Line data Source code
1 : /*
2 : * mm/rmap.c - physical to virtual reverse mappings
3 : *
4 : * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 : * Released under the General Public License (GPL).
6 : *
7 : * Simple, low overhead reverse mapping scheme.
8 : * Please try to keep this thing as modular as possible.
9 : *
10 : * Provides methods for unmapping each kind of mapped page:
11 : * the anon methods track anonymous pages, and
12 : * the file methods track pages belonging to an inode.
13 : *
14 : * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 : * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 : * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 : * Contributions by Hugh Dickins 2003, 2004
18 : */
19 :
20 : /*
21 : * Lock ordering in mm:
22 : *
23 : * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 : * mm->mmap_lock
25 : * mapping->invalidate_lock (in filemap_fault)
26 : * page->flags PG_locked (lock_page)
27 : * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 : * vma_start_write
29 : * mapping->i_mmap_rwsem
30 : * anon_vma->rwsem
31 : * mm->page_table_lock or pte_lock
32 : * swap_lock (in swap_duplicate, swap_info_get)
33 : * mmlist_lock (in mmput, drain_mmlist and others)
34 : * mapping->private_lock (in block_dirty_folio)
35 : * folio_lock_memcg move_lock (in block_dirty_folio)
36 : * i_pages lock (widely used)
37 : * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 : * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 : * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 : * sb_lock (within inode_lock in fs/fs-writeback.c)
41 : * i_pages lock (widely used, in set_page_dirty,
42 : * in arch-dependent flush_dcache_mmap_lock,
43 : * within bdi.wb->list_lock in __sync_single_inode)
44 : *
45 : * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 : * ->tasklist_lock
47 : * pte map lock
48 : *
49 : * hugetlbfs PageHuge() take locks in this order:
50 : * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 : * vma_lock (hugetlb specific lock for pmd_sharing)
52 : * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 : * page->flags PG_locked (lock_page)
54 : */
55 :
56 : #include <linux/mm.h>
57 : #include <linux/sched/mm.h>
58 : #include <linux/sched/task.h>
59 : #include <linux/pagemap.h>
60 : #include <linux/swap.h>
61 : #include <linux/swapops.h>
62 : #include <linux/slab.h>
63 : #include <linux/init.h>
64 : #include <linux/ksm.h>
65 : #include <linux/rmap.h>
66 : #include <linux/rcupdate.h>
67 : #include <linux/export.h>
68 : #include <linux/memcontrol.h>
69 : #include <linux/mmu_notifier.h>
70 : #include <linux/migrate.h>
71 : #include <linux/hugetlb.h>
72 : #include <linux/huge_mm.h>
73 : #include <linux/backing-dev.h>
74 : #include <linux/page_idle.h>
75 : #include <linux/memremap.h>
76 : #include <linux/userfaultfd_k.h>
77 : #include <linux/mm_inline.h>
78 :
79 : #include <asm/tlbflush.h>
80 :
81 : #define CREATE_TRACE_POINTS
82 : #include <trace/events/tlb.h>
83 : #include <trace/events/migrate.h>
84 :
85 : #include "internal.h"
86 :
87 : static struct kmem_cache *anon_vma_cachep;
88 : static struct kmem_cache *anon_vma_chain_cachep;
89 :
90 0 : static inline struct anon_vma *anon_vma_alloc(void)
91 : {
92 : struct anon_vma *anon_vma;
93 :
94 0 : anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 0 : if (anon_vma) {
96 0 : atomic_set(&anon_vma->refcount, 1);
97 0 : anon_vma->num_children = 0;
98 0 : anon_vma->num_active_vmas = 0;
99 0 : anon_vma->parent = anon_vma;
100 : /*
101 : * Initialise the anon_vma root to point to itself. If called
102 : * from fork, the root will be reset to the parents anon_vma.
103 : */
104 0 : anon_vma->root = anon_vma;
105 : }
106 :
107 0 : return anon_vma;
108 : }
109 :
110 0 : static inline void anon_vma_free(struct anon_vma *anon_vma)
111 : {
112 : VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 :
114 : /*
115 : * Synchronize against folio_lock_anon_vma_read() such that
116 : * we can safely hold the lock without the anon_vma getting
117 : * freed.
118 : *
119 : * Relies on the full mb implied by the atomic_dec_and_test() from
120 : * put_anon_vma() against the acquire barrier implied by
121 : * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 : *
123 : * folio_lock_anon_vma_read() VS put_anon_vma()
124 : * down_read_trylock() atomic_dec_and_test()
125 : * LOCK MB
126 : * atomic_read() rwsem_is_locked()
127 : *
128 : * LOCK should suffice since the actual taking of the lock must
129 : * happen _before_ what follows.
130 : */
131 : might_sleep();
132 0 : if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 0 : anon_vma_lock_write(anon_vma);
134 0 : anon_vma_unlock_write(anon_vma);
135 : }
136 :
137 0 : kmem_cache_free(anon_vma_cachep, anon_vma);
138 0 : }
139 :
140 : static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 : {
142 0 : return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 : }
144 :
145 : static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 : {
147 0 : kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 : }
149 :
150 : static void anon_vma_chain_link(struct vm_area_struct *vma,
151 : struct anon_vma_chain *avc,
152 : struct anon_vma *anon_vma)
153 : {
154 0 : avc->vma = vma;
155 0 : avc->anon_vma = anon_vma;
156 0 : list_add(&avc->same_vma, &vma->anon_vma_chain);
157 0 : anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 : }
159 :
160 : /**
161 : * __anon_vma_prepare - attach an anon_vma to a memory region
162 : * @vma: the memory region in question
163 : *
164 : * This makes sure the memory mapping described by 'vma' has
165 : * an 'anon_vma' attached to it, so that we can associate the
166 : * anonymous pages mapped into it with that anon_vma.
167 : *
168 : * The common case will be that we already have one, which
169 : * is handled inline by anon_vma_prepare(). But if
170 : * not we either need to find an adjacent mapping that we
171 : * can re-use the anon_vma from (very common when the only
172 : * reason for splitting a vma has been mprotect()), or we
173 : * allocate a new one.
174 : *
175 : * Anon-vma allocations are very subtle, because we may have
176 : * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 : * and that may actually touch the rwsem even in the newly
178 : * allocated vma (it depends on RCU to make sure that the
179 : * anon_vma isn't actually destroyed).
180 : *
181 : * As a result, we need to do proper anon_vma locking even
182 : * for the new allocation. At the same time, we do not want
183 : * to do any locking for the common case of already having
184 : * an anon_vma.
185 : *
186 : * This must be called with the mmap_lock held for reading.
187 : */
188 0 : int __anon_vma_prepare(struct vm_area_struct *vma)
189 : {
190 0 : struct mm_struct *mm = vma->vm_mm;
191 : struct anon_vma *anon_vma, *allocated;
192 : struct anon_vma_chain *avc;
193 :
194 : might_sleep();
195 :
196 0 : avc = anon_vma_chain_alloc(GFP_KERNEL);
197 0 : if (!avc)
198 : goto out_enomem;
199 :
200 0 : anon_vma = find_mergeable_anon_vma(vma);
201 0 : allocated = NULL;
202 0 : if (!anon_vma) {
203 0 : anon_vma = anon_vma_alloc();
204 0 : if (unlikely(!anon_vma))
205 : goto out_enomem_free_avc;
206 0 : anon_vma->num_children++; /* self-parent link for new root */
207 0 : allocated = anon_vma;
208 : }
209 :
210 0 : anon_vma_lock_write(anon_vma);
211 : /* page_table_lock to protect against threads */
212 0 : spin_lock(&mm->page_table_lock);
213 0 : if (likely(!vma->anon_vma)) {
214 0 : vma->anon_vma = anon_vma;
215 0 : anon_vma_chain_link(vma, avc, anon_vma);
216 0 : anon_vma->num_active_vmas++;
217 0 : allocated = NULL;
218 0 : avc = NULL;
219 : }
220 0 : spin_unlock(&mm->page_table_lock);
221 0 : anon_vma_unlock_write(anon_vma);
222 :
223 0 : if (unlikely(allocated))
224 : put_anon_vma(allocated);
225 0 : if (unlikely(avc))
226 : anon_vma_chain_free(avc);
227 :
228 : return 0;
229 :
230 : out_enomem_free_avc:
231 : anon_vma_chain_free(avc);
232 : out_enomem:
233 : return -ENOMEM;
234 : }
235 :
236 : /*
237 : * This is a useful helper function for locking the anon_vma root as
238 : * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239 : * have the same vma.
240 : *
241 : * Such anon_vma's should have the same root, so you'd expect to see
242 : * just a single mutex_lock for the whole traversal.
