Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/page_alloc.c
4 : *
5 : * Manages the free list, the system allocates free pages here.
6 : * Note that kmalloc() lives in slab.c
7 : *
8 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 : * Swap reorganised 29.12.95, Stephen Tweedie
10 : * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 : * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 : * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 : * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 : * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 : * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 : */
17 :
18 : #include <linux/stddef.h>
19 : #include <linux/mm.h>
20 : #include <linux/highmem.h>
21 : #include <linux/swap.h>
22 : #include <linux/swapops.h>
23 : #include <linux/interrupt.h>
24 : #include <linux/pagemap.h>
25 : #include <linux/jiffies.h>
26 : #include <linux/memblock.h>
27 : #include <linux/compiler.h>
28 : #include <linux/kernel.h>
29 : #include <linux/kasan.h>
30 : #include <linux/kmsan.h>
31 : #include <linux/module.h>
32 : #include <linux/suspend.h>
33 : #include <linux/pagevec.h>
34 : #include <linux/blkdev.h>
35 : #include <linux/slab.h>
36 : #include <linux/ratelimit.h>
37 : #include <linux/oom.h>
38 : #include <linux/topology.h>
39 : #include <linux/sysctl.h>
40 : #include <linux/cpu.h>
41 : #include <linux/cpuset.h>
42 : #include <linux/memory_hotplug.h>
43 : #include <linux/nodemask.h>
44 : #include <linux/vmalloc.h>
45 : #include <linux/vmstat.h>
46 : #include <linux/mempolicy.h>
47 : #include <linux/memremap.h>
48 : #include <linux/stop_machine.h>
49 : #include <linux/random.h>
50 : #include <linux/sort.h>
51 : #include <linux/pfn.h>
52 : #include <linux/backing-dev.h>
53 : #include <linux/fault-inject.h>
54 : #include <linux/page-isolation.h>
55 : #include <linux/debugobjects.h>
56 : #include <linux/kmemleak.h>
57 : #include <linux/compaction.h>
58 : #include <trace/events/kmem.h>
59 : #include <trace/events/oom.h>
60 : #include <linux/prefetch.h>
61 : #include <linux/mm_inline.h>
62 : #include <linux/mmu_notifier.h>
63 : #include <linux/migrate.h>
64 : #include <linux/hugetlb.h>
65 : #include <linux/sched/rt.h>
66 : #include <linux/sched/mm.h>
67 : #include <linux/page_owner.h>
68 : #include <linux/page_table_check.h>
69 : #include <linux/kthread.h>
70 : #include <linux/memcontrol.h>
71 : #include <linux/ftrace.h>
72 : #include <linux/lockdep.h>
73 : #include <linux/nmi.h>
74 : #include <linux/psi.h>
75 : #include <linux/khugepaged.h>
76 : #include <linux/delayacct.h>
77 : #include <asm/sections.h>
78 : #include <asm/tlbflush.h>
79 : #include <asm/div64.h>
80 : #include "internal.h"
81 : #include "shuffle.h"
82 : #include "page_reporting.h"
83 : #include "swap.h"
84 :
85 : /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 : typedef int __bitwise fpi_t;
87 :
88 : /* No special request */
89 : #define FPI_NONE ((__force fpi_t)0)
90 :
91 : /*
92 : * Skip free page reporting notification for the (possibly merged) page.
93 : * This does not hinder free page reporting from grabbing the page,
94 : * reporting it and marking it "reported" - it only skips notifying
95 : * the free page reporting infrastructure about a newly freed page. For
96 : * example, used when temporarily pulling a page from a freelist and
97 : * putting it back unmodified.
98 : */
99 : #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100 :
101 : /*
102 : * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 : * page shuffling (relevant code - e.g., memory onlining - is expected to
104 : * shuffle the whole zone).
105 : *
106 : * Note: No code should rely on this flag for correctness - it's purely
107 : * to allow for optimizations when handing back either fresh pages
108 : * (memory onlining) or untouched pages (page isolation, free page
109 : * reporting).
110 : */
111 : #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112 :
113 : /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 : static DEFINE_MUTEX(pcp_batch_high_lock);
115 : #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
116 :
117 : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
118 : /*
119 : * On SMP, spin_trylock is sufficient protection.
120 : * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
121 : */
122 : #define pcp_trylock_prepare(flags) do { } while (0)
123 : #define pcp_trylock_finish(flag) do { } while (0)
124 : #else
125 :
126 : /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
127 : #define pcp_trylock_prepare(flags) local_irq_save(flags)
128 : #define pcp_trylock_finish(flags) local_irq_restore(flags)
129 : #endif
130 :
131 : /*
132 : * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
133 : * a migration causing the wrong PCP to be locked and remote memory being
134 : * potentially allocated, pin the task to the CPU for the lookup+lock.
135 : * preempt_disable is used on !RT because it is faster than migrate_disable.
136 : * migrate_disable is used on RT because otherwise RT spinlock usage is
137 : * interfered with and a high priority task cannot preempt the allocator.
138 : */
139 : #ifndef CONFIG_PREEMPT_RT
140 : #define pcpu_task_pin() preempt_disable()
141 : #define pcpu_task_unpin() preempt_enable()
142 : #else
143 : #define pcpu_task_pin() migrate_disable()
144 : #define pcpu_task_unpin() migrate_enable()
145 : #endif
146 :
147 : /*
148 : * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
149 : * Return value should be used with equivalent unlock helper.
150 : */
151 : #define pcpu_spin_lock(type, member, ptr) \
152 : ({ \
153 : type *_ret; \
154 : pcpu_task_pin(); \
155 : _ret = this_cpu_ptr(ptr); \
156 : spin_lock(&_ret->member); \
157 : _ret; \
158 : })
159 :
160 : #define pcpu_spin_trylock(type, member, ptr) \
161 : ({ \
162 : type *_ret; \
163 : pcpu_task_pin(); \
164 : _ret = this_cpu_ptr(ptr); \
165 : if (!spin_trylock(&_ret->member)) { \
166 : pcpu_task_unpin(); \
167 : _ret = NULL; \
168 : } \
169 : _ret; \
170 : })
171 :
172 : #define pcpu_spin_unlock(member, ptr) \
173 : ({ \
174 : spin_unlock(&ptr->member); \
175 : pcpu_task_unpin(); \
176 : })
177 :
178 : /* struct per_cpu_pages specific helpers. */
179 : #define pcp_spin_lock(ptr) \
180 : pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
181 :
182 : #define pcp_spin_trylock(ptr) \
183 : pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
184 :
185 : #define pcp_spin_unlock(ptr) \
186 : pcpu_spin_unlock(lock, ptr)
187 :
188 : #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
189 : DEFINE_PER_CPU(int, numa_node);
190 : EXPORT_PER_CPU_SYMBOL(numa_node);
191 : #endif
192 :
193 : DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
194 :
195 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
196 : /*
197 : * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
198 : * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
199 : * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
200 : * defined in <linux/topology.h>.
201 : */
202 : DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
203 : EXPORT_PER_CPU_SYMBOL(_numa_mem_);
204 : #endif
205 :
206 : static DEFINE_MUTEX(pcpu_drain_mutex);
207 :
208 : #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
209 : volatile unsigned long latent_entropy __latent_entropy;
210 : EXPORT_SYMBOL(latent_entropy);
211 : #endif
212 :
213 : /*
214 : * Array of node states.
215 : */
216 : nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
217 : [N_POSSIBLE] = NODE_MASK_ALL,
218 : [N_ONLINE] = { { [0] = 1UL } },
219 : #ifndef CONFIG_NUMA
220 : [N_NORMAL_MEMORY] = { { [0] = 1UL } },
221 : #ifdef CONFIG_HIGHMEM
222 : [N_HIGH_MEMORY] = { { [0] = 1UL } },
223 : #endif
224 : [N_MEMORY] = { { [0] = 1UL } },
225 : [N_CPU] = { { [0] = 1UL } },
226 : #endif /* NUMA */
227 : };
228 : EXPORT_SYMBOL(node_states);
229 :
230 : atomic_long_t _totalram_pages __read_mostly;
231 : EXPORT_SYMBOL(_totalram_pages);
232 : unsigned long totalreserve_pages __read_mostly;
233 : unsigned long totalcma_pages __read_mostly;
234 :
235 : int percpu_pagelist_high_fraction;
236 : gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
237 : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
238 : EXPORT_SYMBOL(init_on_alloc);
239 :
240 : DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
241 : EXPORT_SYMBOL(init_on_free);
242 :
243 : /*
244 : * A cached value of the page's pageblock's migratetype, used when the page is
245 : * put on a pcplist. Used to avoid the pageblock migratetype lookup when
246 : * freeing from pcplists in most cases, at the cost of possibly becoming stale.
247 : * Also the migratetype set in the page does not necessarily match the pcplist
248 : * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
249 : * other index - this ensures that it will be put on the correct CMA freelist.
250 : */
251 : static inline int get_pcppage_migratetype(struct page *page)
252 : {
253 45181 : return page->index;
254 : }
255 :
256 : static inline void set_pcppage_migratetype(struct page *page, int migratetype)
257 : {
258 46557 : page->index = migratetype;
259 : }
260 :
261 : #ifdef CONFIG_PM_SLEEP
262 : /*
263 : * The following functions are used by the suspend/hibernate code to temporarily
264 : * change gfp_allowed_mask in order to avoid using I/O during memory allocations
265 : * while devices are suspended. To avoid races with the suspend/hibernate code,
266 : * they should always be called with system_transition_mutex held
267 : * (gfp_allowed_mask also should only be modified with system_transition_mutex
268 : * held, unless the suspend/hibernate code is guaranteed not to run in parallel
269 : * with that modification).
270 : */
271 :
272 : static gfp_t saved_gfp_mask;
273 :
274 0 : void pm_restore_gfp_mask(void)
275 : {
276 0 : WARN_ON(!mutex_is_locked(&system_transition_mutex));
277 0 : if (saved_gfp_mask) {
278 0 : gfp_allowed_mask = saved_gfp_mask;
279 0 : saved_gfp_mask = 0;
280 : }
281 0 : }
282 :
283 0 : void pm_restrict_gfp_mask(void)
284 : {
285 0 : WARN_ON(!mutex_is_locked(&system_transition_mutex));
286 0 : WARN_ON(saved_gfp_mask);
287 0 : saved_gfp_mask = gfp_allowed_mask;
288 0 : gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
289 0 : }
290 :
291 0 : bool pm_suspended_storage(void)
292 : {
293 0 : if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
294 : return false;
295 0 : return true;
296 : }
297 : #endif /* CONFIG_PM_SLEEP */
298 :
299 : #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
300 : unsigned int pageblock_order __read_mostly;
301 : #endif
302 :
303 : static void __free_pages_ok(struct page *page, unsigned int order,
304 : fpi_t fpi_flags);
305 :
306 : /*
307 : * results with 256, 32 in the lowmem_reserve sysctl:
308 : * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
309 : * 1G machine -> (16M dma, 784M normal, 224M high)
310 : * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
311 : * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
312 : * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
313 : *
314 : * TBD: should special case ZONE_DMA32 machines here - in those we normally
315 : * don't need any ZONE_NORMAL reservation
316 : */
317 : int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
318 : #ifdef CONFIG_ZONE_DMA
319 : [ZONE_DMA] = 256,
320 : #endif
321 : #ifdef CONFIG_ZONE_DMA32
322 : [ZONE_DMA32] = 256,
323 : #endif
324 : [ZONE_NORMAL] = 32,
325 : #ifdef CONFIG_HIGHMEM
326 : [ZONE_HIGHMEM] = 0,
327 : #endif
328 : [ZONE_MOVABLE] = 0,
329 : };
330 :
331 : char * const zone_names[MAX_NR_ZONES] = {
332 : #ifdef CONFIG_ZONE_DMA
333 : "DMA",
334 : #endif
335 : #ifdef CONFIG_ZONE_DMA32
336 : "DMA32",
337 : #endif
338 : "Normal",
339 : #ifdef CONFIG_HIGHMEM
340 : "HighMem",
341 : #endif
342 : "Movable",
343 : #ifdef CONFIG_ZONE_DEVICE
344 : "Device",
345 : #endif
346 : };
347 :
348 : const char * const migratetype_names[MIGRATE_TYPES] = {
349 : "Unmovable",
350 : "Movable",
351 : "Reclaimable",
352 : "HighAtomic",
353 : #ifdef CONFIG_CMA
354 : "CMA",
355 : #endif
356 : #ifdef CONFIG_MEMORY_ISOLATION
357 : "Isolate",
358 : #endif
359 : };
360 :
361 : compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
362 : [NULL_COMPOUND_DTOR] = NULL,
363 : [COMPOUND_PAGE_DTOR] = free_compound_page,
364 : #ifdef CONFIG_HUGETLB_PAGE
365 : [HUGETLB_PAGE_DTOR] = free_huge_page,
366 : #endif
367 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 : [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
369 : #endif
370 : };
371 :
372 : int min_free_kbytes = 1024;
373 : int user_min_free_kbytes = -1;
374 : int watermark_boost_factor __read_mostly = 15000;
375 : int watermark_scale_factor = 10;
376 :
377 : bool mirrored_kernelcore __initdata_memblock;
378 :
379 : /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 : int movable_zone;
381 : EXPORT_SYMBOL(movable_zone);
382 :
383 : #if MAX_NUMNODES > 1
384 : unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 : unsigned int nr_online_nodes __read_mostly = 1;
386 : EXPORT_SYMBOL(nr_node_ids);
387 : EXPORT_SYMBOL(nr_online_nodes);
388 : #endif
389 :
390 : int page_group_by_mobility_disabled __read_mostly;
391 :
392 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 : /*
394 : * During boot we initialize deferred pages on-demand, as needed, but once
395 : * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 : * and we can permanently disable that path.
397 : */
398 : DEFINE_STATIC_KEY_TRUE(deferred_pages);
399 :
400 : static inline bool deferred_pages_enabled(void)
401 : {
402 : return static_branch_unlikely(&deferred_pages);
403 : }
404 :
405 : /*
406 : * deferred_grow_zone() is __init, but it is called from
407 : * get_page_from_freelist() during early boot until deferred_pages permanently
408 : * disables this call. This is why we have refdata wrapper to avoid warning,
409 : * and to ensure that the function body gets unloaded.
410 : */
411 : static bool __ref
412 : _deferred_grow_zone(struct zone *zone, unsigned int order)
413 : {
414 : return deferred_grow_zone(zone, order);
415 : }
416 : #else
417 : static inline bool deferred_pages_enabled(void)
418 : {
419 : return false;
420 : }
421 : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
422 :
423 : /* Return a pointer to the bitmap storing bits affecting a block of pages */
424 : static inline unsigned long *get_pageblock_bitmap(const struct page *page,
425 : unsigned long pfn)
426 : {
427 : #ifdef CONFIG_SPARSEMEM
428 : return section_to_usemap(__pfn_to_section(pfn));
429 : #else
430 44764 : return page_zone(page)->pageblock_flags;
431 : #endif /* CONFIG_SPARSEMEM */
432 : }
433 :
434 : static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
435 : {
436 : #ifdef CONFIG_SPARSEMEM
437 : pfn &= (PAGES_PER_SECTION-1);
438 : #else
439 44764 : pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
440 : #endif /* CONFIG_SPARSEMEM */
441 44764 : return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
442 : }
443 :
444 : static __always_inline
445 : unsigned long __get_pfnblock_flags_mask(const struct page *page,
446 : unsigned long pfn,
447 : unsigned long mask)
448 : {
449 : unsigned long *bitmap;
450 : unsigned long bitidx, word_bitidx;
451 : unsigned long word;
452 :
453 89000 : bitmap = get_pageblock_bitmap(page, pfn);
454 44500 : bitidx = pfn_to_bitidx(page, pfn);
455 44500 : word_bitidx = bitidx / BITS_PER_LONG;
456 44500 : bitidx &= (BITS_PER_LONG-1);
457 : /*
458 : * This races, without locks, with set_pfnblock_flags_mask(). Ensure
459 : * a consistent read of the memory array, so that results, even though
460 : * racy, are not corrupted.
461 : */
462 44500 : word = READ_ONCE(bitmap[word_bitidx]);
463 44500 : return (word >> bitidx) & mask;
464 : }
465 :
466 : /**
467 : * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
468 : * @page: The page within the block of interest
469 : * @pfn: The target page frame number
470 : * @mask: mask of bits that the caller is interested in
471 : *
472 : * Return: pageblock_bits flags
473 : */
474 0 : unsigned long get_pfnblock_flags_mask(const struct page *page,
475 : unsigned long pfn, unsigned long mask)
476 : {
477 4 : return __get_pfnblock_flags_mask(page, pfn, mask);
478 : }
479 :
480 : static __always_inline int get_pfnblock_migratetype(const struct page *page,
481 : unsigned long pfn)
482 : {
483 44496 : return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
484 : }
485 :
486 : /**
487 : * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
488 : * @page: The page within the block of interest
489 : * @flags: The flags to set
490 : * @pfn: The target page frame number
491 : * @mask: mask of bits that the caller is interested in
492 : */
493 264 : void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
494 : unsigned long pfn,
495 : unsigned long mask)
496 : {
497 : unsigned long *bitmap;
498 : unsigned long bitidx, word_bitidx;
499 : unsigned long word;
500 :
501 : BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
502 : BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
503 :
504 528 : bitmap = get_pageblock_bitmap(page, pfn);
505 264 : bitidx = pfn_to_bitidx(page, pfn);
506 264 : word_bitidx = bitidx / BITS_PER_LONG;
507 264 : bitidx &= (BITS_PER_LONG-1);
508 :
509 : VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
510 :
511 264 : mask <<= bitidx;
512 264 : flags <<= bitidx;
513 :
514 264 : word = READ_ONCE(bitmap[word_bitidx]);
515 : do {
516 792 : } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
517 264 : }
518 :
519 264 : void set_pageblock_migratetype(struct page *page, int migratetype)
520 : {
521 264 : if (unlikely(page_group_by_mobility_disabled &&
522 : migratetype < MIGRATE_PCPTYPES))
523 0 : migratetype = MIGRATE_UNMOVABLE;
524 :
525 264 : set_pfnblock_flags_mask(page, (unsigned long)migratetype,
526 264 : page_to_pfn(page), MIGRATETYPE_MASK);
527 264 : }
528 :
529 : #ifdef CONFIG_DEBUG_VM
530 : static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
531 : {
532 : int ret = 0;
533 : unsigned seq;
534 : unsigned long pfn = page_to_pfn(page);
535 : unsigned long sp, start_pfn;
536 :
537 : do {
538 : seq = zone_span_seqbegin(zone);
539 : start_pfn = zone->zone_start_pfn;
540 : sp = zone->spanned_pages;
541 : if (!zone_spans_pfn(zone, pfn))
542 : ret = 1;
543 : } while (zone_span_seqretry(zone, seq));
544 :
545 : if (ret)
546 : pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
547 : pfn, zone_to_nid(zone), zone->name,
548 : start_pfn, start_pfn + sp);
549 :
550 : return ret;
551 : }
552 :
553 : static int page_is_consistent(struct zone *zone, struct page *page)
554 : {
555 : if (zone != page_zone(page))
556 : return 0;
557 :
558 : return 1;
559 : }
560 : /*
561 : * Temporary debugging check for pages not lying within a given zone.
562 : */
563 : static int __maybe_unused bad_range(struct zone *zone, struct page *page)
564 : {
565 : if (page_outside_zone_boundaries(zone, page))
566 : return 1;
567 : if (!page_is_consistent(zone, page))
568 : return 1;
569 :
570 : return 0;
571 : }
572 : #else
573 : static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
574 : {
575 : return 0;
576 : }
577 : #endif
578 :
579 0 : static void bad_page(struct page *page, const char *reason)
580 : {
581 : static unsigned long resume;
582 : static unsigned long nr_shown;
583 : static unsigned long nr_unshown;
584 :
585 : /*
586 : * Allow a burst of 60 reports, then keep quiet for that minute;
587 : * or allow a steady drip of one report per second.
588 : */
589 0 : if (nr_shown == 60) {
590 0 : if (time_before(jiffies, resume)) {
591 0 : nr_unshown++;
592 0 : goto out;
593 : }
594 0 : if (nr_unshown) {
595 0 : pr_alert(
596 : "BUG: Bad page state: %lu messages suppressed\n",
597 : nr_unshown);
598 0 : nr_unshown = 0;
599 : }
600 0 : nr_shown = 0;
601 : }
602 0 : if (nr_shown++ == 0)
603 0 : resume = jiffies + 60 * HZ;
604 :
605 0 : pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
606 : current->comm, page_to_pfn(page));
607 0 : dump_page(page, reason);
608 :
609 : print_modules();
610 0 : dump_stack();
611 : out:
612 : /* Leave bad fields for debug, except PageBuddy could make trouble */
613 0 : page_mapcount_reset(page); /* remove PageBuddy */
614 0 : add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 0 : }
616 :
617 : static inline unsigned int order_to_pindex(int migratetype, int order)
618 : {
619 47054 : int base = order;
620 :
621 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
622 : if (order > PAGE_ALLOC_COSTLY_ORDER) {
623 : VM_BUG_ON(order != pageblock_order);
624 : return NR_LOWORDER_PCP_LISTS;
625 : }
626 : #else
627 : VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
628 : #endif
629 :
630 47054 : return (MIGRATE_PCPTYPES * base) + migratetype;
631 : }
632 :
633 : static inline int pindex_to_order(unsigned int pindex)
634 : {
635 4 : int order = pindex / MIGRATE_PCPTYPES;
636 :
637 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 : if (pindex == NR_LOWORDER_PCP_LISTS)
639 : order = pageblock_order;
640 : #else
641 : VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
642 : #endif
643 :
644 : return order;
645 : }
646 :
647 : static inline bool pcp_allowed_order(unsigned int order)
648 : {
649 46458 : if (order <= PAGE_ALLOC_COSTLY_ORDER)
650 : return true;
651 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 : if (order == pageblock_order)
653 : return true;
654 : #endif
655 : return false;
656 : }
657 :
658 44236 : static inline void free_the_page(struct page *page, unsigned int order)
659 : {
660 44236 : if (pcp_allowed_order(order)) /* Via pcp? */
661 44236 : free_unref_page(page, order);
662 : else
663 0 : __free_pages_ok(page, order, FPI_NONE);
664 44236 : }
665 :
666 : /*
667 : * Higher-order pages are called "compound pages". They are structured thusly:
668 : *
669 : * The first PAGE_SIZE page is called the "head page" and have PG_head set.
670 : *
671 : * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
672 : * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
673 : *
674 : * The first tail page's ->compound_dtor holds the offset in array of compound
675 : * page destructors. See compound_page_dtors.
676 : *
677 : * The first tail page's ->compound_order holds the order of allocation.
678 : * This usage means that zero-order pages may not be compound.
679 : */
680 :
681 0 : void free_compound_page(struct page *page)
682 : {
683 0 : mem_cgroup_uncharge(page_folio(page));
684 0 : free_the_page(page, compound_order(page));
685 0 : }
686 :
687 0 : void prep_compound_page(struct page *page, unsigned int order)
688 : {
689 : int i;
690 102 : int nr_pages = 1 << order;
691 :
692 102 : __SetPageHead(page);
693 286 : for (i = 1; i < nr_pages; i++)
694 184 : prep_compound_tail(page, i);
695 :
696 102 : prep_compound_head(page, order);
697 0 : }
698 :
699 0 : void destroy_large_folio(struct folio *folio)
700 : {
701 0 : enum compound_dtor_id dtor = folio->_folio_dtor;
702 :
703 : VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
704 0 : compound_page_dtors[dtor](&folio->page);
705 0 : }
706 :
707 : #ifdef CONFIG_DEBUG_PAGEALLOC
708 : unsigned int _debug_guardpage_minorder;
709 :
710 : bool _debug_pagealloc_enabled_early __read_mostly
711 : = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 : EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 : DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 : EXPORT_SYMBOL(_debug_pagealloc_enabled);
715 :
716 : DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717 :
718 : static int __init early_debug_pagealloc(char *buf)
719 : {
720 : return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 : }
722 : early_param("debug_pagealloc", early_debug_pagealloc);
723 :
724 : static int __init debug_guardpage_minorder_setup(char *buf)
725 : {
726 : unsigned long res;
727 :
728 : if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
729 : pr_err("Bad debug_guardpage_minorder value\n");
730 : return 0;
731 : }
732 : _debug_guardpage_minorder = res;
733 : pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 : return 0;
735 : }
736 : early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737 :
738 : static inline bool set_page_guard(struct zone *zone, struct page *page,
739 : unsigned int order, int migratetype)
740 : {
741 : if (!debug_guardpage_enabled())
742 : return false;
743 :
744 : if (order >= debug_guardpage_minorder())
745 : return false;
746 :
747 : __SetPageGuard(page);
748 : INIT_LIST_HEAD(&page->buddy_list);
749 : set_page_private(page, order);
750 : /* Guard pages are not available for any usage */
751 : if (!is_migrate_isolate(migratetype))
752 : __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753 :
754 : return true;
755 : }
756 :
757 : static inline void clear_page_guard(struct zone *zone, struct page *page,
758 : unsigned int order, int migratetype)
759 : {
760 : if (!debug_guardpage_enabled())
761 : return;
762 :
763 : __ClearPageGuard(page);
764 :
765 : set_page_private(page, 0);
766 : if (!is_migrate_isolate(migratetype))
767 : __mod_zone_freepage_state(zone, (1 << order), migratetype);
768 : }
769 : #else
770 : static inline bool set_page_guard(struct zone *zone, struct page *page,
771 : unsigned int order, int migratetype) { return false; }
772 : static inline void clear_page_guard(struct zone *zone, struct page *page,
773 : unsigned int order, int migratetype) {}
774 : #endif
775 :
776 : static inline void set_buddy_order(struct page *page, unsigned int order)
777 : {
778 7062 : set_page_private(page, order);
779 3531 : __SetPageBuddy(page);
780 : }
781 :
782 : #ifdef CONFIG_COMPACTION
783 1205 : static inline struct capture_control *task_capc(struct zone *zone)
784 : {
785 1205 : struct capture_control *capc = current->capture_control;
786 :
787 1205 : return unlikely(capc) &&
788 0 : !(current->flags & PF_KTHREAD) &&
789 0 : !capc->page &&
790 2410 : capc->cc->zone == zone ? capc : NULL;
791 : }
792 :
793 : static inline bool
794 : compaction_capture(struct capture_control *capc, struct page *page,
795 : int order, int migratetype)
796 : {
797 1874 : if (!capc || order != capc->cc->order)
798 : return false;
799 :
800 : /* Do not accidentally pollute CMA or isolated regions*/
801 : if (is_migrate_cma(migratetype) ||
802 0 : is_migrate_isolate(migratetype))
803 : return false;
804 :
805 : /*
806 : * Do not let lower order allocations pollute a movable pageblock.
807 : * This might let an unmovable request use a reclaimable pageblock
808 : * and vice-versa but no more than normal fallback logic which can
809 : * have trouble finding a high-order free page.
810 : */
811 0 : if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
812 : return false;
813 :
814 0 : capc->page = page;
815 : return true;
816 : }
817 :
818 : #else
819 : static inline struct capture_control *task_capc(struct zone *zone)
820 : {
821 : return NULL;
822 : }
823 :
824 : static inline bool
825 : compaction_capture(struct capture_control *capc, struct page *page,
826 : int order, int migratetype)
827 : {
828 : return false;
829 : }
830 : #endif /* CONFIG_COMPACTION */
831 :
832 : /* Used for pages not on another list */
833 : static inline void add_to_free_list(struct page *page, struct zone *zone,
834 : unsigned int order, int migratetype)
835 : {
836 2817 : struct free_area *area = &zone->free_area[order];
837 :
838 5634 : list_add(&page->buddy_list, &area->free_list[migratetype]);
839 2817 : area->nr_free++;
840 : }
841 :
842 : /* Used for pages not on another list */
843 : static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
844 : unsigned int order, int migratetype)
845 : {
846 714 : struct free_area *area = &zone->free_area[order];
847 :
848 1428 : list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
849 714 : area->nr_free++;
850 : }
851 :
852 : /*
853 : * Used for pages which are on another list. Move the pages to the tail
854 : * of the list - so the moved pages won't immediately be considered for
855 : * allocation again (e.g., optimization for memory onlining).
856 : */
857 : static inline void move_to_free_list(struct page *page, struct zone *zone,
858 : unsigned int order, int migratetype)
859 : {
860 4 : struct free_area *area = &zone->free_area[order];
861 :
862 8 : list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
863 : }
864 :
865 : static inline void del_page_from_free_list(struct page *page, struct zone *zone,
866 : unsigned int order)
867 : {
868 : /* clear reported state and update reported page count */
869 : if (page_reported(page))
870 : __ClearPageReported(page);
871 :
872 6476 : list_del(&page->buddy_list);
873 3238 : __ClearPageBuddy(page);
874 6476 : set_page_private(page, 0);
875 3238 : zone->free_area[order].nr_free--;
876 : }
877 :
878 : static inline struct page *get_page_from_free_area(struct free_area *area,
879 : int migratetype)
880 : {
881 4694 : return list_first_entry_or_null(&area->free_list[migratetype],
882 : struct page, lru);
883 : }
884 :
885 : /*
886 : * If this is not the largest possible page, check if the buddy
887 : * of the next-highest order is free. If it is, it's possible
888 : * that pages are being freed that will coalesce soon. In case,
889 : * that is happening, add the free page to the tail of the list
890 : * so it's less likely to be used soon and more likely to be merged
891 : * as a higher order page
892 : */
893 : static inline bool
894 945 : buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
895 : struct page *page, unsigned int order)
896 : {
897 : unsigned long higher_page_pfn;
898 : struct page *higher_page;
899 :
900 945 : if (order >= MAX_ORDER - 1)
901 : return false;
902 :
903 945 : higher_page_pfn = buddy_pfn & pfn;
904 945 : higher_page = page + (higher_page_pfn - pfn);
905 :
906 1890 : return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
907 945 : NULL) != NULL;
908 : }
909 :
910 : /*
911 : * Freeing function for a buddy system allocator.
912 : *
913 : * The concept of a buddy system is to maintain direct-mapped table
914 : * (containing bit values) for memory blocks of various "orders".
915 : * The bottom level table contains the map for the smallest allocatable
916 : * units of memory (here, pages), and each level above it describes
917 : * pairs of units from the levels below, hence, "buddies".
918 : * At a high level, all that happens here is marking the table entry
919 : * at the bottom level available, and propagating the changes upward
920 : * as necessary, plus some accounting needed to play nicely with other
921 : * parts of the VM system.
922 : * At each level, we keep a list of pages, which are heads of continuous
923 : * free pages of length of (1 << order) and marked with PageBuddy.
924 : * Page's order is recorded in page_private(page) field.
925 : * So when we are allocating or freeing one, we can derive the state of the
926 : * other. That is, if we allocate a small block, and both were
927 : * free, the remainder of the region must be split into blocks.
928 : * If a block is freed, and its buddy is also free, then this
929 : * triggers coalescing into a block of larger size.
