb
    1833             :                                          * freerun ceiling.
    1834             :                                          */
    1835             :                                         goto free_running;
    1836             :                         }
    1837             :                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
    1838             :                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
    1839             : 
    1840             :                         wb_position_ratio(mdtc);
    1841             :                         if (mdtc->pos_ratio < gdtc->pos_ratio)
    1842             :                                 sdtc = mdtc;
    1843             :                 }
    1844             : 
    1845           0 :                 if (dirty_exceeded != wb->dirty_exceeded)
    1846           0 :                         wb->dirty_exceeded = dirty_exceeded;
    1847             : 
    1848           0 :                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
    1849             :                                            BANDWIDTH_INTERVAL))
    1850           0 :                         __wb_update_bandwidth(gdtc, mdtc, true);
    1851             : 
    1852             :                 /* throttle according to the chosen dtc */
    1853           0 :                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
    1854           0 :                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
    1855             :                                                         RATELIMIT_CALC_SHIFT;
    1856           0 :                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
    1857           0 :                 min_pause = wb_min_pause(wb, max_pause,
    1858             :                                          task_ratelimit, dirty_ratelimit,
    1859             :                                          &nr_dirtied_pause);
    1860             : 
    1861           0 :                 if (unlikely(task_ratelimit == 0)) {
    1862             :                         period = max_pause;
    1863             :                         pause = max_pause;
    1864             :                         goto pause;
    1865             :                 }
    1866           0 :                 period = HZ * pages_dirtied / task_ratelimit;
    1867           0 :                 pause = period;
    1868           0 :                 if (current->dirty_paused_when)
    1869           0 :                         pause -= now - current->dirty_paused_when;
    1870             :                 /*
    1871             :                  * For less than 1s think time (ext3/4 may block the dirtier
    1872             :                  * for up to 800ms from time to time on 1-HDD; so does xfs,
    1873             :                  * however at much less frequency), try to compensate it in
    1874             :                  * future periods by updating the virtual time; otherwise just
    1875             :                  * do a reset, as it may be a light dirtier.
    1876             :                  */
    1877           0 :                 if (pause < min_pause) {
    1878           0 :                         trace_balance_dirty_pages(wb,
    1879             :                                                   sdtc->thresh,
    1880             :                                                   sdtc->bg_thresh,
    1881             :                                                   sdtc->dirty,
    1882             :                                                   sdtc->wb_thresh,
    1883             :                                                   sdtc->wb_dirty,
    1884             :                                                   dirty_ratelimit,
    1885             :                                                   task_ratelimit,
    1886             :                                                   pages_dirtied,
    1887             :                                                   period,
    1888           0 :                                                   min(pause, 0L),
    1889             :                                                   start_time);
    1890           0 :                         if (pause < -HZ) {
    1891           0 :                                 current->dirty_paused_when = now;
    1892           0 :                                 current->nr_dirtied = 0;
    1893           0 :                         } else if (period) {
    1894           0 :                                 current->dirty_paused_when += period;
    1895           0 :                                 current->nr_dirtied = 0;
    1896           0 :                         } else if (current->nr_dirtied_pause <= pages_dirtied)
    1897           0 :                                 current->nr_dirtied_pause += pages_dirtied;
    1898             :                         break;
    1899             :                 }
    1900           0 :                 if (unlikely(pause > max_pause)) {
    1901             :                         /* for occasional dropped task_ratelimit */
    1902           0 :                         now += min(pause - max_pause, max_pause);
    1903           0 :                         pause = max_pause;
    1904             :                 }
    1905             : 
    1906             : pause:
    1907           0 :                 trace_balance_dirty_pages(wb,
    1908             :                                           sdtc->thresh,
    1909             :                                           sdtc->bg_thresh,
    1910             :                                           sdtc->dirty,
    1911             :                                           sdtc->wb_thresh,
    1912             :                                           sdtc->wb_dirty,
    1913             :                                           dirty_ratelimit,
    1914             :                                           task_ratelimit,
    1915             :                                           pages_dirtied,
    1916             :                                           period,
    1917             :                                           pause,
    1918             :                                           start_time);
    1919           0 :                 if (flags & BDP_ASYNC) {
    1920             :                         ret = -EAGAIN;
    1921             :                         break;
    1922             :                 }
    1923           0 :                 __set_current_state(TASK_KILLABLE);
    1924           0 :                 wb->dirty_sleep = now;
    1925           0 :                 io_schedule_timeout(pause);
    1926             : 
    1927           0 :                 current->dirty_paused_when = now + pause;
    1928           0 :                 current->nr_dirtied = 0;
    1929           0 :                 current->nr_dirtied_pause = nr_dirtied_pause;
    1930             : 
    1931             :                 /*
    1932             :                  * This is typically equal to (dirty < thresh) and can also
    1933             :                  * keep "1000+ dd on a slow USB stick" under control.
    1934             :                  */
    1935           0 :                 if (task_ratelimit)
    1936             :                         break;
    1937             : 
    1938             :                 /*
    1939             :                  * In the case of an unresponsive NFS server and the NFS dirty
    1940             :                  * pages exceeds dirty_thresh, give the other good wb's a pipe
    1941             :                  * to go through, so that tasks on them still remain responsive.
    1942             :                  *
    1943             :                  * In theory 1 page is enough to keep the consumer-producer
    1944             :                  * pipe going: the flusher cleans 1 page => the task dirties 1
    1945             :                  * more page. However wb_dirty has accounting errors.  So use
    1946             :                  * the larger and more IO friendly wb_stat_error.
    1947             :                  */
    1948           0 :                 if (sdtc->wb_dirty <= wb_stat_error())
    1949             :                         break;
    1950             : 
    1951           0 :                 if (fatal_signal_pending(current))
    1952             :                         break;
    1953             :         }
    1954           0 :         return ret;
    1955             : }
    1956             : 
    1957             : static DEFINE_PER_CPU(int, bdp_ratelimits);
    1958             : 
    1959             : /*
    1960             :  * Normal tasks are throttled by
    1961             :  *      loop {
    1962             :  *              dirty tsk->nr_dirtied_pause pages;
    1963             :  *              take a snap in balance_dirty_pages();
    1964             :  *      }
    1965             :  * However there is a worst case. If every task exit immediately when dirtied
    1966             :  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
    1967             :  * called to throttle the page dirties. The solution is to save the not yet
    1968             :  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
    1969             :  * randomly into the running tasks. This works well for the above worst case,
    1970             :  * as the new task will pick up and accumulate the old task's leaked dirty
    1971             :  * count and eventually get throttled.
    1972             :  */
    1973             : DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
    1974             : 
    1975             : /**
    1976             :  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
    1977             :  * @mapping: address_space which was dirtied.
    1978             :  * @flags: BDP flags.
    1979             :  *
    1980             :  * Processes which are dirtying memory should call in here once for each page
    1981             :  * which was newly dirtied.  The function will periodically check the system's
    1982             :  * dirty state and will initiate writeback if needed.
    1983             :  *
    1984             :  * See balance_dirty_pages_ratelimited() for details.