243 : */
244 0 : static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 : {
246 0 : struct anon_vma *new_root = anon_vma->root;
247 0 : if (new_root != root) {
248 0 : if (WARN_ON_ONCE(root))
249 0 : up_write(&root->rwsem);
250 0 : root = new_root;
251 0 : down_write(&root->rwsem);
252 : }
253 0 : return root;
254 : }
255 :
256 : static inline void unlock_anon_vma_root(struct anon_vma *root)
257 : {
258 0 : if (root)
259 0 : up_write(&root->rwsem);
260 : }
261 :
262 : /*
263 : * Attach the anon_vmas from src to dst.
264 : * Returns 0 on success, -ENOMEM on failure.
265 : *
266 : * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267 : * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268 : * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269 : * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270 : * call, we can identify this case by checking (!dst->anon_vma &&
271 : * src->anon_vma).
272 : *
273 : * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274 : * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275 : * This prevents degradation of anon_vma hierarchy to endless linear chain in
276 : * case of constantly forking task. On the other hand, an anon_vma with more
277 : * than one child isn't reused even if there was no alive vma, thus rmap
278 : * walker has a good chance of avoiding scanning the whole hierarchy when it
279 : * searches where page is mapped.
280 : */
281 0 : int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 : {
283 : struct anon_vma_chain *avc, *pavc;
284 0 : struct anon_vma *root = NULL;
285 :
286 0 : list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 : struct anon_vma *anon_vma;
288 :
289 0 : avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 0 : if (unlikely(!avc)) {
291 0 : unlock_anon_vma_root(root);
292 0 : root = NULL;
293 0 : avc = anon_vma_chain_alloc(GFP_KERNEL);
294 0 : if (!avc)
295 : goto enomem_failure;
296 : }
297 0 : anon_vma = pavc->anon_vma;
298 0 : root = lock_anon_vma_root(root, anon_vma);
299 0 : anon_vma_chain_link(dst, avc, anon_vma);
300 :
301 : /*
302 : * Reuse existing anon_vma if it has no vma and only one
303 : * anon_vma child.
304 : *
305 : * Root anon_vma is never reused:
306 : * it has self-parent reference and at least one child.
307 : */
308 0 : if (!dst->anon_vma && src->anon_vma &&
309 0 : anon_vma->num_children < 2 &&
310 0 : anon_vma->num_active_vmas == 0)
311 0 : dst->anon_vma = anon_vma;
312 : }
313 0 : if (dst->anon_vma)
314 0 : dst->anon_vma->num_active_vmas++;
315 : unlock_anon_vma_root(root);
316 : return 0;
317 :
318 : enomem_failure:
319 : /*
320 : * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 : * be incorrectly decremented in unlink_anon_vmas().
322 : * We can safely do this because callers of anon_vma_clone() don't care
323 : * about dst->anon_vma if anon_vma_clone() failed.
324 : */
325 0 : dst->anon_vma = NULL;
326 0 : unlink_anon_vmas(dst);
327 0 : return -ENOMEM;
328 : }
329 :
330 : /*
331 : * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 : * the corresponding VMA in the parent process is attached to.
333 : * Returns 0 on success, non-zero on failure.
334 : */
335 0 : int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 : {
337 : struct anon_vma_chain *avc;
338 : struct anon_vma *anon_vma;
339 : int error;
340 :
341 : /* Don't bother if the parent process has no anon_vma here. */
342 0 : if (!pvma->anon_vma)
343 : return 0;
344 :
345 : /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 0 : vma->anon_vma = NULL;
347 :
348 : /*
349 : * First, attach the new VMA to the parent VMA's anon_vmas,
350 : * so rmap can find non-COWed pages in child processes.
351 : */
352 0 : error = anon_vma_clone(vma, pvma);
353 0 : if (error)
354 : return error;
355 :
356 : /* An existing anon_vma has been reused, all done then. */
357 0 : if (vma->anon_vma)
358 : return 0;
359 :
360 : /* Then add our own anon_vma. */
361 0 : anon_vma = anon_vma_alloc();
362 0 : if (!anon_vma)
363 : goto out_error;
364 0 : anon_vma->num_active_vmas++;
365 0 : avc = anon_vma_chain_alloc(GFP_KERNEL);
366 0 : if (!avc)
367 : goto out_error_free_anon_vma;
368 :
369 : /*
370 : * The root anon_vma's rwsem is the lock actually used when we
371 : * lock any of the anon_vmas in this anon_vma tree.
372 : */
373 0 : anon_vma->root = pvma->anon_vma->root;
374 0 : anon_vma->parent = pvma->anon_vma;
375 : /*
376 : * With refcounts, an anon_vma can stay around longer than the
377 : * process it belongs to. The root anon_vma needs to be pinned until
378 : * this anon_vma is freed, because the lock lives in the root.
379 : */
380 0 : get_anon_vma(anon_vma->root);
381 : /* Mark this anon_vma as the one where our new (COWed) pages go. */
382 0 : vma->anon_vma = anon_vma;
383 0 : anon_vma_lock_write(anon_vma);
384 0 : anon_vma_chain_link(vma, avc, anon_vma);
385 0 : anon_vma->parent->num_children++;
386 0 : anon_vma_unlock_write(anon_vma);
387 :
388 0 : return 0;
389 :
390 : out_error_free_anon_vma:
391 : put_anon_vma(anon_vma);
392 : out_error:
393 0 : unlink_anon_vmas(vma);
394 0 : return -ENOMEM;
395 : }
396 :
397 0 : void unlink_anon_vmas(struct vm_area_struct *vma)
398 : {
399 : struct anon_vma_chain *avc, *next;
400 0 : struct anon_vma *root = NULL;
401 :
402 : /*
403 : * Unlink each anon_vma chained to the VMA. This list is ordered
404 : * from newest to oldest, ensuring the root anon_vma gets freed last.
405 : */
406 0 : list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 0 : struct anon_vma *anon_vma = avc->anon_vma;
408 :
409 0 : root = lock_anon_vma_root(root, anon_vma);
410 0 : anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 :
412 : /*
413 : * Leave empty anon_vmas on the list - we'll need
414 : * to free them outside the lock.
415 : */
416 0 : if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 0 : anon_vma->parent->num_children--;
418 0 : continue;
419 : }
420 :
421 0 : list_del(&avc->same_vma);
422 : anon_vma_chain_free(avc);
423 : }
424 0 : if (vma->anon_vma) {
425 0 : vma->anon_vma->num_active_vmas--;
426 :
427 : /*
428 : * vma would still be needed after unlink, and anon_vma will be prepared
429 : * when handle fault.
430 : */
431 0 : vma->anon_vma = NULL;
432 : }
433 0 : unlock_anon_vma_root(root);
434 :
435 : /*
436 : * Iterate the list once more, it now only contains empty and unlinked
437 : * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 : * needing to write-acquire the anon_vma->root->rwsem.
439 : */
440 0 : list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 0 : struct anon_vma *anon_vma = avc->anon_vma;
442 :
443 : VM_WARN_ON(anon_vma->num_children);
444 : VM_WARN_ON(anon_vma->num_active_vmas);
445 0 : put_anon_vma(anon_vma);
446 :
447 0 : list_del(&avc->same_vma);
448 0 : anon_vma_chain_free(avc);
449 : }
450 0 : }
451 :
452 0 : static void anon_vma_ctor(void *data)
453 : {
454 0 : struct anon_vma *anon_vma = data;
455 :
456 0 : init_rwsem(&anon_vma->rwsem);
457 0 : atomic_set(&anon_vma->refcount, 0);
458 0 : anon_vma->rb_root = RB_ROOT_CACHED;
459 0 : }
460 :
461 1 : void __init anon_vma_init(void)
462 : {
463 1 : anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 : 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 : anon_vma_ctor);
466 1 : anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 : SLAB_PANIC|SLAB_ACCOUNT);
468 1 : }
469 :
470 : /*
471 : * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 : *
473 : * Since there is no serialization what so ever against page_remove_rmap()
474 : * the best this function can do is return a refcount increased anon_vma
475 : * that might have been relevant to this page.
476 : *
477 : * The page might have been remapped to a different anon_vma or the anon_vma
478 : * returned may already be freed (and even reused).
479 : *
480 : * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 : * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 : * ensure that any anon_vma obtained from the page will still be valid for as
483 : * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 : *
485 : * All users of this function must be very careful when walking the anon_vma
486 : * chain and verify that the page in question is indeed mapped in it
487 : * [ something equivalent to page_mapped_in_vma() ].
488 : *
489 : * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 : * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491 : * if there is a mapcount, we can dereference the anon_vma after observing
492 : * those.