930 : *
931 : * -- nyc
932 : */
933 :
934 1205 : static inline void __free_one_page(struct page *page,
935 : unsigned long pfn,
936 : struct zone *zone, unsigned int order,
937 : int migratetype, fpi_t fpi_flags)
938 : {
939 1205 : struct capture_control *capc = task_capc(zone);
940 1205 : unsigned long buddy_pfn = 0;
941 : unsigned long combined_pfn;
942 : struct page *buddy;
943 : bool to_tail;
944 :
945 : VM_BUG_ON(!zone_is_initialized(zone));
946 : VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
947 :
948 : VM_BUG_ON(migratetype == -1);
949 1205 : if (likely(!is_migrate_isolate(migratetype)))
950 1205 : __mod_zone_freepage_state(zone, 1 << order, migratetype);
951 :
952 : VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
953 : VM_BUG_ON_PAGE(bad_range(zone, page), page);
954 :
955 2122 : while (order < MAX_ORDER) {
956 3748 : if (compaction_capture(capc, page, order, migratetype)) {
957 0 : __mod_zone_freepage_state(zone, -(1 << order),
958 : migratetype);
959 0 : return;
960 : }
961 :
962 1874 : buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
963 1874 : if (!buddy)
964 : goto done_merging;
965 :
966 : if (unlikely(order >= pageblock_order)) {
967 : /*
968 : * We want to prevent merge between freepages on pageblock
969 : * without fallbacks and normal pageblock. Without this,
970 : * pageblock isolation could cause incorrect freepage or CMA
971 : * accounting or HIGHATOMIC accounting.
972 : */
973 : int buddy_mt = get_pageblock_migratetype(buddy);
974 :
975 : if (migratetype != buddy_mt
976 : && (!migratetype_is_mergeable(migratetype) ||
977 : !migratetype_is_mergeable(buddy_mt)))
978 : goto done_merging;
979 : }
980 :
981 : /*
982 : * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
983 : * merge with it and move up one order.
984 : */
985 : if (page_is_guard(buddy))
986 : clear_page_guard(zone, buddy, order, migratetype);
987 : else
988 : del_page_from_free_list(buddy, zone, order);
989 917 : combined_pfn = buddy_pfn & pfn;
990 917 : page = page + (combined_pfn - pfn);
991 917 : pfn = combined_pfn;
992 917 : order++;
993 : }
994 :
995 : done_merging:
996 1205 : set_buddy_order(page, order);
997 :
998 1205 : if (fpi_flags & FPI_TO_TAIL)
999 : to_tail = true;
1000 945 : else if (is_shuffle_order(order))
1001 : to_tail = shuffle_pick_tail();
1002 : else
1003 945 : to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1004 :
1005 1205 : if (to_tail)
1006 : add_to_free_list_tail(page, zone, order, migratetype);
1007 : else
1008 : add_to_free_list(page, zone, order, migratetype);
1009 :
1010 : /* Notify page reporting subsystem of freed page */
1011 : if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1012 : page_reporting_notify_free(order);
1013 : }
1014 :
1015 : /**
1016 : * split_free_page() -- split a free page at split_pfn_offset
1017 : * @free_page: the original free page
1018 : * @order: the order of the page
1019 : * @split_pfn_offset: split offset within the page
1020 : *
1021 : * Return -ENOENT if the free page is changed, otherwise 0
1022 : *
1023 : * It is used when the free page crosses two pageblocks with different migratetypes
1024 : * at split_pfn_offset within the page. The split free page will be put into
1025 : * separate migratetype lists afterwards. Otherwise, the function achieves
1026 : * nothing.
1027 : */
1028 0 : int split_free_page(struct page *free_page,
1029 : unsigned int order, unsigned long split_pfn_offset)
1030 : {
1031 0 : struct zone *zone = page_zone(free_page);
1032 0 : unsigned long free_page_pfn = page_to_pfn(free_page);
1033 : unsigned long pfn;
1034 : unsigned long flags;
1035 : int free_page_order;
1036 : int mt;
1037 0 : int ret = 0;
1038 :
1039 0 : if (split_pfn_offset == 0)
1040 : return ret;
1041 :
1042 0 : spin_lock_irqsave(&zone->lock, flags);
1043 :
1044 0 : if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1045 : ret = -ENOENT;
1046 : goto out;
1047 : }
1048 :
1049 0 : mt = get_pageblock_migratetype(free_page);
1050 0 : if (likely(!is_migrate_isolate(mt)))
1051 0 : __mod_zone_freepage_state(zone, -(1UL << order), mt);
1052 :
1053 0 : del_page_from_free_list(free_page, zone, order);
1054 0 : for (pfn = free_page_pfn;
1055 0 : pfn < free_page_pfn + (1UL << order);) {
1056 0 : int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1057 :
1058 0 : free_page_order = min_t(unsigned int,
1059 : pfn ? __ffs(pfn) : order,
1060 : __fls(split_pfn_offset));
1061 0 : __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1062 : mt, FPI_NONE);
1063 0 : pfn += 1UL << free_page_order;
1064 0 : split_pfn_offset -= (1UL << free_page_order);
1065 : /* we have done the first part, now switch to second part */
1066 0 : if (split_pfn_offset == 0)
1067 0 : split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1068 : }
1069 : out:
1070 0 : spin_unlock_irqrestore(&zone->lock, flags);
1071 0 : return ret;
1072 : }
1073 : /*
1074 : * A bad page could be due to a number of fields. Instead of multiple branches,
1075 : * try and check multiple fields with one check. The caller must do a detailed
1076 : * check if necessary.
1077 : */
1078 : static inline bool page_expected_state(struct page *page,
1079 : unsigned long check_flags)
1080 : {
1081 0 : if (unlikely(atomic_read(&page->_mapcount) != -1))
1082 : return false;
1083 :
1084 0 : if (unlikely((unsigned long)page->mapping |
1085 : page_ref_count(page) |
1086 : #ifdef CONFIG_MEMCG
1087 : page->memcg_data |
1088 : #endif
1089 : (page->flags & check_flags)))
1090 : return false;
1091 :
1092 : return true;
1093 : }
1094 :
1095 : static const char *page_bad_reason(struct page *page, unsigned long flags)
1096 : {
1097 0 : const char *bad_reason = NULL;
1098 :
1099 0 : if (unlikely(atomic_read(&page->_mapcount) != -1))
1100 0 : bad_reason = "nonzero mapcount";
1101 0 : if (unlikely(page->mapping != NULL))
1102 0 : bad_reason = "non-NULL mapping";
1103 0 : if (unlikely(page_ref_count(page) != 0))
1104 0 : bad_reason = "nonzero _refcount";
1105 0 : if (unlikely(page->flags & flags)) {
1106 : if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1107 : bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1108 : else
1109 0 : bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1110 : }
1111 : #ifdef CONFIG_MEMCG
1112 : if (unlikely(page->memcg_data))
1113 : bad_reason = "page still charged to cgroup";
1114 : #endif
1115 : return bad_reason;
1116 : }
1117 :
1118 0 : static void free_page_is_bad_report(struct page *page)
1119 : {
1120 0 : bad_page(page,
1121 : page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 0 : }
1123 :
1124 0 : static inline bool free_page_is_bad(struct page *page)
1125 : {
1126 0 : if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1127 : return false;
1128 :
1129 : /* Something has gone sideways, find it */
1130 0 : free_page_is_bad_report(page);
1131 0 : return true;
1132 : }
1133 :
1134 42 : static int free_tail_page_prepare(struct page *head_page, struct page *page)
1135 : {
1136 42 : struct folio *folio = (struct folio *)head_page;
1137 42 : int ret = 1;
1138 :
1139 : /*
1140 : * We rely page->lru.next never has bit 0 set, unless the page
1141 : * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1142 : */
1143 : BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1144 :
1145 42 : if (!static_branch_unlikely(&check_pages_enabled)) {
1146 : ret = 0;
1147 : goto out;
1148 : }
1149 0 : switch (page - head_page) {
1150 : case 1:
1151 : /* the first tail page: these may be in place of ->mapping */
1152 0 : if (unlikely(folio_entire_mapcount(folio))) {
1153 0 : bad_page(page, "nonzero entire_mapcount");
1154 0 : goto out;
1155 : }
1156 0 : if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1157 0 : bad_page(page, "nonzero nr_pages_mapped");
1158 0 : goto out;
1159 : }
1160 0 : if (unlikely(atomic_read(&folio->_pincount))) {
1161 0 : bad_page(page, "nonzero pincount");
1162 0 : goto out;
1163 : }
1164 : break;
1165 : case 2:
1166 : /*
1167 : * the second tail page: ->mapping is
1168 : * deferred_list.next -- ignore value.
1169 : */
1170 : break;
1171 : default:
1172 0 : if (page->mapping != TAIL_MAPPING) {
1173 0 : bad_page(page, "corrupted mapping in tail page");
1174 0 : goto out;
1175 : }
1176 : break;
1177 : }
1178 0 : if (unlikely(!PageTail(page))) {
1179 0 : bad_page(page, "PageTail not set");
1180 0 : goto out;
1181 : }
1182 0 : if (unlikely(compound_head(page) != head_page)) {
1183 0 : bad_page(page, "compound_head not consistent");
1184 0 : goto out;
1185 : }
1186 : ret = 0;
1187 : out:
1188 42 : page->mapping = NULL;
1189 42 : clear_compound_head(page);
1190 42 : return ret;
1191 : }
1192 :
1193 : /*
1194 : * Skip KASAN memory poisoning when either:
1195 : *
1196 : * 1. For generic KASAN: deferred memory initialization has not yet completed.
1197 : * Tag-based KASAN modes skip pages freed via deferred memory initialization
1198 : * using page tags instead (see below).
1199 : * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1200 : * that error detection is disabled for accesses via the page address.
1201 : *
1202 : * Pages will have match-all tags in the following circumstances:
1203 : *
1204 : * 1. Pages are being initialized for the first time, including during deferred
1205 : * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1206 : * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1207 : * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1208 : * 3. The allocation was excluded from being checked due to sampling,
1209 : * see the call to kasan_unpoison_pages.
1210 : *
1211 : * Poisoning pages during deferred memory init will greatly lengthen the
1212 : * process and cause problem in large memory systems as the deferred pages
1213 : * initialization is done with interrupt disabled.
1214 : *
1215 : * Assuming that there will be no reference to those newly initialized
1216 : * pages before they are ever allocated, this should have no effect on
1217 : * KASAN memory tracking as the poison will be properly inserted at page
1218 : * allocation time. The only corner case is when pages are allocated by
1219 : * on-demand allocation and then freed again before the deferred pages
1220 : * initialization is done, but this is not likely to happen.
1221 : */
1222 : static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1223 : {
1224 : if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1225 : return deferred_pages_enabled();
1226 :
1227 44496 : return page_kasan_tag(page) == 0xff;
1228 : }
1229 :
1230 0 : static void kernel_init_pages(struct page *page, int numpages)
1231 : {
1232 : int i;
1233 :
1234 : /* s390's use of memset() could override KASAN redzones. */
1235 : kasan_disable_current();
1236 38291 : for (i = 0; i < numpages; i++)
1237 38291 : clear_highpage_kasan_tagged(page + i);
1238 : kasan_enable_current();
1239 0 : }
1240 :
1241 : static __always_inline bool free_pages_prepare(struct page *page,
1242 : unsigned int order, fpi_t fpi_flags)
1243 : {
1244 44496 : int bad = 0;
1245 88992 : bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1246 44496 : bool init = want_init_on_free();
1247 :
1248 : VM_BUG_ON_PAGE(PageTail(page), page);
1249 :
1250 44496 : trace_mm_page_free(page, order);
1251 44496 : kmsan_free_page(page, order);
1252 :
1253 44496 : if (unlikely(PageHWPoison(page)) && !order) {
1254 : /*
1255 : * Do not let hwpoison pages hit pcplists/buddy
1256 : * Untie memcg state and reset page's owner
1257 : */
1258 : if (memcg_kmem_online() && PageMemcgKmem(page))
1259 : __memcg_kmem_uncharge_page(page, order);
1260 : reset_page_owner(page, order);
1261 : page_table_check_free(page, order);
1262 : return false;
1263 : }
1264 :
1265 : /*
1266 : * Check tail pages before head page information is cleared to
1267 : * avoid checking PageCompound for order-0 pages.
1268 : */
1269 44496 : if (unlikely(order)) {
1270 263 : bool compound = PageCompound(page);
1271 : int i;
1272 :
1273 : VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274 :
1275 : if (compound)
1276 : ClearPageHasHWPoisoned(page);
1277 254251 : for (i = 1; i < (1 << order); i++) {
1278 254251 : if (compound)
1279 42 : bad += free_tail_page_prepare(page, page + i);
1280 254251 : if (is_check_pages_enabled()) {
1281 0 : if (free_page_is_bad(page + i)) {
1282 0 : bad++;
1283 0 : continue;
1284 : }
1285 : }
1286 254251 : (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1287 : }
1288 : }
1289 44496 : if (PageMappingFlags(page))
1290 0 : page->mapping = NULL;
1291 : if (memcg_kmem_online() && PageMemcgKmem(page))
1292 : __memcg_kmem_uncharge_page(page, order);
1293 44496 : if (is_check_pages_enabled()) {
1294 0 : if (free_page_is_bad(page))
1295 0 : bad++;
1296 0 : if (bad)
1297 : return false;
1298 : }
1299 :
1300 44496 : page_cpupid_reset_last(page);
1301 44496 : page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1302 : reset_page_owner(page, order);
1303 44496 : page_table_check_free(page, order);
1304 :
1305 44496 : if (!PageHighMem(page)) {
1306 : debug_check_no_locks_freed(page_address(page),
1307 : PAGE_SIZE << order);
1308 : debug_check_no_obj_freed(page_address(page),
1309 : PAGE_SIZE << order);
1310 : }
1311 :
1312 44496 : kernel_poison_pages(page, 1 << order);
1313 :
1314 : /*
1315 : * As memory initialization might be integrated into KASAN,
1316 : * KASAN poisoning and memory initialization code must be
1317 : * kept together to avoid discrepancies in behavior.
1318 : *
1319 : * With hardware tag-based KASAN, memory tags must be set before the
1320 : * page becomes unavailable via debug_pagealloc or arch_free_page.
1321 : */
1322 : if (!skip_kasan_poison) {
1323 : kasan_poison_pages(page, order, init);
1324 :
1325 : /* Memory is already initialized if KASAN did it internally. */
1326 : if (kasan_has_integrated_init())
1327 : init = false;
1328 : }
1329 44496 : if (init)
1330 0 : kernel_init_pages(page, 1 << order);
1331 :
1332 : /*
1333 : * arch_free_page() can make the page's contents inaccessible. s390
1334 : * does this. So nothing which can access the page's contents should
1335 : * happen after this.
1336 : */
1337 : arch_free_page(page, order);
1338 :
1339 : debug_pagealloc_unmap_pages(page, 1 << order);
1340 :
1341 : return true;
1342 : }
1343 :
1344 : /*
1345 : * Frees a number of pages from the PCP lists
1346 : * Assumes all pages on list are in same zone.
1347 : * count is the number of pages to free.
1348 : */
1349 4 : static void free_pcppages_bulk(struct zone *zone, int count,
1350 : struct per_cpu_pages *pcp,
1351 : int pindex)
1352 : {
1353 : unsigned long flags;
1354 4 : int min_pindex = 0;
1355 4 : int max_pindex = NR_PCP_LISTS - 1;
1356 : unsigned int order;
1357 : bool isolated_pageblocks;
1358 : struct page *page;
1359 :
1360 : /*
1361 : * Ensure proper count is passed which otherwise would stuck in the
1362 : * below while (list_empty(list)) loop.
1363 : */
1364 4 : count = min(pcp->count, count);
1365 :
1366 : /* Ensure requested pindex is drained first. */
1367 4 : pindex = pindex - 1;
1368 :
1369 4 : spin_lock_irqsave(&zone->lock, flags);
1370 4 : isolated_pageblocks = has_isolate_pageblock(zone);
1371 :
1372 12 : while (count > 0) {
1373 : struct list_head *list;
1374 : int nr_pages;
1375 :
1376 : /* Remove pages from lists in a round-robin fashion. */
1377 : do {
1378 4 : if (++pindex > max_pindex)
1379 0 : pindex = min_pindex;
1380 4 : list = &pcp->lists[pindex];
1381 4 : if (!list_empty(list))
1382 : break;
1383 :
1384 0 : if (pindex == max_pindex)
1385 0 : max_pindex--;
1386 0 : if (pindex == min_pindex)
1387 0 : min_pindex++;
1388 : } while (1);
1389 :
1390 8 : order = pindex_to_order(pindex);
1391 4 : nr_pages = 1 << order;
1392 : do {
1393 : int mt;
1394 :
1395 945 : page = list_last_entry(list, struct page, pcp_list);
1396 1890 : mt = get_pcppage_migratetype(page);
1397 :
1398 : /* must delete to avoid corrupting pcp list */
1399 1890 : list_del(&page->pcp_list);
1400 945 : count -= nr_pages;
1401 945 : pcp->count -= nr_pages;
1402 :
1403 : /* MIGRATE_ISOLATE page should not go to pcplists */
1404 : VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1405 : /* Pageblock could have been isolated meanwhile */
1406 : if (unlikely(isolated_pageblocks))
1407 : mt = get_pageblock_migratetype(page);
1408 :
1409 945 : __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1410 945 : trace_mm_page_pcpu_drain(page, order, mt);
1411 1886 : } while (count > 0 && !list_empty(list));
1412 : }
1413 :
1414 8 : spin_unlock_irqrestore(&zone->lock, flags);
1415 4 : }
1416 :
1417 0 : static void free_one_page(struct zone *zone,
1418 : struct page *page, unsigned long pfn,
1419 : unsigned int order,
1420 : int migratetype, fpi_t fpi_flags)
1421 : {
1422 : unsigned long flags;
1423 :
1424 0 : spin_lock_irqsave(&zone->lock, flags);
1425 0 : if (unlikely(has_isolate_pageblock(zone) ||
1426 : is_migrate_isolate(migratetype))) {
1427 : migratetype = get_pfnblock_migratetype(page, pfn);
1428 : }
1429 0 : __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1430 0 : spin_unlock_irqrestore(&zone->lock, flags);
1431 0 : }
1432 :
1433 260 : static void __free_pages_ok(struct page *page, unsigned int order,
1434 : fpi_t fpi_flags)
1435 : {
1436 : unsigned long flags;
1437 : int migratetype;
1438 260 : unsigned long pfn = page_to_pfn(page);
1439 260 : struct zone *zone = page_zone(page);
1440 :
1441 260 : if (!free_pages_prepare(page, order, fpi_flags))
1442 : return;
1443 :
1444 : /*
1445 : * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1446 : * is used to avoid calling get_pfnblock_migratetype() under the lock.
1447 : * This will reduce the lock holding time.
1448 : */
1449 260 : migratetype = get_pfnblock_migratetype(page, pfn);
1450 :
1451 260 : spin_lock_irqsave(&zone->lock, flags);
1452 : if (unlikely(has_isolate_pageblock(zone) ||
1453 : is_migrate_isolate(migratetype))) {
1454 : migratetype = get_pfnblock_migratetype(page, pfn);
1455 : }
1456 260 : __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1457 520 : spin_unlock_irqrestore(&zone->lock, flags);
1458 :
1459 260 : __count_vm_events(PGFREE, 1 << order);
1460 : }
1461 :
1462 260 : void __free_pages_core(struct page *page, unsigned int order)
1463 : {
1464 260 : unsigned int nr_pages = 1 << order;
1465 260 : struct page *p = page;
1466 : unsigned int loop;
1467 :
1468 : /*
1469 : * When initializing the memmap, __init_single_page() sets the refcount
1470 : * of all pages to 1 ("allocated"/"not free"). We have to set the
1471 : * refcount of all involved pages to 0.
1472 : */
1473 260 : prefetchw(p);
1474 254469 : for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1475 254209 : prefetchw(p + 1);
1476 254209 : __ClearPageReserved(p);
1477 254209 : set_page_count(p, 0);
1478 : }
1479 260 : __ClearPageReserved(p);
1480 260 : set_page_count(p, 0);
1481 :
1482 520 : atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1483 :
1484 : /*
1485 : * Bypass PCP and place fresh pages right to the tail, primarily
1486 : * relevant for memory onlining.
1487 : */
1488 260 : __free_pages_ok(page, order, FPI_TO_TAIL);
1489 260 : }
1490 :
1491 : /*
1492 : * Check that the whole (or subset of) a pageblock given by the interval of
1493 : * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494 : * with the migration of free compaction scanner.
1495 : *
1496 : * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1497 : *
1498 : * It's possible on some configurations to have a setup like node0 node1 node0
1499 : * i.e. it's possible that all pages within a zones range of pages do not
1500 : * belong to a single zone. We assume that a border between node0 and node1
1501 : * can occur within a single pageblock, but not a node0 node1 node0
1502 : * interleaving within a single pageblock. It is therefore sufficient to check
1503 : * the first and last page of a pageblock and avoid checking each individual
1504 : * page in a pageblock.
1505 : *
1506 : * Note: the function may return non-NULL struct page even for a page block
1507 : * which contains a memory hole (i.e. there is no physical memory for a subset
1508 : * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1509 : * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1510 : * even though the start pfn is online and valid. This should be safe most of
1511 : * the time because struct pages are still initialized via init_unavailable_range()
1512 : * and pfn walkers shouldn't touch any physical memory range for which they do
1513 : * not recognize any specific metadata in struct pages.
1514 : */
1515 260 : struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 : unsigned long end_pfn, struct zone *zone)
1517 : {
1518 : struct page *start_page;
1519 : struct page *end_page;
1520 :
1521 : /* end_pfn is one past the range we are checking */
1522 260 : end_pfn--;
1523 :
1524 520 : if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 : return NULL;
1526 :
1527 520 : start_page = pfn_to_online_page(start_pfn);
1528 260 : if (!start_page)
1529 : return NULL;
1530 :
1531 260 : if (page_zone(start_page) != zone)
1532 : return NULL;
1533 :
1534 260 : end_page = pfn_to_page(end_pfn);
1535 :
1536 : /* This gives a shorter code than deriving page_zone(end_page) */
1537 780 : if (page_zone_id(start_page) != page_zone_id(end_page))
1538 : return NULL;
1539 :
1540 260 : return start_page;
1541 : }
1542 :
1543 1 : void set_zone_contiguous(struct zone *zone)
1544 : {
1545 1 : unsigned long block_start_pfn = zone->zone_start_pfn;
1546 : unsigned long block_end_pfn;
1547 :
1548 1 : block_end_pfn = pageblock_end_pfn(block_start_pfn);
1549 523 : for (; block_start_pfn < zone_end_pfn(zone);
1550 260 : block_start_pfn = block_end_pfn,
1551 260 : block_end_pfn += pageblock_nr_pages) {
1552 :
1553 260 : block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554 :
1555 260 : if (!__pageblock_pfn_to_page(block_start_pfn,
1556 : block_end_pfn, zone))
1557 : return;
1558 260 : cond_resched();
1559 : }
1560 :
1561 : /* We confirm that there is no hole */
1562 1 : zone->contiguous = true;
1563 : }
1564 :
1565 0 : void clear_zone_contiguous(struct zone *zone)
1566 : {
1567 0 : zone->contiguous = false;
1568 0 : }
1569 :
1570 : /*
1571 : * The order of subdivision here is critical for the IO subsystem.
1572 : * Please do not alter this order without good reasons and regression
1573 : * testing. Specifically, as large blocks of memory are subdivided,
1574 : * the order in which smaller blocks are delivered depends on the order
1575 : * they're subdivided in this function. This is the primary factor
1576 : * influencing the order in which pages are delivered to the IO
1577 : * subsystem according to empirical testing, and this is also justified
1578 : * by considering the behavior of a buddy system containing a single
1579 : * large block of memory acted on by a series of small allocations.
1580 : * This behavior is a critical factor in sglist merging's success.
1581 : *
1582 : * -- nyc
1583 : */
1584 : static inline void expand(struct zone *zone, struct page *page,
1585 : int low, int high, int migratetype)
1586 : {
1587 2321 : unsigned long size = 1 << high;
1588 :
1589 4647 : while (high > low) {
1590 2326 : high--;
1591 2326 : size >>= 1;
1592 : VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1593 :
1594 : /*
1595 : * Mark as guard pages (or page), that will allow to
1596 : * merge back to allocator when buddy will be freed.
1597 : * Corresponding page table entries will not be touched,
1598 : * pages will stay not present in virtual address space
1599 : */
1600 2326 : if (set_page_guard(zone, &page[size], high, migratetype))
1601 : continue;
1602 :
1603 4652 : add_to_free_list(&page[size], zone, high, migratetype);
1604 2326 : set_buddy_order(&page[size], high);
1605 : }
1606 : }
1607 :
1608 0 : static void check_new_page_bad(struct page *page)
1609 : {
1610 : if (unlikely(page->flags & __PG_HWPOISON)) {
1611 : /* Don't complain about hwpoisoned pages */
1612 : page_mapcount_reset(page); /* remove PageBuddy */
1613 : return;
1614 : }
1615 :
1616 0 : bad_page(page,
1617 : page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1618 : }
1619 :
1620 : /*
1621 : * This page is about to be returned from the page allocator
1622 : */
1623 0 : static int check_new_page(struct page *page)
1624 : {
1625 0 : if (likely(page_expected_state(page,
1626 : PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1627 : return 0;
1628 :
1629 0 : check_new_page_bad(page);
1630 0 : return 1;
1631 : }
1632 :
1633 44763 : static inline bool check_new_pages(struct page *page, unsigned int order)
1634 : {
1635 44763 : if (is_check_pages_enabled()) {
1636 0 : for (int i = 0; i < (1 << order); i++) {
1637 0 : struct page *p = page + i;
1638 :
1639 0 : if (check_new_page(p))
1640 : return true;
1641 : }
1642 : }
1643 :
1644 : return false;
1645 : }
1646 :
1647 : static inline bool should_skip_kasan_unpoison(gfp_t flags)
1648 : {
1649 : /* Don't skip if a software KASAN mode is enabled. */
1650 : if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1651 : IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1652 : return false;
1653 :
1654 : /* Skip, if hardware tag-based KASAN is not enabled. */
1655 : if (!kasan_hw_tags_enabled())
1656 : return true;
1657 :
1658 : /*
1659 : * With hardware tag-based KASAN enabled, skip if this has been
1660 : * requested via __GFP_SKIP_KASAN.
1661 : */
1662 : return flags & __GFP_SKIP_KASAN;
1663 : }
1664 :
1665 : static inline bool should_skip_init(gfp_t flags)
1666 : {
1667 : /* Don't skip, if hardware tag-based KASAN is not enabled. */
1668 : if (!kasan_hw_tags_enabled())
1669 : return false;
1670 :
1671 : /* For hardware tag-based KASAN, skip if requested. */
1672 : return (flags & __GFP_SKIP_ZERO);
1673 : }
1674 :
1675 44763 : inline void post_alloc_hook(struct page *page, unsigned int order,
1676 : gfp_t gfp_flags)
1677 : {
1678 89526 : bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1679 : !should_skip_init(gfp_flags);
1680 44763 : bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1681 : int i;
1682 :
1683 89526 : set_page_private(page, 0);
1684 44763 : set_page_refcounted(page);
1685 :
1686 44763 : arch_alloc_page(page, order);
1687 44763 : debug_pagealloc_map_pages(page, 1 << order);
1688 :
1689 : /*
1690 : * Page unpoisoning must happen before memory initialization.
1691 : * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1692 : * allocations and the page unpoisoning code will complain.
1693 : */
1694 44763 : kernel_unpoison_pages(page, 1 << order);
1695 :
1696 : /*
1697 : * As memory initialization might be integrated into KASAN,
1698 : * KASAN unpoisoning and memory initializion code must be
1699 : * kept together to avoid discrepancies in behavior.
1700 : */
1701 :
1702 : /*
1703 : * If memory tags should be zeroed
1704 : * (which happens only when memory should be initialized as well).
1705 : */
1706 44763 : if (zero_tags) {
1707 : /* Initialize both memory and memory tags. */
1708 : for (i = 0; i != 1 << order; ++i)
1709 : tag_clear_highpage(page + i);
1710 :
1711 : /* Take note that memory was initialized by the loop above. */
1712 : init = false;
1713 : }
1714 44763 : if (!should_skip_kasan_unpoison(gfp_flags) &&
1715 : kasan_unpoison_pages(page, order, init)) {
1716 : /* Take note that memory was initialized by KASAN. */
1717 : if (kasan_has_integrated_init())
1718 : init = false;
1719 : } else {
1720 : /*
1721 : * If memory tags have not been set by KASAN, reset the page
1722 : * tags to ensure page_address() dereferencing does not fault.
1723 : */
1724 44763 : for (i = 0; i != 1 << order; ++i)
1725 : page_kasan_tag_reset(page + i);
1726 : }
1727 : /* If memory is still not initialized, initialize it now. */
1728 44763 : if (init)
1729 : kernel_init_pages(page, 1 << order);
1730 :
1731 44763 : set_page_owner(page, order, gfp_flags);
1732 44763 : page_table_check_alloc(page, order);
1733 44763 : }
1734 :
1735 2222 : static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1736 : unsigned int alloc_flags)
1737 : {
1738 44763 : post_alloc_hook(page, order, gfp_flags);
1739 :
1740 2222 : if (order && (gfp_flags & __GFP_COMP))
1741 : prep_compound_page(page, order);
1742 :
1743 : /*
1744 : * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1745 : * allocate the page. The expectation is that the caller is taking
1746 : * steps that will free more memory. The caller should avoid the page
1747 : * being used for !PFMEMALLOC purposes.
1748 : */
1749 2222 : if (alloc_flags & ALLOC_NO_WATERMARKS)
1750 0 : set_page_pfmemalloc(page);
1751 : else
1752 44763 : clear_page_pfmemalloc(page);
1753 2222 : }
1754 :
1755 : /*
1756 : * Go through the free lists for the given migratetype and remove
1757 : * the smallest available page from the freelists
1758 : */
1759 : static __always_inline
1760 : struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1761 : int migratetype)
1762 : {
1763 : unsigned int current_order;
1764 : struct free_area *area;
1765 : struct page *page;
1766 :
1767 : /* Find a page of the appropriate size in the preferred list */
1768 9388 : for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1769 4690 : area = &(zone->free_area[current_order]);
1770 4690 : page = get_page_from_free_area(area, migratetype);
1771 4690 : if (!page)
1772 2369 : continue;
1773 2321 : del_page_from_free_list(page, zone, current_order);
1774 4642 : expand(zone, page, order, current_order, migratetype);
1775 2321 : set_pcppage_migratetype(page, migratetype);
1776 : trace_mm_page_alloc_zone_locked(page, order, migratetype,
1777 : pcp_allowed_order(order) &&
1778 : migratetype < MIGRATE_PCPTYPES);
1779 : return page;
1780 : }
1781 :
1782 : return NULL;
1783 : }
1784 :
1785 :
1786 : /*
1787 : * This array describes the order lists are fallen back to when
1788 : * the free lists for the desirable migrate type are depleted
1789 : *
1790 : * The other migratetypes do not have fallbacks.
1791 : */
1792 : static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1793 : [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1794 : [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1795 : [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1796 : };
1797 :
1798 : #ifdef CONFIG_CMA
1799 : static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1800 : unsigned int order)
1801 : {
1802 : return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1803 : }
1804 : #else
1805 : static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1806 : unsigned int order) { return NULL; }
1807 : #endif
1808 :
1809 : /*
1810 : * Move the free pages in a range to the freelist tail of the requested type.