    1985             :  *
    1986             :  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
    1987             :  * indicate that memory is out of balance and the caller must wait
    1988             :  * for I/O to complete.  Otherwise, it will return 0 to indicate
    1989             :  * that either memory was already in balance, or it was able to sleep
    1990             :  * until the amount of dirty memory returned to balance.
    1991             :  */
    1992           0 : int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
    1993             :                                         unsigned int flags)
    1994             : {
    1995           0 :         struct inode *inode = mapping->host;
    1996           0 :         struct backing_dev_info *bdi = inode_to_bdi(inode);
    1997           0 :         struct bdi_writeback *wb = NULL;
    1998             :         int ratelimit;
    1999           0 :         int ret = 0;
    2000             :         int *p;
    2001             : 
    2002           0 :         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
    2003             :                 return ret;
    2004             : 
    2005           0 :         if (inode_cgwb_enabled(inode))
    2006             :                 wb = wb_get_create_current(bdi, GFP_KERNEL);
    2007             :         if (!wb)
    2008           0 :                 wb = &bdi->wb;
    2009             : 
    2010           0 :         ratelimit = current->nr_dirtied_pause;
    2011           0 :         if (wb->dirty_exceeded)
    2012           0 :                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
    2013             : 
    2014           0 :         preempt_disable();
    2015             :         /*
    2016             :          * This prevents one CPU to accumulate too many dirtied pages without
    2017             :          * calling into balance_dirty_pages(), which can happen when there are
    2018             :          * 1000+ tasks, all of them start dirtying pages at exactly the same
    2019             :          * time, hence all honoured too large initial task->nr_dirtied_pause.
    2020             :          */
    2021           0 :         p =  this_cpu_ptr(&bdp_ratelimits);
    2022           0 :         if (unlikely(current->nr_dirtied >= ratelimit))
    2023           0 :                 *p = 0;
    2024           0 :         else if (unlikely(*p >= ratelimit_pages)) {
    2025           0 :                 *p = 0;
    2026           0 :                 ratelimit = 0;
    2027             :         }
    2028             :         /*
    2029             :          * Pick up the dirtied pages by the exited tasks. This avoids lots of
    2030             :          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
    2031             :          * the dirty throttling and livelock other long-run dirtiers.
    2032             :          */
    2033           0 :         p = this_cpu_ptr(&dirty_throttle_leaks);
    2034           0 :         if (*p > 0 && current->nr_dirtied < ratelimit) {
    2035             :                 unsigned long nr_pages_dirtied;
    2036           0 :                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
    2037           0 :                 *p -= nr_pages_dirtied;
    2038           0 :                 current->nr_dirtied += nr_pages_dirtied;
    2039             :         }
    2040           0 :         preempt_enable();
    2041             : 
    2042           0 :         if (unlikely(current->nr_dirtied >= ratelimit))
    2043           0 :                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
    2044             : 
    2045             :         wb_put(wb);
    2046             :         return ret;
    2047             : }
    2048             : EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
    2049             : 
    2050             : /**
    2051             :  * balance_dirty_pages_ratelimited - balance dirty memory state.
    2052             :  * @mapping: address_space which was dirtied.
    2053             :  *
    2054             :  * Processes which are dirtying memory should call in here once for each page
    2055             :  * which was newly dirtied.  The function will periodically check the system's
    2056             :  * dirty state and will initiate writeback if needed.
    2057             :  *
    2058             :  * Once we're over the dirty memory limit we decrease the ratelimiting
    2059             :  * by a lot, to prevent individual processes from overshooting the limit
    2060             :  * by (ratelimit_pages) each.
    2061             :  */
    2062           0 : void balance_dirty_pages_ratelimited(struct address_space *mapping)
    2063             : {
    2064           0 :         balance_dirty_pages_ratelimited_flags(mapping, 0);
    2065           0 : }
    2066             : EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
    2067             : 
    2068             : /**
    2069             :  * wb_over_bg_thresh - does @wb need to be written back?
    2070             :  * @wb: bdi_writeback of interest
    2071             :  *
    2072             :  * Determines whether background writeback should keep writing @wb or it's
    2073             :  * clean enough.
    2074             :  *
    2075             :  * Return: %true if writeback should continue.
    2076             :  */
    2077           0 : bool wb_over_bg_thresh(struct bdi_writeback *wb)
    2078             : {
    2079           0 :         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
    2080             :         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
    2081           0 :         struct dirty_throttle_control * const gdtc = &gdtc_stor;
    2082           0 :         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
    2083             :                                                      &mdtc_stor : NULL;
    2084             :         unsigned long reclaimable;
    2085             :         unsigned long thresh;
    2086             : 
    2087             :         /*
    2088             :          * Similar to balance_dirty_pages() but ignores pages being written
    2089             :          * as we're trying to decide whether to put more under writeback.
    2090             :          */
    2091           0 :         gdtc->avail = global_dirtyable_memory();
    2092           0 :         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
    2093           0 :         domain_dirty_limits(gdtc);
    2094             : 
    2095           0 :         if (gdtc->dirty > gdtc->bg_thresh)
    2096             :                 return true;
    2097             : 
    2098           0 :         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
    2099           0 :         if (thresh < 2 * wb_stat_error())
    2100           0 :                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    2101             :         else
    2102           0 :                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    2103             : 
    2104           0 :         if (reclaimable > thresh)
    2105             :                 return true;
    2106             : 
    2107             :         if (mdtc) {
    2108             :                 unsigned long filepages, headroom, writeback;
    2109             : 
    2110             :                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
    2111             :                                     &writeback);
    2112             :                 mdtc_calc_avail(mdtc, filepages, headroom);
    2113             :                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
    2114             : 
    2115             :                 if (mdtc->dirty > mdtc->bg_thresh)
    2116             :                         return true;
    2117             : 
    2118             :                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
    2119             :                 if (thresh < 2 * wb_stat_error())
    2120             :                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
    2121             :                 else
    2122             :                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
    2123             : 
    2124             :                 if (reclaimable > thresh)
    2125             :                         return true;
    2126             :         }
    2127             : 
    2128             :         return false;
    2129             : }
    2130             : 
    2131             : #ifdef CONFIG_SYSCTL
    2132             : /*
    2133             :  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
    2134             :  */
    2135           0 : static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
    2136             :                 void *buffer, size_t *length, loff_t *ppos)
    2137             : {
    2138           0 :         unsigned int old_interval = dirty_writeback_interval;
    2139             :         int ret;
    2140             : 
    2141           0 :         ret = proc_dointvec(table, write, buffer, length, ppos);
    2142             : 
    2143             :         /*
    2144             :          * Writing 0 to dirty_writeback_interval will disable periodic writeback
    2145             :          * and a different non-zero value will wakeup the writeback threads.
    2146             :          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
    2147             :          * iterate over all bdis and wbs.
    2148             :          * The reason we do this is to make the change take effect immediately.
    2149             :          */
    2150           0 :         if (!ret && write && dirty_writeback_interval &&
    2151             :                 dirty_writeback_interval != old_interval)
    2152           0 :                 wakeup_flusher_threads(WB_REASON_PERIODIC);
    2153             : 
    2154           0 :         return ret;
    2155             : }
    2156             : #endif
    2157             : 
    2158           0 : void laptop_mode_timer_fn(struct timer_list *t)
    2159             : {
    2160           0 :         struct backing_dev_info *backing_dev_info =
    2161           0 :                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
    2162             : 
    2163           0 :         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
    2164           0 : }
    2165             : 
    2166             : /*
    2167             :  * We've spun up the disk and we're in laptop mode: schedule writeback
    2168             :  * of all dirty data a few seconds from now.  If the flush is already scheduled
    2169             :  * then push it back - the user is still using the disk.