493 : */
494 0 : struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 : {
496 0 : struct anon_vma *anon_vma = NULL;
497 : unsigned long anon_mapping;
498 :
499 : rcu_read_lock();
500 0 : anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 0 : if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 : goto out;
503 0 : if (!folio_mapped(folio))
504 : goto out;
505 :
506 0 : anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 0 : if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 : anon_vma = NULL;
509 : goto out;
510 : }
511 :
512 : /*
513 : * If this folio is still mapped, then its anon_vma cannot have been
514 : * freed. But if it has been unmapped, we have no security against the
515 : * anon_vma structure being freed and reused (for another anon_vma:
516 : * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 : * above cannot corrupt).
518 : */
519 0 : if (!folio_mapped(folio)) {
520 0 : rcu_read_unlock();
521 : put_anon_vma(anon_vma);
522 : return NULL;
523 : }
524 : out:
525 : rcu_read_unlock();
526 :
527 0 : return anon_vma;
528 : }
529 :
530 : /*
531 : * Similar to folio_get_anon_vma() except it locks the anon_vma.
532 : *
533 : * Its a little more complex as it tries to keep the fast path to a single
534 : * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535 : * reference like with folio_get_anon_vma() and then block on the mutex
536 : * on !rwc->try_lock case.
537 : */
538 0 : struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 : struct rmap_walk_control *rwc)
540 : {
541 0 : struct anon_vma *anon_vma = NULL;
542 : struct anon_vma *root_anon_vma;
543 : unsigned long anon_mapping;
544 :
545 : rcu_read_lock();
546 0 : anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 0 : if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 : goto out;
549 0 : if (!folio_mapped(folio))
550 : goto out;
551 :
552 0 : anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 0 : root_anon_vma = READ_ONCE(anon_vma->root);
554 0 : if (down_read_trylock(&root_anon_vma->rwsem)) {
555 : /*
556 : * If the folio is still mapped, then this anon_vma is still
557 : * its anon_vma, and holding the mutex ensures that it will
558 : * not go away, see anon_vma_free().
559 : */
560 0 : if (!folio_mapped(folio)) {
561 0 : up_read(&root_anon_vma->rwsem);
562 0 : anon_vma = NULL;
563 : }
564 : goto out;
565 : }
566 :
567 0 : if (rwc && rwc->try_lock) {
568 0 : anon_vma = NULL;
569 0 : rwc->contended = true;
570 0 : goto out;
571 : }
572 :
573 : /* trylock failed, we got to sleep */
574 0 : if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 : anon_vma = NULL;
576 : goto out;
577 : }
578 :
579 0 : if (!folio_mapped(folio)) {
580 0 : rcu_read_unlock();
581 : put_anon_vma(anon_vma);
582 : return NULL;
583 : }
584 :
585 : /* we pinned the anon_vma, its safe to sleep */
586 : rcu_read_unlock();
587 0 : anon_vma_lock_read(anon_vma);
588 :
589 0 : if (atomic_dec_and_test(&anon_vma->refcount)) {
590 : /*
591 : * Oops, we held the last refcount, release the lock
592 : * and bail -- can't simply use put_anon_vma() because
593 : * we'll deadlock on the anon_vma_lock_write() recursion.
594 : */
595 0 : anon_vma_unlock_read(anon_vma);
596 0 : __put_anon_vma(anon_vma);
597 0 : anon_vma = NULL;
598 : }
599 :
600 : return anon_vma;
601 :
602 : out:
603 : rcu_read_unlock();
604 0 : return anon_vma;
605 : }
606 :
607 : #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 : /*
609 : * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 : * important if a PTE was dirty when it was unmapped that it's flushed
611 : * before any IO is initiated on the page to prevent lost writes. Similarly,
612 : * it must be flushed before freeing to prevent data leakage.
613 : */
614 : void try_to_unmap_flush(void)
615 : {
616 : struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
617 :
618 : if (!tlb_ubc->flush_required)
619 : return;
620 :
621 : arch_tlbbatch_flush(&tlb_ubc->arch);
622 : tlb_ubc->flush_required = false;
623 : tlb_ubc->writable = false;
624 : }
625 :
626 : /* Flush iff there are potentially writable TLB entries that can race with IO */
627 : void try_to_unmap_flush_dirty(void)
628 : {
629 : struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
630 :
631 : if (tlb_ubc->writable)
632 : try_to_unmap_flush();
633 : }
634 :
635 : /*
636 : * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 : * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 : */
639 : #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640 : #define TLB_FLUSH_BATCH_PENDING_MASK \
641 : ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 : #define TLB_FLUSH_BATCH_PENDING_LARGE \
643 : (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 :
645 : static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
646 : {
647 : struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
648 : int batch;
649 : bool writable = pte_dirty(pteval);
650 :
651 : if (!pte_accessible(mm, pteval))
652 : return;
653 :
654 : arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
655 : tlb_ubc->flush_required = true;
656 :
657 : /*
658 : * Ensure compiler does not re-order the setting of tlb_flush_batched
659 : * before the PTE is cleared.
660 : */
661 : barrier();
662 : batch = atomic_read(&mm->tlb_flush_batched);
663 : retry:
664 : if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
665 : /*
666 : * Prevent `pending' from catching up with `flushed' because of
667 : * overflow. Reset `pending' and `flushed' to be 1 and 0 if
668 : * `pending' becomes large.
669 : */
670 : if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
671 : goto retry;
672 : } else {
673 : atomic_inc(&mm->tlb_flush_batched);
674 : }
675 :
676 : /*
677 : * If the PTE was dirty then it's best to assume it's writable. The
678 : * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
679 : * before the page is queued for IO.
680 : */
681 : if (writable)
682 : tlb_ubc->writable = true;
683 : }
684 :
685 : /*
686 : * Returns true if the TLB flush should be deferred to the end of a batch of
687 : * unmap operations to reduce IPIs.
688 : */
689 : static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
690 : {
691 : bool should_defer = false;
692 :
693 : if (!(flags & TTU_BATCH_FLUSH))
694 : return false;
695 :
696 : /* If remote CPUs need to be flushed then defer batch the flush */
697 : if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
698 : should_defer = true;
699 : put_cpu();
700 :
701 : return should_defer;
702 : }
703 :
704 : /*
705 : * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
706 : * releasing the PTL if TLB flushes are batched. It's possible for a parallel
707 : * operation such as mprotect or munmap to race between reclaim unmapping
708 : * the page and flushing the page. If this race occurs, it potentially allows
709 : * access to data via a stale TLB entry. Tracking all mm's that have TLB
710 : * batching in flight would be expensive during reclaim so instead track
711 : * whether TLB batching occurred in the past and if so then do a flush here
712 : * if required. This will cost one additional flush per reclaim cycle paid
713 : * by the first operation at risk such as mprotect and mumap.
714 : *
715 : * This must be called under the PTL so that an access to tlb_flush_batched
716 : * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
717 : * via the PTL.
718 : */
719 : void flush_tlb_batched_pending(struct mm_struct *mm)
720 : {
721 : int batch = atomic_read(&mm->tlb_flush_batched);
722 : int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
723 : int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
724 :
725 : if (pending != flushed) {
726 : flush_tlb_mm(mm);
727 : /*
728 : * If the new TLB flushing is pending during flushing, leave
729 : * mm->tlb_flush_batched as is, to avoid losing flushing.
730 : */
731 : atomic_cmpxchg(&mm->tlb_flush_batched, batch,
732 : pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
733 : }
734 : }
735 : #else
736 : static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
737 : {
738 : }
739 :
740 : static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
741 : {
742 : return false;
743 : }
744 : #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
745 :
746 : /*
747 : * At what user virtual address is page expected in vma?
748 : * Caller should check the page is actually part of the vma.
749 : */
750 0 : unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
751 : {
752 0 : struct folio *folio = page_folio(page);
753 0 : if (folio_test_anon(folio)) {
754 0 : struct anon_vma *page__anon_vma = folio_anon_vma(folio);
755 : /*
756 : * Note: swapoff's unuse_vma() is more efficient with this
757 : * check, and needs it to match anon_vma when KSM is active.
758 : */
759 0 : if (!vma->anon_vma || !page__anon_vma ||
760 0 : vma->anon_vma->root != page__anon_vma->root)
761 : return -EFAULT;
762 0 : } else if (!vma->vm_file) {
763 : return -EFAULT;
764 0 : } else if (vma->vm_file->f_mapping != folio->mapping) {
765 : return -EFAULT;
766 : }
767 :
768 0 : return vma_address(page, vma);
769 : }
770 :
771 : /*
772 : * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
773 : * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
774 : * represents.