1811 : * Note that start_page and end_pages are not aligned on a pageblock
1812 : * boundary. If alignment is required, use move_freepages_block()
1813 : */
1814 0 : static int move_freepages(struct zone *zone,
1815 : unsigned long start_pfn, unsigned long end_pfn,
1816 : int migratetype, int *num_movable)
1817 : {
1818 : struct page *page;
1819 : unsigned long pfn;
1820 : unsigned int order;
1821 0 : int pages_moved = 0;
1822 :
1823 0 : for (pfn = start_pfn; pfn <= end_pfn;) {
1824 0 : page = pfn_to_page(pfn);
1825 0 : if (!PageBuddy(page)) {
1826 : /*
1827 : * We assume that pages that could be isolated for
1828 : * migration are movable. But we don't actually try
1829 : * isolating, as that would be expensive.
1830 : */
1831 0 : if (num_movable &&
1832 0 : (PageLRU(page) || __PageMovable(page)))
1833 0 : (*num_movable)++;
1834 0 : pfn++;
1835 0 : continue;
1836 : }
1837 :
1838 : /* Make sure we are not inadvertently changing nodes */
1839 : VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1840 : VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1841 :
1842 0 : order = buddy_order(page);
1843 0 : move_to_free_list(page, zone, order, migratetype);
1844 0 : pfn += 1 << order;
1845 0 : pages_moved += 1 << order;
1846 : }
1847 :
1848 0 : return pages_moved;
1849 : }
1850 :
1851 0 : int move_freepages_block(struct zone *zone, struct page *page,
1852 : int migratetype, int *num_movable)
1853 : {
1854 : unsigned long start_pfn, end_pfn, pfn;
1855 :
1856 0 : if (num_movable)
1857 0 : *num_movable = 0;
1858 :
1859 0 : pfn = page_to_pfn(page);
1860 0 : start_pfn = pageblock_start_pfn(pfn);
1861 0 : end_pfn = pageblock_end_pfn(pfn) - 1;
1862 :
1863 : /* Do not cross zone boundaries */
1864 0 : if (!zone_spans_pfn(zone, start_pfn))
1865 0 : start_pfn = pfn;
1866 0 : if (!zone_spans_pfn(zone, end_pfn))
1867 : return 0;
1868 :
1869 0 : return move_freepages(zone, start_pfn, end_pfn, migratetype,
1870 : num_movable);
1871 : }
1872 :
1873 : static void change_pageblock_range(struct page *pageblock_page,
1874 : int start_order, int migratetype)
1875 : {
1876 4 : int nr_pageblocks = 1 << (start_order - pageblock_order);
1877 :
1878 8 : while (nr_pageblocks--) {
1879 4 : set_pageblock_migratetype(pageblock_page, migratetype);
1880 4 : pageblock_page += pageblock_nr_pages;
1881 : }
1882 : }
1883 :
1884 : /*
1885 : * When we are falling back to another migratetype during allocation, try to
1886 : * steal extra free pages from the same pageblocks to satisfy further
1887 : * allocations, instead of polluting multiple pageblocks.
1888 : *
1889 : * If we are stealing a relatively large buddy page, it is likely there will
1890 : * be more free pages in the pageblock, so try to steal them all. For
1891 : * reclaimable and unmovable allocations, we steal regardless of page size,
1892 : * as fragmentation caused by those allocations polluting movable pageblocks
1893 : * is worse than movable allocations stealing from unmovable and reclaimable
1894 : * pageblocks.
1895 : */
1896 : static bool can_steal_fallback(unsigned int order, int start_mt)
1897 : {
1898 : /*
1899 : * Leaving this order check is intended, although there is
1900 : * relaxed order check in next check. The reason is that
1901 : * we can actually steal whole pageblock if this condition met,
1902 : * but, below check doesn't guarantee it and that is just heuristic
1903 : * so could be changed anytime.
1904 : */
1905 4 : if (order >= pageblock_order)
1906 : return true;
1907 :
1908 0 : if (order >= pageblock_order / 2 ||
1909 0 : start_mt == MIGRATE_RECLAIMABLE ||
1910 0 : start_mt == MIGRATE_UNMOVABLE ||
1911 : page_group_by_mobility_disabled)
1912 : return true;
1913 :
1914 : return false;
1915 : }
1916 :
1917 0 : static inline bool boost_watermark(struct zone *zone)
1918 : {
1919 : unsigned long max_boost;
1920 :
1921 0 : if (!watermark_boost_factor)
1922 : return false;
1923 : /*
1924 : * Don't bother in zones that are unlikely to produce results.
1925 : * On small machines, including kdump capture kernels running
1926 : * in a small area, boosting the watermark can cause an out of
1927 : * memory situation immediately.
1928 : */
1929 0 : if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1930 : return false;
1931 :
1932 0 : max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1933 : watermark_boost_factor, 10000);
1934 :
1935 : /*
1936 : * high watermark may be uninitialised if fragmentation occurs
1937 : * very early in boot so do not boost. We do not fall
1938 : * through and boost by pageblock_nr_pages as failing
1939 : * allocations that early means that reclaim is not going
1940 : * to help and it may even be impossible to reclaim the
1941 : * boosted watermark resulting in a hang.
1942 : */
1943 0 : if (!max_boost)
1944 : return false;
1945 :
1946 0 : max_boost = max(pageblock_nr_pages, max_boost);
1947 :
1948 0 : zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1949 : max_boost);
1950 :
1951 0 : return true;
1952 : }
1953 :
1954 : /*
1955 : * This function implements actual steal behaviour. If order is large enough,
1956 : * we can steal whole pageblock. If not, we first move freepages in this
1957 : * pageblock to our migratetype and determine how many already-allocated pages
1958 : * are there in the pageblock with a compatible migratetype. If at least half
1959 : * of pages are free or compatible, we can change migratetype of the pageblock
1960 : * itself, so pages freed in the future will be put on the correct free list.
1961 : */
1962 4 : static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 : unsigned int alloc_flags, int start_type, bool whole_block)
1964 : {
1965 8 : unsigned int current_order = buddy_order(page);
1966 : int free_pages, movable_pages, alike_pages;
1967 : int old_block_type;
1968 :
1969 8 : old_block_type = get_pageblock_migratetype(page);
1970 :
1971 : /*
1972 : * This can happen due to races and we want to prevent broken
1973 : * highatomic accounting.
1974 : */
1975 4 : if (is_migrate_highatomic(old_block_type))
1976 : goto single_page;
1977 :
1978 : /* Take ownership for orders >= pageblock_order */
1979 4 : if (current_order >= pageblock_order) {
1980 4 : change_pageblock_range(page, current_order, start_type);
1981 : goto single_page;
1982 : }
1983 :
1984 : /*
1985 : * Boost watermarks to increase reclaim pressure to reduce the
1986 : * likelihood of future fallbacks. Wake kswapd now as the node
1987 : * may be balanced overall and kswapd will not wake naturally.
1988 : */
1989 0 : if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1990 0 : set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1991 :
1992 : /* We are not allowed to try stealing from the whole block */
1993 0 : if (!whole_block)
1994 : goto single_page;
1995 :
1996 0 : free_pages = move_freepages_block(zone, page, start_type,
1997 : &movable_pages);
1998 : /*
1999 : * Determine how many pages are compatible with our allocation.
2000 : * For movable allocation, it's the number of movable pages which
2001 : * we just obtained. For other types it's a bit more tricky.
2002 : */
2003 0 : if (start_type == MIGRATE_MOVABLE) {
2004 0 : alike_pages = movable_pages;
2005 : } else {
2006 : /*
2007 : * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2008 : * to MOVABLE pageblock, consider all non-movable pages as
2009 : * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2010 : * vice versa, be conservative since we can't distinguish the
2011 : * exact migratetype of non-movable pages.
2012 : */
2013 0 : if (old_block_type == MIGRATE_MOVABLE)
2014 0 : alike_pages = pageblock_nr_pages
2015 0 : - (free_pages + movable_pages);
2016 : else
2017 : alike_pages = 0;
2018 : }
2019 :
2020 : /* moving whole block can fail due to zone boundary conditions */
2021 0 : if (!free_pages)
2022 : goto single_page;
2023 :
2024 : /*
2025 : * If a sufficient number of pages in the block are either free or of
2026 : * comparable migratability as our allocation, claim the whole block.
2027 : */
2028 0 : if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2029 : page_group_by_mobility_disabled)
2030 0 : set_pageblock_migratetype(page, start_type);
2031 :
2032 0 : return;
2033 :
2034 : single_page:
2035 4 : move_to_free_list(page, zone, current_order, start_type);
2036 : }
2037 :
2038 : /*
2039 : * Check whether there is a suitable fallback freepage with requested order.
2040 : * If only_stealable is true, this function returns fallback_mt only if
2041 : * we can steal other freepages all together. This would help to reduce
2042 : * fragmentation due to mixed migratetype pages in one pageblock.
2043 : */
2044 4 : int find_suitable_fallback(struct free_area *area, unsigned int order,
2045 : int migratetype, bool only_stealable, bool *can_steal)
2046 : {
2047 : int i;
2048 : int fallback_mt;
2049 :
2050 4 : if (area->nr_free == 0)
2051 : return -1;
2052 :
2053 4 : *can_steal = false;
2054 8 : for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2055 8 : fallback_mt = fallbacks[migratetype][i];
2056 8 : if (free_area_empty(area, fallback_mt))
2057 4 : continue;
2058 :
2059 4 : if (can_steal_fallback(order, migratetype))
2060 4 : *can_steal = true;
2061 :
2062 4 : if (!only_stealable)
2063 : return fallback_mt;
2064 :
2065 0 : if (*can_steal)
2066 : return fallback_mt;
2067 : }
2068 :
2069 : return -1;
2070 : }
2071 :
2072 : /*
2073 : * Reserve a pageblock for exclusive use of high-order atomic allocations if
2074 : * there are no empty page blocks that contain a page with a suitable order
2075 : */
2076 0 : static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2077 : unsigned int alloc_order)
2078 : {
2079 : int mt;
2080 : unsigned long max_managed, flags;
2081 :
2082 : /*
2083 : * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2084 : * Check is race-prone but harmless.
2085 : */
2086 0 : max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2087 0 : if (zone->nr_reserved_highatomic >= max_managed)
2088 : return;
2089 :
2090 0 : spin_lock_irqsave(&zone->lock, flags);
2091 :
2092 : /* Recheck the nr_reserved_highatomic limit under the lock */
2093 0 : if (zone->nr_reserved_highatomic >= max_managed)
2094 : goto out_unlock;
2095 :
2096 : /* Yoink! */
2097 0 : mt = get_pageblock_migratetype(page);
2098 : /* Only reserve normal pageblocks (i.e., they can merge with others) */
2099 0 : if (migratetype_is_mergeable(mt)) {
2100 0 : zone->nr_reserved_highatomic += pageblock_nr_pages;
2101 0 : set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2102 0 : move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2103 : }
2104 :
2105 : out_unlock:
2106 0 : spin_unlock_irqrestore(&zone->lock, flags);
2107 : }
2108 :
2109 : /*
2110 : * Used when an allocation is about to fail under memory pressure. This
2111 : * potentially hurts the reliability of high-order allocations when under
2112 : * intense memory pressure but failed atomic allocations should be easier
2113 : * to recover from than an OOM.
2114 : *
2115 : * If @force is true, try to unreserve a pageblock even though highatomic
2116 : * pageblock is exhausted.
2117 : */
2118 0 : static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2119 : bool force)
2120 : {
2121 0 : struct zonelist *zonelist = ac->zonelist;
2122 : unsigned long flags;
2123 : struct zoneref *z;
2124 : struct zone *zone;
2125 : struct page *page;
2126 : int order;
2127 : bool ret;
2128 :
2129 0 : for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2130 : ac->nodemask) {
2131 : /*
2132 : * Preserve at least one pageblock unless memory pressure
2133 : * is really high.
2134 : */
2135 0 : if (!force && zone->nr_reserved_highatomic <=
2136 : pageblock_nr_pages)
2137 0 : continue;
2138 :
2139 0 : spin_lock_irqsave(&zone->lock, flags);
2140 0 : for (order = 0; order <= MAX_ORDER; order++) {
2141 0 : struct free_area *area = &(zone->free_area[order]);
2142 :
2143 0 : page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2144 0 : if (!page)
2145 0 : continue;
2146 :
2147 : /*
2148 : * In page freeing path, migratetype change is racy so
2149 : * we can counter several free pages in a pageblock
2150 : * in this loop although we changed the pageblock type
2151 : * from highatomic to ac->migratetype. So we should
2152 : * adjust the count once.
2153 : */
2154 0 : if (is_migrate_highatomic_page(page)) {
2155 : /*
2156 : * It should never happen but changes to
2157 : * locking could inadvertently allow a per-cpu
2158 : * drain to add pages to MIGRATE_HIGHATOMIC
2159 : * while unreserving so be safe and watch for
2160 : * underflows.
2161 : */
2162 0 : zone->nr_reserved_highatomic -= min(
2163 : pageblock_nr_pages,
2164 : zone->nr_reserved_highatomic);
2165 : }
2166 :
2167 : /*
2168 : * Convert to ac->migratetype and avoid the normal
2169 : * pageblock stealing heuristics. Minimally, the caller
2170 : * is doing the work and needs the pages. More
2171 : * importantly, if the block was always converted to
2172 : * MIGRATE_UNMOVABLE or another type then the number
2173 : * of pageblocks that cannot be completely freed
2174 : * may increase.
2175 : */
2176 0 : set_pageblock_migratetype(page, ac->migratetype);
2177 0 : ret = move_freepages_block(zone, page, ac->migratetype,
2178 : NULL);
2179 0 : if (ret) {
2180 0 : spin_unlock_irqrestore(&zone->lock, flags);
2181 0 : return ret;
2182 : }
2183 : }
2184 0 : spin_unlock_irqrestore(&zone->lock, flags);
2185 : }
2186 :
2187 : return false;
2188 : }
2189 :
2190 : /*
2191 : * Try finding a free buddy page on the fallback list and put it on the free
2192 : * list of requested migratetype, possibly along with other pages from the same
2193 : * block, depending on fragmentation avoidance heuristics. Returns true if
2194 : * fallback was found so that __rmqueue_smallest() can grab it.
2195 : *
2196 : * The use of signed ints for order and current_order is a deliberate
2197 : * deviation from the rest of this file, to make the for loop
2198 : * condition simpler.
2199 : */
2200 : static __always_inline bool
2201 : __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2202 : unsigned int alloc_flags)
2203 : {
2204 : struct free_area *area;
2205 : int current_order;
2206 4 : int min_order = order;
2207 : struct page *page;
2208 : int fallback_mt;
2209 : bool can_steal;
2210 :
2211 : /*
2212 : * Do not steal pages from freelists belonging to other pageblocks
2213 : * i.e. orders < pageblock_order. If there are no local zones free,
2214 : * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2215 : */
2216 : if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2217 : min_order = pageblock_order;
2218 :
2219 : /*
2220 : * Find the largest available free page in the other list. This roughly
2221 : * approximates finding the pageblock with the most free pages, which
2222 : * would be too costly to do exactly.
2223 : */
2224 8 : for (current_order = MAX_ORDER; current_order >= min_order;
2225 0 : --current_order) {
2226 4 : area = &(zone->free_area[current_order]);
2227 4 : fallback_mt = find_suitable_fallback(area, current_order,
2228 : start_migratetype, false, &can_steal);
2229 4 : if (fallback_mt == -1)
2230 0 : continue;
2231 :
2232 : /*
2233 : * We cannot steal all free pages from the pageblock and the
2234 : * requested migratetype is movable. In that case it's better to
2235 : * steal and split the smallest available page instead of the
2236 : * largest available page, because even if the next movable
2237 : * allocation falls back into a different pageblock than this
2238 : * one, it won't cause permanent fragmentation.
2239 : */
2240 4 : if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2241 0 : && current_order > order)
2242 : goto find_smallest;
2243 :
2244 : goto do_steal;
2245 : }
2246 :
2247 : return false;
2248 :
2249 : find_smallest:
2250 0 : for (current_order = order; current_order <= MAX_ORDER;
2251 0 : current_order++) {
2252 0 : area = &(zone->free_area[current_order]);
2253 0 : fallback_mt = find_suitable_fallback(area, current_order,
2254 : start_migratetype, false, &can_steal);
2255 0 : if (fallback_mt != -1)
2256 : break;
2257 : }
2258 :
2259 : /*
2260 : * This should not happen - we already found a suitable fallback
2261 : * when looking for the largest page.
2262 : */
2263 : VM_BUG_ON(current_order > MAX_ORDER);
2264 :
2265 : do_steal:
2266 4 : page = get_page_from_free_area(area, fallback_mt);
2267 :
2268 4 : steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2269 : can_steal);
2270 :
2271 4 : trace_mm_page_alloc_extfrag(page, order, current_order,
2272 : start_migratetype, fallback_mt);
2273 :
2274 : return true;
2275 :
2276 : }
2277 :
2278 : /*
2279 : * Do the hard work of removing an element from the buddy allocator.
2280 : * Call me with the zone->lock already held.
2281 : */
2282 : static __always_inline struct page *
2283 : __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2284 : unsigned int alloc_flags)
2285 : {
2286 : struct page *page;
2287 :
2288 : if (IS_ENABLED(CONFIG_CMA)) {
2289 : /*
2290 : * Balance movable allocations between regular and CMA areas by
2291 : * allocating from CMA when over half of the zone's free memory
2292 : * is in the CMA area.
2293 : */
2294 : if (alloc_flags & ALLOC_CMA &&
2295 : zone_page_state(zone, NR_FREE_CMA_PAGES) >
2296 : zone_page_state(zone, NR_FREE_PAGES) / 2) {
2297 : page = __rmqueue_cma_fallback(zone, order);
2298 : if (page)
2299 : return page;
2300 : }
2301 : }
2302 : retry:
2303 2325 : page = __rmqueue_smallest(zone, order, migratetype);
2304 2325 : if (unlikely(!page)) {
2305 4 : if (alloc_flags & ALLOC_CMA)
2306 0 : page = __rmqueue_cma_fallback(zone, order);
2307 :
2308 8 : if (!page && __rmqueue_fallback(zone, order, migratetype,
2309 : alloc_flags))
2310 : goto retry;
2311 : }
2312 : return page;
2313 : }
2314 :
2315 : /*
2316 : * Obtain a specified number of elements from the buddy allocator, all under
2317 : * a single hold of the lock, for efficiency. Add them to the supplied list.
2318 : * Returns the number of new pages which were placed at *list.
2319 : */
2320 53 : static int rmqueue_bulk(struct zone *zone, unsigned int order,
2321 : unsigned long count, struct list_head *list,
2322 : int migratetype, unsigned int alloc_flags)
2323 : {
2324 : unsigned long flags;
2325 : int i;
2326 :
2327 53 : spin_lock_irqsave(&zone->lock, flags);
2328 2374 : for (i = 0; i < count; ++i) {
2329 2321 : struct page *page = __rmqueue(zone, order, migratetype,
2330 : alloc_flags);
2331 2321 : if (unlikely(page == NULL))
2332 : break;
2333 :
2334 : /*
2335 : * Split buddy pages returned by expand() are received here in
2336 : * physical page order. The page is added to the tail of
2337 : * caller's list. From the callers perspective, the linked list
2338 : * is ordered by page number under some conditions. This is
2339 : * useful for IO devices that can forward direction from the
2340 : * head, thus also in the physical page order. This is useful
2341 : * for IO devices that can merge IO requests if the physical
2342 : * pages are ordered properly.
2343 : */
2344 4642 : list_add_tail(&page->pcp_list, list);
2345 : if (is_migrate_cma(get_pcppage_migratetype(page)))
2346 : __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2347 : -(1 << order));
2348 : }
2349 :
2350 106 : __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2351 106 : spin_unlock_irqrestore(&zone->lock, flags);
2352 :
2353 53 : return i;
2354 : }
2355 :
2356 : #ifdef CONFIG_NUMA
2357 : /*
2358 : * Called from the vmstat counter updater to drain pagesets of this
2359 : * currently executing processor on remote nodes after they have
2360 : * expired.
2361 : */
2362 : void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2363 : {
2364 : int to_drain, batch;
2365 :
2366 : batch = READ_ONCE(pcp->batch);
2367 : to_drain = min(pcp->count, batch);
2368 : if (to_drain > 0) {
2369 : spin_lock(&pcp->lock);
2370 : free_pcppages_bulk(zone, to_drain, pcp, 0);
2371 : spin_unlock(&pcp->lock);
2372 : }
2373 : }
2374 : #endif
2375 :
2376 : /*
2377 : * Drain pcplists of the indicated processor and zone.
2378 : */
2379 0 : static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2380 : {
2381 : struct per_cpu_pages *pcp;
2382 :
2383 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2384 0 : if (pcp->count) {
2385 0 : spin_lock(&pcp->lock);
2386 0 : free_pcppages_bulk(zone, pcp->count, pcp, 0);
2387 0 : spin_unlock(&pcp->lock);
2388 : }
2389 0 : }
2390 :
2391 : /*
2392 : * Drain pcplists of all zones on the indicated processor.
2393 : */
2394 0 : static void drain_pages(unsigned int cpu)
2395 : {
2396 : struct zone *zone;
2397 :
2398 0 : for_each_populated_zone(zone) {
2399 0 : drain_pages_zone(cpu, zone);
2400 : }
2401 0 : }
2402 :
2403 : /*
2404 : * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2405 : */
2406 0 : void drain_local_pages(struct zone *zone)
2407 : {
2408 0 : int cpu = smp_processor_id();
2409 :
2410 0 : if (zone)
2411 0 : drain_pages_zone(cpu, zone);
2412 : else
2413 0 : drain_pages(cpu);
2414 0 : }
2415 :
2416 : /*
2417 : * The implementation of drain_all_pages(), exposing an extra parameter to
2418 : * drain on all cpus.
2419 : *
2420 : * drain_all_pages() is optimized to only execute on cpus where pcplists are
2421 : * not empty. The check for non-emptiness can however race with a free to
2422 : * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2423 : * that need the guarantee that every CPU has drained can disable the
2424 : * optimizing racy check.
2425 : */
2426 0 : static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2427 : {
2428 : int cpu;
2429 :
2430 : /*
2431 : * Allocate in the BSS so we won't require allocation in
2432 : * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2433 : */
2434 : static cpumask_t cpus_with_pcps;
2435 :
2436 : /*
2437 : * Do not drain if one is already in progress unless it's specific to
2438 : * a zone. Such callers are primarily CMA and memory hotplug and need
2439 : * the drain to be complete when the call returns.
2440 : */
2441 0 : if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2442 0 : if (!zone)
2443 : return;
2444 0 : mutex_lock(&pcpu_drain_mutex);
2445 : }
2446 :
2447 : /*
2448 : * We don't care about racing with CPU hotplug event
2449 : * as offline notification will cause the notified
2450 : * cpu to drain that CPU pcps and on_each_cpu_mask
2451 : * disables preemption as part of its processing
2452 : */
2453 0 : for_each_online_cpu(cpu) {
2454 : struct per_cpu_pages *pcp;
2455 : struct zone *z;
2456 0 : bool has_pcps = false;
2457 :
2458 0 : if (force_all_cpus) {
2459 : /*
2460 : * The pcp.count check is racy, some callers need a
2461 : * guarantee that no cpu is missed.
2462 : */
2463 : has_pcps = true;
2464 0 : } else if (zone) {
2465 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2466 0 : if (pcp->count)
2467 0 : has_pcps = true;
2468 : } else {
2469 0 : for_each_populated_zone(z) {
2470 0 : pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2471 0 : if (pcp->count) {
2472 : has_pcps = true;
2473 : break;
2474 : }
2475 : }
2476 : }
2477 :
2478 0 : if (has_pcps)
2479 0 : cpumask_set_cpu(cpu, &cpus_with_pcps);
2480 : else
2481 : cpumask_clear_cpu(cpu, &cpus_with_pcps);
2482 : }
2483 :
2484 0 : for_each_cpu(cpu, &cpus_with_pcps) {
2485 0 : if (zone)
2486 0 : drain_pages_zone(cpu, zone);
2487 : else
2488 0 : drain_pages(cpu);
2489 : }
2490 :
2491 0 : mutex_unlock(&pcpu_drain_mutex);
2492 : }
2493 :
2494 : /*
2495 : * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2496 : *
2497 : * When zone parameter is non-NULL, spill just the single zone's pages.
2498 : */
2499 0 : void drain_all_pages(struct zone *zone)
2500 : {
2501 0 : __drain_all_pages(zone, false);
2502 0 : }
2503 :
2504 : #ifdef CONFIG_HIBERNATION
2505 :
2506 : /*
2507 : * Touch the watchdog for every WD_PAGE_COUNT pages.
2508 : */
2509 : #define WD_PAGE_COUNT (128*1024)
2510 :
2511 : void mark_free_pages(struct zone *zone)
2512 : {
2513 : unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2514 : unsigned long flags;
2515 : unsigned int order, t;
2516 : struct page *page;
2517 :
2518 : if (zone_is_empty(zone))
2519 : return;
2520 :
2521 : spin_lock_irqsave(&zone->lock, flags);
2522 :
2523 : max_zone_pfn = zone_end_pfn(zone);
2524 : for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2525 : if (pfn_valid(pfn)) {
2526 : page = pfn_to_page(pfn);
2527 :
2528 : if (!--page_count) {
2529 : touch_nmi_watchdog();
2530 : page_count = WD_PAGE_COUNT;
2531 : }
2532 :
2533 : if (page_zone(page) != zone)
2534 : continue;
2535 :
2536 : if (!swsusp_page_is_forbidden(page))
2537 : swsusp_unset_page_free(page);
2538 : }
2539 :
2540 : for_each_migratetype_order(order, t) {
2541 : list_for_each_entry(page,
2542 : &zone->free_area[order].free_list[t], buddy_list) {
2543 : unsigned long i;
2544 :
2545 : pfn = page_to_pfn(page);
2546 : for (i = 0; i < (1UL << order); i++) {
2547 : if (!--page_count) {
2548 : touch_nmi_watchdog();
2549 : page_count = WD_PAGE_COUNT;
2550 : }
2551 : swsusp_set_page_free(pfn_to_page(pfn + i));
2552 : }
2553 : }
2554 : }
2555 : spin_unlock_irqrestore(&zone->lock, flags);
2556 : }
2557 : #endif /* CONFIG_PM */
2558 :
2559 44236 : static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2560 : unsigned int order)
2561 : {
2562 : int migratetype;
2563 :
2564 44236 : if (!free_pages_prepare(page, order, FPI_NONE))
2565 : return false;
2566 :
2567 44236 : migratetype = get_pfnblock_migratetype(page, pfn);
2568 88472 : set_pcppage_migratetype(page, migratetype);
2569 44236 : return true;
2570 : }
2571 :
2572 : static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2573 : bool free_high)
2574 : {
2575 : int min_nr_free, max_nr_free;
2576 :
2577 : /* Free everything if batch freeing high-order pages. */
2578 4 : if (unlikely(free_high))
2579 : return pcp->count;
2580 :
2581 : /* Check for PCP disabled or boot pageset */
2582 4 : if (unlikely(high < batch))
2583 : return 1;
2584 :
2585 : /* Leave at least pcp->batch pages on the list */
2586 4 : min_nr_free = batch;
2587 4 : max_nr_free = high - batch;
2588 :
2589 : /*
2590 : * Double the number of pages freed each time there is subsequent
2591 : * freeing of pages without any allocation.
2592 : */
2593 4 : batch <<= pcp->free_factor;
2594 4 : if (batch < max_nr_free)
2595 4 : pcp->free_factor++;
2596 4 : batch = clamp(batch, min_nr_free, max_nr_free);
2597 :
2598 : return batch;
2599 : }
2600 :
2601 44236 : static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2602 : bool free_high)
2603 : {
2604 44236 : int high = READ_ONCE(pcp->high);
2605 :
2606 44236 : if (unlikely(!high || free_high))
2607 : return 0;
2608 :
2609 88472 : if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2610 : return high;
2611 :
2612 : /*
2613 : * If reclaim is active, limit the number of pages that can be
2614 : * stored on pcp lists
2615 : */
2616 0 : return min(READ_ONCE(pcp->batch) << 2, high);
2617 : }
2618 :
2619 44236 : static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2620 : struct page *page, int migratetype,
2621 : unsigned int order)
2622 : {
2623 : int high;
2624 : int pindex;
2625 : bool free_high;
2626 :
2627 88472 : __count_vm_events(PGFREE, 1 << order);
2628 88472 : pindex = order_to_pindex(migratetype, order);
2629 88472 : list_add(&page->pcp_list, &pcp->lists[pindex]);
2630 44236 : pcp->count += 1 << order;
2631 :
2632 : /*
2633 : * As high-order pages other than THP's stored on PCP can contribute
2634 : * to fragmentation, limit the number stored when PCP is heavily
2635 : * freeing without allocation. The remainder after bulk freeing
2636 : * stops will be drained from vmstat refresh context.
2637 : */
2638 44236 : free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2639 :
2640 44236 : high = nr_pcp_high(pcp, zone, free_high);
2641 44236 : if (pcp->count >= high) {
2642 4 : int batch = READ_ONCE(pcp->batch);
2643 :
2644 8 : free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2645 : }
2646 44236 : }
2647 :
2648 : /*
2649 : * Free a pcp page
2650 : */
2651 44236 : void free_unref_page(struct page *page, unsigned int order)
2652 : {
2653 : unsigned long __maybe_unused UP_flags;
2654 : struct per_cpu_pages *pcp;
2655 : struct zone *zone;
2656 44236 : unsigned long pfn = page_to_pfn(page);
2657 : int migratetype;
2658 :
2659 44236 : if (!free_unref_page_prepare(page, pfn, order))
2660 : return;
2661 :
2662 : /*
2663 : * We only track unmovable, reclaimable and movable on pcp lists.
2664 : * Place ISOLATE pages on the isolated list because they are being
2665 : * offlined but treat HIGHATOMIC as movable pages so we can get those
2666 : * areas back if necessary. Otherwise, we may have to free
2667 : * excessively into the page allocator
2668 : */
2669 88472 : migratetype = get_pcppage_migratetype(page);
2670 44236 : if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2671 : if (unlikely(is_migrate_isolate(migratetype))) {
2672 : free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2673 : return;
2674 : }
2675 0 : migratetype = MIGRATE_MOVABLE;
2676 : }
2677 :
2678 44236 : zone = page_zone(page);
2679 44236 : pcp_trylock_prepare(UP_flags);
2680 88472 : pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2681 44236 : if (pcp) {
2682 44236 : free_unref_page_commit(zone, pcp, page, migratetype, order);
2683 88472 : pcp_spin_unlock(pcp);
2684 : } else {
2685 0 : free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2686 : }
2687 44236 : pcp_trylock_finish(UP_flags);
2688 : }
2689 :
2690 : /*
2691 : * Free a list of 0-order pages
2692 : */
2693 0 : void free_unref_page_list(struct list_head *list)
2694 : {
2695 : unsigned long __maybe_unused UP_flags;
2696 : struct page *page, *next;
2697 0 : struct per_cpu_pages *pcp = NULL;
2698 0 : struct zone *locked_zone = NULL;
2699 0 : int batch_count = 0;
2700 : int migratetype;
2701 :
2702 : /* Prepare pages for freeing */
2703 0 : list_for_each_entry_safe(page, next, list, lru) {
2704 0 : unsigned long pfn = page_to_pfn(page);
2705 0 : if (!free_unref_page_prepare(page, pfn, 0)) {
2706 0 : list_del(&page->lru);
2707 0 : continue;
2708 : }
2709 :
2710 : /*
2711 : * Free isolated pages directly to the allocator, see
2712 : * comment in free_unref_page.