    2170             :  */
    2171           0 : void laptop_io_completion(struct backing_dev_info *info)
    2172             : {
    2173           0 :         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
    2174           0 : }
    2175             : 
    2176             : /*
    2177             :  * We're in laptop mode and we've just synced. The sync's writes will have
    2178             :  * caused another writeback to be scheduled by laptop_io_completion.
    2179             :  * Nothing needs to be written back anymore, so we unschedule the writeback.
    2180             :  */
    2181           0 : void laptop_sync_completion(void)
    2182             : {
    2183             :         struct backing_dev_info *bdi;
    2184             : 
    2185             :         rcu_read_lock();
    2186             : 
    2187           0 :         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
    2188           0 :                 del_timer(&bdi->laptop_mode_wb_timer);
    2189             : 
    2190             :         rcu_read_unlock();
    2191           0 : }
    2192             : 
    2193             : /*
    2194             :  * If ratelimit_pages is too high then we can get into dirty-data overload
    2195             :  * if a large number of processes all perform writes at the same time.
    2196             :  *
    2197             :  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
    2198             :  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
    2199             :  * thresholds.
    2200             :  */
    2201             : 
    2202           1 : void writeback_set_ratelimit(void)
    2203             : {
    2204           1 :         struct wb_domain *dom = &global_wb_domain;
    2205             :         unsigned long background_thresh;
    2206             :         unsigned long dirty_thresh;
    2207             : 
    2208           1 :         global_dirty_limits(&background_thresh, &dirty_thresh);
    2209           1 :         dom->dirty_limit = dirty_thresh;
    2210           1 :         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
    2211           1 :         if (ratelimit_pages < 16)
    2212           0 :                 ratelimit_pages = 16;
    2213           1 : }
    2214             : 
    2215           1 : static int page_writeback_cpu_online(unsigned int cpu)
    2216             : {
    2217           1 :         writeback_set_ratelimit();
    2218           1 :         return 0;
    2219             : }
    2220             : 
    2221             : #ifdef CONFIG_SYSCTL
    2222             : 
    2223             : /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
    2224             : static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
    2225             : 
    2226             : static struct ctl_table vm_page_writeback_sysctls[] = {
    2227             :         {
    2228             :                 .procname   = "dirty_background_ratio",
    2229             :                 .data       = &dirty_background_ratio,
    2230             :                 .maxlen     = sizeof(dirty_background_ratio),
    2231             :                 .mode       = 0644,
    2232             :                 .proc_handler   = dirty_background_ratio_handler,
    2233             :                 .extra1     = SYSCTL_ZERO,
    2234             :                 .extra2     = SYSCTL_ONE_HUNDRED,
    2235             :         },
    2236             :         {
    2237             :                 .procname   = "dirty_background_bytes",
    2238             :                 .data       = &dirty_background_bytes,
    2239             :                 .maxlen     = sizeof(dirty_background_bytes),
    2240             :                 .mode       = 0644,
    2241             :                 .proc_handler   = dirty_background_bytes_handler,
    2242             :                 .extra1     = SYSCTL_LONG_ONE,
    2243             :         },
    2244             :         {
    2245             :                 .procname   = "dirty_ratio",
    2246             :                 .data       = &vm_dirty_ratio,
    2247             :                 .maxlen     = sizeof(vm_dirty_ratio),
    2248             :                 .mode       = 0644,
    2249             :                 .proc_handler   = dirty_ratio_handler,
    2250             :                 .extra1     = SYSCTL_ZERO,
    2251             :                 .extra2     = SYSCTL_ONE_HUNDRED,
    2252             :         },
    2253             :         {
    2254             :                 .procname   = "dirty_bytes",
    2255             :                 .data       = &vm_dirty_bytes,
    2256             :                 .maxlen     = sizeof(vm_dirty_bytes),
    2257             :                 .mode       = 0644,
    2258             :                 .proc_handler   = dirty_bytes_handler,
    2259             :                 .extra1     = (void *)&dirty_bytes_min,
    2260             :         },
    2261             :         {
    2262             :                 .procname   = "dirty_writeback_centisecs",
    2263             :                 .data       = &dirty_writeback_interval,
    2264             :                 .maxlen     = sizeof(dirty_writeback_interval),
    2265             :                 .mode       = 0644,
    2266             :                 .proc_handler   = dirty_writeback_centisecs_handler,
    2267             :         },
    2268             :         {
    2269             :                 .procname   = "dirty_expire_centisecs",
    2270             :                 .data       = &dirty_expire_interval,
    2271             :                 .maxlen     = sizeof(dirty_expire_interval),
    2272             :                 .mode       = 0644,
    2273             :                 .proc_handler   = proc_dointvec_minmax,
    2274             :                 .extra1     = SYSCTL_ZERO,
    2275             :         },
    2276             : #ifdef CONFIG_HIGHMEM
    2277             :         {
    2278             :                 .procname       = "highmem_is_dirtyable",
    2279             :                 .data           = &vm_highmem_is_dirtyable,
    2280             :                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
    2281             :                 .mode           = 0644,
    2282             :                 .proc_handler   = proc_dointvec_minmax,
    2283             :                 .extra1         = SYSCTL_ZERO,
    2284             :                 .extra2         = SYSCTL_ONE,
    2285             :         },
    2286             : #endif
    2287             :         {
    2288             :                 .procname       = "laptop_mode",
    2289             :                 .data           = &laptop_mode,
    2290             :                 .maxlen         = sizeof(laptop_mode),
    2291             :                 .mode           = 0644,
    2292             :                 .proc_handler   = proc_dointvec_jiffies,
    2293             :         },
    2294             :         {}
    2295             : };
    2296             : #endif
    2297             : 
    2298             : /*
    2299             :  * Called early on to tune the page writeback dirty limits.
    2300             :  *
    2301             :  * We used to scale dirty pages according to how total memory
    2302             :  * related to pages that could be allocated for buffers.
    2303             :  *
    2304             :  * However, that was when we used "dirty_ratio" to scale with
    2305             :  * all memory, and we don't do that any more. "dirty_ratio"
    2306             :  * is now applied to total non-HIGHPAGE memory, and as such we can't
    2307             :  * get into the old insane situation any more where we had
    2308             :  * large amounts of dirty pages compared to a small amount of
    2309             :  * non-HIGHMEM memory.
    2310             :  *
    2311             :  * But we might still want to scale the dirty_ratio by how
    2312             :  * much memory the box has..