775 : */
776 0 : pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
777 : {
778 : pgd_t *pgd;
779 : p4d_t *p4d;
780 : pud_t *pud;
781 0 : pmd_t *pmd = NULL;
782 :
783 0 : pgd = pgd_offset(mm, address);
784 : if (!pgd_present(*pgd))
785 : goto out;
786 :
787 0 : p4d = p4d_offset(pgd, address);
788 : if (!p4d_present(*p4d))
789 : goto out;
790 :
791 0 : pud = pud_offset(p4d, address);
792 0 : if (!pud_present(*pud))
793 : goto out;
794 :
795 0 : pmd = pmd_offset(pud, address);
796 : out:
797 0 : return pmd;
798 : }
799 :
800 : struct folio_referenced_arg {
801 : int mapcount;
802 : int referenced;
803 : unsigned long vm_flags;
804 : struct mem_cgroup *memcg;
805 : };
806 : /*
807 : * arg: folio_referenced_arg will be passed
808 : */
809 0 : static bool folio_referenced_one(struct folio *folio,
810 : struct vm_area_struct *vma, unsigned long address, void *arg)
811 : {
812 0 : struct folio_referenced_arg *pra = arg;
813 0 : DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
814 0 : int referenced = 0;
815 :
816 0 : while (page_vma_mapped_walk(&pvmw)) {
817 0 : address = pvmw.address;
818 :
819 0 : if ((vma->vm_flags & VM_LOCKED) &&
820 0 : (!folio_test_large(folio) || !pvmw.pte)) {
821 : /* Restore the mlock which got missed */
822 0 : mlock_vma_folio(folio, vma, !pvmw.pte);
823 0 : page_vma_mapped_walk_done(&pvmw);
824 0 : pra->vm_flags |= VM_LOCKED;
825 0 : return false; /* To break the loop */
826 : }
827 :
828 0 : if (pvmw.pte) {
829 : if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
830 : lru_gen_look_around(&pvmw);
831 : referenced++;
832 : }
833 :
834 0 : if (ptep_clear_flush_young_notify(vma, address,
835 : pvmw.pte))
836 0 : referenced++;
837 : } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 : if (pmdp_clear_flush_young_notify(vma, address,
839 : pvmw.pmd))
840 : referenced++;
841 : } else {
842 : /* unexpected pmd-mapped folio? */
843 0 : WARN_ON_ONCE(1);
844 : }
845 :
846 0 : pra->mapcount--;
847 : }
848 :
849 : if (referenced)
850 : folio_clear_idle(folio);
851 0 : if (folio_test_clear_young(folio))
852 : referenced++;
853 :
854 0 : if (referenced) {
855 0 : pra->referenced++;
856 0 : pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
857 : }
858 :
859 0 : if (!pra->mapcount)
860 : return false; /* To break the loop */
861 :
862 0 : return true;
863 : }
864 :
865 0 : static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
866 : {
867 0 : struct folio_referenced_arg *pra = arg;
868 0 : struct mem_cgroup *memcg = pra->memcg;
869 :
870 : /*
871 : * Ignore references from this mapping if it has no recency. If the
872 : * folio has been used in another mapping, we will catch it; if this
873 : * other mapping is already gone, the unmap path will have set the
874 : * referenced flag or activated the folio in zap_pte_range().
875 : */
876 0 : if (!vma_has_recency(vma))
877 : return true;
878 :
879 : /*
880 : * If we are reclaiming on behalf of a cgroup, skip counting on behalf
881 : * of references from different cgroups.
882 : */
883 : if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
884 : return true;
885 :
886 : return false;
887 : }
888 :
889 : /**
890 : * folio_referenced() - Test if the folio was referenced.
891 : * @folio: The folio to test.
892 : * @is_locked: Caller holds lock on the folio.
893 : * @memcg: target memory cgroup
894 : * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
895 : *
896 : * Quick test_and_clear_referenced for all mappings of a folio,
897 : *
898 : * Return: The number of mappings which referenced the folio. Return -1 if
899 : * the function bailed out due to rmap lock contention.
900 : */
901 0 : int folio_referenced(struct folio *folio, int is_locked,
902 : struct mem_cgroup *memcg, unsigned long *vm_flags)
903 : {
904 0 : int we_locked = 0;
905 0 : struct folio_referenced_arg pra = {
906 0 : .mapcount = folio_mapcount(folio),
907 : .memcg = memcg,
908 : };
909 0 : struct rmap_walk_control rwc = {
910 : .rmap_one = folio_referenced_one,
911 : .arg = (void *)&pra,
912 : .anon_lock = folio_lock_anon_vma_read,
913 : .try_lock = true,
914 : .invalid_vma = invalid_folio_referenced_vma,
915 : };
916 :
917 0 : *vm_flags = 0;
918 0 : if (!pra.mapcount)
919 : return 0;
920 :
921 0 : if (!folio_raw_mapping(folio))
922 : return 0;
923 :
924 0 : if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
925 0 : we_locked = folio_trylock(folio);
926 0 : if (!we_locked)
927 : return 1;
928 : }
929 :
930 0 : rmap_walk(folio, &rwc);
931 0 : *vm_flags = pra.vm_flags;
932 :
933 0 : if (we_locked)
934 0 : folio_unlock(folio);
935 :
936 0 : return rwc.contended ? -1 : pra.referenced;
937 : }
938 :
939 0 : static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
940 : {
941 0 : int cleaned = 0;
942 0 : struct vm_area_struct *vma = pvmw->vma;
943 : struct mmu_notifier_range range;
944 0 : unsigned long address = pvmw->address;
945 :
946 : /*
947 : * We have to assume the worse case ie pmd for invalidation. Note that
948 : * the folio can not be freed from this function.
949 : */
950 : mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
951 : vma->vm_mm, address, vma_address_end(pvmw));
952 : mmu_notifier_invalidate_range_start(&range);
953 :
954 0 : while (page_vma_mapped_walk(pvmw)) {
955 0 : int ret = 0;
956 :
957 0 : address = pvmw->address;
958 0 : if (pvmw->pte) {
959 : pte_t entry;
960 0 : pte_t *pte = pvmw->pte;
961 :
962 0 : if (!pte_dirty(*pte) && !pte_write(*pte))
963 0 : continue;
964 :
965 0 : flush_cache_page(vma, address, pte_pfn(*pte));
966 0 : entry = ptep_clear_flush(vma, address, pte);
967 0 : entry = pte_wrprotect(entry);
968 0 : entry = pte_mkclean(entry);
969 0 : set_pte_at(vma->vm_mm, address, pte, entry);
970 : ret = 1;
971 : } else {
972 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 : pmd_t *pmd = pvmw->pmd;
974 : pmd_t entry;
975 :
976 : if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
977 : continue;
978 :
979 : flush_cache_range(vma, address,
980 : address + HPAGE_PMD_SIZE);
981 : entry = pmdp_invalidate(vma, address, pmd);
982 : entry = pmd_wrprotect(entry);
983 : entry = pmd_mkclean(entry);
984 : set_pmd_at(vma->vm_mm, address, pmd, entry);
985 : ret = 1;
986 : #else
987 : /* unexpected pmd-mapped folio? */
988 0 : WARN_ON_ONCE(1);
989 : #endif
990 : }
991 :
992 : /*
993 : * No need to call mmu_notifier_invalidate_range() as we are
994 : * downgrading page table protection not changing it to point
995 : * to a new page.
996 : *
997 : * See Documentation/mm/mmu_notifier.rst
998 : */
999 0 : if (ret)
1000 0 : cleaned++;
1001 : }
1002 :
1003 0 : mmu_notifier_invalidate_range_end(&range);
1004 :
1005 0 : return cleaned;
1006 : }
1007 :
1008 0 : static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1009 : unsigned long address, void *arg)
1010 : {
1011 0 : DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1012 0 : int *cleaned = arg;
1013 :
1014 0 : *cleaned += page_vma_mkclean_one(&pvmw);
1015 :
1016 0 : return true;
1017 : }
1018 :
1019 0 : static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1020 : {
1021 0 : if (vma->vm_flags & VM_SHARED)
1022 : return false;
1023 :
1024 0 : return true;
1025 : }
1026 :
1027 0 : int folio_mkclean(struct folio *folio)
1028 : {
1029 0 : int cleaned = 0;
1030 : struct address_space *mapping;
1031 0 : struct rmap_walk_control rwc = {
1032 : .arg = (void *)&cleaned,
1033 : .rmap_one = page_mkclean_one,
1034 : .invalid_vma = invalid_mkclean_vma,
1035 : };
1036 :
1037 0 : BUG_ON(!folio_test_locked(folio));
1038 :
1039 0 : if (!folio_mapped(folio))
1040 : return 0;
1041 :
1042 0 : mapping = folio_mapping(folio);
1043 0 : if (!mapping)
1044 : return 0;
1045 :
1046 0 : rmap_walk(folio, &rwc);
1047 :
1048 0 : return cleaned;
1049 : }
1050 : EXPORT_SYMBOL_GPL(folio_mkclean);
1051 :
1052 : /**
1053 : * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1054 : * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1055 : * within the @vma of shared mappings. And since clean PTEs
1056 : * should also be readonly, write protects them too.