2713 : */
2714 : migratetype = get_pcppage_migratetype(page);
2715 : if (unlikely(is_migrate_isolate(migratetype))) {
2716 : list_del(&page->lru);
2717 : free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2718 : continue;
2719 : }
2720 : }
2721 :
2722 0 : list_for_each_entry_safe(page, next, list, lru) {
2723 0 : struct zone *zone = page_zone(page);
2724 :
2725 0 : list_del(&page->lru);
2726 0 : migratetype = get_pcppage_migratetype(page);
2727 :
2728 : /*
2729 : * Either different zone requiring a different pcp lock or
2730 : * excessive lock hold times when freeing a large list of
2731 : * pages.
2732 : */
2733 0 : if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2734 0 : if (pcp) {
2735 0 : pcp_spin_unlock(pcp);
2736 0 : pcp_trylock_finish(UP_flags);
2737 : }
2738 :
2739 0 : batch_count = 0;
2740 :
2741 : /*
2742 : * trylock is necessary as pages may be getting freed
2743 : * from IRQ or SoftIRQ context after an IO completion.
2744 : */
2745 0 : pcp_trylock_prepare(UP_flags);
2746 0 : pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2747 0 : if (unlikely(!pcp)) {
2748 0 : pcp_trylock_finish(UP_flags);
2749 0 : free_one_page(zone, page, page_to_pfn(page),
2750 : 0, migratetype, FPI_NONE);
2751 0 : locked_zone = NULL;
2752 0 : continue;
2753 : }
2754 : locked_zone = zone;
2755 : }
2756 :
2757 : /*
2758 : * Non-isolated types over MIGRATE_PCPTYPES get added
2759 : * to the MIGRATE_MOVABLE pcp list.
2760 : */
2761 0 : if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2762 0 : migratetype = MIGRATE_MOVABLE;
2763 :
2764 0 : trace_mm_page_free_batched(page);
2765 0 : free_unref_page_commit(zone, pcp, page, migratetype, 0);
2766 0 : batch_count++;
2767 : }
2768 :
2769 0 : if (pcp) {
2770 0 : pcp_spin_unlock(pcp);
2771 0 : pcp_trylock_finish(UP_flags);
2772 : }
2773 0 : }
2774 :
2775 : /*
2776 : * split_page takes a non-compound higher-order page, and splits it into
2777 : * n (1<<order) sub-pages: page[0..n]
2778 : * Each sub-page must be freed individually.
2779 : *
2780 : * Note: this is probably too low level an operation for use in drivers.
2781 : * Please consult with lkml before using this in your driver.
2782 : */
2783 0 : void split_page(struct page *page, unsigned int order)
2784 : {
2785 : int i;
2786 :
2787 : VM_BUG_ON_PAGE(PageCompound(page), page);
2788 : VM_BUG_ON_PAGE(!page_count(page), page);
2789 :
2790 0 : for (i = 1; i < (1 << order); i++)
2791 0 : set_page_refcounted(page + i);
2792 0 : split_page_owner(page, 1 << order);
2793 0 : split_page_memcg(page, 1 << order);
2794 0 : }
2795 : EXPORT_SYMBOL_GPL(split_page);
2796 :
2797 0 : int __isolate_free_page(struct page *page, unsigned int order)
2798 : {
2799 0 : struct zone *zone = page_zone(page);
2800 0 : int mt = get_pageblock_migratetype(page);
2801 :
2802 0 : if (!is_migrate_isolate(mt)) {
2803 : unsigned long watermark;
2804 : /*
2805 : * Obey watermarks as if the page was being allocated. We can
2806 : * emulate a high-order watermark check with a raised order-0
2807 : * watermark, because we already know our high-order page
2808 : * exists.
2809 : */
2810 0 : watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2811 0 : if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2812 : return 0;
2813 :
2814 0 : __mod_zone_freepage_state(zone, -(1UL << order), mt);
2815 : }
2816 :
2817 0 : del_page_from_free_list(page, zone, order);
2818 :
2819 : /*
2820 : * Set the pageblock if the isolated page is at least half of a
2821 : * pageblock
2822 : */
2823 0 : if (order >= pageblock_order - 1) {
2824 0 : struct page *endpage = page + (1 << order) - 1;
2825 0 : for (; page < endpage; page += pageblock_nr_pages) {
2826 0 : int mt = get_pageblock_migratetype(page);
2827 : /*
2828 : * Only change normal pageblocks (i.e., they can merge
2829 : * with others)
2830 : */
2831 0 : if (migratetype_is_mergeable(mt))
2832 0 : set_pageblock_migratetype(page,
2833 : MIGRATE_MOVABLE);
2834 : }
2835 : }
2836 :
2837 0 : return 1UL << order;
2838 : }
2839 :
2840 : /**
2841 : * __putback_isolated_page - Return a now-isolated page back where we got it
2842 : * @page: Page that was isolated
2843 : * @order: Order of the isolated page
2844 : * @mt: The page's pageblock's migratetype
2845 : *
2846 : * This function is meant to return a page pulled from the free lists via
2847 : * __isolate_free_page back to the free lists they were pulled from.
2848 : */
2849 0 : void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2850 : {
2851 0 : struct zone *zone = page_zone(page);
2852 :
2853 : /* zone lock should be held when this function is called */
2854 : lockdep_assert_held(&zone->lock);
2855 :
2856 : /* Return isolated page to tail of freelist. */
2857 0 : __free_one_page(page, page_to_pfn(page), zone, order, mt,
2858 : FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2859 0 : }
2860 :
2861 : /*
2862 : * Update NUMA hit/miss statistics
2863 : */
2864 : static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2865 : long nr_account)
2866 : {
2867 : #ifdef CONFIG_NUMA
2868 : enum numa_stat_item local_stat = NUMA_LOCAL;
2869 :
2870 : /* skip numa counters update if numa stats is disabled */
2871 : if (!static_branch_likely(&vm_numa_stat_key))
2872 : return;
2873 :
2874 : if (zone_to_nid(z) != numa_node_id())
2875 : local_stat = NUMA_OTHER;
2876 :
2877 : if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2878 : __count_numa_events(z, NUMA_HIT, nr_account);
2879 : else {
2880 : __count_numa_events(z, NUMA_MISS, nr_account);
2881 : __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2882 : }
2883 : __count_numa_events(z, local_stat, nr_account);
2884 : #endif
2885 : }
2886 :
2887 : static __always_inline
2888 : struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2889 : unsigned int order, unsigned int alloc_flags,
2890 : int migratetype)
2891 : {
2892 : struct page *page;
2893 : unsigned long flags;
2894 :
2895 : do {
2896 0 : page = NULL;
2897 0 : spin_lock_irqsave(&zone->lock, flags);
2898 : /*
2899 : * order-0 request can reach here when the pcplist is skipped
2900 : * due to non-CMA allocation context. HIGHATOMIC area is
2901 : * reserved for high-order atomic allocation, so order-0
2902 : * request should skip it.
2903 : */
2904 0 : if (alloc_flags & ALLOC_HIGHATOMIC)
2905 : page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2906 0 : if (!page) {
2907 0 : page = __rmqueue(zone, order, migratetype, alloc_flags);
2908 :
2909 : /*
2910 : * If the allocation fails, allow OOM handling access
2911 : * to HIGHATOMIC reserves as failing now is worse than
2912 : * failing a high-order atomic allocation in the
2913 : * future.
2914 : */
2915 0 : if (!page && (alloc_flags & ALLOC_OOM))
2916 : page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2917 :
2918 0 : if (!page) {
2919 0 : spin_unlock_irqrestore(&zone->lock, flags);
2920 : return NULL;
2921 : }
2922 : }
2923 0 : __mod_zone_freepage_state(zone, -(1 << order),
2924 : get_pcppage_migratetype(page));
2925 0 : spin_unlock_irqrestore(&zone->lock, flags);
2926 0 : } while (check_new_pages(page, order));
2927 :
2928 0 : __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2929 : zone_statistics(preferred_zone, zone, 1);
2930 :
2931 : return page;
2932 : }
2933 :
2934 : /* Remove page from the per-cpu list, caller must protect the list */
2935 : static inline
2936 44763 : struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2937 : int migratetype,
2938 : unsigned int alloc_flags,
2939 : struct per_cpu_pages *pcp,
2940 : struct list_head *list)
2941 : {
2942 : struct page *page;
2943 :
2944 : do {
2945 44763 : if (list_empty(list)) {
2946 53 : int batch = READ_ONCE(pcp->batch);
2947 : int alloced;
2948 :
2949 : /*
2950 : * Scale batch relative to order if batch implies
2951 : * free pages can be stored on the PCP. Batch can
2952 : * be 1 for small zones or for boot pagesets which
2953 : * should never store free pages as the pages may
2954 : * belong to arbitrary zones.
2955 : */
2956 53 : if (batch > 1)
2957 42 : batch = max(batch >> order, 2);
2958 53 : alloced = rmqueue_bulk(zone, order,
2959 : batch, list,
2960 : migratetype, alloc_flags);
2961 :
2962 53 : pcp->count += alloced << order;
2963 53 : if (unlikely(list_empty(list)))
2964 : return NULL;
2965 : }
2966 :
2967 44763 : page = list_first_entry(list, struct page, pcp_list);
2968 89526 : list_del(&page->pcp_list);
2969 44763 : pcp->count -= 1 << order;
2970 44763 : } while (check_new_pages(page, order));
2971 :
2972 : return page;
2973 : }
2974 :
2975 : /* Lock and remove page from the per-cpu list */
2976 2222 : static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2977 : struct zone *zone, unsigned int order,
2978 : int migratetype, unsigned int alloc_flags)
2979 : {
2980 : struct per_cpu_pages *pcp;
2981 : struct list_head *list;
2982 : struct page *page;
2983 : unsigned long __maybe_unused UP_flags;
2984 :
2985 : /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2986 2222 : pcp_trylock_prepare(UP_flags);
2987 4444 : pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2988 2222 : if (!pcp) {
2989 0 : pcp_trylock_finish(UP_flags);
2990 : return NULL;
2991 : }
2992 :
2993 : /*
2994 : * On allocation, reduce the number of pages that are batch freed.
2995 : * See nr_pcp_free() where free_factor is increased for subsequent
2996 : * frees.
2997 : */
2998 2222 : pcp->free_factor >>= 1;
2999 4444 : list = &pcp->lists[order_to_pindex(migratetype, order)];
3000 2222 : page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3001 4444 : pcp_spin_unlock(pcp);
3002 4444 : pcp_trylock_finish(UP_flags);
3003 2222 : if (page) {
3004 4444 : __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3005 : zone_statistics(preferred_zone, zone, 1);
3006 : }
3007 : return page;
3008 : }
3009 :
3010 : /*
3011 : * Allocate a page from the given zone.
3012 : * Use pcplists for THP or "cheap" high-order allocations.
3013 : */
3014 :
3015 : /*
3016 : * Do not instrument rmqueue() with KMSAN. This function may call
3017 : * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3018 : * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3019 : * may call rmqueue() again, which will result in a deadlock.
3020 : */
3021 : __no_sanitize_memory
3022 : static inline
3023 2222 : struct page *rmqueue(struct zone *preferred_zone,
3024 : struct zone *zone, unsigned int order,
3025 : gfp_t gfp_flags, unsigned int alloc_flags,
3026 : int migratetype)
3027 : {
3028 : struct page *page;
3029 :
3030 : /*
3031 : * We most definitely don't want callers attempting to
3032 : * allocate greater than order-1 page units with __GFP_NOFAIL.
3033 : */
3034 2222 : WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3035 :
3036 2222 : if (likely(pcp_allowed_order(order))) {
3037 : /*
3038 : * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3039 : * we need to skip it when CMA area isn't allowed.
3040 : */
3041 : if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3042 : migratetype != MIGRATE_MOVABLE) {
3043 2222 : page = rmqueue_pcplist(preferred_zone, zone, order,
3044 : migratetype, alloc_flags);
3045 2222 : if (likely(page))
3046 : goto out;
3047 : }
3048 : }
3049 :
3050 : page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3051 : migratetype);
3052 :
3053 : out:
3054 : /* Separate test+clear to avoid unnecessary atomics */
3055 4444 : if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3056 0 : clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3057 0 : wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3058 : }
3059 :
3060 : VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3061 2222 : return page;
3062 : }
3063 :
3064 : #ifdef CONFIG_FAIL_PAGE_ALLOC
3065 :
3066 : static struct {
3067 : struct fault_attr attr;
3068 :
3069 : bool ignore_gfp_highmem;
3070 : bool ignore_gfp_reclaim;
3071 : u32 min_order;
3072 : } fail_page_alloc = {
3073 : .attr = FAULT_ATTR_INITIALIZER,
3074 : .ignore_gfp_reclaim = true,
3075 : .ignore_gfp_highmem = true,
3076 : .min_order = 1,
3077 : };
3078 :
3079 : static int __init setup_fail_page_alloc(char *str)
3080 : {
3081 : return setup_fault_attr(&fail_page_alloc.attr, str);
3082 : }
3083 : __setup("fail_page_alloc=", setup_fail_page_alloc);
3084 :
3085 : static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3086 : {
3087 : int flags = 0;
3088 :
3089 : if (order < fail_page_alloc.min_order)
3090 : return false;
3091 : if (gfp_mask & __GFP_NOFAIL)
3092 : return false;
3093 : if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3094 : return false;
3095 : if (fail_page_alloc.ignore_gfp_reclaim &&
3096 : (gfp_mask & __GFP_DIRECT_RECLAIM))
3097 : return false;
3098 :
3099 : /* See comment in __should_failslab() */
3100 : if (gfp_mask & __GFP_NOWARN)
3101 : flags |= FAULT_NOWARN;
3102 :
3103 : return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3104 : }
3105 :
3106 : #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3107 :
3108 : static int __init fail_page_alloc_debugfs(void)
3109 : {
3110 : umode_t mode = S_IFREG | 0600;
3111 : struct dentry *dir;
3112 :
3113 : dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3114 : &fail_page_alloc.attr);
3115 :
3116 : debugfs_create_bool("ignore-gfp-wait", mode, dir,
3117 : &fail_page_alloc.ignore_gfp_reclaim);
3118 : debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3119 : &fail_page_alloc.ignore_gfp_highmem);
3120 : debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3121 :
3122 : return 0;
3123 : }
3124 :
3125 : late_initcall(fail_page_alloc_debugfs);
3126 :
3127 : #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3128 :
3129 : #else /* CONFIG_FAIL_PAGE_ALLOC */
3130 :
3131 : static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3132 : {
3133 : return false;
3134 : }
3135 :
3136 : #endif /* CONFIG_FAIL_PAGE_ALLOC */
3137 :
3138 2818 : noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3139 : {
3140 2818 : return __should_fail_alloc_page(gfp_mask, order);
3141 : }
3142 : ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3143 :
3144 : static inline long __zone_watermark_unusable_free(struct zone *z,
3145 : unsigned int order, unsigned int alloc_flags)
3146 : {
3147 2820 : long unusable_free = (1 << order) - 1;
3148 :
3149 : /*
3150 : * If the caller does not have rights to reserves below the min
3151 : * watermark then subtract the high-atomic reserves. This will
3152 : * over-estimate the size of the atomic reserve but it avoids a search.
3153 : */
3154 2820 : if (likely(!(alloc_flags & ALLOC_RESERVES)))
3155 2820 : unusable_free += z->nr_reserved_highatomic;
3156 :
3157 : #ifdef CONFIG_CMA
3158 : /* If allocation can't use CMA areas don't use free CMA pages */
3159 : if (!(alloc_flags & ALLOC_CMA))
3160 : unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3161 : #endif
3162 :
3163 : return unusable_free;
3164 : }
3165 :
3166 : /*
3167 : * Return true if free base pages are above 'mark'. For high-order checks it
3168 : * will return true of the order-0 watermark is reached and there is at least
3169 : * one free page of a suitable size. Checking now avoids taking the zone lock
3170 : * to check in the allocation paths if no pages are free.
3171 : */
3172 107 : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3173 : int highest_zoneidx, unsigned int alloc_flags,
3174 : long free_pages)
3175 : {
3176 107 : long min = mark;
3177 : int o;
3178 :
3179 : /* free_pages may go negative - that's OK */
3180 214 : free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3181 :
3182 107 : if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3183 : /*
3184 : * __GFP_HIGH allows access to 50% of the min reserve as well
3185 : * as OOM.
3186 : */
3187 0 : if (alloc_flags & ALLOC_MIN_RESERVE) {
3188 0 : min -= min / 2;
3189 :
3190 : /*
3191 : * Non-blocking allocations (e.g. GFP_ATOMIC) can
3192 : * access more reserves than just __GFP_HIGH. Other
3193 : * non-blocking allocations requests such as GFP_NOWAIT
3194 : * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3195 : * access to the min reserve.
3196 : */
3197 0 : if (alloc_flags & ALLOC_NON_BLOCK)
3198 0 : min -= min / 4;
3199 : }
3200 :
3201 : /*
3202 : * OOM victims can try even harder than the normal reserve
3203 : * users on the grounds that it's definitely going to be in
3204 : * the exit path shortly and free memory. Any allocation it
3205 : * makes during the free path will be small and short-lived.
3206 : */
3207 0 : if (alloc_flags & ALLOC_OOM)
3208 0 : min -= min / 2;
3209 : }
3210 :
3211 : /*
3212 : * Check watermarks for an order-0 allocation request. If these
3213 : * are not met, then a high-order request also cannot go ahead
3214 : * even if a suitable page happened to be free.
3215 : */
3216 107 : if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3217 : return false;
3218 :
3219 : /* If this is an order-0 request then the watermark is fine */
3220 107 : if (!order)
3221 : return true;
3222 :
3223 : /* For a high-order request, check at least one suitable page is free */
3224 105 : for (o = order; o <= MAX_ORDER; o++) {
3225 105 : struct free_area *area = &z->free_area[o];
3226 : int mt;
3227 :
3228 105 : if (!area->nr_free)
3229 0 : continue;
3230 :
3231 61 : for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3232 166 : if (!free_area_empty(area, mt))
3233 : return true;
3234 : }
3235 :
3236 : #ifdef CONFIG_CMA
3237 : if ((alloc_flags & ALLOC_CMA) &&
3238 : !free_area_empty(area, MIGRATE_CMA)) {
3239 : return true;
3240 : }
3241 : #endif
3242 0 : if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3243 0 : !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3244 : return true;
3245 : }
3246 : }
3247 : return false;
3248 : }
3249 :
3250 0 : bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3251 : int highest_zoneidx, unsigned int alloc_flags)
3252 : {
3253 0 : return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3254 0 : zone_page_state(z, NR_FREE_PAGES));
3255 : }
3256 :
3257 2818 : static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3258 : unsigned long mark, int highest_zoneidx,
3259 : unsigned int alloc_flags, gfp_t gfp_mask)
3260 : {
3261 : long free_pages;
3262 :
3263 2818 : free_pages = zone_page_state(z, NR_FREE_PAGES);
3264 :
3265 : /*
3266 : * Fast check for order-0 only. If this fails then the reserves
3267 : * need to be calculated.
3268 : */
3269 2818 : if (!order) {
3270 : long usable_free;
3271 : long reserved;
3272 :
3273 2713 : usable_free = free_pages;
3274 5426 : reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3275 :
3276 : /* reserved may over estimate high-atomic reserves. */
3277 2713 : usable_free -= min(usable_free, reserved);
3278 2713 : if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3279 : return true;
3280 : }
3281 :
3282 105 : if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3283 : free_pages))
3284 : return true;
3285 :
3286 : /*
3287 : * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3288 : * when checking the min watermark. The min watermark is the
3289 : * point where boosting is ignored so that kswapd is woken up
3290 : * when below the low watermark.
3291 : */
3292 0 : if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3293 : && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3294 0 : mark = z->_watermark[WMARK_MIN];
3295 0 : return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3296 : alloc_flags, free_pages);
3297 : }
3298 :
3299 : return false;
3300 : }
3301 :
3302 2 : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3303 : unsigned long mark, int highest_zoneidx)
3304 : {
3305 2 : long free_pages = zone_page_state(z, NR_FREE_PAGES);
3306 :
3307 2 : if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3308 0 : free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3309 :
3310 2 : return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3311 : free_pages);
3312 : }
3313 :
3314 : #ifdef CONFIG_NUMA
3315 : int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3316 :
3317 : static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3318 : {
3319 : return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3320 : node_reclaim_distance;
3321 : }
3322 : #else /* CONFIG_NUMA */
3323 : static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3324 : {
3325 : return true;
3326 : }
3327 : #endif /* CONFIG_NUMA */
3328 :
3329 : /*
3330 : * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3331 : * fragmentation is subtle. If the preferred zone was HIGHMEM then
3332 : * premature use of a lower zone may cause lowmem pressure problems that
3333 : * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3334 : * probably too small. It only makes sense to spread allocations to avoid
3335 : * fragmentation between the Normal and DMA32 zones.
3336 : */
3337 : static inline unsigned int
3338 : alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3339 : {
3340 : unsigned int alloc_flags;
3341 :
3342 : /*
3343 : * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3344 : * to save a branch.
3345 : */
3346 2222 : alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3347 :
3348 : #ifdef CONFIG_ZONE_DMA32
3349 : if (!zone)
3350 : return alloc_flags;
3351 :
3352 : if (zone_idx(zone) != ZONE_NORMAL)
3353 : return alloc_flags;
3354 :
3355 : /*
3356 : * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3357 : * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3358 : * on UMA that if Normal is populated then so is DMA32.
3359 : */
3360 : BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3361 : if (nr_online_nodes > 1 && !populated_zone(--zone))
3362 : return alloc_flags;
3363 :
3364 : alloc_flags |= ALLOC_NOFRAGMENT;
3365 : #endif /* CONFIG_ZONE_DMA32 */
3366 : return alloc_flags;
3367 : }
3368 :
3369 : /* Must be called after current_gfp_context() which can change gfp_mask */
3370 : static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3371 : unsigned int alloc_flags)
3372 : {
3373 : #ifdef CONFIG_CMA
3374 : if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3375 : alloc_flags |= ALLOC_CMA;
3376 : #endif
3377 : return alloc_flags;
3378 : }
3379 :
3380 : /*
3381 : * get_page_from_freelist goes through the zonelist trying to allocate
3382 : * a page.
3383 : */
3384 : static struct page *
3385 2222 : get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 : const struct alloc_context *ac)
3387 : {
3388 : struct zoneref *z;
3389 : struct zone *zone;
3390 2222 : struct pglist_data *last_pgdat = NULL;
3391 2222 : bool last_pgdat_dirty_ok = false;
3392 : bool no_fallback;
3393 :
3394 : retry:
3395 : /*
3396 : * Scan zonelist, looking for a zone with enough free.
3397 : * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3398 : */
3399 2222 : no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3400 2222 : z = ac->preferred_zoneref;
3401 2222 : for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3402 : ac->nodemask) {
3403 : struct page *page;
3404 : unsigned long mark;
3405 :
3406 : if (cpusets_enabled() &&
3407 : (alloc_flags & ALLOC_CPUSET) &&
3408 : !__cpuset_zone_allowed(zone, gfp_mask))
3409 : continue;
3410 : /*
3411 : * When allocating a page cache page for writing, we
3412 : * want to get it from a node that is within its dirty
3413 : * limit, such that no single node holds more than its
3414 : * proportional share of globally allowed dirty pages.
3415 : * The dirty limits take into account the node's
3416 : * lowmem reserves and high watermark so that kswapd
3417 : * should be able to balance it without having to
3418 : * write pages from its LRU list.
3419 : *
3420 : * XXX: For now, allow allocations to potentially
3421 : * exceed the per-node dirty limit in the slowpath
3422 : * (spread_dirty_pages unset) before going into reclaim,
3423 : * which is important when on a NUMA setup the allowed
3424 : * nodes are together not big enough to reach the
3425 : * global limit. The proper fix for these situations
3426 : * will require awareness of nodes in the
3427 : * dirty-throttling and the flusher threads.
3428 : */
3429 2222 : if (ac->spread_dirty_pages) {
3430 0 : if (last_pgdat != zone->zone_pgdat) {
3431 0 : last_pgdat = zone->zone_pgdat;
3432 0 : last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3433 : }
3434 :
3435 0 : if (!last_pgdat_dirty_ok)
3436 0 : continue;
3437 : }
3438 :
3439 : if (no_fallback && nr_online_nodes > 1 &&
3440 : zone != ac->preferred_zoneref->zone) {
3441 : int local_nid;
3442 :
3443 : /*
3444 : * If moving to a remote node, retry but allow
3445 : * fragmenting fallbacks. Locality is more important
3446 : * than fragmentation avoidance.
3447 : */
3448 : local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3449 : if (zone_to_nid(zone) != local_nid) {
3450 : alloc_flags &= ~ALLOC_NOFRAGMENT;
3451 : goto retry;
3452 : }
3453 : }
3454 :
3455 2222 : mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3456 4444 : if (!zone_watermark_fast(zone, order, mark,
3457 2222 : ac->highest_zoneidx, alloc_flags,
3458 : gfp_mask)) {
3459 : int ret;
3460 :
3461 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3462 : /*
3463 : * Watermark failed for this zone, but see if we can
3464 : * grow this zone if it contains deferred pages.
3465 : */
3466 : if (deferred_pages_enabled()) {
3467 : if (_deferred_grow_zone(zone, order))
3468 : goto try_this_zone;
3469 : }
3470 : #endif
3471 : /* Checked here to keep the fast path fast */
3472 : BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3473 0 : if (alloc_flags & ALLOC_NO_WATERMARKS)
3474 : goto try_this_zone;
3475 :
3476 : if (!node_reclaim_enabled() ||
3477 : !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3478 0 : continue;
3479 :
3480 : ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3481 : switch (ret) {
3482 : case NODE_RECLAIM_NOSCAN:
3483 : /* did not scan */
3484 : continue;
3485 : case NODE_RECLAIM_FULL:
3486 : /* scanned but unreclaimable */
3487 : continue;
3488 : default:
3489 : /* did we reclaim enough */
3490 : if (zone_watermark_ok(zone, order, mark,
3491 : ac->highest_zoneidx, alloc_flags))
3492 : goto try_this_zone;
3493 :
3494 : continue;
3495 : }
3496 : }
3497 :
3498 : try_this_zone:
3499 2222 : page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3500 : gfp_mask, alloc_flags, ac->migratetype);
3501 2222 : if (page) {
3502 2222 : prep_new_page(page, order, gfp_mask, alloc_flags);
3503 :
3504 : /*
3505 : * If this is a high-order atomic allocation then check
3506 : * if the pageblock should be reserved for the future
3507 : */
3508 2222 : if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3509 0 : reserve_highatomic_pageblock(page, zone, order);
3510 :
3511 : return page;
3512 : } else {
3513 : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3514 : /* Try again if zone has deferred pages */
3515 : if (deferred_pages_enabled()) {
3516 : if (_deferred_grow_zone(zone, order))
3517 : goto try_this_zone;
3518 : }
3519 : #endif
3520 : }
3521 : }
3522 :
3523 : /*
3524 : * It's possible on a UMA machine to get through all zones that are
3525 : * fragmented. If avoiding fragmentation, reset and try again.
3526 : */
3527 : if (no_fallback) {
3528 : alloc_flags &= ~ALLOC_NOFRAGMENT;
3529 : goto retry;
3530 : }
3531 :
3532 : return NULL;
3533 : }
3534 :
3535 0 : static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3536 : {
3537 0 : unsigned int filter = SHOW_MEM_FILTER_NODES;
3538 :
3539 : /*
3540 : * This documents exceptions given to allocations in certain
3541 : * contexts that are allowed to allocate outside current's set
3542 : * of allowed nodes.
3543 : */
3544 0 : if (!(gfp_mask & __GFP_NOMEMALLOC))
3545 0 : if (tsk_is_oom_victim(current) ||
3546 0 : (current->flags & (PF_MEMALLOC | PF_EXITING)))
3547 : filter &= ~SHOW_MEM_FILTER_NODES;
3548 0 : if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3549 0 : filter &= ~SHOW_MEM_FILTER_NODES;
3550 :
3551 0 : __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3552 0 : }
3553 :
3554 0 : void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3555 : {
3556 : struct va_format vaf;
3557 : va_list args;
3558 : static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3559 :
3560 0 : if ((gfp_mask & __GFP_NOWARN) ||
3561 0 : !__ratelimit(&nopage_rs) ||
3562 0 : ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3563 0 : return;
3564 :
3565 0 : va_start(args, fmt);
3566 0 : vaf.fmt = fmt;
3567 0 : vaf.va = &args;
3568 0 : pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3569 : current->comm, &vaf, gfp_mask, &gfp_mask,
3570 : nodemask_pr_args(nodemask));
3571 0 : va_end(args);
3572 :
3573 : cpuset_print_current_mems_allowed();
3574 0 : pr_cont("\n");
3575 0 : dump_stack();
3576 0 : warn_alloc_show_mem(gfp_mask, nodemask);
3577 : }
3578 :
3579 : static inline struct page *
3580 0 : __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3581 : unsigned int alloc_flags,
3582 : const struct alloc_context *ac)
3583 : {
3584 : struct page *page;
3585 :
3586 0 : page = get_page_from_freelist(gfp_mask, order,
3587 0 : alloc_flags|ALLOC_CPUSET, ac);
3588 : /*
3589 : * fallback to ignore cpuset restriction if our nodes
3590 : * are depleted
3591 : */
3592 0 : if (!page)
3593 0 : page = get_page_from_freelist(gfp_mask, order,
3594 : alloc_flags, ac);
3595 :
3596 0 : return page;
3597 : }
3598 :
3599 : static inline struct page *
3600 0 : __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3601 : const struct alloc_context *ac, unsigned long *did_some_progress)
3602 : {
3603 0 : struct oom_control oc = {
3604 0 : .zonelist = ac->zonelist,
3605 0 : .nodemask = ac->nodemask,
3606 : .memcg = NULL,
3607 : .gfp_mask = gfp_mask,
3608 : .order = order,
3609 : };
3610 : struct page *page;
3611 :
3612 0 : *did_some_progress = 0;
3613 :
3614 : /*
3615 : * Acquire the oom lock. If that fails, somebody else is
3616 : * making progress for us.
3617 : */
3618 0 : if (!mutex_trylock(&oom_lock)) {
3619 0 : *did_some_progress = 1;
3620 0 : schedule_timeout_uninterruptible(1);
3621 0 : return NULL;
3622 : }
3623 :
3624 : /*
3625 : * Go through the zonelist yet one more time, keep very high watermark
3626 : * here, this is only to catch a parallel oom killing, we must fail if
3627 : * we're still under heavy pressure. But make sure that this reclaim
3628 : * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3629 : * allocation which will never fail due to oom_lock already held.