    2313             :  */
    2314           1 : void __init page_writeback_init(void)
    2315             : {
    2316           1 :         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
    2317             : 
    2318           1 :         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
    2319             :                           page_writeback_cpu_online, NULL);
    2320           1 :         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
    2321             :                           page_writeback_cpu_online);
    2322             : #ifdef CONFIG_SYSCTL
    2323           1 :         register_sysctl_init("vm", vm_page_writeback_sysctls);
    2324             : #endif
    2325           1 : }
    2326             : 
    2327             : /**
    2328             :  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
    2329             :  * @mapping: address space structure to write
    2330             :  * @start: starting page index
    2331             :  * @end: ending page index (inclusive)
    2332             :  *
    2333             :  * This function scans the page range from @start to @end (inclusive) and tags
    2334             :  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
    2335             :  * that write_cache_pages (or whoever calls this function) will then use
    2336             :  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
    2337             :  * used to avoid livelocking of writeback by a process steadily creating new
    2338             :  * dirty pages in the file (thus it is important for this function to be quick
    2339             :  * so that it can tag pages faster than a dirtying process can create them).
    2340             :  */
    2341           0 : void tag_pages_for_writeback(struct address_space *mapping,
    2342             :                              pgoff_t start, pgoff_t end)
    2343             : {
    2344           0 :         XA_STATE(xas, &mapping->i_pages, start);
    2345           0 :         unsigned int tagged = 0;
    2346             :         void *page;
    2347             : 
    2348           0 :         xas_lock_irq(&xas);
    2349           0 :         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
    2350           0 :                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
    2351           0 :                 if (++tagged % XA_CHECK_SCHED)
    2352           0 :                         continue;
    2353             : 
    2354           0 :                 xas_pause(&xas);
    2355           0 :                 xas_unlock_irq(&xas);
    2356           0 :                 cond_resched();
    2357           0 :                 xas_lock_irq(&xas);
    2358             :         }
    2359           0 :         xas_unlock_irq(&xas);
    2360           0 : }
    2361             : EXPORT_SYMBOL(tag_pages_for_writeback);
    2362             : 
    2363             : /**
    2364             :  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
    2365             :  * @mapping: address space structure to write
    2366             :  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    2367             :  * @writepage: function called for each page
    2368             :  * @data: data passed to writepage function
    2369             :  *
    2370             :  * If a page is already under I/O, write_cache_pages() skips it, even
    2371             :  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
    2372             :  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
    2373             :  * and msync() need to guarantee that all the data which was dirty at the time
    2374             :  * the call was made get new I/O started against them.  If wbc->sync_mode is
    2375             :  * WB_SYNC_ALL then we were called for data integrity and we must wait for
    2376             :  * existing IO to complete.
    2377             :  *
    2378             :  * To avoid livelocks (when other process dirties new pages), we first tag
    2379             :  * pages which should be written back with TOWRITE tag and only then start
    2380             :  * writing them. For data-integrity sync we have to be careful so that we do
    2381             :  * not miss some pages (e.g., because some other process has cleared TOWRITE
    2382             :  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
    2383             :  * by the process clearing the DIRTY tag (and submitting the page for IO).
    2384             :  *
    2385             :  * To avoid deadlocks between range_cyclic writeback and callers that hold
    2386             :  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
    2387             :  * we do not loop back to the start of the file. Doing so causes a page
    2388             :  * lock/page writeback access order inversion - we should only ever lock
    2389             :  * multiple pages in ascending page->index order, and looping back to the start
    2390             :  * of the file violates that rule and causes deadlocks.
    2391             :  *
    2392             :  * Return: %0 on success, negative error code otherwise
    2393             :  */
    2394           0 : int write_cache_pages(struct address_space *mapping,
    2395             :                       struct writeback_control *wbc, writepage_t writepage,
    2396             :                       void *data)
    2397             : {
    2398           0 :         int ret = 0;
    2399           0 :         int done = 0;
    2400             :         int error;
    2401             :         struct folio_batch fbatch;
    2402             :         int nr_folios;
    2403             :         pgoff_t index;
    2404             :         pgoff_t end;            /* Inclusive */
    2405             :         pgoff_t done_index;
    2406           0 :         int range_whole = 0;
    2407             :         xa_mark_t tag;
    2408             : 
    2409           0 :         folio_batch_init(&fbatch);
    2410           0 :         if (wbc->range_cyclic) {
    2411           0 :                 index = mapping->writeback_index; /* prev offset */
    2412           0 :                 end = -1;
    2413             :         } else {
    2414           0 :                 index = wbc->range_start >> PAGE_SHIFT;
    2415           0 :                 end = wbc->range_end >> PAGE_SHIFT;
    2416           0 :                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
    2417           0 :                         range_whole = 1;
    2418             :         }
    2419           0 :         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
    2420           0 :                 tag_pages_for_writeback(mapping, index, end);
    2421           0 :                 tag = PAGECACHE_TAG_TOWRITE;
    2422             :         } else {
    2423             :                 tag = PAGECACHE_TAG_DIRTY;
    2424             :         }
    2425           0 :         done_index = index;
    2426           0 :         while (!done && (index <= end)) {
    2427             :                 int i;
    2428             : 
    2429           0 :                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
    2430             :                                 tag, &fbatch);
    2431             : 
    2432           0 :                 if (nr_folios == 0)
    2433             :                         break;
    2434             : 
    2435           0 :                 for (i = 0; i < nr_folios; i++) {
    2436           0 :                         struct folio *folio = fbatch.folios[i];
    2437             : 
    2438           0 :                         done_index = folio->index;
    2439             : 
    2440           0 :                         folio_lock(folio);
    2441             : 
    2442             :                         /*
    2443             :                          * Page truncated or invalidated. We can freely skip it
    2444             :                          * then, even for data integrity operations: the page
    2445             :                          * has disappeared concurrently, so there could be no
    2446             :                          * real expectation of this data integrity operation
    2447             :                          * even if there is now a new, dirty page at the same
    2448             :                          * pagecache address.
    2449             :                          */
    2450           0 :                         if (unlikely(folio->mapping != mapping)) {
    2451             : continue_unlock:
    2452           0 :                                 folio_unlock(folio);
    2453           0 :                                 continue;
    2454             :                         }
    2455             : 
    2456           0 :                         if (!folio_test_dirty(folio)) {
    2457             :                                 /* someone wrote it for us */
    2458             :                                 goto continue_unlock;
    2459             :                         }
    2460             : 
    2461           0 :                         if (folio_test_writeback(folio)) {
    2462           0 :                                 if (wbc->sync_mode != WB_SYNC_NONE)
    2463           0 :                                         folio_wait_writeback(folio);
    2464             :                                 else
    2465             :                                         goto continue_unlock;
    2466             :                         }
    2467             : 
    2468           0 :                         BUG_ON(folio_test_writeback(folio));
    2469           0 :                         if (!folio_clear_dirty_for_io(folio))
    2470             :                                 goto continue_unlock;
    2471             : 
    2472           0 :                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
    2473           0 :                         error = writepage(folio, wbc, data);
    2474           0 :                         if (unlikely(error)) {
    2475             :                                 /*
    2476             :                                  * Handle errors according to the type of
    2477             :                                  * writeback. There's no need to continue for
    2478             :                                  * background writeback. Just push done_index
    2479             :                                  * past this page so media errors won't choke
    2480             :                                  * writeout for the entire file. For integrity
    2481             :                                  * writeback, we must process the entire dirty
    2482             :                                  * set regardless of errors because the fs may
    2483             :                                  * still have state to clear for each page. In
    2484             :                                  * that case we continue processing and return
    2485             :                                  * the first error.