1057 : * @pfn: start pfn.
1058 : * @nr_pages: number of physically contiguous pages srarting with @pfn.
1059 : * @pgoff: page offset that the @pfn mapped with.
1060 : * @vma: vma that @pfn mapped within.
1061 : *
1062 : * Returns the number of cleaned PTEs (including PMDs).
1063 : */
1064 0 : int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1065 : struct vm_area_struct *vma)
1066 : {
1067 0 : struct page_vma_mapped_walk pvmw = {
1068 : .pfn = pfn,
1069 : .nr_pages = nr_pages,
1070 : .pgoff = pgoff,
1071 : .vma = vma,
1072 : .flags = PVMW_SYNC,
1073 : };
1074 :
1075 0 : if (invalid_mkclean_vma(vma, NULL))
1076 : return 0;
1077 :
1078 0 : pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1079 : VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1080 :
1081 0 : return page_vma_mkclean_one(&pvmw);
1082 : }
1083 :
1084 0 : int folio_total_mapcount(struct folio *folio)
1085 : {
1086 0 : int mapcount = folio_entire_mapcount(folio);
1087 : int nr_pages;
1088 : int i;
1089 :
1090 : /* In the common case, avoid the loop when no pages mapped by PTE */
1091 0 : if (folio_nr_pages_mapped(folio) == 0)
1092 : return mapcount;
1093 : /*
1094 : * Add all the PTE mappings of those pages mapped by PTE.
1095 : * Limit the loop to folio_nr_pages_mapped()?
1096 : * Perhaps: given all the raciness, that may be a good or a bad idea.
1097 : */
1098 0 : nr_pages = folio_nr_pages(folio);
1099 0 : for (i = 0; i < nr_pages; i++)
1100 0 : mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1101 :
1102 : /* But each of those _mapcounts was based on -1 */
1103 0 : mapcount += nr_pages;
1104 0 : return mapcount;
1105 : }
1106 :
1107 : /**
1108 : * page_move_anon_rmap - move a page to our anon_vma
1109 : * @page: the page to move to our anon_vma
1110 : * @vma: the vma the page belongs to
1111 : *
1112 : * When a page belongs exclusively to one process after a COW event,
1113 : * that page can be moved into the anon_vma that belongs to just that
1114 : * process, so the rmap code will not search the parent or sibling
1115 : * processes.
1116 : */
1117 0 : void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1118 : {
1119 0 : void *anon_vma = vma->anon_vma;
1120 0 : struct folio *folio = page_folio(page);
1121 :
1122 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1123 : VM_BUG_ON_VMA(!anon_vma, vma);
1124 :
1125 0 : anon_vma += PAGE_MAPPING_ANON;
1126 : /*
1127 : * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1128 : * simultaneously, so a concurrent reader (eg folio_referenced()'s
1129 : * folio_test_anon()) will not see one without the other.
1130 : */
1131 0 : WRITE_ONCE(folio->mapping, anon_vma);
1132 0 : SetPageAnonExclusive(page);
1133 0 : }
1134 :
1135 : /**
1136 : * __page_set_anon_rmap - set up new anonymous rmap
1137 : * @folio: Folio which contains page.
1138 : * @page: Page to add to rmap.
1139 : * @vma: VM area to add page to.
1140 : * @address: User virtual address of the mapping
1141 : * @exclusive: the page is exclusively owned by the current process
1142 : */
1143 0 : static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1144 : struct vm_area_struct *vma, unsigned long address, int exclusive)
1145 : {
1146 0 : struct anon_vma *anon_vma = vma->anon_vma;
1147 :
1148 0 : BUG_ON(!anon_vma);
1149 :
1150 0 : if (folio_test_anon(folio))
1151 : goto out;
1152 :
1153 : /*
1154 : * If the page isn't exclusively mapped into this vma,
1155 : * we must use the _oldest_ possible anon_vma for the
1156 : * page mapping!
1157 : */
1158 0 : if (!exclusive)
1159 0 : anon_vma = anon_vma->root;
1160 :
1161 : /*
1162 : * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1163 : * Make sure the compiler doesn't split the stores of anon_vma and
1164 : * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1165 : * could mistake the mapping for a struct address_space and crash.
1166 : */
1167 0 : anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1168 0 : WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1169 0 : folio->index = linear_page_index(vma, address);
1170 : out:
1171 0 : if (exclusive)
1172 : SetPageAnonExclusive(page);
1173 0 : }
1174 :
1175 : /**
1176 : * __page_check_anon_rmap - sanity check anonymous rmap addition
1177 : * @page: the page to add the mapping to
1178 : * @vma: the vm area in which the mapping is added
1179 : * @address: the user virtual address mapped
1180 : */
1181 : static void __page_check_anon_rmap(struct page *page,
1182 : struct vm_area_struct *vma, unsigned long address)
1183 : {
1184 0 : struct folio *folio = page_folio(page);
1185 : /*
1186 : * The page's anon-rmap details (mapping and index) are guaranteed to
1187 : * be set up correctly at this point.
1188 : *
1189 : * We have exclusion against page_add_anon_rmap because the caller
1190 : * always holds the page locked.
1191 : *
1192 : * We have exclusion against page_add_new_anon_rmap because those pages
1193 : * are initially only visible via the pagetables, and the pte is locked
1194 : * over the call to page_add_new_anon_rmap.
1195 : */
1196 : VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1197 : folio);
1198 : VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1199 : page);
1200 : }
1201 :
1202 : /**
1203 : * page_add_anon_rmap - add pte mapping to an anonymous page
1204 : * @page: the page to add the mapping to
1205 : * @vma: the vm area in which the mapping is added
1206 : * @address: the user virtual address mapped
1207 : * @flags: the rmap flags
1208 : *
1209 : * The caller needs to hold the pte lock, and the page must be locked in
1210 : * the anon_vma case: to serialize mapping,index checking after setting,
1211 : * and to ensure that PageAnon is not being upgraded racily to PageKsm
1212 : * (but PageKsm is never downgraded to PageAnon).
1213 : */
1214 0 : void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1215 : unsigned long address, rmap_t flags)
1216 : {
1217 0 : struct folio *folio = page_folio(page);
1218 0 : atomic_t *mapped = &folio->_nr_pages_mapped;
1219 0 : int nr = 0, nr_pmdmapped = 0;
1220 0 : bool compound = flags & RMAP_COMPOUND;
1221 0 : bool first = true;
1222 :
1223 : /* Is page being mapped by PTE? Is this its first map to be added? */
1224 0 : if (likely(!compound)) {
1225 0 : first = atomic_inc_and_test(&page->_mapcount);
1226 0 : nr = first;
1227 0 : if (first && folio_test_large(folio)) {
1228 0 : nr = atomic_inc_return_relaxed(mapped);
1229 0 : nr = (nr < COMPOUND_MAPPED);
1230 : }
1231 : } else if (folio_test_pmd_mappable(folio)) {
1232 : /* That test is redundant: it's for safety or to optimize out */
1233 :
1234 : first = atomic_inc_and_test(&folio->_entire_mapcount);
1235 : if (first) {
1236 : nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1237 : if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1238 : nr_pmdmapped = folio_nr_pages(folio);
1239 : nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1240 : /* Raced ahead of a remove and another add? */
1241 : if (unlikely(nr < 0))
1242 : nr = 0;
1243 : } else {
1244 : /* Raced ahead of a remove of COMPOUND_MAPPED */
1245 : nr = 0;
1246 : }
1247 : }
1248 : }
1249 :
1250 : VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1251 : VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1252 :
1253 : if (nr_pmdmapped)
1254 : __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1255 0 : if (nr)
1256 0 : __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1257 :
1258 0 : if (likely(!folio_test_ksm(folio))) {
1259 : /* address might be in next vma when migration races vma_merge */
1260 0 : if (first)
1261 0 : __page_set_anon_rmap(folio, page, vma, address,
1262 0 : !!(flags & RMAP_EXCLUSIVE));
1263 : else
1264 0 : __page_check_anon_rmap(page, vma, address);
1265 : }
1266 :
1267 0 : mlock_vma_folio(folio, vma, compound);
1268 0 : }
1269 :
1270 : /**
1271 : * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1272 : * @folio: The folio to add the mapping to.