3630 : */
3631 0 : page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3632 : ~__GFP_DIRECT_RECLAIM, order,
3633 : ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3634 0 : if (page)
3635 : goto out;
3636 :
3637 : /* Coredumps can quickly deplete all memory reserves */
3638 0 : if (current->flags & PF_DUMPCORE)
3639 : goto out;
3640 : /* The OOM killer will not help higher order allocs */
3641 0 : if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 : goto out;
3643 : /*
3644 : * We have already exhausted all our reclaim opportunities without any
3645 : * success so it is time to admit defeat. We will skip the OOM killer
3646 : * because it is very likely that the caller has a more reasonable
3647 : * fallback than shooting a random task.
3648 : *
3649 : * The OOM killer may not free memory on a specific node.
3650 : */
3651 0 : if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3652 : goto out;
3653 : /* The OOM killer does not needlessly kill tasks for lowmem */
3654 : if (ac->highest_zoneidx < ZONE_NORMAL)
3655 : goto out;
3656 0 : if (pm_suspended_storage())
3657 : goto out;
3658 : /*
3659 : * XXX: GFP_NOFS allocations should rather fail than rely on
3660 : * other request to make a forward progress.
3661 : * We are in an unfortunate situation where out_of_memory cannot
3662 : * do much for this context but let's try it to at least get
3663 : * access to memory reserved if the current task is killed (see
3664 : * out_of_memory). Once filesystems are ready to handle allocation
3665 : * failures more gracefully we should just bail out here.
3666 : */
3667 :
3668 : /* Exhausted what can be done so it's blame time */
3669 0 : if (out_of_memory(&oc) ||
3670 0 : WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3671 0 : *did_some_progress = 1;
3672 :
3673 : /*
3674 : * Help non-failing allocations by giving them access to memory
3675 : * reserves
3676 : */
3677 0 : if (gfp_mask & __GFP_NOFAIL)
3678 0 : page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3679 : ALLOC_NO_WATERMARKS, ac);
3680 : }
3681 : out:
3682 0 : mutex_unlock(&oom_lock);
3683 0 : return page;
3684 : }
3685 :
3686 : /*
3687 : * Maximum number of compaction retries with a progress before OOM
3688 : * killer is consider as the only way to move forward.
3689 : */
3690 : #define MAX_COMPACT_RETRIES 16
3691 :
3692 : #ifdef CONFIG_COMPACTION
3693 : /* Try memory compaction for high-order allocations before reclaim */
3694 : static struct page *
3695 0 : __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3696 : unsigned int alloc_flags, const struct alloc_context *ac,
3697 : enum compact_priority prio, enum compact_result *compact_result)
3698 : {
3699 0 : struct page *page = NULL;
3700 : unsigned long pflags;
3701 : unsigned int noreclaim_flag;
3702 :
3703 0 : if (!order)
3704 : return NULL;
3705 :
3706 0 : psi_memstall_enter(&pflags);
3707 : delayacct_compact_start();
3708 0 : noreclaim_flag = memalloc_noreclaim_save();
3709 :
3710 0 : *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3711 : prio, &page);
3712 :
3713 0 : memalloc_noreclaim_restore(noreclaim_flag);
3714 0 : psi_memstall_leave(&pflags);
3715 : delayacct_compact_end();
3716 :
3717 0 : if (*compact_result == COMPACT_SKIPPED)
3718 : return NULL;
3719 : /*
3720 : * At least in one zone compaction wasn't deferred or skipped, so let's
3721 : * count a compaction stall
3722 : */
3723 0 : count_vm_event(COMPACTSTALL);
3724 :
3725 : /* Prep a captured page if available */
3726 0 : if (page)
3727 0 : prep_new_page(page, order, gfp_mask, alloc_flags);
3728 :
3729 : /* Try get a page from the freelist if available */
3730 0 : if (!page)
3731 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3732 :
3733 0 : if (page) {
3734 0 : struct zone *zone = page_zone(page);
3735 :
3736 0 : zone->compact_blockskip_flush = false;
3737 0 : compaction_defer_reset(zone, order, true);
3738 0 : count_vm_event(COMPACTSUCCESS);
3739 0 : return page;
3740 : }
3741 :
3742 : /*
3743 : * It's bad if compaction run occurs and fails. The most likely reason
3744 : * is that pages exist, but not enough to satisfy watermarks.
3745 : */
3746 0 : count_vm_event(COMPACTFAIL);
3747 :
3748 0 : cond_resched();
3749 :
3750 0 : return NULL;
3751 : }
3752 :
3753 : static inline bool
3754 0 : should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3755 : enum compact_result compact_result,
3756 : enum compact_priority *compact_priority,
3757 : int *compaction_retries)
3758 : {
3759 0 : int max_retries = MAX_COMPACT_RETRIES;
3760 : int min_priority;
3761 0 : bool ret = false;
3762 0 : int retries = *compaction_retries;
3763 0 : enum compact_priority priority = *compact_priority;
3764 :
3765 0 : if (!order)
3766 : return false;
3767 :
3768 0 : if (fatal_signal_pending(current))
3769 : return false;
3770 :
3771 0 : if (compaction_made_progress(compact_result))
3772 0 : (*compaction_retries)++;
3773 :
3774 : /*
3775 : * compaction considers all the zone as desperately out of memory
3776 : * so it doesn't really make much sense to retry except when the
3777 : * failure could be caused by insufficient priority
3778 : */
3779 0 : if (compaction_failed(compact_result))
3780 : goto check_priority;
3781 :
3782 : /*
3783 : * compaction was skipped because there are not enough order-0 pages
3784 : * to work with, so we retry only if it looks like reclaim can help.
3785 : */
3786 0 : if (compaction_needs_reclaim(compact_result)) {
3787 0 : ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3788 0 : goto out;
3789 : }
3790 :
3791 : /*
3792 : * make sure the compaction wasn't deferred or didn't bail out early
3793 : * due to locks contention before we declare that we should give up.
3794 : * But the next retry should use a higher priority if allowed, so
3795 : * we don't just keep bailing out endlessly.
3796 : */
3797 0 : if (compaction_withdrawn(compact_result)) {
3798 : goto check_priority;
3799 : }
3800 :
3801 : /*
3802 : * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3803 : * costly ones because they are de facto nofail and invoke OOM
3804 : * killer to move on while costly can fail and users are ready
3805 : * to cope with that. 1/4 retries is rather arbitrary but we
3806 : * would need much more detailed feedback from compaction to
3807 : * make a better decision.
3808 : */
3809 0 : if (order > PAGE_ALLOC_COSTLY_ORDER)
3810 0 : max_retries /= 4;
3811 0 : if (*compaction_retries <= max_retries) {
3812 : ret = true;
3813 : goto out;
3814 : }
3815 :
3816 : /*
3817 : * Make sure there are attempts at the highest priority if we exhausted
3818 : * all retries or failed at the lower priorities.
3819 : */
3820 : check_priority:
3821 0 : min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3822 0 : MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3823 :
3824 0 : if (*compact_priority > min_priority) {
3825 0 : (*compact_priority)--;
3826 0 : *compaction_retries = 0;
3827 0 : ret = true;
3828 : }
3829 : out:
3830 0 : trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3831 0 : return ret;
3832 : }
3833 : #else
3834 : static inline struct page *
3835 : __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3836 : unsigned int alloc_flags, const struct alloc_context *ac,
3837 : enum compact_priority prio, enum compact_result *compact_result)
3838 : {
3839 : *compact_result = COMPACT_SKIPPED;
3840 : return NULL;
3841 : }
3842 :
3843 : static inline bool
3844 : should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3845 : enum compact_result compact_result,
3846 : enum compact_priority *compact_priority,
3847 : int *compaction_retries)
3848 : {
3849 : struct zone *zone;
3850 : struct zoneref *z;
3851 :
3852 : if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3853 : return false;
3854 :
3855 : /*
3856 : * There are setups with compaction disabled which would prefer to loop
3857 : * inside the allocator rather than hit the oom killer prematurely.
3858 : * Let's give them a good hope and keep retrying while the order-0
3859 : * watermarks are OK.
3860 : */
3861 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3862 : ac->highest_zoneidx, ac->nodemask) {
3863 : if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3864 : ac->highest_zoneidx, alloc_flags))
3865 : return true;
3866 : }
3867 : return false;
3868 : }
3869 : #endif /* CONFIG_COMPACTION */
3870 :
3871 : #ifdef CONFIG_LOCKDEP
3872 : static struct lockdep_map __fs_reclaim_map =
3873 : STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3874 :
3875 : static bool __need_reclaim(gfp_t gfp_mask)
3876 : {
3877 : /* no reclaim without waiting on it */
3878 : if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3879 : return false;
3880 :
3881 : /* this guy won't enter reclaim */
3882 : if (current->flags & PF_MEMALLOC)
3883 : return false;
3884 :
3885 : if (gfp_mask & __GFP_NOLOCKDEP)
3886 : return false;
3887 :
3888 : return true;
3889 : }
3890 :
3891 : void __fs_reclaim_acquire(unsigned long ip)
3892 : {
3893 : lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3894 : }
3895 :
3896 : void __fs_reclaim_release(unsigned long ip)
3897 : {
3898 : lock_release(&__fs_reclaim_map, ip);
3899 : }
3900 :
3901 : void fs_reclaim_acquire(gfp_t gfp_mask)
3902 : {
3903 : gfp_mask = current_gfp_context(gfp_mask);
3904 :
3905 : if (__need_reclaim(gfp_mask)) {
3906 : if (gfp_mask & __GFP_FS)
3907 : __fs_reclaim_acquire(_RET_IP_);
3908 :
3909 : #ifdef CONFIG_MMU_NOTIFIER
3910 : lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3911 : lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3912 : #endif
3913 :
3914 : }
3915 : }
3916 : EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3917 :
3918 : void fs_reclaim_release(gfp_t gfp_mask)
3919 : {
3920 : gfp_mask = current_gfp_context(gfp_mask);
3921 :
3922 : if (__need_reclaim(gfp_mask)) {
3923 : if (gfp_mask & __GFP_FS)
3924 : __fs_reclaim_release(_RET_IP_);
3925 : }
3926 : }
3927 : EXPORT_SYMBOL_GPL(fs_reclaim_release);
3928 : #endif
3929 :
3930 : /*
3931 : * Zonelists may change due to hotplug during allocation. Detect when zonelists
3932 : * have been rebuilt so allocation retries. Reader side does not lock and
3933 : * retries the allocation if zonelist changes. Writer side is protected by the
3934 : * embedded spin_lock.
3935 : */
3936 : static DEFINE_SEQLOCK(zonelist_update_seq);
3937 :
3938 : static unsigned int zonelist_iter_begin(void)
3939 : {
3940 : if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3941 : return read_seqbegin(&zonelist_update_seq);
3942 :
3943 : return 0;
3944 : }
3945 :
3946 : static unsigned int check_retry_zonelist(unsigned int seq)
3947 : {
3948 : if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3949 : return read_seqretry(&zonelist_update_seq, seq);
3950 :
3951 : return seq;
3952 : }
3953 :
3954 : /* Perform direct synchronous page reclaim */
3955 : static unsigned long
3956 0 : __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3957 : const struct alloc_context *ac)
3958 : {
3959 : unsigned int noreclaim_flag;
3960 : unsigned long progress;
3961 :
3962 0 : cond_resched();
3963 :
3964 : /* We now go into synchronous reclaim */
3965 : cpuset_memory_pressure_bump();
3966 0 : fs_reclaim_acquire(gfp_mask);
3967 0 : noreclaim_flag = memalloc_noreclaim_save();
3968 :
3969 0 : progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3970 : ac->nodemask);
3971 :
3972 0 : memalloc_noreclaim_restore(noreclaim_flag);
3973 0 : fs_reclaim_release(gfp_mask);
3974 :
3975 0 : cond_resched();
3976 :
3977 0 : return progress;
3978 : }
3979 :
3980 : /* The really slow allocator path where we enter direct reclaim */
3981 : static inline struct page *
3982 0 : __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3983 : unsigned int alloc_flags, const struct alloc_context *ac,
3984 : unsigned long *did_some_progress)
3985 : {
3986 0 : struct page *page = NULL;
3987 : unsigned long pflags;
3988 0 : bool drained = false;
3989 :
3990 0 : psi_memstall_enter(&pflags);
3991 0 : *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3992 0 : if (unlikely(!(*did_some_progress)))
3993 : goto out;
3994 :
3995 : retry:
3996 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997 :
3998 : /*
3999 : * If an allocation failed after direct reclaim, it could be because
4000 : * pages are pinned on the per-cpu lists or in high alloc reserves.
4001 : * Shrink them and try again
4002 : */
4003 0 : if (!page && !drained) {
4004 0 : unreserve_highatomic_pageblock(ac, false);
4005 0 : drain_all_pages(NULL);
4006 0 : drained = true;
4007 0 : goto retry;
4008 : }
4009 : out:
4010 0 : psi_memstall_leave(&pflags);
4011 :
4012 0 : return page;
4013 : }
4014 :
4015 0 : static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4016 : const struct alloc_context *ac)
4017 : {
4018 : struct zoneref *z;
4019 : struct zone *zone;
4020 0 : pg_data_t *last_pgdat = NULL;
4021 0 : enum zone_type highest_zoneidx = ac->highest_zoneidx;
4022 :
4023 0 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4024 : ac->nodemask) {
4025 0 : if (!managed_zone(zone))
4026 0 : continue;
4027 0 : if (last_pgdat != zone->zone_pgdat) {
4028 0 : wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4029 0 : last_pgdat = zone->zone_pgdat;
4030 : }
4031 : }
4032 0 : }
4033 :
4034 : static inline unsigned int
4035 0 : gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4036 : {
4037 0 : unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4038 :
4039 : /*
4040 : * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4041 : * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4042 : * to save two branches.
4043 : */
4044 : BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4045 : BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4046 :
4047 : /*
4048 : * The caller may dip into page reserves a bit more if the caller
4049 : * cannot run direct reclaim, or if the caller has realtime scheduling
4050 : * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4051 : * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4052 : */
4053 0 : alloc_flags |= (__force int)
4054 : (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4055 :
4056 0 : if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4057 : /*
4058 : * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4059 : * if it can't schedule.
4060 : */
4061 0 : if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4062 0 : alloc_flags |= ALLOC_NON_BLOCK;
4063 :
4064 0 : if (order > 0)
4065 0 : alloc_flags |= ALLOC_HIGHATOMIC;
4066 : }
4067 :
4068 : /*
4069 : * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4070 : * GFP_ATOMIC) rather than fail, see the comment for
4071 : * cpuset_node_allowed().
4072 : */
4073 0 : if (alloc_flags & ALLOC_MIN_RESERVE)
4074 0 : alloc_flags &= ~ALLOC_CPUSET;
4075 0 : } else if (unlikely(rt_task(current)) && in_task())
4076 0 : alloc_flags |= ALLOC_MIN_RESERVE;
4077 :
4078 0 : alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4079 :
4080 0 : return alloc_flags;
4081 : }
4082 :
4083 : static bool oom_reserves_allowed(struct task_struct *tsk)
4084 : {
4085 0 : if (!tsk_is_oom_victim(tsk))
4086 : return false;
4087 :
4088 : /*
4089 : * !MMU doesn't have oom reaper so give access to memory reserves
4090 : * only to the thread with TIF_MEMDIE set
4091 : */
4092 : if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4093 : return false;
4094 :
4095 : return true;
4096 : }
4097 :
4098 : /*
4099 : * Distinguish requests which really need access to full memory
4100 : * reserves from oom victims which can live with a portion of it
4101 : */
4102 0 : static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4103 : {
4104 0 : if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4105 : return 0;
4106 0 : if (gfp_mask & __GFP_MEMALLOC)
4107 : return ALLOC_NO_WATERMARKS;
4108 0 : if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4109 : return ALLOC_NO_WATERMARKS;
4110 0 : if (!in_interrupt()) {
4111 0 : if (current->flags & PF_MEMALLOC)
4112 : return ALLOC_NO_WATERMARKS;
4113 0 : else if (oom_reserves_allowed(current))
4114 : return ALLOC_OOM;
4115 : }
4116 :
4117 : return 0;
4118 : }
4119 :
4120 0 : bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4121 : {
4122 0 : return !!__gfp_pfmemalloc_flags(gfp_mask);
4123 : }
4124 :
4125 : /*
4126 : * Checks whether it makes sense to retry the reclaim to make a forward progress
4127 : * for the given allocation request.
4128 : *
4129 : * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4130 : * without success, or when we couldn't even meet the watermark if we
4131 : * reclaimed all remaining pages on the LRU lists.
4132 : *
4133 : * Returns true if a retry is viable or false to enter the oom path.
4134 : */
4135 : static inline bool
4136 0 : should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4137 : struct alloc_context *ac, int alloc_flags,
4138 : bool did_some_progress, int *no_progress_loops)
4139 : {
4140 : struct zone *zone;
4141 : struct zoneref *z;
4142 0 : bool ret = false;
4143 :
4144 : /*
4145 : * Costly allocations might have made a progress but this doesn't mean
4146 : * their order will become available due to high fragmentation so
4147 : * always increment the no progress counter for them
4148 : */
4149 0 : if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4150 0 : *no_progress_loops = 0;
4151 : else
4152 0 : (*no_progress_loops)++;
4153 :
4154 : /*
4155 : * Make sure we converge to OOM if we cannot make any progress
4156 : * several times in the row.
4157 : */
4158 0 : if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4159 : /* Before OOM, exhaust highatomic_reserve */
4160 0 : return unreserve_highatomic_pageblock(ac, true);
4161 : }
4162 :
4163 : /*
4164 : * Keep reclaiming pages while there is a chance this will lead
4165 : * somewhere. If none of the target zones can satisfy our allocation
4166 : * request even if all reclaimable pages are considered then we are
4167 : * screwed and have to go OOM.
4168 : */
4169 0 : for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4170 : ac->highest_zoneidx, ac->nodemask) {
4171 : unsigned long available;
4172 : unsigned long reclaimable;
4173 0 : unsigned long min_wmark = min_wmark_pages(zone);
4174 : bool wmark;
4175 :
4176 0 : available = reclaimable = zone_reclaimable_pages(zone);
4177 0 : available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4178 :
4179 : /*
4180 : * Would the allocation succeed if we reclaimed all
4181 : * reclaimable pages?
4182 : */
4183 0 : wmark = __zone_watermark_ok(zone, order, min_wmark,
4184 0 : ac->highest_zoneidx, alloc_flags, available);
4185 0 : trace_reclaim_retry_zone(z, order, reclaimable,
4186 : available, min_wmark, *no_progress_loops, wmark);
4187 0 : if (wmark) {
4188 : ret = true;
4189 : break;
4190 : }
4191 : }
4192 :
4193 : /*
4194 : * Memory allocation/reclaim might be called from a WQ context and the
4195 : * current implementation of the WQ concurrency control doesn't
4196 : * recognize that a particular WQ is congested if the worker thread is
4197 : * looping without ever sleeping. Therefore we have to do a short sleep
4198 : * here rather than calling cond_resched().
4199 : */
4200 0 : if (current->flags & PF_WQ_WORKER)
4201 0 : schedule_timeout_uninterruptible(1);
4202 : else
4203 0 : cond_resched();
4204 : return ret;
4205 : }
4206 :
4207 : static inline bool
4208 : check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4209 : {
4210 : /*
4211 : * It's possible that cpuset's mems_allowed and the nodemask from
4212 : * mempolicy don't intersect. This should be normally dealt with by
4213 : * policy_nodemask(), but it's possible to race with cpuset update in
4214 : * such a way the check therein was true, and then it became false
4215 : * before we got our cpuset_mems_cookie here.
4216 : * This assumes that for all allocations, ac->nodemask can come only
4217 : * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4218 : * when it does not intersect with the cpuset restrictions) or the
4219 : * caller can deal with a violated nodemask.
4220 : */
4221 : if (cpusets_enabled() && ac->nodemask &&
4222 : !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4223 : ac->nodemask = NULL;
4224 : return true;
4225 : }
4226 :
4227 : /*
4228 : * When updating a task's mems_allowed or mempolicy nodemask, it is
4229 : * possible to race with parallel threads in such a way that our
4230 : * allocation can fail while the mask is being updated. If we are about
4231 : * to fail, check if the cpuset changed during allocation and if so,
4232 : * retry.
4233 : */
4234 0 : if (read_mems_allowed_retry(cpuset_mems_cookie))
4235 : return true;
4236 :
4237 : return false;
4238 : }
4239 :
4240 : static inline struct page *
4241 0 : __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4242 : struct alloc_context *ac)
4243 : {
4244 0 : bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4245 0 : const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4246 0 : struct page *page = NULL;
4247 : unsigned int alloc_flags;
4248 : unsigned long did_some_progress;
4249 : enum compact_priority compact_priority;
4250 : enum compact_result compact_result;
4251 : int compaction_retries;
4252 : int no_progress_loops;
4253 : unsigned int cpuset_mems_cookie;
4254 : unsigned int zonelist_iter_cookie;
4255 : int reserve_flags;
4256 :
4257 : restart:
4258 0 : compaction_retries = 0;
4259 0 : no_progress_loops = 0;
4260 0 : compact_priority = DEF_COMPACT_PRIORITY;
4261 0 : cpuset_mems_cookie = read_mems_allowed_begin();
4262 0 : zonelist_iter_cookie = zonelist_iter_begin();
4263 :
4264 : /*
4265 : * The fast path uses conservative alloc_flags to succeed only until
4266 : * kswapd needs to be woken up, and to avoid the cost of setting up
4267 : * alloc_flags precisely. So we do that now.
4268 : */
4269 0 : alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4270 :
4271 : /*
4272 : * We need to recalculate the starting point for the zonelist iterator
4273 : * because we might have used different nodemask in the fast path, or
4274 : * there was a cpuset modification and we are retrying - otherwise we
4275 : * could end up iterating over non-eligible zones endlessly.
4276 : */
4277 0 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4278 : ac->highest_zoneidx, ac->nodemask);
4279 0 : if (!ac->preferred_zoneref->zone)
4280 : goto nopage;
4281 :
4282 : /*
4283 : * Check for insane configurations where the cpuset doesn't contain
4284 : * any suitable zone to satisfy the request - e.g. non-movable
4285 : * GFP_HIGHUSER allocations from MOVABLE nodes only.
4286 : */
4287 : if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4288 : struct zoneref *z = first_zones_zonelist(ac->zonelist,
4289 : ac->highest_zoneidx,
4290 : &cpuset_current_mems_allowed);
4291 : if (!z->zone)
4292 : goto nopage;
4293 : }
4294 :
4295 0 : if (alloc_flags & ALLOC_KSWAPD)
4296 0 : wake_all_kswapds(order, gfp_mask, ac);
4297 :
4298 : /*
4299 : * The adjusted alloc_flags might result in immediate success, so try
4300 : * that first
4301 : */
4302 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4303 0 : if (page)
4304 : goto got_pg;
4305 :
4306 : /*
4307 : * For costly allocations, try direct compaction first, as it's likely
4308 : * that we have enough base pages and don't need to reclaim. For non-
4309 : * movable high-order allocations, do that as well, as compaction will
4310 : * try prevent permanent fragmentation by migrating from blocks of the
4311 : * same migratetype.
4312 : * Don't try this for allocations that are allowed to ignore
4313 : * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4314 : */
4315 0 : if (can_direct_reclaim &&
4316 0 : (costly_order ||
4317 0 : (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4318 0 : && !gfp_pfmemalloc_allowed(gfp_mask)) {
4319 0 : page = __alloc_pages_direct_compact(gfp_mask, order,
4320 : alloc_flags, ac,
4321 : INIT_COMPACT_PRIORITY,
4322 : &compact_result);
4323 0 : if (page)
4324 : goto got_pg;
4325 :
4326 : /*
4327 : * Checks for costly allocations with __GFP_NORETRY, which
4328 : * includes some THP page fault allocations
4329 : */
4330 0 : if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4331 : /*
4332 : * If allocating entire pageblock(s) and compaction
4333 : * failed because all zones are below low watermarks
4334 : * or is prohibited because it recently failed at this
4335 : * order, fail immediately unless the allocator has
4336 : * requested compaction and reclaim retry.
4337 : *
4338 : * Reclaim is
4339 : * - potentially very expensive because zones are far
4340 : * below their low watermarks or this is part of very
4341 : * bursty high order allocations,
4342 : * - not guaranteed to help because isolate_freepages()
4343 : * may not iterate over freed pages as part of its
4344 : * linear scan, and
4345 : * - unlikely to make entire pageblocks free on its
4346 : * own.
4347 : */
4348 0 : if (compact_result == COMPACT_SKIPPED ||
4349 : compact_result == COMPACT_DEFERRED)
4350 : goto nopage;
4351 :
4352 : /*
4353 : * Looks like reclaim/compaction is worth trying, but
4354 : * sync compaction could be very expensive, so keep
4355 : * using async compaction.
4356 : */
4357 0 : compact_priority = INIT_COMPACT_PRIORITY;
4358 : }
4359 : }
4360 :
4361 : retry:
4362 : /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4363 0 : if (alloc_flags & ALLOC_KSWAPD)
4364 0 : wake_all_kswapds(order, gfp_mask, ac);
4365 :
4366 0 : reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4367 0 : if (reserve_flags)
4368 0 : alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4369 : (alloc_flags & ALLOC_KSWAPD);
4370 :
4371 : /*
4372 : * Reset the nodemask and zonelist iterators if memory policies can be
4373 : * ignored. These allocations are high priority and system rather than
4374 : * user oriented.
4375 : */
4376 0 : if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4377 0 : ac->nodemask = NULL;
4378 0 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4379 : ac->highest_zoneidx, ac->nodemask);
4380 : }
4381 :
4382 : /* Attempt with potentially adjusted zonelist and alloc_flags */
4383 0 : page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4384 0 : if (page)
4385 : goto got_pg;
4386 :
4387 : /* Caller is not willing to reclaim, we can't balance anything */
4388 0 : if (!can_direct_reclaim)
4389 : goto nopage;
4390 :
4391 : /* Avoid recursion of direct reclaim */
4392 0 : if (current->flags & PF_MEMALLOC)
4393 : goto nopage;
4394 :
4395 : /* Try direct reclaim and then allocating */
4396 0 : page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4397 : &did_some_progress);
4398 0 : if (page)
4399 : goto got_pg;
4400 :
4401 : /* Try direct compaction and then allocating */
4402 0 : page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4403 : compact_priority, &compact_result);
4404 0 : if (page)
4405 : goto got_pg;
4406 :
4407 : /* Do not loop if specifically requested */
4408 0 : if (gfp_mask & __GFP_NORETRY)
4409 : goto nopage;
4410 :
4411 : /*
4412 : * Do not retry costly high order allocations unless they are
4413 : * __GFP_RETRY_MAYFAIL
4414 : */
4415 0 : if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4416 : goto nopage;
4417 :
4418 0 : if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4419 : did_some_progress > 0, &no_progress_loops))
4420 : goto retry;
4421 :
4422 : /*
4423 : * It doesn't make any sense to retry for the compaction if the order-0
4424 : * reclaim is not able to make any progress because the current
4425 : * implementation of the compaction depends on the sufficient amount
4426 : * of free memory (see __compaction_suitable)
4427 : */
4428 0 : if (did_some_progress > 0 &&
4429 0 : should_compact_retry(ac, order, alloc_flags,
4430 : compact_result, &compact_priority,
4431 : &compaction_retries))
4432 : goto retry;
4433 :
4434 :
4435 : /*
4436 : * Deal with possible cpuset update races or zonelist updates to avoid
4437 : * a unnecessary OOM kill.
4438 : */
4439 0 : if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4440 0 : check_retry_zonelist(zonelist_iter_cookie))
4441 : goto restart;
4442 :
4443 : /* Reclaim has failed us, start killing things */
4444 0 : page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4445 0 : if (page)
4446 : goto got_pg;
4447 :
4448 : /* Avoid allocations with no watermarks from looping endlessly */
4449 0 : if (tsk_is_oom_victim(current) &&
4450 0 : (alloc_flags & ALLOC_OOM ||
4451 0 : (gfp_mask & __GFP_NOMEMALLOC)))
4452 : goto nopage;
4453 :
4454 : /* Retry as long as the OOM killer is making progress */
4455 0 : if (did_some_progress) {
4456 0 : no_progress_loops = 0;
4457 0 : goto retry;
4458 : }
4459 :
4460 : nopage:
4461 : /*
4462 : * Deal with possible cpuset update races or zonelist updates to avoid
4463 : * a unnecessary OOM kill.
4464 : */
4465 0 : if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4466 0 : check_retry_zonelist(zonelist_iter_cookie))
4467 : goto restart;
4468 :
4469 : /*
4470 : * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4471 : * we always retry
4472 : */
4473 0 : if (gfp_mask & __GFP_NOFAIL) {
4474 : /*
4475 : * All existing users of the __GFP_NOFAIL are blockable, so warn
4476 : * of any new users that actually require GFP_NOWAIT
4477 : */
4478 0 : if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4479 : goto fail;
4480 :
4481 : /*
4482 : * PF_MEMALLOC request from this context is rather bizarre
4483 : * because we cannot reclaim anything and only can loop waiting
4484 : * for somebody to do a work for us
4485 : */
4486 0 : WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4487 :
4488 : /*
4489 : * non failing costly orders are a hard requirement which we
4490 : * are not prepared for much so let's warn about these users
4491 : * so that we can identify them and convert them to something
4492 : * else.
4493 : */
4494 0 : WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4495 :
4496 : /*
4497 : * Help non-failing allocations by giving some access to memory
4498 : * reserves normally used for high priority non-blocking
4499 : * allocations but do not use ALLOC_NO_WATERMARKS because this
4500 : * could deplete whole memory reserves which would just make
4501 : * the situation worse.
4502 : */
4503 0 : page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4504 0 : if (page)
4505 : goto got_pg;
4506 :
4507 0 : cond_resched();
4508 0 : goto retry;
4509 : }
4510 : fail:
4511 0 : warn_alloc(gfp_mask, ac->nodemask,
4512 : "page allocation failure: order:%u", order);
4513 : got_pg:
4514 0 : return page;
4515 : }
4516 :
4517 2818 : static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4518 : int preferred_nid, nodemask_t *nodemask,
4519 : struct alloc_context *ac, gfp_t *alloc_gfp,
4520 : unsigned int *alloc_flags)
4521 : {
4522 2818 : ac->highest_zoneidx = gfp_zone(gfp_mask);
4523 5636 : ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4524 2818 : ac->nodemask = nodemask;
4525 2818 : ac->migratetype = gfp_migratetype(gfp_mask);
4526 :
4527 : if (cpusets_enabled()) {
4528 : *alloc_gfp |= __GFP_HARDWALL;
4529 : /*
4530 : * When we are in the interrupt context, it is irrelevant
4531 : * to the current task context. It means that any node ok.
4532 : */
4533 : if (in_task() && !ac->nodemask)
4534 : ac->nodemask = &cpuset_current_mems_allowed;
4535 : else
4536 : *alloc_flags |= ALLOC_CPUSET;
4537 : }
4538 :
4539 2818 : might_alloc(gfp_mask);
4540 :
4541 2818 : if (should_fail_alloc_page(gfp_mask, order))
4542 : return false;
4543 :
4544 2818 : *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4545 :
4546 : /* Dirty zone balancing only done in the fast path */
4547 2818 : ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4548 :
4549 : /*
4550 : * The preferred zone is used for statistics but crucially it is
4551 : * also used as the starting point for the zonelist iterator. It
4552 : * may get reset for allocations that ignore memory policies.