    2486             :                                  */
    2487           0 :                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
    2488           0 :                                         folio_unlock(folio);
    2489           0 :                                         error = 0;
    2490           0 :                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
    2491           0 :                                         ret = error;
    2492           0 :                                         done_index = folio->index +
    2493           0 :                                                 folio_nr_pages(folio);
    2494           0 :                                         done = 1;
    2495           0 :                                         break;
    2496             :                                 }
    2497           0 :                                 if (!ret)
    2498           0 :                                         ret = error;
    2499             :                         }
    2500             : 
    2501             :                         /*
    2502             :                          * We stop writing back only if we are not doing
    2503             :                          * integrity sync. In case of integrity sync we have to
    2504             :                          * keep going until we have written all the pages
    2505             :                          * we tagged for writeback prior to entering this loop.
    2506             :                          */
    2507           0 :                         if (--wbc->nr_to_write <= 0 &&
    2508           0 :                             wbc->sync_mode == WB_SYNC_NONE) {
    2509             :                                 done = 1;
    2510             :                                 break;
    2511             :                         }
    2512             :                 }
    2513           0 :                 folio_batch_release(&fbatch);
    2514           0 :                 cond_resched();
    2515             :         }
    2516             : 
    2517             :         /*
    2518             :          * If we hit the last page and there is more work to be done: wrap
    2519             :          * back the index back to the start of the file for the next
    2520             :          * time we are called.
    2521             :          */
    2522           0 :         if (wbc->range_cyclic && !done)
    2523           0 :                 done_index = 0;
    2524           0 :         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
    2525           0 :                 mapping->writeback_index = done_index;
    2526             : 
    2527           0 :         return ret;
    2528             : }
    2529             : EXPORT_SYMBOL(write_cache_pages);
    2530             : 
    2531           0 : static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
    2532             :                 void *data)
    2533             : {
    2534           0 :         struct address_space *mapping = data;
    2535           0 :         int ret = mapping->a_ops->writepage(&folio->page, wbc);
    2536           0 :         mapping_set_error(mapping, ret);
    2537           0 :         return ret;
    2538             : }
    2539             : 
    2540           0 : int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
    2541             : {
    2542             :         int ret;
    2543             :         struct bdi_writeback *wb;
    2544             : 
    2545           0 :         if (wbc->nr_to_write <= 0)
    2546             :                 return 0;
    2547           0 :         wb = inode_to_wb_wbc(mapping->host, wbc);
    2548             :         wb_bandwidth_estimate_start(wb);
    2549             :         while (1) {
    2550           0 :                 if (mapping->a_ops->writepages) {
    2551           0 :                         ret = mapping->a_ops->writepages(mapping, wbc);
    2552           0 :                 } else if (mapping->a_ops->writepage) {
    2553             :                         struct blk_plug plug;
    2554             : 
    2555           0 :                         blk_start_plug(&plug);
    2556           0 :                         ret = write_cache_pages(mapping, wbc, writepage_cb,
    2557             :                                                 mapping);
    2558           0 :                         blk_finish_plug(&plug);
    2559             :                 } else {
    2560             :                         /* deal with chardevs and other special files */
    2561             :                         ret = 0;
    2562             :                 }
    2563           0 :                 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
    2564             :                         break;
    2565             : 
    2566             :                 /*
    2567             :                  * Lacking an allocation context or the locality or writeback
    2568             :                  * state of any of the inode's pages, throttle based on
    2569             :                  * writeback activity on the local node. It's as good a
    2570             :                  * guess as any.
    2571             :                  */
    2572           0 :                 reclaim_throttle(NODE_DATA(numa_node_id()),
    2573             :                         VMSCAN_THROTTLE_WRITEBACK);
    2574             :         }
    2575             :         /*
    2576             :          * Usually few pages are written by now from those we've just submitted
    2577             :          * but if there's constant writeback being submitted, this makes sure
    2578             :          * writeback bandwidth is updated once in a while.
    2579             :          */
    2580           0 :         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
    2581             :                                    BANDWIDTH_INTERVAL))
    2582           0 :                 wb_update_bandwidth(wb);
    2583             :         return ret;
    2584             : }
    2585             : 
    2586             : /*
    2587             :  * For address_spaces which do not use buffers nor write back.
    2588             :  */
    2589           0 : bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
    2590             : {
    2591           0 :         if (!folio_test_dirty(folio))
    2592           0 :                 return !folio_test_set_dirty(folio);
    2593             :         return false;
    2594             : }
    2595             : EXPORT_SYMBOL(noop_dirty_folio);
    2596             : 
    2597             : /*
    2598             :  * Helper function for set_page_dirty family.
    2599             :  *
    2600             :  * Caller must hold lock_page_memcg().
    2601             :  *
    2602             :  * NOTE: This relies on being atomic wrt interrupts.
    2603             :  */
    2604           0 : static void folio_account_dirtied(struct folio *folio,
    2605             :                 struct address_space *mapping)
    2606             : {
    2607           0 :         struct inode *inode = mapping->host;
    2608             : 
    2609           0 :         trace_writeback_dirty_folio(folio, mapping);
    2610             : 
    2611           0 :         if (mapping_can_writeback(mapping)) {
    2612             :                 struct bdi_writeback *wb;
    2613           0 :                 long nr = folio_nr_pages(folio);
    2614             : 
    2615           0 :                 inode_attach_wb(inode, folio);
    2616           0 :                 wb = inode_to_wb(inode);
    2617             : 
    2618           0 :                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
    2619           0 :                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
    2620           0 :                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
    2621           0 :                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
    2622           0 :                 wb_stat_mod(wb, WB_DIRTIED, nr);
    2623           0 :                 task_io_account_write(nr * PAGE_SIZE);
    2624           0 :                 current->nr_dirtied += nr;
    2625           0 :                 __this_cpu_add(bdp_ratelimits, nr);
    2626             : 
    2627           0 :                 mem_cgroup_track_foreign_dirty(folio, wb);
    2628             :         }
    2629           0 : }
    2630             : 
    2631             : /*
    2632             :  * Helper function for deaccounting dirty page without writeback.
    2633             :  *
    2634             :  * Caller must hold lock_page_memcg().
    2635             :  */
    2636           0 : void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
    2637             : {
    2638           0 :         long nr = folio_nr_pages(folio);
    2639             : 
    2640           0 :         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
    2641           0 :         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    2642           0 :         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
    2643           0 :         task_io_account_cancelled_write(nr * PAGE_SIZE);
    2644           0 : }
    2645             : 
    2646             : /*
    2647             :  * Mark the folio dirty, and set it dirty in the page cache, and mark
    2648             :  * the inode dirty.
    2649             :  *
    2650             :  * If warn is true, then emit a warning if the folio is not uptodate and has
    2651             :  * not been truncated.
    2652             :  *
    2653             :  * The caller must hold lock_page_memcg().  Most callers have the folio
    2654             :  * locked.  A few have the folio blocked from truncation through other
    2655             :  * means (eg zap_vma_pages() has it mapped and is holding the page table
    2656             :  * lock).  This can also be called from mark_buffer_dirty(), which I
    2657             :  * cannot prove is always protected against truncate.