1273 : * @vma: the vm area in which the mapping is added
1274 : * @address: the user virtual address mapped
1275 : *
1276 : * Like page_add_anon_rmap() but must only be called on *new* folios.
1277 : * This means the inc-and-test can be bypassed.
1278 : * The folio does not have to be locked.
1279 : *
1280 : * If the folio is large, it is accounted as a THP. As the folio
1281 : * is new, it's assumed to be mapped exclusively by a single process.
1282 : */
1283 0 : void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1284 : unsigned long address)
1285 : {
1286 : int nr;
1287 :
1288 : VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1289 0 : __folio_set_swapbacked(folio);
1290 :
1291 0 : if (likely(!folio_test_pmd_mappable(folio))) {
1292 : /* increment count (starts at -1) */
1293 0 : atomic_set(&folio->_mapcount, 0);
1294 0 : nr = 1;
1295 : } else {
1296 : /* increment count (starts at -1) */
1297 : atomic_set(&folio->_entire_mapcount, 0);
1298 : atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1299 : nr = folio_nr_pages(folio);
1300 : __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1301 : }
1302 :
1303 0 : __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1304 0 : __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1305 0 : }
1306 :
1307 : /**
1308 : * page_add_file_rmap - add pte mapping to a file page
1309 : * @page: the page to add the mapping to
1310 : * @vma: the vm area in which the mapping is added
1311 : * @compound: charge the page as compound or small page
1312 : *
1313 : * The caller needs to hold the pte lock.
1314 : */
1315 0 : void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1316 : bool compound)
1317 : {
1318 0 : struct folio *folio = page_folio(page);
1319 0 : atomic_t *mapped = &folio->_nr_pages_mapped;
1320 0 : int nr = 0, nr_pmdmapped = 0;
1321 : bool first;
1322 :
1323 : VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1324 :
1325 : /* Is page being mapped by PTE? Is this its first map to be added? */
1326 0 : if (likely(!compound)) {
1327 0 : first = atomic_inc_and_test(&page->_mapcount);
1328 0 : nr = first;
1329 0 : if (first && folio_test_large(folio)) {
1330 0 : nr = atomic_inc_return_relaxed(mapped);
1331 0 : nr = (nr < COMPOUND_MAPPED);
1332 : }
1333 : } else if (folio_test_pmd_mappable(folio)) {
1334 : /* That test is redundant: it's for safety or to optimize out */
1335 :
1336 : first = atomic_inc_and_test(&folio->_entire_mapcount);
1337 : if (first) {
1338 : nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1339 : if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1340 : nr_pmdmapped = folio_nr_pages(folio);
1341 : nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1342 : /* Raced ahead of a remove and another add? */
1343 : if (unlikely(nr < 0))
1344 : nr = 0;
1345 : } else {
1346 : /* Raced ahead of a remove of COMPOUND_MAPPED */
1347 : nr = 0;
1348 : }
1349 : }
1350 : }
1351 :
1352 : if (nr_pmdmapped)
1353 : __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1354 : NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1355 0 : if (nr)
1356 0 : __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1357 :
1358 0 : mlock_vma_folio(folio, vma, compound);
1359 0 : }
1360 :
1361 : /**
1362 : * page_remove_rmap - take down pte mapping from a page
1363 : * @page: page to remove mapping from
1364 : * @vma: the vm area from which the mapping is removed
1365 : * @compound: uncharge the page as compound or small page
1366 : *
1367 : * The caller needs to hold the pte lock.
1368 : */
1369 0 : void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1370 : bool compound)
1371 : {
1372 0 : struct folio *folio = page_folio(page);
1373 0 : atomic_t *mapped = &folio->_nr_pages_mapped;
1374 0 : int nr = 0, nr_pmdmapped = 0;
1375 : bool last;
1376 : enum node_stat_item idx;
1377 :
1378 : VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1379 :
1380 : /* Hugetlb pages are not counted in NR_*MAPPED */
1381 0 : if (unlikely(folio_test_hugetlb(folio))) {
1382 : /* hugetlb pages are always mapped with pmds */
1383 : atomic_dec(&folio->_entire_mapcount);
1384 : return;
1385 : }
1386 :
1387 : /* Is page being unmapped by PTE? Is this its last map to be removed? */
1388 0 : if (likely(!compound)) {
1389 0 : last = atomic_add_negative(-1, &page->_mapcount);
1390 0 : nr = last;
1391 0 : if (last && folio_test_large(folio)) {
1392 0 : nr = atomic_dec_return_relaxed(mapped);
1393 0 : nr = (nr < COMPOUND_MAPPED);
1394 : }
1395 : } else if (folio_test_pmd_mappable(folio)) {
1396 : /* That test is redundant: it's for safety or to optimize out */
1397 :
1398 : last = atomic_add_negative(-1, &folio->_entire_mapcount);
1399 : if (last) {
1400 : nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1401 : if (likely(nr < COMPOUND_MAPPED)) {
1402 : nr_pmdmapped = folio_nr_pages(folio);
1403 : nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1404 : /* Raced ahead of another remove and an add? */
1405 : if (unlikely(nr < 0))
1406 : nr = 0;
1407 : } else {
1408 : /* An add of COMPOUND_MAPPED raced ahead */
1409 : nr = 0;
1410 : }
1411 : }
1412 : }
1413 :
1414 : if (nr_pmdmapped) {
1415 : if (folio_test_anon(folio))
1416 : idx = NR_ANON_THPS;
1417 : else if (folio_test_swapbacked(folio))
1418 : idx = NR_SHMEM_PMDMAPPED;
1419 : else
1420 : idx = NR_FILE_PMDMAPPED;
1421 : __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1422 : }
1423 0 : if (nr) {
1424 0 : idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1425 0 : __lruvec_stat_mod_folio(folio, idx, -nr);
1426 :
1427 : /*
1428 : * Queue anon THP for deferred split if at least one
1429 : * page of the folio is unmapped and at least one page
1430 : * is still mapped.
1431 : */
1432 0 : if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1433 : if (!compound || nr < nr_pmdmapped)
1434 : deferred_split_folio(folio);
1435 : }
1436 :
1437 : /*
1438 : * It would be tidy to reset folio_test_anon mapping when fully
1439 : * unmapped, but that might overwrite a racing page_add_anon_rmap
1440 : * which increments mapcount after us but sets mapping before us:
1441 : * so leave the reset to free_pages_prepare, and remember that
1442 : * it's only reliable while mapped.
1443 : */
1444 :
1445 0 : munlock_vma_folio(folio, vma, compound);
1446 : }
1447 :
1448 : /*
1449 : * @arg: enum ttu_flags will be passed to this argument
1450 : */
1451 0 : static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1452 : unsigned long address, void *arg)
1453 : {
1454 0 : struct mm_struct *mm = vma->vm_mm;
1455 0 : DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1456 : pte_t pteval;
1457 : struct page *subpage;
1458 0 : bool anon_exclusive, ret = true;
1459 : struct mmu_notifier_range range;
1460 0 : enum ttu_flags flags = (enum ttu_flags)(long)arg;
1461 :
1462 : /*
1463 : * When racing against e.g. zap_pte_range() on another cpu,
1464 : * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1465 : * try_to_unmap() may return before page_mapped() has become false,
1466 : * if page table locking is skipped: use TTU_SYNC to wait for that.
1467 : */
1468 0 : if (flags & TTU_SYNC)
1469 0 : pvmw.flags = PVMW_SYNC;
1470 :
1471 : if (flags & TTU_SPLIT_HUGE_PMD)
1472 : split_huge_pmd_address(vma, address, false, folio);
1473 :
1474 : /*
1475 : * For THP, we have to assume the worse case ie pmd for invalidation.
1476 : * For hugetlb, it could be much worse if we need to do pud
1477 : * invalidation in the case of pmd sharing.
1478 : *
1479 : * Note that the folio can not be freed in this function as call of
1480 : * try_to_unmap() must hold a reference on the folio.
1481 : */
1482 : range.end = vma_address_end(&pvmw);
1483 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1484 : address, range.end);
1485 : if (folio_test_hugetlb(folio)) {
1486 : /*
1487 : * If sharing is possible, start and end will be adjusted
1488 : * accordingly.
1489 : */
1490 : adjust_range_if_pmd_sharing_possible(vma, &range.start,
1491 : &range.end);
1492 : }
1493 : mmu_notifier_invalidate_range_start(&range);
1494 :
1495 0 : while (page_vma_mapped_walk(&pvmw)) {
1496 : /* Unexpected PMD-mapped THP? */
1497 : VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1498 :
1499 : /*
1500 : * If the folio is in an mlock()d vma, we must not swap it out.