4553 : */
4554 5636 : ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4555 : ac->highest_zoneidx, ac->nodemask);
4556 :
4557 : return true;
4558 : }
4559 :
4560 : /*
4561 : * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4562 : * @gfp: GFP flags for the allocation
4563 : * @preferred_nid: The preferred NUMA node ID to allocate from
4564 : * @nodemask: Set of nodes to allocate from, may be NULL
4565 : * @nr_pages: The number of pages desired on the list or array
4566 : * @page_list: Optional list to store the allocated pages
4567 : * @page_array: Optional array to store the pages
4568 : *
4569 : * This is a batched version of the page allocator that attempts to
4570 : * allocate nr_pages quickly. Pages are added to page_list if page_list
4571 : * is not NULL, otherwise it is assumed that the page_array is valid.
4572 : *
4573 : * For lists, nr_pages is the number of pages that should be allocated.
4574 : *
4575 : * For arrays, only NULL elements are populated with pages and nr_pages
4576 : * is the maximum number of pages that will be stored in the array.
4577 : *
4578 : * Returns the number of pages on the list or array.
4579 : */
4580 596 : unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4581 : nodemask_t *nodemask, int nr_pages,
4582 : struct list_head *page_list,
4583 : struct page **page_array)
4584 : {
4585 : struct page *page;
4586 : unsigned long __maybe_unused UP_flags;
4587 : struct zone *zone;
4588 : struct zoneref *z;
4589 : struct per_cpu_pages *pcp;
4590 : struct list_head *pcp_list;
4591 : struct alloc_context ac;
4592 : gfp_t alloc_gfp;
4593 596 : unsigned int alloc_flags = ALLOC_WMARK_LOW;
4594 596 : int nr_populated = 0, nr_account = 0;
4595 :
4596 : /*
4597 : * Skip populated array elements to determine if any pages need
4598 : * to be allocated before disabling IRQs.
4599 : */
4600 1192 : while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4601 0 : nr_populated++;
4602 :
4603 : /* No pages requested? */
4604 596 : if (unlikely(nr_pages <= 0))
4605 : goto out;
4606 :
4607 : /* Already populated array? */
4608 596 : if (unlikely(page_array && nr_pages - nr_populated == 0))
4609 : goto out;
4610 :
4611 : /* Bulk allocator does not support memcg accounting. */
4612 : if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4613 : goto failed;
4614 :
4615 : /* Use the single page allocator for one page. */
4616 596 : if (nr_pages - nr_populated == 1)
4617 : goto failed;
4618 :
4619 : #ifdef CONFIG_PAGE_OWNER
4620 : /*
4621 : * PAGE_OWNER may recurse into the allocator to allocate space to
4622 : * save the stack with pagesets.lock held. Releasing/reacquiring
4623 : * removes much of the performance benefit of bulk allocation so
4624 : * force the caller to allocate one page at a time as it'll have
4625 : * similar performance to added complexity to the bulk allocator.
4626 : */
4627 : if (static_branch_unlikely(&page_owner_inited))
4628 : goto failed;
4629 : #endif
4630 :
4631 : /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4632 596 : gfp &= gfp_allowed_mask;
4633 596 : alloc_gfp = gfp;
4634 596 : if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4635 : goto out;
4636 596 : gfp = alloc_gfp;
4637 :
4638 : /* Find an allowed local zone that meets the low watermark. */
4639 1192 : for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4640 : unsigned long mark;
4641 :
4642 : if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4643 : !__cpuset_zone_allowed(zone, gfp)) {
4644 : continue;
4645 : }
4646 :
4647 : if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4648 : zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4649 : goto failed;
4650 : }
4651 :
4652 596 : mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4653 596 : if (zone_watermark_fast(zone, 0, mark,
4654 : zonelist_zone_idx(ac.preferred_zoneref),
4655 : alloc_flags, gfp)) {
4656 : break;
4657 : }
4658 : }
4659 :
4660 : /*
4661 : * If there are no allowed local zones that meets the watermarks then
4662 : * try to allocate a single page and reclaim if necessary.
4663 : */
4664 596 : if (unlikely(!zone))
4665 : goto failed;
4666 :
4667 : /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4668 596 : pcp_trylock_prepare(UP_flags);
4669 1192 : pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4670 596 : if (!pcp)
4671 : goto failed_irq;
4672 :
4673 : /* Attempt the batch allocation */
4674 1192 : pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4675 43733 : while (nr_populated < nr_pages) {
4676 :
4677 : /* Skip existing pages */
4678 42541 : if (page_array && page_array[nr_populated]) {
4679 0 : nr_populated++;
4680 0 : continue;
4681 : }
4682 :
4683 42541 : page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4684 : pcp, pcp_list);
4685 42541 : if (unlikely(!page)) {
4686 : /* Try and allocate at least one page */
4687 0 : if (!nr_account) {
4688 0 : pcp_spin_unlock(pcp);
4689 0 : goto failed_irq;
4690 : }
4691 : break;
4692 : }
4693 42541 : nr_account++;
4694 :
4695 42541 : prep_new_page(page, 0, gfp, 0);
4696 42541 : if (page_list)
4697 0 : list_add(&page->lru, page_list);
4698 : else
4699 42541 : page_array[nr_populated] = page;
4700 42541 : nr_populated++;
4701 : }
4702 :
4703 1192 : pcp_spin_unlock(pcp);
4704 1192 : pcp_trylock_finish(UP_flags);
4705 :
4706 1192 : __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4707 596 : zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4708 :
4709 : out:
4710 596 : return nr_populated;
4711 :
4712 : failed_irq:
4713 0 : pcp_trylock_finish(UP_flags);
4714 :
4715 : failed:
4716 0 : page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4717 0 : if (page) {
4718 0 : if (page_list)
4719 0 : list_add(&page->lru, page_list);
4720 : else
4721 0 : page_array[nr_populated] = page;
4722 0 : nr_populated++;
4723 : }
4724 :
4725 : goto out;
4726 : }
4727 : EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4728 :
4729 : /*
4730 : * This is the 'heart' of the zoned buddy allocator.
4731 : */
4732 2222 : struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4733 : nodemask_t *nodemask)
4734 : {
4735 : struct page *page;
4736 2222 : unsigned int alloc_flags = ALLOC_WMARK_LOW;
4737 : gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4738 2222 : struct alloc_context ac = { };
4739 :
4740 : /*
4741 : * There are several places where we assume that the order value is sane
4742 : * so bail out early if the request is out of bound.
4743 : */
4744 2222 : if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4745 : return NULL;
4746 :
4747 2222 : gfp &= gfp_allowed_mask;
4748 : /*
4749 : * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4750 : * resp. GFP_NOIO which has to be inherited for all allocation requests
4751 : * from a particular context which has been marked by
4752 : * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4753 : * movable zones are not used during allocation.
4754 : */
4755 2222 : gfp = current_gfp_context(gfp);
4756 2222 : alloc_gfp = gfp;
4757 2222 : if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4758 : &alloc_gfp, &alloc_flags))
4759 : return NULL;
4760 :
4761 : /*
4762 : * Forbid the first pass from falling back to types that fragment
4763 : * memory until all local zones are considered.
4764 : */
4765 4444 : alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4766 :
4767 : /* First allocation attempt */
4768 2222 : page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4769 2222 : if (likely(page))
4770 : goto out;
4771 :
4772 0 : alloc_gfp = gfp;
4773 0 : ac.spread_dirty_pages = false;
4774 :
4775 : /*
4776 : * Restore the original nodemask if it was potentially replaced with
4777 : * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4778 : */
4779 0 : ac.nodemask = nodemask;
4780 :
4781 0 : page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4782 :
4783 : out:
4784 : if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4785 : unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4786 : __free_pages(page, order);
4787 : page = NULL;
4788 : }
4789 :
4790 2222 : trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4791 2222 : kmsan_alloc_page(page, order, alloc_gfp);
4792 :
4793 2222 : return page;
4794 : }
4795 : EXPORT_SYMBOL(__alloc_pages);
4796 :
4797 0 : struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4798 : nodemask_t *nodemask)
4799 : {
4800 0 : struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4801 : preferred_nid, nodemask);
4802 :
4803 : if (page && order > 1)
4804 : prep_transhuge_page(page);
4805 0 : return (struct folio *)page;
4806 : }
4807 : EXPORT_SYMBOL(__folio_alloc);
4808 :
4809 : /*
4810 : * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4811 : * address cannot represent highmem pages. Use alloc_pages and then kmap if
4812 : * you need to access high mem.
4813 : */
4814 20 : unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4815 : {
4816 : struct page *page;
4817 :
4818 40 : page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4819 20 : if (!page)
4820 : return 0;
4821 20 : return (unsigned long) page_address(page);
4822 : }
4823 : EXPORT_SYMBOL(__get_free_pages);
4824 :
4825 0 : unsigned long get_zeroed_page(gfp_t gfp_mask)
4826 : {
4827 0 : return __get_free_page(gfp_mask | __GFP_ZERO);
4828 : }
4829 : EXPORT_SYMBOL(get_zeroed_page);
4830 :
4831 : /**
4832 : * __free_pages - Free pages allocated with alloc_pages().
4833 : * @page: The page pointer returned from alloc_pages().
4834 : * @order: The order of the allocation.
4835 : *
4836 : * This function can free multi-page allocations that are not compound
4837 : * pages. It does not check that the @order passed in matches that of
4838 : * the allocation, so it is easy to leak memory. Freeing more memory
4839 : * than was allocated will probably emit a warning.
4840 : *
4841 : * If the last reference to this page is speculative, it will be released
4842 : * by put_page() which only frees the first page of a non-compound
4843 : * allocation. To prevent the remaining pages from being leaked, we free
4844 : * the subsequent pages here. If you want to use the page's reference
4845 : * count to decide when to free the allocation, you should allocate a
4846 : * compound page, and use put_page() instead of __free_pages().
4847 : *
4848 : * Context: May be called in interrupt context or while holding a normal
4849 : * spinlock, but not in NMI context or while holding a raw spinlock.
4850 : */
4851 44236 : void __free_pages(struct page *page, unsigned int order)
4852 : {
4853 : /* get PageHead before we drop reference */
4854 44236 : int head = PageHead(page);
4855 :
4856 44236 : if (put_page_testzero(page))
4857 44236 : free_the_page(page, order);
4858 0 : else if (!head)
4859 0 : while (order-- > 0)
4860 0 : free_the_page(page + (1 << order), order);
4861 44236 : }
4862 : EXPORT_SYMBOL(__free_pages);
4863 :
4864 0 : void free_pages(unsigned long addr, unsigned int order)
4865 : {
4866 0 : if (addr != 0) {
4867 : VM_BUG_ON(!virt_addr_valid((void *)addr));
4868 0 : __free_pages(virt_to_page((void *)addr), order);
4869 : }
4870 0 : }
4871 :
4872 : EXPORT_SYMBOL(free_pages);
4873 :
4874 : /*
4875 : * Page Fragment:
4876 : * An arbitrary-length arbitrary-offset area of memory which resides
4877 : * within a 0 or higher order page. Multiple fragments within that page
4878 : * are individually refcounted, in the page's reference counter.
4879 : *
4880 : * The page_frag functions below provide a simple allocation framework for
4881 : * page fragments. This is used by the network stack and network device
4882 : * drivers to provide a backing region of memory for use as either an
4883 : * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4884 : */
4885 0 : static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4886 : gfp_t gfp_mask)
4887 : {
4888 0 : struct page *page = NULL;
4889 0 : gfp_t gfp = gfp_mask;
4890 :
4891 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4892 0 : gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4893 : __GFP_NOMEMALLOC;
4894 0 : page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4895 0 : PAGE_FRAG_CACHE_MAX_ORDER);
4896 0 : nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4897 : #endif
4898 0 : if (unlikely(!page))
4899 0 : page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4900 :
4901 0 : nc->va = page ? page_address(page) : NULL;
4902 :
4903 0 : return page;
4904 : }
4905 :
4906 0 : void __page_frag_cache_drain(struct page *page, unsigned int count)
4907 : {
4908 : VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4909 :
4910 0 : if (page_ref_sub_and_test(page, count))
4911 0 : free_the_page(page, compound_order(page));
4912 0 : }
4913 : EXPORT_SYMBOL(__page_frag_cache_drain);
4914 :
4915 0 : void *page_frag_alloc_align(struct page_frag_cache *nc,
4916 : unsigned int fragsz, gfp_t gfp_mask,
4917 : unsigned int align_mask)
4918 : {
4919 0 : unsigned int size = PAGE_SIZE;
4920 : struct page *page;
4921 : int offset;
4922 :
4923 0 : if (unlikely(!nc->va)) {
4924 : refill:
4925 0 : page = __page_frag_cache_refill(nc, gfp_mask);
4926 0 : if (!page)
4927 : return NULL;
4928 :
4929 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4930 : /* if size can vary use size else just use PAGE_SIZE */
4931 0 : size = nc->size;
4932 : #endif
4933 : /* Even if we own the page, we do not use atomic_set().
4934 : * This would break get_page_unless_zero() users.
4935 : */
4936 0 : page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4937 :
4938 : /* reset page count bias and offset to start of new frag */
4939 0 : nc->pfmemalloc = page_is_pfmemalloc(page);
4940 0 : nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4941 0 : nc->offset = size;
4942 : }
4943 :
4944 0 : offset = nc->offset - fragsz;
4945 0 : if (unlikely(offset < 0)) {
4946 0 : page = virt_to_page(nc->va);
4947 :
4948 0 : if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4949 : goto refill;
4950 :
4951 0 : if (unlikely(nc->pfmemalloc)) {
4952 0 : free_the_page(page, compound_order(page));
4953 0 : goto refill;
4954 : }
4955 :
4956 : #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4957 : /* if size can vary use size else just use PAGE_SIZE */
4958 0 : size = nc->size;
4959 : #endif
4960 : /* OK, page count is 0, we can safely set it */
4961 0 : set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4962 :
4963 : /* reset page count bias and offset to start of new frag */
4964 0 : nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4965 0 : offset = size - fragsz;
4966 0 : if (unlikely(offset < 0)) {
4967 : /*
4968 : * The caller is trying to allocate a fragment
4969 : * with fragsz > PAGE_SIZE but the cache isn't big
4970 : * enough to satisfy the request, this may
4971 : * happen in low memory conditions.
4972 : * We don't release the cache page because
4973 : * it could make memory pressure worse
4974 : * so we simply return NULL here.
4975 : */
4976 : return NULL;
4977 : }
4978 : }
4979 :
4980 0 : nc->pagecnt_bias--;
4981 0 : offset &= align_mask;
4982 0 : nc->offset = offset;
4983 :
4984 0 : return nc->va + offset;
4985 : }
4986 : EXPORT_SYMBOL(page_frag_alloc_align);
4987 :
4988 : /*
4989 : * Frees a page fragment allocated out of either a compound or order 0 page.
4990 : */
4991 0 : void page_frag_free(void *addr)
4992 : {
4993 0 : struct page *page = virt_to_head_page(addr);
4994 :
4995 0 : if (unlikely(put_page_testzero(page)))
4996 0 : free_the_page(page, compound_order(page));
4997 0 : }
4998 : EXPORT_SYMBOL(page_frag_free);
4999 :
5000 3 : static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 : size_t size)
5002 : {
5003 3 : if (addr) {
5004 3 : unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5005 6 : struct page *page = virt_to_page((void *)addr);
5006 3 : struct page *last = page + nr;
5007 :
5008 3 : split_page_owner(page, 1 << order);
5009 3 : split_page_memcg(page, 1 << order);
5010 18 : while (page < --last)
5011 : set_page_refcounted(last);
5012 :
5013 3 : last = page + (1UL << order);
5014 3 : for (page += nr; page < last; page++)
5015 0 : __free_pages_ok(page, 0, FPI_TO_TAIL);
5016 : }
5017 3 : return (void *)addr;
5018 : }
5019 :
5020 : /**
5021 : * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5022 : * @size: the number of bytes to allocate
5023 : * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5024 : *
5025 : * This function is similar to alloc_pages(), except that it allocates the
5026 : * minimum number of pages to satisfy the request. alloc_pages() can only
5027 : * allocate memory in power-of-two pages.
5028 : *
5029 : * This function is also limited by MAX_ORDER.
5030 : *
5031 : * Memory allocated by this function must be released by free_pages_exact().
5032 : *
5033 : * Return: pointer to the allocated area or %NULL in case of error.
5034 : */
5035 3 : void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5036 : {
5037 3 : unsigned int order = get_order(size);
5038 : unsigned long addr;
5039 :
5040 3 : if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5041 0 : gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5042 :
5043 3 : addr = __get_free_pages(gfp_mask, order);
5044 3 : return make_alloc_exact(addr, order, size);
5045 : }
5046 : EXPORT_SYMBOL(alloc_pages_exact);
5047 :
5048 : /**
5049 : * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5050 : * pages on a node.
5051 : * @nid: the preferred node ID where memory should be allocated
5052 : * @size: the number of bytes to allocate
5053 : * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5054 : *
5055 : * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5056 : * back.
5057 : *
5058 : * Return: pointer to the allocated area or %NULL in case of error.
5059 : */
5060 0 : void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5061 : {
5062 0 : unsigned int order = get_order(size);
5063 : struct page *p;
5064 :
5065 0 : if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5066 0 : gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5067 :
5068 0 : p = alloc_pages_node(nid, gfp_mask, order);
5069 0 : if (!p)
5070 : return NULL;
5071 0 : return make_alloc_exact((unsigned long)page_address(p), order, size);
5072 : }
5073 :
5074 : /**
5075 : * free_pages_exact - release memory allocated via alloc_pages_exact()
5076 : * @virt: the value returned by alloc_pages_exact.
5077 : * @size: size of allocation, same value as passed to alloc_pages_exact().
5078 : *
5079 : * Release the memory allocated by a previous call to alloc_pages_exact.
5080 : */
5081 0 : void free_pages_exact(void *virt, size_t size)
5082 : {
5083 0 : unsigned long addr = (unsigned long)virt;
5084 0 : unsigned long end = addr + PAGE_ALIGN(size);
5085 :
5086 0 : while (addr < end) {
5087 0 : free_page(addr);
5088 0 : addr += PAGE_SIZE;
5089 : }
5090 0 : }
5091 : EXPORT_SYMBOL(free_pages_exact);
5092 :
5093 : /**
5094 : * nr_free_zone_pages - count number of pages beyond high watermark
5095 : * @offset: The zone index of the highest zone
5096 : *
5097 : * nr_free_zone_pages() counts the number of pages which are beyond the
5098 : * high watermark within all zones at or below a given zone index. For each
5099 : * zone, the number of pages is calculated as:
5100 : *
5101 : * nr_free_zone_pages = managed_pages - high_pages
5102 : *
5103 : * Return: number of pages beyond high watermark.
5104 : */
5105 3 : static unsigned long nr_free_zone_pages(int offset)
5106 : {
5107 : struct zoneref *z;
5108 : struct zone *zone;
5109 :
5110 : /* Just pick one node, since fallback list is circular */
5111 3 : unsigned long sum = 0;
5112 :
5113 6 : struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5114 :
5115 12 : for_each_zone_zonelist(zone, z, zonelist, offset) {
5116 3 : unsigned long size = zone_managed_pages(zone);
5117 3 : unsigned long high = high_wmark_pages(zone);
5118 3 : if (size > high)
5119 3 : sum += size - high;
5120 : }
5121 :
5122 3 : return sum;
5123 : }
5124 :
5125 : /**
5126 : * nr_free_buffer_pages - count number of pages beyond high watermark
5127 : *
5128 : * nr_free_buffer_pages() counts the number of pages which are beyond the high
5129 : * watermark within ZONE_DMA and ZONE_NORMAL.
5130 : *
5131 : * Return: number of pages beyond high watermark within ZONE_DMA and
5132 : * ZONE_NORMAL.
5133 : */
5134 1 : unsigned long nr_free_buffer_pages(void)
5135 : {
5136 2 : return nr_free_zone_pages(gfp_zone(GFP_USER));
5137 : }
5138 : EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5139 :
5140 : static inline void show_node(struct zone *zone)
5141 : {
5142 : if (IS_ENABLED(CONFIG_NUMA))
5143 : printk("Node %d ", zone_to_nid(zone));
5144 : }
5145 :
5146 0 : long si_mem_available(void)
5147 : {
5148 : long available;
5149 : unsigned long pagecache;
5150 0 : unsigned long wmark_low = 0;
5151 : unsigned long pages[NR_LRU_LISTS];
5152 : unsigned long reclaimable;
5153 : struct zone *zone;
5154 : int lru;
5155 :
5156 0 : for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5157 0 : pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5158 :
5159 0 : for_each_zone(zone)
5160 0 : wmark_low += low_wmark_pages(zone);
5161 :
5162 : /*
5163 : * Estimate the amount of memory available for userspace allocations,
5164 : * without causing swapping or OOM.
5165 : */
5166 0 : available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5167 :
5168 : /*
5169 : * Not all the page cache can be freed, otherwise the system will
5170 : * start swapping or thrashing. Assume at least half of the page
5171 : * cache, or the low watermark worth of cache, needs to stay.
5172 : */
5173 0 : pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 0 : pagecache -= min(pagecache / 2, wmark_low);
5175 0 : available += pagecache;
5176 :
5177 : /*
5178 : * Part of the reclaimable slab and other kernel memory consists of
5179 : * items that are in use, and cannot be freed. Cap this estimate at the
5180 : * low watermark.
5181 : */
5182 0 : reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5183 0 : global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 0 : available += reclaimable - min(reclaimable / 2, wmark_low);
5185 :
5186 0 : if (available < 0)
5187 0 : available = 0;
5188 0 : return available;
5189 : }
5190 : EXPORT_SYMBOL_GPL(si_mem_available);
5191 :
5192 2 : void si_meminfo(struct sysinfo *val)
5193 : {
5194 2 : val->totalram = totalram_pages();
5195 2 : val->sharedram = global_node_page_state(NR_SHMEM);
5196 2 : val->freeram = global_zone_page_state(NR_FREE_PAGES);
5197 2 : val->bufferram = nr_blockdev_pages();
5198 2 : val->totalhigh = totalhigh_pages();
5199 2 : val->freehigh = nr_free_highpages();
5200 2 : val->mem_unit = PAGE_SIZE;
5201 2 : }
5202 :
5203 : EXPORT_SYMBOL(si_meminfo);
5204 :
5205 : #ifdef CONFIG_NUMA
5206 : void si_meminfo_node(struct sysinfo *val, int nid)
5207 : {
5208 : int zone_type; /* needs to be signed */
5209 : unsigned long managed_pages = 0;
5210 : unsigned long managed_highpages = 0;
5211 : unsigned long free_highpages = 0;
5212 : pg_data_t *pgdat = NODE_DATA(nid);
5213 :
5214 : for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5215 : managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5216 : val->totalram = managed_pages;
5217 : val->sharedram = node_page_state(pgdat, NR_SHMEM);
5218 : val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5219 : #ifdef CONFIG_HIGHMEM
5220 : for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 : struct zone *zone = &pgdat->node_zones[zone_type];
5222 :
5223 : if (is_highmem(zone)) {
5224 : managed_highpages += zone_managed_pages(zone);
5225 : free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 : }
5227 : }
5228 : val->totalhigh = managed_highpages;
5229 : val->freehigh = free_highpages;
5230 : #else
5231 : val->totalhigh = managed_highpages;
5232 : val->freehigh = free_highpages;
5233 : #endif
5234 : val->mem_unit = PAGE_SIZE;
5235 : }
5236 : #endif
5237 :
5238 : /*
5239 : * Determine whether the node should be displayed or not, depending on whether
5240 : * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5241 : */
5242 0 : static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5243 : {
5244 0 : if (!(flags & SHOW_MEM_FILTER_NODES))
5245 : return false;
5246 :
5247 : /*
5248 : * no node mask - aka implicit memory numa policy. Do not bother with
5249 : * the synchronization - read_mems_allowed_begin - because we do not
5250 : * have to be precise here.
5251 : */
5252 0 : if (!nodemask)
5253 0 : nodemask = &cpuset_current_mems_allowed;
5254 :
5255 0 : return !node_isset(nid, *nodemask);
5256 : }
5257 :
5258 0 : static void show_migration_types(unsigned char type)
5259 : {
5260 : static const char types[MIGRATE_TYPES] = {
5261 : [MIGRATE_UNMOVABLE] = 'U',
5262 : [MIGRATE_MOVABLE] = 'M',
5263 : [MIGRATE_RECLAIMABLE] = 'E',
5264 : [MIGRATE_HIGHATOMIC] = 'H',
5265 : #ifdef CONFIG_CMA
5266 : [MIGRATE_CMA] = 'C',
5267 : #endif
5268 : #ifdef CONFIG_MEMORY_ISOLATION
5269 : [MIGRATE_ISOLATE] = 'I',
5270 : #endif
5271 : };
5272 : char tmp[MIGRATE_TYPES + 1];
5273 0 : char *p = tmp;
5274 : int i;
5275 :
5276 0 : for (i = 0; i < MIGRATE_TYPES; i++) {
5277 0 : if (type & (1 << i))
5278 0 : *p++ = types[i];
5279 : }
5280 :
5281 0 : *p = '\0';
5282 0 : printk(KERN_CONT "(%s) ", tmp);
5283 0 : }
5284 :
5285 : static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
5286 : {
5287 : int zone_idx;
5288 0 : for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
5289 0 : if (zone_managed_pages(pgdat->node_zones + zone_idx))
5290 : return true;
5291 : return false;
5292 : }
5293 :
5294 : /*
5295 : * Show free area list (used inside shift_scroll-lock stuff)
5296 : * We also calculate the percentage fragmentation. We do this by counting the
5297 : * memory on each free list with the exception of the first item on the list.
5298 : *
5299 : * Bits in @filter:
5300 : * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5301 : * cpuset.
5302 : */
5303 0 : void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
5304 : {
5305 0 : unsigned long free_pcp = 0;
5306 : int cpu, nid;
5307 : struct zone *zone;
5308 : pg_data_t *pgdat;
5309 :
5310 0 : for_each_populated_zone(zone) {
5311 0 : if (zone_idx(zone) > max_zone_idx)
5312 0 : continue;
5313 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314 0 : continue;
5315 :
5316 0 : for_each_online_cpu(cpu)
5317 0 : free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5318 : }
5319 :
5320 0 : printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 : " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322 : " unevictable:%lu dirty:%lu writeback:%lu\n"
5323 : " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324 : " mapped:%lu shmem:%lu pagetables:%lu\n"
5325 : " sec_pagetables:%lu bounce:%lu\n"
5326 : " kernel_misc_reclaimable:%lu\n"
5327 : " free:%lu free_pcp:%lu free_cma:%lu\n",
5328 : global_node_page_state(NR_ACTIVE_ANON),
5329 : global_node_page_state(NR_INACTIVE_ANON),
5330 : global_node_page_state(NR_ISOLATED_ANON),
5331 : global_node_page_state(NR_ACTIVE_FILE),
5332 : global_node_page_state(NR_INACTIVE_FILE),
5333 : global_node_page_state(NR_ISOLATED_FILE),
5334 : global_node_page_state(NR_UNEVICTABLE),
5335 : global_node_page_state(NR_FILE_DIRTY),
5336 : global_node_page_state(NR_WRITEBACK),
5337 : global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5338 : global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5339 : global_node_page_state(NR_FILE_MAPPED),
5340 : global_node_page_state(NR_SHMEM),
5341 : global_node_page_state(NR_PAGETABLE),
5342 : global_node_page_state(NR_SECONDARY_PAGETABLE),
5343 : global_zone_page_state(NR_BOUNCE),
5344 : global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5345 : global_zone_page_state(NR_FREE_PAGES),
5346 : free_pcp,
5347 : global_zone_page_state(NR_FREE_CMA_PAGES));
5348 :
5349 0 : for_each_online_pgdat(pgdat) {
5350 0 : if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5351 0 : continue;
5352 0 : if (!node_has_managed_zones(pgdat, max_zone_idx))
5353 0 : continue;
5354 :
5355 0 : printk("Node %d"
5356 : " active_anon:%lukB"
5357 : " inactive_anon:%lukB"
5358 : " active_file:%lukB"
5359 : " inactive_file:%lukB"
5360 : " unevictable:%lukB"
5361 : " isolated(anon):%lukB"
5362 : " isolated(file):%lukB"
5363 : " mapped:%lukB"
5364 : " dirty:%lukB"
5365 : " writeback:%lukB"
5366 : " shmem:%lukB"
5367 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5368 : " shmem_thp: %lukB"
5369 : " shmem_pmdmapped: %lukB"
5370 : " anon_thp: %lukB"
5371 : #endif
5372 : " writeback_tmp:%lukB"
5373 : " kernel_stack:%lukB"
5374 : #ifdef CONFIG_SHADOW_CALL_STACK
5375 : " shadow_call_stack:%lukB"
5376 : #endif
5377 : " pagetables:%lukB"
5378 : " sec_pagetables:%lukB"
5379 : " all_unreclaimable? %s"
5380 : "\n",
5381 : pgdat->node_id,
5382 : K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5383 : K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5384 : K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5385 : K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5386 : K(node_page_state(pgdat, NR_UNEVICTABLE)),
5387 : K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5388 : K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5389 : K(node_page_state(pgdat, NR_FILE_MAPPED)),
5390 : K(node_page_state(pgdat, NR_FILE_DIRTY)),
5391 : K(node_page_state(pgdat, NR_WRITEBACK)),
5392 : K(node_page_state(pgdat, NR_SHMEM)),
5393 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5394 : K(node_page_state(pgdat, NR_SHMEM_THPS)),
5395 : K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5396 : K(node_page_state(pgdat, NR_ANON_THPS)),
5397 : #endif
5398 : K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5399 : node_page_state(pgdat, NR_KERNEL_STACK_KB),
5400 : #ifdef CONFIG_SHADOW_CALL_STACK
5401 : node_page_state(pgdat, NR_KERNEL_SCS_KB),
5402 : #endif
5403 : K(node_page_state(pgdat, NR_PAGETABLE)),
5404 : K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
5405 : pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5406 : "yes" : "no");
5407 : }
5408 :
5409 0 : for_each_populated_zone(zone) {
5410 : int i;
5411 :
5412 0 : if (zone_idx(zone) > max_zone_idx)
5413 0 : continue;
5414 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5415 0 : continue;
5416 :
5417 : free_pcp = 0;
5418 0 : for_each_online_cpu(cpu)
5419 0 : free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5420 :
5421 0 : show_node(zone);
5422 0 : printk(KERN_CONT
5423 : "%s"
5424 : " free:%lukB"
5425 : " boost:%lukB"
5426 : " min:%lukB"
5427 : " low:%lukB"
5428 : " high:%lukB"
5429 : " reserved_highatomic:%luKB"
5430 : " active_anon:%lukB"
5431 : " inactive_anon:%lukB"
5432 : " active_file:%lukB"
5433 : " inactive_file:%lukB"
5434 : " unevictable:%lukB"
5435 : " writepending:%lukB"
5436 : " present:%lukB"
5437 : " managed:%lukB"
5438 : " mlocked:%lukB"
5439 : " bounce:%lukB"
5440 : " free_pcp:%lukB"
5441 : " local_pcp:%ukB"
5442 : " free_cma:%lukB"
5443 : "\n",
5444 : zone->name,
5445 : K(zone_page_state(zone, NR_FREE_PAGES)),
5446 : K(zone->watermark_boost),
5447 : K(min_wmark_pages(zone)),
5448 : K(low_wmark_pages(zone)),
5449 : K(high_wmark_pages(zone)),
5450 : K(zone->nr_reserved_highatomic),
5451 : K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5452 : K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5453 : K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5454 : K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5455 : K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5456 : K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5457 : K(zone->present_pages),
5458 : K(zone_managed_pages(zone)),
5459 : K(zone_page_state(zone, NR_MLOCK)),
5460 : K(zone_page_state(zone, NR_BOUNCE)),
5461 : K(free_pcp),
5462 : K(this_cpu_read(zone->per_cpu_pageset->count)),
5463 : K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5464 0 : printk("lowmem_reserve[]:");
5465 0 : for (i = 0; i < MAX_NR_ZONES; i++)
5466 0 : printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5467 0 : printk(KERN_CONT "\n");
5468 : }
5469 :
5470 0 : for_each_populated_zone(zone) {
5471 : unsigned int order;
5472 0 : unsigned long nr[MAX_ORDER + 1], flags, total = 0;
5473 : unsigned char types[MAX_ORDER + 1];
5474 :
5475 0 : if (zone_idx(zone) > max_zone_idx)
5476 0 : continue;
5477 0 : if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5478 0 : continue;
5479 0 : show_node(zone);
5480 0 : printk(KERN_CONT "%s: ", zone->name);
5481 :
5482 0 : spin_lock_irqsave(&zone->lock, flags);
5483 0 : for (order = 0; order <= MAX_ORDER; order++) {
5484 0 : struct free_area *area = &zone->free_area[order];
5485 : int type;
5486 :
5487 0 : nr[order] = area->nr_free;
5488 0 : total += nr[order] << order;
5489 :
5490 0 : types[order] = 0;
5491 0 : for (type = 0; type < MIGRATE_TYPES; type++) {
5492 0 : if (!free_area_empty(area, type))
5493 0 : types[order] |= 1 << type;
5494 : }
5495 : }
5496 0 : spin_unlock_irqrestore(&zone->lock, flags);
5497 0 : for (order = 0; order <= MAX_ORDER; order++) {
5498 0 : printk(KERN_CONT "%lu*%lukB ",
5499 : nr[order], K(1UL) << order);
5500 0 : if (nr[order])
5501 0 : show_migration_types(types[order]);
5502 : }
5503 0 : printk(KERN_CONT "= %lukB\n", K(total));
5504 : }
5505 :
5506 0 : for_each_online_node(nid) {
5507 0 : if (show_mem_node_skip(filter, nid, nodemask))
5508 : continue;
5509 : hugetlb_show_meminfo_node(nid);
5510 : }
5511 :
5512 0 : printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5513 :
5514 0 : show_swap_cache_info();
5515 0 : }
5516 :
5517 : static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5518 : {
5519 1 : zoneref->zone = zone;
5520 1 : zoneref->zone_idx = zone_idx(zone);
5521 : }
5522 :
5523 : /*
5524 : * Builds allocation fallback zone lists.