    2658             :  */
    2659           0 : void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
    2660             :                              int warn)
    2661             : {
    2662             :         unsigned long flags;
    2663             : 
    2664           0 :         xa_lock_irqsave(&mapping->i_pages, flags);
    2665           0 :         if (folio->mapping) {        /* Race with truncate? */
    2666           0 :                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
    2667           0 :                 folio_account_dirtied(folio, mapping);
    2668           0 :                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
    2669             :                                 PAGECACHE_TAG_DIRTY);
    2670             :         }
    2671           0 :         xa_unlock_irqrestore(&mapping->i_pages, flags);
    2672           0 : }
    2673             : 
    2674             : /**
    2675             :  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
    2676             :  * @mapping: Address space this folio belongs to.
    2677             :  * @folio: Folio to be marked as dirty.
    2678             :  *
    2679             :  * Filesystems which do not use buffer heads should call this function
    2680             :  * from their set_page_dirty address space operation.  It ignores the
    2681             :  * contents of folio_get_private(), so if the filesystem marks individual
    2682             :  * blocks as dirty, the filesystem should handle that itself.
    2683             :  *
    2684             :  * This is also sometimes used by filesystems which use buffer_heads when
    2685             :  * a single buffer is being dirtied: we want to set the folio dirty in
    2686             :  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
    2687             :  * whereas block_dirty_folio() is a "top-down" dirtying.
    2688             :  *
    2689             :  * The caller must ensure this doesn't race with truncation.  Most will
    2690             :  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
    2691             :  * folio mapped and the pte lock held, which also locks out truncation.
    2692             :  */
    2693           0 : bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
    2694             : {
    2695           0 :         folio_memcg_lock(folio);
    2696           0 :         if (folio_test_set_dirty(folio)) {
    2697             :                 folio_memcg_unlock(folio);
    2698             :                 return false;
    2699             :         }
    2700             : 
    2701           0 :         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
    2702           0 :         folio_memcg_unlock(folio);
    2703             : 
    2704           0 :         if (mapping->host) {
    2705             :                 /* !PageAnon && !swapper_space */
    2706           0 :                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    2707             :         }
    2708             :         return true;
    2709             : }
    2710             : EXPORT_SYMBOL(filemap_dirty_folio);
    2711             : 
    2712             : /**
    2713             :  * folio_account_redirty - Manually account for redirtying a page.
    2714             :  * @folio: The folio which is being redirtied.
    2715             :  *
    2716             :  * Most filesystems should call folio_redirty_for_writepage() instead
    2717             :  * of this fuction.  If your filesystem is doing writeback outside the
    2718             :  * context of a writeback_control(), it can call this when redirtying
    2719             :  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
    2720             :  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
    2721             :  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
    2722             :  * in balanced_dirty_ratelimit and the dirty pages position control.
    2723             :  */
    2724           0 : void folio_account_redirty(struct folio *folio)
    2725             : {
    2726           0 :         struct address_space *mapping = folio->mapping;
    2727             : 
    2728           0 :         if (mapping && mapping_can_writeback(mapping)) {
    2729           0 :                 struct inode *inode = mapping->host;
    2730             :                 struct bdi_writeback *wb;
    2731           0 :                 struct wb_lock_cookie cookie = {};
    2732           0 :                 long nr = folio_nr_pages(folio);
    2733             : 
    2734           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2735           0 :                 current->nr_dirtied -= nr;
    2736           0 :                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
    2737           0 :                 wb_stat_mod(wb, WB_DIRTIED, -nr);
    2738           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2739             :         }
    2740           0 : }
    2741             : EXPORT_SYMBOL(folio_account_redirty);
    2742             : 
    2743             : /**
    2744             :  * folio_redirty_for_writepage - Decline to write a dirty folio.
    2745             :  * @wbc: The writeback control.
    2746             :  * @folio: The folio.
    2747             :  *
    2748             :  * When a writepage implementation decides that it doesn't want to write
    2749             :  * @folio for some reason, it should call this function, unlock @folio and
    2750             :  * return 0.
    2751             :  *
    2752             :  * Return: True if we redirtied the folio.  False if someone else dirtied
    2753             :  * it first.
    2754             :  */
    2755           0 : bool folio_redirty_for_writepage(struct writeback_control *wbc,
    2756             :                 struct folio *folio)
    2757             : {
    2758             :         bool ret;
    2759           0 :         long nr = folio_nr_pages(folio);
    2760             : 
    2761           0 :         wbc->pages_skipped += nr;
    2762           0 :         ret = filemap_dirty_folio(folio->mapping, folio);
    2763           0 :         folio_account_redirty(folio);
    2764             : 
    2765           0 :         return ret;
    2766             : }
    2767             : EXPORT_SYMBOL(folio_redirty_for_writepage);
    2768             : 
    2769             : /**
    2770             :  * folio_mark_dirty - Mark a folio as being modified.
    2771             :  * @folio: The folio.
    2772             :  *
    2773             :  * The folio may not be truncated while this function is running.
    2774             :  * Holding the folio lock is sufficient to prevent truncation, but some
    2775             :  * callers cannot acquire a sleeping lock.  These callers instead hold
    2776             :  * the page table lock for a page table which contains at least one page
    2777             :  * in this folio.  Truncation will block on the page table lock as it
    2778             :  * unmaps pages before removing the folio from its mapping.
    2779             :  *
    2780             :  * Return: True if the folio was newly dirtied, false if it was already dirty.
    2781             :  */
    2782           0 : bool folio_mark_dirty(struct folio *folio)
    2783             : {
    2784           0 :         struct address_space *mapping = folio_mapping(folio);
    2785             : 
    2786           0 :         if (likely(mapping)) {
    2787             :                 /*
    2788             :                  * readahead/folio_deactivate could remain
    2789             :                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
    2790             :                  * About readahead, if the folio is written, the flags would be
    2791             :                  * reset. So no problem.
    2792             :                  * About folio_deactivate, if the folio is redirtied,
    2793             :                  * the flag will be reset. So no problem. but if the
    2794             :                  * folio is used by readahead it will confuse readahead
    2795             :                  * and make it restart the size rampup process. But it's
    2796             :                  * a trivial problem.
    2797             :                  */
    2798           0 :                 if (folio_test_reclaim(folio))
    2799             :                         folio_clear_reclaim(folio);
    2800           0 :                 return mapping->a_ops->dirty_folio(mapping, folio);
    2801             :         }
    2802             : 
    2803             :         return noop_dirty_folio(mapping, folio);
    2804             : }
    2805             : EXPORT_SYMBOL(folio_mark_dirty);
    2806             : 
    2807             : /*
    2808             :  * set_page_dirty() is racy if the caller has no reference against
    2809             :  * page->mapping->host, and if the page is unlocked.  This is because another
    2810             :  * CPU could truncate the page off the mapping and then free the mapping.
    2811             :  *
    2812             :  * Usually, the page _is_ locked, or the caller is a user-space process which
    2813             :  * holds a reference on the inode by having an open file.
    2814             :  *
    2815             :  * In other cases, the page should be locked before running set_page_dirty().