1501 : */
1502 0 : if (!(flags & TTU_IGNORE_MLOCK) &&
1503 0 : (vma->vm_flags & VM_LOCKED)) {
1504 : /* Restore the mlock which got missed */
1505 0 : mlock_vma_folio(folio, vma, false);
1506 0 : page_vma_mapped_walk_done(&pvmw);
1507 : ret = false;
1508 : break;
1509 : }
1510 :
1511 0 : subpage = folio_page(folio,
1512 : pte_pfn(*pvmw.pte) - folio_pfn(folio));
1513 0 : address = pvmw.address;
1514 0 : anon_exclusive = folio_test_anon(folio) &&
1515 0 : PageAnonExclusive(subpage);
1516 :
1517 0 : if (folio_test_hugetlb(folio)) {
1518 : bool anon = folio_test_anon(folio);
1519 :
1520 : /*
1521 : * The try_to_unmap() is only passed a hugetlb page
1522 : * in the case where the hugetlb page is poisoned.
1523 : */
1524 : VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1525 : /*
1526 : * huge_pmd_unshare may unmap an entire PMD page.
1527 : * There is no way of knowing exactly which PMDs may
1528 : * be cached for this mm, so we must flush them all.
1529 : * start/end were already adjusted above to cover this
1530 : * range.
1531 : */
1532 : flush_cache_range(vma, range.start, range.end);
1533 :
1534 : /*
1535 : * To call huge_pmd_unshare, i_mmap_rwsem must be
1536 : * held in write mode. Caller needs to explicitly
1537 : * do this outside rmap routines.
1538 : *
1539 : * We also must hold hugetlb vma_lock in write mode.
1540 : * Lock order dictates acquiring vma_lock BEFORE
1541 : * i_mmap_rwsem. We can only try lock here and fail
1542 : * if unsuccessful.
1543 : */
1544 : if (!anon) {
1545 : VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1546 : if (!hugetlb_vma_trylock_write(vma)) {
1547 : page_vma_mapped_walk_done(&pvmw);
1548 : ret = false;
1549 : break;
1550 : }
1551 : if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1552 : hugetlb_vma_unlock_write(vma);
1553 : flush_tlb_range(vma,
1554 : range.start, range.end);
1555 : mmu_notifier_invalidate_range(mm,
1556 : range.start, range.end);
1557 : /*
1558 : * The ref count of the PMD page was
1559 : * dropped which is part of the way map
1560 : * counting is done for shared PMDs.
1561 : * Return 'true' here. When there is
1562 : * no other sharing, huge_pmd_unshare
1563 : * returns false and we will unmap the
1564 : * actual page and drop map count
1565 : * to zero.
1566 : */
1567 : page_vma_mapped_walk_done(&pvmw);
1568 : break;
1569 : }
1570 : hugetlb_vma_unlock_write(vma);
1571 : }
1572 : pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1573 : } else {
1574 0 : flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1575 : /* Nuke the page table entry. */
1576 0 : if (should_defer_flush(mm, flags)) {
1577 : /*
1578 : * We clear the PTE but do not flush so potentially
1579 : * a remote CPU could still be writing to the folio.
1580 : * If the entry was previously clean then the
1581 : * architecture must guarantee that a clear->dirty
1582 : * transition on a cached TLB entry is written through
1583 : * and traps if the PTE is unmapped.
1584 : */
1585 : pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1586 :
1587 : set_tlb_ubc_flush_pending(mm, pteval);
1588 : } else {
1589 0 : pteval = ptep_clear_flush(vma, address, pvmw.pte);
1590 : }
1591 : }
1592 :
1593 : /*
1594 : * Now the pte is cleared. If this pte was uffd-wp armed,
1595 : * we may want to replace a none pte with a marker pte if
1596 : * it's file-backed, so we don't lose the tracking info.
1597 : */
1598 0 : pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1599 :
1600 : /* Set the dirty flag on the folio now the pte is gone. */
1601 0 : if (pte_dirty(pteval))
1602 0 : folio_mark_dirty(folio);
1603 :
1604 : /* Update high watermark before we lower rss */
1605 0 : update_hiwater_rss(mm);
1606 :
1607 0 : if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1608 : pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1609 : if (folio_test_hugetlb(folio)) {
1610 : hugetlb_count_sub(folio_nr_pages(folio), mm);
1611 : set_huge_pte_at(mm, address, pvmw.pte, pteval);
1612 : } else {
1613 : dec_mm_counter(mm, mm_counter(&folio->page));
1614 : set_pte_at(mm, address, pvmw.pte, pteval);
1615 : }
1616 :
1617 0 : } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1618 : /*
1619 : * The guest indicated that the page content is of no
1620 : * interest anymore. Simply discard the pte, vmscan
1621 : * will take care of the rest.
1622 : * A future reference will then fault in a new zero
1623 : * page. When userfaultfd is active, we must not drop
1624 : * this page though, as its main user (postcopy
1625 : * migration) will not expect userfaults on already
1626 : * copied pages.
1627 : */
1628 : dec_mm_counter(mm, mm_counter(&folio->page));
1629 : /* We have to invalidate as we cleared the pte */
1630 : mmu_notifier_invalidate_range(mm, address,
1631 : address + PAGE_SIZE);
1632 0 : } else if (folio_test_anon(folio)) {
1633 0 : swp_entry_t entry = { .val = page_private(subpage) };
1634 : pte_t swp_pte;
1635 : /*
1636 : * Store the swap location in the pte.
1637 : * See handle_pte_fault() ...
1638 : */
1639 0 : if (unlikely(folio_test_swapbacked(folio) !=
1640 : folio_test_swapcache(folio))) {
1641 0 : WARN_ON_ONCE(1);
1642 0 : ret = false;
1643 : /* We have to invalidate as we cleared the pte */
1644 0 : mmu_notifier_invalidate_range(mm, address,
1645 : address + PAGE_SIZE);
1646 0 : page_vma_mapped_walk_done(&pvmw);
1647 : break;
1648 : }
1649 :
1650 : /* MADV_FREE page check */
1651 0 : if (!folio_test_swapbacked(folio)) {
1652 : int ref_count, map_count;
1653 :
1654 : /*
1655 : * Synchronize with gup_pte_range():
1656 : * - clear PTE; barrier; read refcount
1657 : * - inc refcount; barrier; read PTE
1658 : */
1659 0 : smp_mb();
1660 :
1661 0 : ref_count = folio_ref_count(folio);
1662 0 : map_count = folio_mapcount(folio);
1663 :
1664 : /*
1665 : * Order reads for page refcount and dirty flag
1666 : * (see comments in __remove_mapping()).
1667 : */
1668 0 : smp_rmb();
1669 :
1670 : /*
1671 : * The only page refs must be one from isolation
1672 : * plus the rmap(s) (dropped by discard:).
1673 : */
1674 0 : if (ref_count == 1 + map_count &&
1675 0 : !folio_test_dirty(folio)) {
1676 : /* Invalidate as we cleared the pte */
1677 0 : mmu_notifier_invalidate_range(mm,
1678 : address, address + PAGE_SIZE);
1679 0 : dec_mm_counter(mm, MM_ANONPAGES);
1680 0 : goto discard;
1681 : }
1682 :
1683 : /*
1684 : * If the folio was redirtied, it cannot be
1685 : * discarded. Remap the page to page table.