5525 : *
5526 : * Add all populated zones of a node to the zonelist.
5527 : */
5528 : static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5529 : {
5530 : struct zone *zone;
5531 1 : enum zone_type zone_type = MAX_NR_ZONES;
5532 1 : int nr_zones = 0;
5533 :
5534 : do {
5535 2 : zone_type--;
5536 2 : zone = pgdat->node_zones + zone_type;
5537 2 : if (populated_zone(zone)) {
5538 2 : zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5539 1 : check_highest_zone(zone_type);
5540 : }
5541 2 : } while (zone_type);
5542 :
5543 : return nr_zones;
5544 : }
5545 :
5546 : #ifdef CONFIG_NUMA
5547 :
5548 : static int __parse_numa_zonelist_order(char *s)
5549 : {
5550 : /*
5551 : * We used to support different zonelists modes but they turned
5552 : * out to be just not useful. Let's keep the warning in place
5553 : * if somebody still use the cmd line parameter so that we do
5554 : * not fail it silently
5555 : */
5556 : if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5557 : pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5558 : return -EINVAL;
5559 : }
5560 : return 0;
5561 : }
5562 :
5563 : char numa_zonelist_order[] = "Node";
5564 :
5565 : /*
5566 : * sysctl handler for numa_zonelist_order
5567 : */
5568 : int numa_zonelist_order_handler(struct ctl_table *table, int write,
5569 : void *buffer, size_t *length, loff_t *ppos)
5570 : {
5571 : if (write)
5572 : return __parse_numa_zonelist_order(buffer);
5573 : return proc_dostring(table, write, buffer, length, ppos);
5574 : }
5575 :
5576 :
5577 : static int node_load[MAX_NUMNODES];
5578 :
5579 : /**
5580 : * find_next_best_node - find the next node that should appear in a given node's fallback list
5581 : * @node: node whose fallback list we're appending
5582 : * @used_node_mask: nodemask_t of already used nodes
5583 : *
5584 : * We use a number of factors to determine which is the next node that should
5585 : * appear on a given node's fallback list. The node should not have appeared
5586 : * already in @node's fallback list, and it should be the next closest node
5587 : * according to the distance array (which contains arbitrary distance values
5588 : * from each node to each node in the system), and should also prefer nodes
5589 : * with no CPUs, since presumably they'll have very little allocation pressure
5590 : * on them otherwise.
5591 : *
5592 : * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5593 : */
5594 : int find_next_best_node(int node, nodemask_t *used_node_mask)
5595 : {
5596 : int n, val;
5597 : int min_val = INT_MAX;
5598 : int best_node = NUMA_NO_NODE;
5599 :
5600 : /* Use the local node if we haven't already */
5601 : if (!node_isset(node, *used_node_mask)) {
5602 : node_set(node, *used_node_mask);
5603 : return node;
5604 : }
5605 :
5606 : for_each_node_state(n, N_MEMORY) {
5607 :
5608 : /* Don't want a node to appear more than once */
5609 : if (node_isset(n, *used_node_mask))
5610 : continue;
5611 :
5612 : /* Use the distance array to find the distance */
5613 : val = node_distance(node, n);
5614 :
5615 : /* Penalize nodes under us ("prefer the next node") */
5616 : val += (n < node);
5617 :
5618 : /* Give preference to headless and unused nodes */
5619 : if (!cpumask_empty(cpumask_of_node(n)))
5620 : val += PENALTY_FOR_NODE_WITH_CPUS;
5621 :
5622 : /* Slight preference for less loaded node */
5623 : val *= MAX_NUMNODES;
5624 : val += node_load[n];
5625 :
5626 : if (val < min_val) {
5627 : min_val = val;
5628 : best_node = n;
5629 : }
5630 : }
5631 :
5632 : if (best_node >= 0)
5633 : node_set(best_node, *used_node_mask);
5634 :
5635 : return best_node;
5636 : }
5637 :
5638 :
5639 : /*
5640 : * Build zonelists ordered by node and zones within node.
5641 : * This results in maximum locality--normal zone overflows into local
5642 : * DMA zone, if any--but risks exhausting DMA zone.
5643 : */
5644 : static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5645 : unsigned nr_nodes)
5646 : {
5647 : struct zoneref *zonerefs;
5648 : int i;
5649 :
5650 : zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5651 :
5652 : for (i = 0; i < nr_nodes; i++) {
5653 : int nr_zones;
5654 :
5655 : pg_data_t *node = NODE_DATA(node_order[i]);
5656 :
5657 : nr_zones = build_zonerefs_node(node, zonerefs);
5658 : zonerefs += nr_zones;
5659 : }
5660 : zonerefs->zone = NULL;
5661 : zonerefs->zone_idx = 0;
5662 : }
5663 :
5664 : /*
5665 : * Build gfp_thisnode zonelists
5666 : */
5667 : static void build_thisnode_zonelists(pg_data_t *pgdat)
5668 : {
5669 : struct zoneref *zonerefs;
5670 : int nr_zones;
5671 :
5672 : zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5673 : nr_zones = build_zonerefs_node(pgdat, zonerefs);
5674 : zonerefs += nr_zones;
5675 : zonerefs->zone = NULL;
5676 : zonerefs->zone_idx = 0;
5677 : }
5678 :
5679 : /*
5680 : * Build zonelists ordered by zone and nodes within zones.
5681 : * This results in conserving DMA zone[s] until all Normal memory is
5682 : * exhausted, but results in overflowing to remote node while memory
5683 : * may still exist in local DMA zone.
5684 : */
5685 :
5686 : static void build_zonelists(pg_data_t *pgdat)
5687 : {
5688 : static int node_order[MAX_NUMNODES];
5689 : int node, nr_nodes = 0;
5690 : nodemask_t used_mask = NODE_MASK_NONE;
5691 : int local_node, prev_node;
5692 :
5693 : /* NUMA-aware ordering of nodes */
5694 : local_node = pgdat->node_id;
5695 : prev_node = local_node;
5696 :
5697 : memset(node_order, 0, sizeof(node_order));
5698 : while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5699 : /*
5700 : * We don't want to pressure a particular node.
5701 : * So adding penalty to the first node in same
5702 : * distance group to make it round-robin.
5703 : */
5704 : if (node_distance(local_node, node) !=
5705 : node_distance(local_node, prev_node))
5706 : node_load[node] += 1;
5707 :
5708 : node_order[nr_nodes++] = node;
5709 : prev_node = node;
5710 : }
5711 :
5712 : build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5713 : build_thisnode_zonelists(pgdat);
5714 : pr_info("Fallback order for Node %d: ", local_node);
5715 : for (node = 0; node < nr_nodes; node++)
5716 : pr_cont("%d ", node_order[node]);
5717 : pr_cont("\n");
5718 : }
5719 :
5720 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5721 : /*
5722 : * Return node id of node used for "local" allocations.
5723 : * I.e., first node id of first zone in arg node's generic zonelist.
5724 : * Used for initializing percpu 'numa_mem', which is used primarily
5725 : * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5726 : */
5727 : int local_memory_node(int node)
5728 : {
5729 : struct zoneref *z;
5730 :
5731 : z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5732 : gfp_zone(GFP_KERNEL),
5733 : NULL);
5734 : return zone_to_nid(z->zone);
5735 : }
5736 : #endif
5737 :
5738 : static void setup_min_unmapped_ratio(void);
5739 : static void setup_min_slab_ratio(void);
5740 : #else /* CONFIG_NUMA */
5741 :
5742 1 : static void build_zonelists(pg_data_t *pgdat)
5743 : {
5744 : int node, local_node;
5745 : struct zoneref *zonerefs;
5746 : int nr_zones;
5747 :
5748 1 : local_node = pgdat->node_id;
5749 :
5750 1 : zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5751 1 : nr_zones = build_zonerefs_node(pgdat, zonerefs);
5752 1 : zonerefs += nr_zones;
5753 :
5754 : /*
5755 : * Now we build the zonelist so that it contains the zones
5756 : * of all the other nodes.
5757 : * We don't want to pressure a particular node, so when
5758 : * building the zones for node N, we make sure that the
5759 : * zones coming right after the local ones are those from
5760 : * node N+1 (modulo N)
5761 : */
5762 1 : for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5763 0 : if (!node_online(node))
5764 0 : continue;
5765 0 : nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5766 0 : zonerefs += nr_zones;
5767 : }
5768 0 : for (node = 0; node < local_node; node++) {
5769 0 : if (!node_online(node))
5770 0 : continue;
5771 0 : nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5772 0 : zonerefs += nr_zones;
5773 : }
5774 :
5775 1 : zonerefs->zone = NULL;
5776 1 : zonerefs->zone_idx = 0;
5777 1 : }
5778 :
5779 : #endif /* CONFIG_NUMA */
5780 :
5781 : /*
5782 : * Boot pageset table. One per cpu which is going to be used for all
5783 : * zones and all nodes. The parameters will be set in such a way
5784 : * that an item put on a list will immediately be handed over to
5785 : * the buddy list. This is safe since pageset manipulation is done
5786 : * with interrupts disabled.
5787 : *
5788 : * The boot_pagesets must be kept even after bootup is complete for
5789 : * unused processors and/or zones. They do play a role for bootstrapping
5790 : * hotplugged processors.
5791 : *
5792 : * zoneinfo_show() and maybe other functions do
5793 : * not check if the processor is online before following the pageset pointer.
5794 : * Other parts of the kernel may not check if the zone is available.
5795 : */
5796 : static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5797 : /* These effectively disable the pcplists in the boot pageset completely */
5798 : #define BOOT_PAGESET_HIGH 0
5799 : #define BOOT_PAGESET_BATCH 1
5800 : static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5801 : static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5802 :
5803 1 : static void __build_all_zonelists(void *data)
5804 : {
5805 : int nid;
5806 : int __maybe_unused cpu;
5807 1 : pg_data_t *self = data;
5808 : unsigned long flags;
5809 :
5810 : /*
5811 : * Explicitly disable this CPU's interrupts before taking seqlock
5812 : * to prevent any IRQ handler from calling into the page allocator
5813 : * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5814 : */
5815 1 : local_irq_save(flags);
5816 : /*
5817 : * Explicitly disable this CPU's synchronous printk() before taking
5818 : * seqlock to prevent any printk() from trying to hold port->lock, for
5819 : * tty_insert_flip_string_and_push_buffer() on other CPU might be
5820 : * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5821 : */
5822 1 : printk_deferred_enter();
5823 1 : write_seqlock(&zonelist_update_seq);
5824 :
5825 : #ifdef CONFIG_NUMA
5826 : memset(node_load, 0, sizeof(node_load));
5827 : #endif
5828 :
5829 : /*
5830 : * This node is hotadded and no memory is yet present. So just
5831 : * building zonelists is fine - no need to touch other nodes.
5832 : */
5833 1 : if (self && !node_online(self->node_id)) {
5834 0 : build_zonelists(self);
5835 : } else {
5836 : /*
5837 : * All possible nodes have pgdat preallocated
5838 : * in free_area_init
5839 : */
5840 1 : for_each_node(nid) {
5841 1 : pg_data_t *pgdat = NODE_DATA(nid);
5842 :
5843 1 : build_zonelists(pgdat);
5844 : }
5845 :
5846 : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847 : /*
5848 : * We now know the "local memory node" for each node--
5849 : * i.e., the node of the first zone in the generic zonelist.
5850 : * Set up numa_mem percpu variable for on-line cpus. During
5851 : * boot, only the boot cpu should be on-line; we'll init the
5852 : * secondary cpus' numa_mem as they come on-line. During
5853 : * node/memory hotplug, we'll fixup all on-line cpus.
5854 : */
5855 : for_each_online_cpu(cpu)
5856 : set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5857 : #endif
5858 : }
5859 :
5860 1 : write_sequnlock(&zonelist_update_seq);
5861 1 : printk_deferred_exit();
5862 2 : local_irq_restore(flags);
5863 1 : }
5864 :
5865 : static noinline void __init
5866 1 : build_all_zonelists_init(void)
5867 : {
5868 : int cpu;
5869 :
5870 1 : __build_all_zonelists(NULL);
5871 :
5872 : /*
5873 : * Initialize the boot_pagesets that are going to be used
5874 : * for bootstrapping processors. The real pagesets for
5875 : * each zone will be allocated later when the per cpu
5876 : * allocator is available.
5877 : *
5878 : * boot_pagesets are used also for bootstrapping offline
5879 : * cpus if the system is already booted because the pagesets
5880 : * are needed to initialize allocators on a specific cpu too.
5881 : * F.e. the percpu allocator needs the page allocator which
5882 : * needs the percpu allocator in order to allocate its pagesets
5883 : * (a chicken-egg dilemma).
5884 : */
5885 2 : for_each_possible_cpu(cpu)
5886 1 : per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5887 :
5888 1 : mminit_verify_zonelist();
5889 : cpuset_init_current_mems_allowed();
5890 1 : }
5891 :
5892 : /*
5893 : * unless system_state == SYSTEM_BOOTING.
5894 : *
5895 : * __ref due to call of __init annotated helper build_all_zonelists_init
5896 : * [protected by SYSTEM_BOOTING].
5897 : */
5898 1 : void __ref build_all_zonelists(pg_data_t *pgdat)
5899 : {
5900 : unsigned long vm_total_pages;
5901 :
5902 1 : if (system_state == SYSTEM_BOOTING) {
5903 1 : build_all_zonelists_init();
5904 : } else {
5905 0 : __build_all_zonelists(pgdat);
5906 : /* cpuset refresh routine should be here */
5907 : }
5908 : /* Get the number of free pages beyond high watermark in all zones. */
5909 1 : vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5910 : /*
5911 : * Disable grouping by mobility if the number of pages in the
5912 : * system is too low to allow the mechanism to work. It would be
5913 : * more accurate, but expensive to check per-zone. This check is
5914 : * made on memory-hotadd so a system can start with mobility
5915 : * disabled and enable it later
5916 : */
5917 1 : if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5918 0 : page_group_by_mobility_disabled = 1;
5919 : else
5920 1 : page_group_by_mobility_disabled = 0;
5921 :
5922 1 : pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5923 : nr_online_nodes,
5924 : page_group_by_mobility_disabled ? "off" : "on",
5925 : vm_total_pages);
5926 : #ifdef CONFIG_NUMA
5927 : pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5928 : #endif
5929 1 : }
5930 :
5931 3 : static int zone_batchsize(struct zone *zone)
5932 : {
5933 : #ifdef CONFIG_MMU
5934 : int batch;
5935 :
5936 : /*
5937 : * The number of pages to batch allocate is either ~0.1%
5938 : * of the zone or 1MB, whichever is smaller. The batch
5939 : * size is striking a balance between allocation latency
5940 : * and zone lock contention.
5941 : */
5942 3 : batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5943 3 : batch /= 4; /* We effectively *= 4 below */
5944 3 : if (batch < 1)
5945 1 : batch = 1;
5946 :
5947 : /*
5948 : * Clamp the batch to a 2^n - 1 value. Having a power
5949 : * of 2 value was found to be more likely to have
5950 : * suboptimal cache aliasing properties in some cases.
5951 : *
5952 : * For example if 2 tasks are alternately allocating
5953 : * batches of pages, one task can end up with a lot
5954 : * of pages of one half of the possible page colors
5955 : * and the other with pages of the other colors.
5956 : */
5957 5 : batch = rounddown_pow_of_two(batch + batch/2) - 1;
5958 :
5959 3 : return batch;
5960 :
5961 : #else
5962 : /* The deferral and batching of frees should be suppressed under NOMMU
5963 : * conditions.
5964 : *
5965 : * The problem is that NOMMU needs to be able to allocate large chunks
5966 : * of contiguous memory as there's no hardware page translation to
5967 : * assemble apparent contiguous memory from discontiguous pages.
5968 : *
5969 : * Queueing large contiguous runs of pages for batching, however,
5970 : * causes the pages to actually be freed in smaller chunks. As there
5971 : * can be a significant delay between the individual batches being
5972 : * recycled, this leads to the once large chunks of space being
5973 : * fragmented and becoming unavailable for high-order allocations.
5974 : */
5975 : return 0;
5976 : #endif
5977 : }
5978 :
5979 3 : static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5980 : {
5981 : #ifdef CONFIG_MMU
5982 : int high;
5983 : int nr_split_cpus;
5984 : unsigned long total_pages;
5985 :
5986 3 : if (!percpu_pagelist_high_fraction) {
5987 : /*
5988 : * By default, the high value of the pcp is based on the zone
5989 : * low watermark so that if they are full then background
5990 : * reclaim will not be started prematurely.
5991 : */
5992 3 : total_pages = low_wmark_pages(zone);
5993 : } else {
5994 : /*
5995 : * If percpu_pagelist_high_fraction is configured, the high
5996 : * value is based on a fraction of the managed pages in the
5997 : * zone.
5998 : */
5999 0 : total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6000 : }
6001 :
6002 : /*
6003 : * Split the high value across all online CPUs local to the zone. Note
6004 : * that early in boot that CPUs may not be online yet and that during
6005 : * CPU hotplug that the cpumask is not yet updated when a CPU is being
6006 : * onlined. For memory nodes that have no CPUs, split pcp->high across
6007 : * all online CPUs to mitigate the risk that reclaim is triggered
6008 : * prematurely due to pages stored on pcp lists.
6009 : */
6010 6 : nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6011 3 : if (!nr_split_cpus)
6012 0 : nr_split_cpus = num_online_cpus();
6013 3 : high = total_pages / nr_split_cpus;
6014 :
6015 : /*
6016 : * Ensure high is at least batch*4. The multiple is based on the
6017 : * historical relationship between high and batch.
6018 : */
6019 3 : high = max(high, batch << 2);
6020 :
6021 3 : return high;
6022 : #else
6023 : return 0;
6024 : #endif
6025 : }
6026 :
6027 : /*
6028 : * pcp->high and pcp->batch values are related and generally batch is lower
6029 : * than high. They are also related to pcp->count such that count is lower
6030 : * than high, and as soon as it reaches high, the pcplist is flushed.
6031 : *
6032 : * However, guaranteeing these relations at all times would require e.g. write
6033 : * barriers here but also careful usage of read barriers at the read side, and
6034 : * thus be prone to error and bad for performance. Thus the update only prevents
6035 : * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6036 : * can cope with those fields changing asynchronously, and fully trust only the
6037 : * pcp->count field on the local CPU with interrupts disabled.
6038 : *
6039 : * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6040 : * outside of boot time (or some other assurance that no concurrent updaters
6041 : * exist).
6042 : */
6043 : static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6044 : unsigned long batch)
6045 : {
6046 3 : WRITE_ONCE(pcp->batch, batch);
6047 3 : WRITE_ONCE(pcp->high, high);
6048 : }
6049 :
6050 2 : static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6051 : {
6052 : int pindex;
6053 :
6054 2 : memset(pcp, 0, sizeof(*pcp));
6055 2 : memset(pzstats, 0, sizeof(*pzstats));
6056 :
6057 2 : spin_lock_init(&pcp->lock);
6058 26 : for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6059 48 : INIT_LIST_HEAD(&pcp->lists[pindex]);
6060 :
6061 : /*
6062 : * Set batch and high values safe for a boot pageset. A true percpu
6063 : * pageset's initialization will update them subsequently. Here we don't
6064 : * need to be as careful as pageset_update() as nobody can access the
6065 : * pageset yet.
6066 : */
6067 2 : pcp->high = BOOT_PAGESET_HIGH;
6068 2 : pcp->batch = BOOT_PAGESET_BATCH;
6069 2 : pcp->free_factor = 0;
6070 2 : }
6071 :
6072 : static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6073 : unsigned long batch)
6074 : {
6075 : struct per_cpu_pages *pcp;
6076 : int cpu;
6077 :
6078 3 : for_each_possible_cpu(cpu) {
6079 3 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6080 3 : pageset_update(pcp, high, batch);
6081 : }
6082 : }
6083 :
6084 : /*
6085 : * Calculate and set new high and batch values for all per-cpu pagesets of a
6086 : * zone based on the zone's size.
6087 : */
6088 3 : static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6089 : {
6090 : int new_high, new_batch;
6091 :
6092 3 : new_batch = max(1, zone_batchsize(zone));
6093 3 : new_high = zone_highsize(zone, new_batch, cpu_online);
6094 :
6095 3 : if (zone->pageset_high == new_high &&
6096 0 : zone->pageset_batch == new_batch)
6097 : return;
6098 :
6099 3 : zone->pageset_high = new_high;
6100 3 : zone->pageset_batch = new_batch;
6101 :
6102 3 : __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6103 : }
6104 :
6105 1 : void __meminit setup_zone_pageset(struct zone *zone)
6106 : {
6107 : int cpu;
6108 :
6109 : /* Size may be 0 on !SMP && !NUMA */
6110 : if (sizeof(struct per_cpu_zonestat) > 0)
6111 : zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6112 :
6113 1 : zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6114 2 : for_each_possible_cpu(cpu) {
6115 : struct per_cpu_pages *pcp;
6116 : struct per_cpu_zonestat *pzstats;
6117 :
6118 1 : pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6119 1 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6120 1 : per_cpu_pages_init(pcp, pzstats);
6121 : }
6122 :
6123 1 : zone_set_pageset_high_and_batch(zone, 0);
6124 1 : }
6125 :
6126 : /*
6127 : * The zone indicated has a new number of managed_pages; batch sizes and percpu
6128 : * page high values need to be recalculated.
6129 : */
6130 2 : static void zone_pcp_update(struct zone *zone, int cpu_online)
6131 : {
6132 2 : mutex_lock(&pcp_batch_high_lock);
6133 2 : zone_set_pageset_high_and_batch(zone, cpu_online);
6134 2 : mutex_unlock(&pcp_batch_high_lock);
6135 2 : }
6136 :
6137 : /*
6138 : * Allocate per cpu pagesets and initialize them.
6139 : * Before this call only boot pagesets were available.
6140 : */
6141 1 : void __init setup_per_cpu_pageset(void)
6142 : {
6143 : struct pglist_data *pgdat;
6144 : struct zone *zone;
6145 : int __maybe_unused cpu;
6146 :
6147 3 : for_each_populated_zone(zone)
6148 1 : setup_zone_pageset(zone);
6149 :
6150 : #ifdef CONFIG_NUMA
6151 : /*
6152 : * Unpopulated zones continue using the boot pagesets.
6153 : * The numa stats for these pagesets need to be reset.
6154 : * Otherwise, they will end up skewing the stats of
6155 : * the nodes these zones are associated with.
6156 : */
6157 : for_each_possible_cpu(cpu) {
6158 : struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6159 : memset(pzstats->vm_numa_event, 0,
6160 : sizeof(pzstats->vm_numa_event));
6161 : }
6162 : #endif
6163 :
6164 2 : for_each_online_pgdat(pgdat)
6165 1 : pgdat->per_cpu_nodestats =
6166 1 : alloc_percpu(struct per_cpu_nodestat);
6167 1 : }
6168 :
6169 2 : __meminit void zone_pcp_init(struct zone *zone)
6170 : {
6171 : /*
6172 : * per cpu subsystem is not up at this point. The following code
6173 : * relies on the ability of the linker to provide the
6174 : * offset of a (static) per cpu variable into the per cpu area.
6175 : */
6176 2 : zone->per_cpu_pageset = &boot_pageset;
6177 2 : zone->per_cpu_zonestats = &boot_zonestats;
6178 2 : zone->pageset_high = BOOT_PAGESET_HIGH;
6179 2 : zone->pageset_batch = BOOT_PAGESET_BATCH;
6180 :
6181 2 : if (populated_zone(zone))
6182 : pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6183 : zone->present_pages, zone_batchsize(zone));
6184 2 : }
6185 :
6186 0 : void adjust_managed_page_count(struct page *page, long count)
6187 : {
6188 0 : atomic_long_add(count, &page_zone(page)->managed_pages);
6189 0 : totalram_pages_add(count);
6190 : #ifdef CONFIG_HIGHMEM
6191 : if (PageHighMem(page))
6192 : totalhigh_pages_add(count);
6193 : #endif
6194 0 : }
6195 : EXPORT_SYMBOL(adjust_managed_page_count);
6196 :
6197 0 : unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6198 : {
6199 : void *pos;
6200 0 : unsigned long pages = 0;
6201 :
6202 0 : start = (void *)PAGE_ALIGN((unsigned long)start);
6203 0 : end = (void *)((unsigned long)end & PAGE_MASK);
6204 0 : for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6205 0 : struct page *page = virt_to_page(pos);
6206 : void *direct_map_addr;
6207 :
6208 : /*
6209 : * 'direct_map_addr' might be different from 'pos'
6210 : * because some architectures' virt_to_page()
6211 : * work with aliases. Getting the direct map
6212 : * address ensures that we get a _writeable_
6213 : * alias for the memset().
6214 : */
6215 0 : direct_map_addr = page_address(page);
6216 : /*
6217 : * Perform a kasan-unchecked memset() since this memory
6218 : * has not been initialized.
6219 : */
6220 0 : direct_map_addr = kasan_reset_tag(direct_map_addr);
6221 0 : if ((unsigned int)poison <= 0xFF)
6222 0 : memset(direct_map_addr, poison, PAGE_SIZE);
6223 :
6224 0 : free_reserved_page(page);
6225 : }
6226 :
6227 0 : if (pages && s)
6228 0 : pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6229 :
6230 0 : return pages;
6231 : }
6232 :
6233 0 : static int page_alloc_cpu_dead(unsigned int cpu)
6234 : {
6235 : struct zone *zone;
6236 :
6237 0 : lru_add_drain_cpu(cpu);
6238 0 : mlock_drain_remote(cpu);
6239 0 : drain_pages(cpu);
6240 :
6241 : /*
6242 : * Spill the event counters of the dead processor
6243 : * into the current processors event counters.
6244 : * This artificially elevates the count of the current
6245 : * processor.
6246 : */
6247 0 : vm_events_fold_cpu(cpu);
6248 :
6249 : /*
6250 : * Zero the differential counters of the dead processor
6251 : * so that the vm statistics are consistent.
6252 : *
6253 : * This is only okay since the processor is dead and cannot
6254 : * race with what we are doing.
6255 : */
6256 0 : cpu_vm_stats_fold(cpu);
6257 :
6258 0 : for_each_populated_zone(zone)
6259 0 : zone_pcp_update(zone, 0);
6260 :
6261 0 : return 0;
6262 : }
6263 :
6264 0 : static int page_alloc_cpu_online(unsigned int cpu)
6265 : {
6266 : struct zone *zone;
6267 :
6268 0 : for_each_populated_zone(zone)
6269 0 : zone_pcp_update(zone, 1);
6270 0 : return 0;
6271 : }
6272 :
6273 1 : void __init page_alloc_init_cpuhp(void)
6274 : {
6275 : int ret;
6276 :
6277 1 : ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6278 : "mm/page_alloc:pcp",
6279 : page_alloc_cpu_online,
6280 : page_alloc_cpu_dead);
6281 1 : WARN_ON(ret < 0);
6282 1 : }
6283 :
6284 : /*
6285 : * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6286 : * or min_free_kbytes changes.
6287 : */
6288 2 : static void calculate_totalreserve_pages(void)
6289 : {
6290 : struct pglist_data *pgdat;
6291 2 : unsigned long reserve_pages = 0;
6292 : enum zone_type i, j;
6293 :
6294 4 : for_each_online_pgdat(pgdat) {
6295 :
6296 2 : pgdat->totalreserve_pages = 0;
6297 :
6298 6 : for (i = 0; i < MAX_NR_ZONES; i++) {
6299 4 : struct zone *zone = pgdat->node_zones + i;
6300 4 : long max = 0;
6301 4 : unsigned long managed_pages = zone_managed_pages(zone);
6302 :
6303 : /* Find valid and maximum lowmem_reserve in the zone */
6304 10 : for (j = i; j < MAX_NR_ZONES; j++) {
6305 6 : if (zone->lowmem_reserve[j] > max)
6306 0 : max = zone->lowmem_reserve[j];
6307 : }
6308 :
6309 : /* we treat the high watermark as reserved pages. */
6310 4 : max += high_wmark_pages(zone);
6311 :
6312 4 : if (max > managed_pages)
6313 0 : max = managed_pages;
6314 :
6315 4 : pgdat->totalreserve_pages += max;
6316 :
6317 4 : reserve_pages += max;
6318 : }
6319 : }
6320 2 : totalreserve_pages = reserve_pages;
6321 2 : }
6322 :
6323 : /*
6324 : * setup_per_zone_lowmem_reserve - called whenever
6325 : * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6326 : * has a correct pages reserved value, so an adequate number of
6327 : * pages are left in the zone after a successful __alloc_pages().