    2816             :  */
    2817           0 : int set_page_dirty_lock(struct page *page)
    2818             : {
    2819             :         int ret;
    2820             : 
    2821           0 :         lock_page(page);
    2822           0 :         ret = set_page_dirty(page);
    2823           0 :         unlock_page(page);
    2824           0 :         return ret;
    2825             : }
    2826             : EXPORT_SYMBOL(set_page_dirty_lock);
    2827             : 
    2828             : /*
    2829             :  * This cancels just the dirty bit on the kernel page itself, it does NOT
    2830             :  * actually remove dirty bits on any mmap's that may be around. It also
    2831             :  * leaves the page tagged dirty, so any sync activity will still find it on
    2832             :  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
    2833             :  * look at the dirty bits in the VM.
    2834             :  *
    2835             :  * Doing this should *normally* only ever be done when a page is truncated,
    2836             :  * and is not actually mapped anywhere at all. However, fs/buffer.c does
    2837             :  * this when it notices that somebody has cleaned out all the buffers on a
    2838             :  * page without actually doing it through the VM. Can you say "ext3 is
    2839             :  * horribly ugly"? Thought you could.
    2840             :  */
    2841           0 : void __folio_cancel_dirty(struct folio *folio)
    2842             : {
    2843           0 :         struct address_space *mapping = folio_mapping(folio);
    2844             : 
    2845           0 :         if (mapping_can_writeback(mapping)) {
    2846           0 :                 struct inode *inode = mapping->host;
    2847             :                 struct bdi_writeback *wb;
    2848             :                 struct wb_lock_cookie cookie = {};
    2849             : 
    2850           0 :                 folio_memcg_lock(folio);
    2851           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2852             : 
    2853           0 :                 if (folio_test_clear_dirty(folio))
    2854           0 :                         folio_account_cleaned(folio, wb);
    2855             : 
    2856           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2857           0 :                 folio_memcg_unlock(folio);
    2858             :         } else {
    2859             :                 folio_clear_dirty(folio);
    2860             :         }
    2861           0 : }
    2862             : EXPORT_SYMBOL(__folio_cancel_dirty);
    2863             : 
    2864             : /*
    2865             :  * Clear a folio's dirty flag, while caring for dirty memory accounting.
    2866             :  * Returns true if the folio was previously dirty.
    2867             :  *
    2868             :  * This is for preparing to put the folio under writeout.  We leave
    2869             :  * the folio tagged as dirty in the xarray so that a concurrent
    2870             :  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
    2871             :  * The ->writepage implementation will run either folio_start_writeback()
    2872             :  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
    2873             :  * and xarray dirty tag back into sync.
    2874             :  *
    2875             :  * This incoherency between the folio's dirty flag and xarray tag is
    2876             :  * unfortunate, but it only exists while the folio is locked.
    2877             :  */
    2878           0 : bool folio_clear_dirty_for_io(struct folio *folio)
    2879             : {
    2880           0 :         struct address_space *mapping = folio_mapping(folio);
    2881           0 :         bool ret = false;
    2882             : 
    2883             :         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
    2884             : 
    2885           0 :         if (mapping && mapping_can_writeback(mapping)) {
    2886           0 :                 struct inode *inode = mapping->host;
    2887             :                 struct bdi_writeback *wb;
    2888             :                 struct wb_lock_cookie cookie = {};
    2889             : 
    2890             :                 /*
    2891             :                  * Yes, Virginia, this is indeed insane.
    2892             :                  *
    2893             :                  * We use this sequence to make sure that
    2894             :                  *  (a) we account for dirty stats properly
    2895             :                  *  (b) we tell the low-level filesystem to
    2896             :                  *      mark the whole folio dirty if it was
    2897             :                  *      dirty in a pagetable. Only to then
    2898             :                  *  (c) clean the folio again and return 1 to
    2899             :                  *      cause the writeback.
    2900             :                  *
    2901             :                  * This way we avoid all nasty races with the
    2902             :                  * dirty bit in multiple places and clearing
    2903             :                  * them concurrently from different threads.
    2904             :                  *
    2905             :                  * Note! Normally the "folio_mark_dirty(folio)"
    2906             :                  * has no effect on the actual dirty bit - since
    2907             :                  * that will already usually be set. But we
    2908             :                  * need the side effects, and it can help us
    2909             :                  * avoid races.
    2910             :                  *
    2911             :                  * We basically use the folio "master dirty bit"
    2912             :                  * as a serialization point for all the different
    2913             :                  * threads doing their things.
    2914             :                  */
    2915           0 :                 if (folio_mkclean(folio))
    2916           0 :                         folio_mark_dirty(folio);
    2917             :                 /*
    2918             :                  * We carefully synchronise fault handlers against
    2919             :                  * installing a dirty pte and marking the folio dirty
    2920             :                  * at this point.  We do this by having them hold the
    2921             :                  * page lock while dirtying the folio, and folios are
    2922             :                  * always locked coming in here, so we get the desired
    2923             :                  * exclusion.
    2924             :                  */
    2925           0 :                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
    2926           0 :                 if (folio_test_clear_dirty(folio)) {
    2927           0 :                         long nr = folio_nr_pages(folio);
    2928           0 :                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
    2929           0 :                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    2930           0 :                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
    2931           0 :                         ret = true;
    2932             :                 }
    2933           0 :                 unlocked_inode_to_wb_end(inode, &cookie);
    2934             :                 return ret;
    2935             :         }
    2936           0 :         return folio_test_clear_dirty(folio);
    2937             : }
    2938             : EXPORT_SYMBOL(folio_clear_dirty_for_io);
    2939             : 
    2940             : static void wb_inode_writeback_start(struct bdi_writeback *wb)
    2941             : {
    2942           0 :         atomic_inc(&wb->writeback_inodes);
    2943             : }
    2944             : 
    2945           0 : static void wb_inode_writeback_end(struct bdi_writeback *wb)
    2946             : {
    2947             :         unsigned long flags;
    2948           0 :         atomic_dec(&wb->writeback_inodes);
    2949             :         /*
    2950             :          * Make sure estimate of writeback throughput gets updated after
    2951             :          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
    2952             :          * (which is the interval other bandwidth updates use for batching) so
    2953             :          * that if multiple inodes end writeback at a similar time, they get
    2954             :          * batched into one bandwidth update.