6328 : */
6329 1 : static void setup_per_zone_lowmem_reserve(void)
6330 : {
6331 : struct pglist_data *pgdat;
6332 : enum zone_type i, j;
6333 :
6334 2 : for_each_online_pgdat(pgdat) {
6335 2 : for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6336 1 : struct zone *zone = &pgdat->node_zones[i];
6337 1 : int ratio = sysctl_lowmem_reserve_ratio[i];
6338 2 : bool clear = !ratio || !zone_managed_pages(zone);
6339 1 : unsigned long managed_pages = 0;
6340 :
6341 2 : for (j = i + 1; j < MAX_NR_ZONES; j++) {
6342 1 : struct zone *upper_zone = &pgdat->node_zones[j];
6343 :
6344 1 : managed_pages += zone_managed_pages(upper_zone);
6345 :
6346 1 : if (clear)
6347 0 : zone->lowmem_reserve[j] = 0;
6348 : else
6349 1 : zone->lowmem_reserve[j] = managed_pages / ratio;
6350 : }
6351 : }
6352 : }
6353 :
6354 : /* update totalreserve_pages */
6355 1 : calculate_totalreserve_pages();
6356 1 : }
6357 :
6358 1 : static void __setup_per_zone_wmarks(void)
6359 : {
6360 1 : unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6361 1 : unsigned long lowmem_pages = 0;
6362 : struct zone *zone;
6363 : unsigned long flags;
6364 :
6365 : /* Calculate total number of !ZONE_HIGHMEM pages */
6366 3 : for_each_zone(zone) {
6367 2 : if (!is_highmem(zone))
6368 2 : lowmem_pages += zone_managed_pages(zone);
6369 : }
6370 :
6371 3 : for_each_zone(zone) {
6372 : u64 tmp;
6373 :
6374 2 : spin_lock_irqsave(&zone->lock, flags);
6375 2 : tmp = (u64)pages_min * zone_managed_pages(zone);
6376 2 : do_div(tmp, lowmem_pages);
6377 2 : if (is_highmem(zone)) {
6378 : /*
6379 : * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6380 : * need highmem pages, so cap pages_min to a small
6381 : * value here.
6382 : *
6383 : * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6384 : * deltas control async page reclaim, and so should
6385 : * not be capped for highmem.
6386 : */
6387 : unsigned long min_pages;
6388 :
6389 : min_pages = zone_managed_pages(zone) / 1024;
6390 : min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6391 : zone->_watermark[WMARK_MIN] = min_pages;
6392 : } else {
6393 : /*
6394 : * If it's a lowmem zone, reserve a number of pages
6395 : * proportionate to the zone's size.
6396 : */
6397 2 : zone->_watermark[WMARK_MIN] = tmp;
6398 : }
6399 :
6400 : /*
6401 : * Set the kswapd watermarks distance according to the
6402 : * scale factor in proportion to available memory, but
6403 : * ensure a minimum size on small systems.
6404 : */
6405 6 : tmp = max_t(u64, tmp >> 2,
6406 : mult_frac(zone_managed_pages(zone),
6407 : watermark_scale_factor, 10000));
6408 :
6409 2 : zone->watermark_boost = 0;
6410 2 : zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6411 2 : zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6412 2 : zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6413 :
6414 4 : spin_unlock_irqrestore(&zone->lock, flags);
6415 : }
6416 :
6417 : /* update totalreserve_pages */
6418 1 : calculate_totalreserve_pages();
6419 1 : }
6420 :
6421 : /**
6422 : * setup_per_zone_wmarks - called when min_free_kbytes changes
6423 : * or when memory is hot-{added|removed}
6424 : *
6425 : * Ensures that the watermark[min,low,high] values for each zone are set
6426 : * correctly with respect to min_free_kbytes.
6427 : */
6428 1 : void setup_per_zone_wmarks(void)
6429 : {
6430 : struct zone *zone;
6431 : static DEFINE_SPINLOCK(lock);
6432 :
6433 1 : spin_lock(&lock);
6434 1 : __setup_per_zone_wmarks();
6435 1 : spin_unlock(&lock);
6436 :
6437 : /*
6438 : * The watermark size have changed so update the pcpu batch
6439 : * and high limits or the limits may be inappropriate.
6440 : */
6441 3 : for_each_zone(zone)
6442 2 : zone_pcp_update(zone, 0);
6443 1 : }
6444 :
6445 : /*
6446 : * Initialise min_free_kbytes.
6447 : *
6448 : * For small machines we want it small (128k min). For large machines
6449 : * we want it large (256MB max). But it is not linear, because network
6450 : * bandwidth does not increase linearly with machine size. We use
6451 : *
6452 : * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6453 : * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6454 : *
6455 : * which yields
6456 : *
6457 : * 16MB: 512k
6458 : * 32MB: 724k
6459 : * 64MB: 1024k
6460 : * 128MB: 1448k
6461 : * 256MB: 2048k
6462 : * 512MB: 2896k
6463 : * 1024MB: 4096k
6464 : * 2048MB: 5792k
6465 : * 4096MB: 8192k
6466 : * 8192MB: 11584k
6467 : * 16384MB: 16384k
6468 : */
6469 1 : void calculate_min_free_kbytes(void)
6470 : {
6471 : unsigned long lowmem_kbytes;
6472 : int new_min_free_kbytes;
6473 :
6474 1 : lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6475 1 : new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6476 :
6477 1 : if (new_min_free_kbytes > user_min_free_kbytes)
6478 1 : min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6479 : else
6480 0 : pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6481 : new_min_free_kbytes, user_min_free_kbytes);
6482 :
6483 1 : }
6484 :
6485 1 : int __meminit init_per_zone_wmark_min(void)
6486 : {
6487 1 : calculate_min_free_kbytes();
6488 1 : setup_per_zone_wmarks();
6489 : refresh_zone_stat_thresholds();
6490 1 : setup_per_zone_lowmem_reserve();
6491 :
6492 : #ifdef CONFIG_NUMA
6493 : setup_min_unmapped_ratio();
6494 : setup_min_slab_ratio();
6495 : #endif
6496 :
6497 : khugepaged_min_free_kbytes_update();
6498 :
6499 1 : return 0;
6500 : }
6501 : postcore_initcall(init_per_zone_wmark_min)
6502 :
6503 : /*
6504 : * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6505 : * that we can call two helper functions whenever min_free_kbytes
6506 : * changes.
6507 : */
6508 0 : int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6509 : void *buffer, size_t *length, loff_t *ppos)
6510 : {
6511 : int rc;
6512 :
6513 0 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6514 0 : if (rc)
6515 : return rc;
6516 :
6517 0 : if (write) {
6518 0 : user_min_free_kbytes = min_free_kbytes;
6519 0 : setup_per_zone_wmarks();
6520 : }
6521 : return 0;
6522 : }
6523 :
6524 0 : int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6525 : void *buffer, size_t *length, loff_t *ppos)
6526 : {
6527 : int rc;
6528 :
6529 0 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6530 0 : if (rc)
6531 : return rc;
6532 :
6533 0 : if (write)
6534 0 : setup_per_zone_wmarks();
6535 :
6536 : return 0;
6537 : }
6538 :
6539 : #ifdef CONFIG_NUMA
6540 : static void setup_min_unmapped_ratio(void)
6541 : {
6542 : pg_data_t *pgdat;
6543 : struct zone *zone;
6544 :
6545 : for_each_online_pgdat(pgdat)
6546 : pgdat->min_unmapped_pages = 0;
6547 :
6548 : for_each_zone(zone)
6549 : zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6550 : sysctl_min_unmapped_ratio) / 100;
6551 : }
6552 :
6553 :
6554 : int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6555 : void *buffer, size_t *length, loff_t *ppos)
6556 : {
6557 : int rc;
6558 :
6559 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6560 : if (rc)
6561 : return rc;
6562 :
6563 : setup_min_unmapped_ratio();
6564 :
6565 : return 0;
6566 : }
6567 :
6568 : static void setup_min_slab_ratio(void)
6569 : {
6570 : pg_data_t *pgdat;
6571 : struct zone *zone;
6572 :
6573 : for_each_online_pgdat(pgdat)
6574 : pgdat->min_slab_pages = 0;
6575 :
6576 : for_each_zone(zone)
6577 : zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6578 : sysctl_min_slab_ratio) / 100;
6579 : }
6580 :
6581 : int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6582 : void *buffer, size_t *length, loff_t *ppos)
6583 : {
6584 : int rc;
6585 :
6586 : rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6587 : if (rc)
6588 : return rc;
6589 :
6590 : setup_min_slab_ratio();
6591 :
6592 : return 0;
6593 : }
6594 : #endif
6595 :
6596 : /*
6597 : * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6598 : * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6599 : * whenever sysctl_lowmem_reserve_ratio changes.
6600 : *
6601 : * The reserve ratio obviously has absolutely no relation with the
6602 : * minimum watermarks. The lowmem reserve ratio can only make sense
6603 : * if in function of the boot time zone sizes.
6604 : */
6605 0 : int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6606 : void *buffer, size_t *length, loff_t *ppos)
6607 : {
6608 : int i;
6609 :
6610 0 : proc_dointvec_minmax(table, write, buffer, length, ppos);
6611 :
6612 0 : for (i = 0; i < MAX_NR_ZONES; i++) {
6613 0 : if (sysctl_lowmem_reserve_ratio[i] < 1)
6614 0 : sysctl_lowmem_reserve_ratio[i] = 0;
6615 : }
6616 :
6617 0 : setup_per_zone_lowmem_reserve();
6618 0 : return 0;
6619 : }
6620 :
6621 : /*
6622 : * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6623 : * cpu. It is the fraction of total pages in each zone that a hot per cpu
6624 : * pagelist can have before it gets flushed back to buddy allocator.
6625 : */
6626 0 : int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6627 : int write, void *buffer, size_t *length, loff_t *ppos)
6628 : {
6629 : struct zone *zone;
6630 : int old_percpu_pagelist_high_fraction;
6631 : int ret;
6632 :
6633 0 : mutex_lock(&pcp_batch_high_lock);
6634 0 : old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6635 :
6636 0 : ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6637 0 : if (!write || ret < 0)
6638 : goto out;
6639 :
6640 : /* Sanity checking to avoid pcp imbalance */
6641 0 : if (percpu_pagelist_high_fraction &&
6642 : percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6643 0 : percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6644 0 : ret = -EINVAL;
6645 0 : goto out;
6646 : }
6647 :
6648 : /* No change? */
6649 0 : if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6650 : goto out;
6651 :
6652 0 : for_each_populated_zone(zone)
6653 0 : zone_set_pageset_high_and_batch(zone, 0);
6654 : out:
6655 0 : mutex_unlock(&pcp_batch_high_lock);
6656 0 : return ret;
6657 : }
6658 :
6659 : #ifdef CONFIG_CONTIG_ALLOC
6660 : #if defined(CONFIG_DYNAMIC_DEBUG) || \
6661 : (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
6662 : /* Usage: See admin-guide/dynamic-debug-howto.rst */
6663 : static void alloc_contig_dump_pages(struct list_head *page_list)
6664 : {
6665 : DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6666 :
6667 : if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6668 : struct page *page;
6669 :
6670 : dump_stack();
6671 : list_for_each_entry(page, page_list, lru)
6672 : dump_page(page, "migration failure");
6673 : }
6674 : }
6675 : #else
6676 : static inline void alloc_contig_dump_pages(struct list_head *page_list)
6677 : {
6678 : }
6679 : #endif
6680 :
6681 : /* [start, end) must belong to a single zone. */
6682 : int __alloc_contig_migrate_range(struct compact_control *cc,
6683 : unsigned long start, unsigned long end)
6684 : {
6685 : /* This function is based on compact_zone() from compaction.c. */
6686 : unsigned int nr_reclaimed;
6687 : unsigned long pfn = start;
6688 : unsigned int tries = 0;
6689 : int ret = 0;
6690 : struct migration_target_control mtc = {
6691 : .nid = zone_to_nid(cc->zone),
6692 : .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6693 : };
6694 :
6695 : lru_cache_disable();
6696 :
6697 : while (pfn < end || !list_empty(&cc->migratepages)) {
6698 : if (fatal_signal_pending(current)) {
6699 : ret = -EINTR;
6700 : break;
6701 : }
6702 :
6703 : if (list_empty(&cc->migratepages)) {
6704 : cc->nr_migratepages = 0;
6705 : ret = isolate_migratepages_range(cc, pfn, end);
6706 : if (ret && ret != -EAGAIN)
6707 : break;
6708 : pfn = cc->migrate_pfn;
6709 : tries = 0;
6710 : } else if (++tries == 5) {
6711 : ret = -EBUSY;
6712 : break;
6713 : }
6714 :
6715 : nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6716 : &cc->migratepages);
6717 : cc->nr_migratepages -= nr_reclaimed;
6718 :
6719 : ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6720 : NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6721 :
6722 : /*
6723 : * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6724 : * to retry again over this error, so do the same here.
6725 : */
6726 : if (ret == -ENOMEM)
6727 : break;
6728 : }
6729 :
6730 : lru_cache_enable();
6731 : if (ret < 0) {
6732 : if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6733 : alloc_contig_dump_pages(&cc->migratepages);
6734 : putback_movable_pages(&cc->migratepages);
6735 : return ret;
6736 : }
6737 : return 0;
6738 : }
6739 :
6740 : /**
6741 : * alloc_contig_range() -- tries to allocate given range of pages
6742 : * @start: start PFN to allocate
6743 : * @end: one-past-the-last PFN to allocate
6744 : * @migratetype: migratetype of the underlying pageblocks (either
6745 : * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6746 : * in range must have the same migratetype and it must
6747 : * be either of the two.
6748 : * @gfp_mask: GFP mask to use during compaction
6749 : *
6750 : * The PFN range does not have to be pageblock aligned. The PFN range must
6751 : * belong to a single zone.
6752 : *
6753 : * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6754 : * pageblocks in the range. Once isolated, the pageblocks should not
6755 : * be modified by others.
6756 : *
6757 : * Return: zero on success or negative error code. On success all
6758 : * pages which PFN is in [start, end) are allocated for the caller and
6759 : * need to be freed with free_contig_range().
6760 : */
6761 : int alloc_contig_range(unsigned long start, unsigned long end,
6762 : unsigned migratetype, gfp_t gfp_mask)
6763 : {
6764 : unsigned long outer_start, outer_end;
6765 : int order;
6766 : int ret = 0;
6767 :
6768 : struct compact_control cc = {
6769 : .nr_migratepages = 0,
6770 : .order = -1,
6771 : .zone = page_zone(pfn_to_page(start)),
6772 : .mode = MIGRATE_SYNC,
6773 : .ignore_skip_hint = true,
6774 : .no_set_skip_hint = true,
6775 : .gfp_mask = current_gfp_context(gfp_mask),
6776 : .alloc_contig = true,
6777 : };
6778 : INIT_LIST_HEAD(&cc.migratepages);
6779 :
6780 : /*
6781 : * What we do here is we mark all pageblocks in range as
6782 : * MIGRATE_ISOLATE. Because pageblock and max order pages may
6783 : * have different sizes, and due to the way page allocator
6784 : * work, start_isolate_page_range() has special handlings for this.
6785 : *
6786 : * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6787 : * migrate the pages from an unaligned range (ie. pages that
6788 : * we are interested in). This will put all the pages in
6789 : * range back to page allocator as MIGRATE_ISOLATE.
6790 : *
6791 : * When this is done, we take the pages in range from page
6792 : * allocator removing them from the buddy system. This way
6793 : * page allocator will never consider using them.
6794 : *
6795 : * This lets us mark the pageblocks back as
6796 : * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6797 : * aligned range but not in the unaligned, original range are
6798 : * put back to page allocator so that buddy can use them.
6799 : */
6800 :
6801 : ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6802 : if (ret)
6803 : goto done;
6804 :
6805 : drain_all_pages(cc.zone);
6806 :
6807 : /*
6808 : * In case of -EBUSY, we'd like to know which page causes problem.
6809 : * So, just fall through. test_pages_isolated() has a tracepoint
6810 : * which will report the busy page.
6811 : *
6812 : * It is possible that busy pages could become available before
6813 : * the call to test_pages_isolated, and the range will actually be
6814 : * allocated. So, if we fall through be sure to clear ret so that
6815 : * -EBUSY is not accidentally used or returned to caller.
6816 : */
6817 : ret = __alloc_contig_migrate_range(&cc, start, end);
6818 : if (ret && ret != -EBUSY)
6819 : goto done;
6820 : ret = 0;
6821 :
6822 : /*
6823 : * Pages from [start, end) are within a pageblock_nr_pages
6824 : * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6825 : * more, all pages in [start, end) are free in page allocator.
6826 : * What we are going to do is to allocate all pages from
6827 : * [start, end) (that is remove them from page allocator).
6828 : *
6829 : * The only problem is that pages at the beginning and at the
6830 : * end of interesting range may be not aligned with pages that
6831 : * page allocator holds, ie. they can be part of higher order
6832 : * pages. Because of this, we reserve the bigger range and
6833 : * once this is done free the pages we are not interested in.
6834 : *
6835 : * We don't have to hold zone->lock here because the pages are
6836 : * isolated thus they won't get removed from buddy.
6837 : */
6838 :
6839 : order = 0;
6840 : outer_start = start;
6841 : while (!PageBuddy(pfn_to_page(outer_start))) {
6842 : if (++order > MAX_ORDER) {
6843 : outer_start = start;
6844 : break;
6845 : }
6846 : outer_start &= ~0UL << order;
6847 : }
6848 :
6849 : if (outer_start != start) {
6850 : order = buddy_order(pfn_to_page(outer_start));
6851 :
6852 : /*
6853 : * outer_start page could be small order buddy page and
6854 : * it doesn't include start page. Adjust outer_start
6855 : * in this case to report failed page properly
6856 : * on tracepoint in test_pages_isolated()
6857 : */
6858 : if (outer_start + (1UL << order) <= start)
6859 : outer_start = start;
6860 : }
6861 :
6862 : /* Make sure the range is really isolated. */
6863 : if (test_pages_isolated(outer_start, end, 0)) {
6864 : ret = -EBUSY;
6865 : goto done;
6866 : }
6867 :
6868 : /* Grab isolated pages from freelists. */
6869 : outer_end = isolate_freepages_range(&cc, outer_start, end);
6870 : if (!outer_end) {
6871 : ret = -EBUSY;
6872 : goto done;
6873 : }
6874 :
6875 : /* Free head and tail (if any) */
6876 : if (start != outer_start)
6877 : free_contig_range(outer_start, start - outer_start);
6878 : if (end != outer_end)
6879 : free_contig_range(end, outer_end - end);
6880 :
6881 : done:
6882 : undo_isolate_page_range(start, end, migratetype);
6883 : return ret;
6884 : }
6885 : EXPORT_SYMBOL(alloc_contig_range);
6886 :
6887 : static int __alloc_contig_pages(unsigned long start_pfn,
6888 : unsigned long nr_pages, gfp_t gfp_mask)
6889 : {
6890 : unsigned long end_pfn = start_pfn + nr_pages;
6891 :
6892 : return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6893 : gfp_mask);
6894 : }
6895 :
6896 : static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6897 : unsigned long nr_pages)
6898 : {
6899 : unsigned long i, end_pfn = start_pfn + nr_pages;
6900 : struct page *page;
6901 :
6902 : for (i = start_pfn; i < end_pfn; i++) {
6903 : page = pfn_to_online_page(i);
6904 : if (!page)
6905 : return false;
6906 :
6907 : if (page_zone(page) != z)
6908 : return false;
6909 :
6910 : if (PageReserved(page))
6911 : return false;
6912 :
6913 : if (PageHuge(page))
6914 : return false;
6915 : }
6916 : return true;
6917 : }
6918 :
6919 : static bool zone_spans_last_pfn(const struct zone *zone,
6920 : unsigned long start_pfn, unsigned long nr_pages)
6921 : {
6922 : unsigned long last_pfn = start_pfn + nr_pages - 1;
6923 :
6924 : return zone_spans_pfn(zone, last_pfn);
6925 : }
6926 :
6927 : /**
6928 : * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6929 : * @nr_pages: Number of contiguous pages to allocate
6930 : * @gfp_mask: GFP mask to limit search and used during compaction
6931 : * @nid: Target node
6932 : * @nodemask: Mask for other possible nodes
6933 : *
6934 : * This routine is a wrapper around alloc_contig_range(). It scans over zones
6935 : * on an applicable zonelist to find a contiguous pfn range which can then be
6936 : * tried for allocation with alloc_contig_range(). This routine is intended
6937 : * for allocation requests which can not be fulfilled with the buddy allocator.
6938 : *
6939 : * The allocated memory is always aligned to a page boundary. If nr_pages is a
6940 : * power of two, then allocated range is also guaranteed to be aligned to same
6941 : * nr_pages (e.g. 1GB request would be aligned to 1GB).
6942 : *
6943 : * Allocated pages can be freed with free_contig_range() or by manually calling
6944 : * __free_page() on each allocated page.
6945 : *
6946 : * Return: pointer to contiguous pages on success, or NULL if not successful.
6947 : */
6948 : struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6949 : int nid, nodemask_t *nodemask)
6950 : {
6951 : unsigned long ret, pfn, flags;
6952 : struct zonelist *zonelist;
6953 : struct zone *zone;
6954 : struct zoneref *z;
6955 :
6956 : zonelist = node_zonelist(nid, gfp_mask);
6957 : for_each_zone_zonelist_nodemask(zone, z, zonelist,
6958 : gfp_zone(gfp_mask), nodemask) {
6959 : spin_lock_irqsave(&zone->lock, flags);
6960 :
6961 : pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6962 : while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6963 : if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6964 : /*
6965 : * We release the zone lock here because
6966 : * alloc_contig_range() will also lock the zone
6967 : * at some point. If there's an allocation
6968 : * spinning on this lock, it may win the race
6969 : * and cause alloc_contig_range() to fail...
6970 : */
6971 : spin_unlock_irqrestore(&zone->lock, flags);
6972 : ret = __alloc_contig_pages(pfn, nr_pages,
6973 : gfp_mask);
6974 : if (!ret)
6975 : return pfn_to_page(pfn);
6976 : spin_lock_irqsave(&zone->lock, flags);
6977 : }
6978 : pfn += nr_pages;
6979 : }
6980 : spin_unlock_irqrestore(&zone->lock, flags);
6981 : }
6982 : return NULL;
6983 : }
6984 : #endif /* CONFIG_CONTIG_ALLOC */
6985 :
6986 0 : void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6987 : {
6988 0 : unsigned long count = 0;
6989 :
6990 0 : for (; nr_pages--; pfn++) {
6991 0 : struct page *page = pfn_to_page(pfn);
6992 :
6993 0 : count += page_count(page) != 1;
6994 0 : __free_page(page);
6995 : }
6996 0 : WARN(count != 0, "%lu pages are still in use!\n", count);
6997 0 : }
6998 : EXPORT_SYMBOL(free_contig_range);
6999 :
7000 : /*
7001 : * Effectively disable pcplists for the zone by setting the high limit to 0
7002 : * and draining all cpus. A concurrent page freeing on another CPU that's about
7003 : * to put the page on pcplist will either finish before the drain and the page
7004 : * will be drained, or observe the new high limit and skip the pcplist.
7005 : *
7006 : * Must be paired with a call to zone_pcp_enable().
7007 : */
7008 0 : void zone_pcp_disable(struct zone *zone)
7009 : {
7010 0 : mutex_lock(&pcp_batch_high_lock);
7011 0 : __zone_set_pageset_high_and_batch(zone, 0, 1);
7012 0 : __drain_all_pages(zone, true);
7013 0 : }
7014 :
7015 0 : void zone_pcp_enable(struct zone *zone)
7016 : {
7017 0 : __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
7018 0 : mutex_unlock(&pcp_batch_high_lock);
7019 0 : }
7020 :
7021 0 : void zone_pcp_reset(struct zone *zone)
7022 : {
7023 : int cpu;
7024 : struct per_cpu_zonestat *pzstats;
7025 :
7026 0 : if (zone->per_cpu_pageset != &boot_pageset) {
7027 : for_each_online_cpu(cpu) {
7028 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7029 : drain_zonestat(zone, pzstats);
7030 : }
7031 0 : free_percpu(zone->per_cpu_pageset);
7032 0 : zone->per_cpu_pageset = &boot_pageset;
7033 0 : if (zone->per_cpu_zonestats != &boot_zonestats) {
7034 0 : free_percpu(zone->per_cpu_zonestats);
7035 0 : zone->per_cpu_zonestats = &boot_zonestats;
7036 : }
7037 : }
7038 0 : }
7039 :
7040 : #ifdef CONFIG_MEMORY_HOTREMOVE
7041 : /*
7042 : * All pages in the range must be in a single zone, must not contain holes,
7043 : * must span full sections, and must be isolated before calling this function.
7044 : */
7045 : void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7046 : {
7047 : unsigned long pfn = start_pfn;
7048 : struct page *page;
7049 : struct zone *zone;
7050 : unsigned int order;
7051 : unsigned long flags;
7052 :
7053 : offline_mem_sections(pfn, end_pfn);
7054 : zone = page_zone(pfn_to_page(pfn));
7055 : spin_lock_irqsave(&zone->lock, flags);
7056 : while (pfn < end_pfn) {
7057 : page = pfn_to_page(pfn);
7058 : /*
7059 : * The HWPoisoned page may be not in buddy system, and
7060 : * page_count() is not 0.
7061 : */
7062 : if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7063 : pfn++;
7064 : continue;
7065 : }
7066 : /*
7067 : * At this point all remaining PageOffline() pages have a
7068 : * reference count of 0 and can simply be skipped.
7069 : */
7070 : if (PageOffline(page)) {
7071 : BUG_ON(page_count(page));
7072 : BUG_ON(PageBuddy(page));
7073 : pfn++;
7074 : continue;
7075 : }
7076 :
7077 : BUG_ON(page_count(page));
7078 : BUG_ON(!PageBuddy(page));
7079 : order = buddy_order(page);
7080 : del_page_from_free_list(page, zone, order);
7081 : pfn += (1 << order);
7082 : }
7083 : spin_unlock_irqrestore(&zone->lock, flags);
7084 : }
7085 : #endif
7086 :
7087 : /*
7088 : * This function returns a stable result only if called under zone lock.
7089 : */
7090 0 : bool is_free_buddy_page(struct page *page)
7091 : {
7092 0 : unsigned long pfn = page_to_pfn(page);
7093 : unsigned int order;
7094 :
7095 0 : for (order = 0; order <= MAX_ORDER; order++) {
7096 0 : struct page *page_head = page - (pfn & ((1 << order) - 1));
7097 :
7098 0 : if (PageBuddy(page_head) &&
7099 0 : buddy_order_unsafe(page_head) >= order)
7100 : break;
7101 : }
7102 :
7103 0 : return order <= MAX_ORDER;
7104 : }
7105 : EXPORT_SYMBOL(is_free_buddy_page);
7106 :
7107 : #ifdef CONFIG_MEMORY_FAILURE
7108 : /*
7109 : * Break down a higher-order page in sub-pages, and keep our target out of
7110 : * buddy allocator.
7111 : */
7112 : static void break_down_buddy_pages(struct zone *zone, struct page *page,
7113 : struct page *target, int low, int high,
7114 : int migratetype)
7115 : {
7116 : unsigned long size = 1 << high;
7117 : struct page *current_buddy, *next_page;
7118 :
7119 : while (high > low) {
7120 : high--;
7121 : size >>= 1;
7122 :
7123 : if (target >= &page[size]) {
7124 : next_page = page + size;
7125 : current_buddy = page;
7126 : } else {
7127 : next_page = page;
7128 : current_buddy = page + size;
7129 : }
7130 :
7131 : if (set_page_guard(zone, current_buddy, high, migratetype))
7132 : continue;
7133 :
7134 : if (current_buddy != target) {
7135 : add_to_free_list(current_buddy, zone, high, migratetype);
7136 : set_buddy_order(current_buddy, high);
7137 : page = next_page;
7138 : }
7139 : }
7140 : }
7141 :
7142 : /*
7143 : * Take a page that will be marked as poisoned off the buddy allocator.
7144 : */
7145 : bool take_page_off_buddy(struct page *page)
7146 : {
7147 : struct zone *zone = page_zone(page);
7148 : unsigned long pfn = page_to_pfn(page);
7149 : unsigned long flags;
7150 : unsigned int order;
7151 : bool ret = false;
7152 :
7153 : spin_lock_irqsave(&zone->lock, flags);
7154 : for (order = 0; order <= MAX_ORDER; order++) {
7155 : struct page *page_head = page - (pfn & ((1 << order) - 1));
7156 : int page_order = buddy_order(page_head);
7157 :
7158 : if (PageBuddy(page_head) && page_order >= order) {
7159 : unsigned long pfn_head = page_to_pfn(page_head);
7160 : int migratetype = get_pfnblock_migratetype(page_head,
7161 : pfn_head);
7162 :
7163 : del_page_from_free_list(page_head, zone, page_order);
7164 : break_down_buddy_pages(zone, page_head, page, 0,
7165 : page_order, migratetype);
7166 : SetPageHWPoisonTakenOff(page);
7167 : if (!is_migrate_isolate(migratetype))
7168 : __mod_zone_freepage_state(zone, -1, migratetype);
7169 : ret = true;
7170 : break;
7171 : }
7172 : if (page_count(page_head) > 0)
7173 : break;
7174 : }
7175 : spin_unlock_irqrestore(&zone->lock, flags);
7176 : return ret;
7177 : }
7178 :
7179 : /*
7180 : * Cancel takeoff done by take_page_off_buddy().
7181 : */
7182 : bool put_page_back_buddy(struct page *page)
7183 : {
7184 : struct zone *zone = page_zone(page);
7185 : unsigned long pfn = page_to_pfn(page);
7186 : unsigned long flags;
7187 : int migratetype = get_pfnblock_migratetype(page, pfn);
7188 : bool ret = false;
7189 :
7190 : spin_lock_irqsave(&zone->lock, flags);
7191 : if (put_page_testzero(page)) {
7192 : ClearPageHWPoisonTakenOff(page);
7193 : __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7194 : if (TestClearPageHWPoison(page)) {
7195 : ret = true;
7196 : }
7197 : }
7198 : spin_unlock_irqrestore(&zone->lock, flags);
7199 :
7200 : return ret;
7201 : }
7202 : #endif
7203 :
7204 : #ifdef CONFIG_ZONE_DMA
7205 : bool has_managed_dma(void)
7206 : {
7207 : struct pglist_data *pgdat;
7208 :
7209 : for_each_online_pgdat(pgdat) {
7210 : struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7211 :
7212 : if (managed_zone(zone))
7213 : return true;
7214 : }
7215 : return false;
7216 : }
7217 : #endif /* CONFIG_ZONE_DMA */
|