    2955             :          */
    2956           0 :         spin_lock_irqsave(&wb->work_lock, flags);
    2957           0 :         if (test_bit(WB_registered, &wb->state))
    2958           0 :                 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
    2959           0 :         spin_unlock_irqrestore(&wb->work_lock, flags);
    2960           0 : }
    2961             : 
    2962           0 : bool __folio_end_writeback(struct folio *folio)
    2963             : {
    2964           0 :         long nr = folio_nr_pages(folio);
    2965           0 :         struct address_space *mapping = folio_mapping(folio);
    2966             :         bool ret;
    2967             : 
    2968           0 :         folio_memcg_lock(folio);
    2969           0 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    2970           0 :                 struct inode *inode = mapping->host;
    2971           0 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    2972             :                 unsigned long flags;
    2973             : 
    2974           0 :                 xa_lock_irqsave(&mapping->i_pages, flags);
    2975           0 :                 ret = folio_test_clear_writeback(folio);
    2976           0 :                 if (ret) {
    2977           0 :                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
    2978             :                                                 PAGECACHE_TAG_WRITEBACK);
    2979           0 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
    2980           0 :                                 struct bdi_writeback *wb = inode_to_wb(inode);
    2981             : 
    2982           0 :                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
    2983           0 :                                 __wb_writeout_add(wb, nr);
    2984           0 :                                 if (!mapping_tagged(mapping,
    2985             :                                                     PAGECACHE_TAG_WRITEBACK))
    2986           0 :                                         wb_inode_writeback_end(wb);
    2987             :                         }
    2988             :                 }
    2989             : 
    2990           0 :                 if (mapping->host && !mapping_tagged(mapping,
    2991             :                                                      PAGECACHE_TAG_WRITEBACK))
    2992           0 :                         sb_clear_inode_writeback(mapping->host);
    2993             : 
    2994           0 :                 xa_unlock_irqrestore(&mapping->i_pages, flags);
    2995             :         } else {
    2996           0 :                 ret = folio_test_clear_writeback(folio);
    2997             :         }
    2998           0 :         if (ret) {
    2999           0 :                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
    3000           0 :                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
    3001           0 :                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
    3002             :         }
    3003           0 :         folio_memcg_unlock(folio);
    3004           0 :         return ret;
    3005             : }
    3006             : 
    3007           0 : bool __folio_start_writeback(struct folio *folio, bool keep_write)
    3008             : {
    3009           0 :         long nr = folio_nr_pages(folio);
    3010           0 :         struct address_space *mapping = folio_mapping(folio);
    3011             :         bool ret;
    3012             :         int access_ret;
    3013             : 
    3014           0 :         folio_memcg_lock(folio);
    3015           0 :         if (mapping && mapping_use_writeback_tags(mapping)) {
    3016           0 :                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
    3017           0 :                 struct inode *inode = mapping->host;
    3018           0 :                 struct backing_dev_info *bdi = inode_to_bdi(inode);
    3019             :                 unsigned long flags;
    3020             : 
    3021           0 :                 xas_lock_irqsave(&xas, flags);
    3022           0 :                 xas_load(&xas);
    3023           0 :                 ret = folio_test_set_writeback(folio);
    3024           0 :                 if (!ret) {
    3025             :                         bool on_wblist;
    3026             : 
    3027           0 :                         on_wblist = mapping_tagged(mapping,
    3028             :                                                    PAGECACHE_TAG_WRITEBACK);
    3029             : 
    3030           0 :                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
    3031           0 :                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
    3032           0 :                                 struct bdi_writeback *wb = inode_to_wb(inode);
    3033             : 
    3034           0 :                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
    3035           0 :                                 if (!on_wblist)
    3036             :                                         wb_inode_writeback_start(wb);
    3037             :                         }
    3038             : 
    3039             :                         /*
    3040             :                          * We can come through here when swapping
    3041             :                          * anonymous folios, so we don't necessarily
    3042             :                          * have an inode to track for sync.
    3043             :                          */
    3044           0 :                         if (mapping->host && !on_wblist)
    3045           0 :                                 sb_mark_inode_writeback(mapping->host);
    3046             :                 }
    3047           0 :                 if (!folio_test_dirty(folio))
    3048           0 :                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
    3049           0 :                 if (!keep_write)
    3050           0 :                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
    3051           0 :                 xas_unlock_irqrestore(&xas, flags);
    3052             :         } else {
    3053           0 :                 ret = folio_test_set_writeback(folio);
    3054             :         }
    3055           0 :         if (!ret) {
    3056           0 :                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
    3057             :                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
    3058             :         }
    3059           0 :         folio_memcg_unlock(folio);
    3060           0 :         access_ret = arch_make_folio_accessible(folio);
    3061             :         /*
    3062             :          * If writeback has been triggered on a page that cannot be made
    3063             :          * accessible, it is too late to recover here.
    3064             :          */
    3065             :         VM_BUG_ON_FOLIO(access_ret != 0, folio);
    3066             : 
    3067           0 :         return ret;
    3068             : }
    3069             : EXPORT_SYMBOL(__folio_start_writeback);
    3070             : 
    3071             : /**
    3072             :  * folio_wait_writeback - Wait for a folio to finish writeback.
    3073             :  * @folio: The folio to wait for.
    3074             :  *
    3075             :  * If the folio is currently being written back to storage, wait for the
    3076             :  * I/O to complete.
    3077             :  *
    3078             :  * Context: Sleeps.  Must be called in process context and with
    3079             :  * no spinlocks held.  Caller should hold a reference on the folio.
    3080             :  * If the folio is not locked, writeback may start again after writeback
    3081             :  * has finished.
    3082             :  */
    3083           0 : void folio_wait_writeback(struct folio *folio)
    3084             : {
    3085           0 :         while (folio_test_writeback(folio)) {
    3086           0 :                 trace_folio_wait_writeback(folio, folio_mapping(folio));
    3087           0 :                 folio_wait_bit(folio, PG_writeback);
    3088             :         }
    3089           0 : }
    3090             : EXPORT_SYMBOL_GPL(folio_wait_writeback);
    3091             : 
    3092             : /**
    3093             :  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
    3094             :  * @folio: The folio to wait for.
    3095             :  *
    3096             :  * If the folio is currently being written back to storage, wait for the
    3097             :  * I/O to complete or a fatal signal to arrive.
    3098             :  *
    3099             :  * Context: Sleeps.  Must be called in process context and with
    3100             :  * no spinlocks held.  Caller should hold a reference on the folio.
    3101             :  * If the folio is not locked, writeback may start again after writeback
    3102             :  * has finished.
    3103             :  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
    3104             :  */
    3105           0 : int folio_wait_writeback_killable(struct folio *folio)
    3106             : {
    3107           0 :         while (folio_test_writeback(folio)) {
    3108           0 :                 trace_folio_wait_writeback(folio, folio_mapping(folio));
    3109           0 :                 if (folio_wait_bit_killable(folio, PG_writeback))
    3110             :                         return -EINTR;
    3111             :         }
    3112             : 
    3113             :         return 0;
    3114             : }
    3115             : EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
    3116             : 
    3117             : /**
    3118             :  * folio_wait_stable() - wait for writeback to finish, if necessary.
    3119             :  * @folio: The folio to wait on.
    3120             :  *
    3121             :  * This function determines if the given folio is related to a backing
    3122             :  * device that requires folio contents to be held stable during writeback.
    3123             :  * If so, then it will wait for any pending writeback to complete.
    3124             :  *
    3125             :  * Context: Sleeps.  Must be called in process context and with
    3126             :  * no spinlocks held.  Caller should hold a reference on the folio.
    3127             :  * If the folio is not locked, writeback may start again after writeback
    3128             :  * has finished.
    3129             :  */
    3130           0 : void folio_wait_stable(struct folio *folio)
    3131             : {
    3132           0 :         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
    3133           0 :                 folio_wait_writeback(folio);
    3134           0 : }
    3135             : EXPORT_SYMBOL_GPL(folio_wait_stable);

Generated by: LCOV version 1.14