1686 : */
1687 0 : set_pte_at(mm, address, pvmw.pte, pteval);
1688 0 : folio_set_swapbacked(folio);
1689 0 : ret = false;
1690 0 : page_vma_mapped_walk_done(&pvmw);
1691 : break;
1692 : }
1693 :
1694 0 : if (swap_duplicate(entry) < 0) {
1695 0 : set_pte_at(mm, address, pvmw.pte, pteval);
1696 0 : ret = false;
1697 0 : page_vma_mapped_walk_done(&pvmw);
1698 : break;
1699 : }
1700 0 : if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1701 : swap_free(entry);
1702 : set_pte_at(mm, address, pvmw.pte, pteval);
1703 : ret = false;
1704 : page_vma_mapped_walk_done(&pvmw);
1705 : break;
1706 : }
1707 :
1708 : /* See page_try_share_anon_rmap(): clear PTE first. */
1709 0 : if (anon_exclusive &&
1710 0 : page_try_share_anon_rmap(subpage)) {
1711 0 : swap_free(entry);
1712 0 : set_pte_at(mm, address, pvmw.pte, pteval);
1713 0 : ret = false;
1714 0 : page_vma_mapped_walk_done(&pvmw);
1715 : break;
1716 : }
1717 0 : if (list_empty(&mm->mmlist)) {
1718 0 : spin_lock(&mmlist_lock);
1719 0 : if (list_empty(&mm->mmlist))
1720 0 : list_add(&mm->mmlist, &init_mm.mmlist);
1721 : spin_unlock(&mmlist_lock);
1722 : }
1723 0 : dec_mm_counter(mm, MM_ANONPAGES);
1724 0 : inc_mm_counter(mm, MM_SWAPENTS);
1725 0 : swp_pte = swp_entry_to_pte(entry);
1726 0 : if (anon_exclusive)
1727 : swp_pte = pte_swp_mkexclusive(swp_pte);
1728 0 : if (pte_soft_dirty(pteval))
1729 : swp_pte = pte_swp_mksoft_dirty(swp_pte);
1730 : if (pte_uffd_wp(pteval))
1731 : swp_pte = pte_swp_mkuffd_wp(swp_pte);
1732 0 : set_pte_at(mm, address, pvmw.pte, swp_pte);
1733 : /* Invalidate as we cleared the pte */
1734 0 : mmu_notifier_invalidate_range(mm, address,
1735 : address + PAGE_SIZE);
1736 : } else {
1737 : /*
1738 : * This is a locked file-backed folio,
1739 : * so it cannot be removed from the page
1740 : * cache and replaced by a new folio before
1741 : * mmu_notifier_invalidate_range_end, so no
1742 : * concurrent thread might update its page table
1743 : * to point at a new folio while a device is
1744 : * still using this folio.
1745 : *
1746 : * See Documentation/mm/mmu_notifier.rst
1747 : */
1748 0 : dec_mm_counter(mm, mm_counter_file(&folio->page));
1749 : }
1750 : discard:
1751 : /*
1752 : * No need to call mmu_notifier_invalidate_range() it has be
1753 : * done above for all cases requiring it to happen under page
1754 : * table lock before mmu_notifier_invalidate_range_end()
1755 : *
1756 : * See Documentation/mm/mmu_notifier.rst
1757 : */
1758 0 : page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1759 0 : if (vma->vm_flags & VM_LOCKED)
1760 0 : mlock_drain_local();
1761 : folio_put(folio);
1762 : }
1763 :
1764 0 : mmu_notifier_invalidate_range_end(&range);
1765 :
1766 0 : return ret;
1767 : }
1768 :
1769 0 : static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1770 : {
1771 0 : return vma_is_temporary_stack(vma);
1772 : }
1773 :
1774 0 : static int folio_not_mapped(struct folio *folio)
1775 : {
1776 0 : return !folio_mapped(folio);
1777 : }
1778 :
1779 : /**
1780 : * try_to_unmap - Try to remove all page table mappings to a folio.
1781 : * @folio: The folio to unmap.
1782 : * @flags: action and flags
1783 : *
1784 : * Tries to remove all the page table entries which are mapping this
1785 : * folio. It is the caller's responsibility to check if the folio is
1786 : * still mapped if needed (use TTU_SYNC to prevent accounting races).
1787 : *
1788 : * Context: Caller must hold the folio lock.
1789 : */
1790 0 : void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1791 : {
1792 0 : struct rmap_walk_control rwc = {
1793 : .rmap_one = try_to_unmap_one,
1794 0 : .arg = (void *)flags,
1795 : .done = folio_not_mapped,
1796 : .anon_lock = folio_lock_anon_vma_read,
1797 : };
1798 :
1799 0 : if (flags & TTU_RMAP_LOCKED)
1800 0 : rmap_walk_locked(folio, &rwc);
1801 : else
1802 0 : rmap_walk(folio, &rwc);
1803 0 : }
1804 :
1805 : /*
1806 : * @arg: enum ttu_flags will be passed to this argument.
1807 : *
1808 : * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1809 : * containing migration entries.
1810 : */
1811 0 : static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1812 : unsigned long address, void *arg)
1813 : {
1814 0 : struct mm_struct *mm = vma->vm_mm;
1815 0 : DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1816 : pte_t pteval;
1817 : struct page *subpage;
1818 0 : bool anon_exclusive, ret = true;
1819 : struct mmu_notifier_range range;
1820 0 : enum ttu_flags flags = (enum ttu_flags)(long)arg;
1821 :
1822 : /*
1823 : * When racing against e.g. zap_pte_range() on another cpu,
1824 : * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1825 : * try_to_migrate() may return before page_mapped() has become false,
1826 : * if page table locking is skipped: use TTU_SYNC to wait for that.
1827 : */
1828 0 : if (flags & TTU_SYNC)
1829 0 : pvmw.flags = PVMW_SYNC;
1830 :
1831 : /*
1832 : * unmap_page() in mm/huge_memory.c is the only user of migration with
1833 : * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1834 : */
1835 : if (flags & TTU_SPLIT_HUGE_PMD)
1836 : split_huge_pmd_address(vma, address, true, folio);
1837 :
1838 : /*
1839 : * For THP, we have to assume the worse case ie pmd for invalidation.
1840 : * For hugetlb, it could be much worse if we need to do pud
1841 : * invalidation in the case of pmd sharing.
1842 : *
1843 : * Note that the page can not be free in this function as call of
1844 : * try_to_unmap() must hold a reference on the page.
1845 : */
1846 : range.end = vma_address_end(&pvmw);
1847 : mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1848 : address, range.end);
1849 : if (folio_test_hugetlb(folio)) {
1850 : /*
1851 : * If sharing is possible, start and end will be adjusted
1852 : * accordingly.
1853 : */
1854 : adjust_range_if_pmd_sharing_possible(vma, &range.start,
1855 : &range.end);
1856 : }
1857 : mmu_notifier_invalidate_range_start(&range);
1858 :
1859 0 : while (page_vma_mapped_walk(&pvmw)) {
1860 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861 : /* PMD-mapped THP migration entry */
1862 : if (!pvmw.pte) {
1863 : subpage = folio_page(folio,
1864 : pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1865 : VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1866 : !folio_test_pmd_mappable(folio), folio);
1867 :
1868 : if (set_pmd_migration_entry(&pvmw, subpage)) {
1869 : ret = false;
1870 : page_vma_mapped_walk_done(&pvmw);
1871 : break;
1872 : }
1873 : continue;
1874 : }
1875 : #endif
1876 :
1877 : /* Unexpected PMD-mapped THP? */
1878 : VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1879 :
1880 0 : if (folio_is_zone_device(folio)) {
1881 : /*
1882 : * Our PTE is a non-present device exclusive entry and
1883 : * calculating the subpage as for the common case would
1884 : * result in an invalid pointer.
1885 : *
1886 : * Since only PAGE_SIZE pages can currently be
1887 : * migrated, just set it to page. This will need to be
1888 : * changed when hugepage migrations to device private
1889 : * memory are supported.
1890 : */
1891 : VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1892 : subpage = &folio->page;
1893 : } else {
1894 0 : subpage = folio_page(folio,
1895 : pte_pfn(*pvmw.pte) - folio_pfn(folio));
1896 : }
1897 0 : address = pvmw.address;
1898 0 : anon_exclusive = folio_test_anon(folio) &&
1899 0 : PageAnonExclusive(subpage);
1900 :
1901 0 : if (folio_test_hugetlb(folio)) {
1902 : bool anon = folio_test_anon(folio);
1903 :
1904 : /*
1905 : * huge_pmd_unshare may unmap an entire PMD page.
1906 : * There is no way of knowing exactly which PMDs may
1907 : * be cached for this mm, so we must flush them all.
1908 : * start/end were already adjusted above to cover this
1909 : * range.
1910 : */
1911 : flush_cache_range(vma, range.start, range.end);
1912 :
1913 : /*
1914 : * To call huge_pmd_unshare, i_mmap_rwsem must be
1915 : * held in write mode. Caller needs to explicitly
1916 : * do this outside rmap routines.
1917 : *
1918 : * We also must hold hugetlb vma_lock in write mode.
1919 : * Lock order dictates acquiring vma_lock BEFORE
1920 : * i_mmap_rwsem. We can only try lock here and
1921 : * fail if unsuccessful.
1922 : */
1923 : if (!anon) {
1924 : VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1925 : if (!hugetlb_vma_trylock_write(vma)) {
1926 : page_vma_mapped_walk_done(&pvmw);
1927 : ret = false;
1928 : break;
1929 : }
1930 : if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1931 : hugetlb_vma_unlock_write(vma);
1932 : flush_tlb_range(vma,
1933 : range.start, range.end);
1934 : mmu_notifier_invalidate_range(mm,
1935 : range.start, range.end);
1936 :
1937 : /*
1938 : * The ref count of the PMD page was
1939 : * dropped which is part of the way map
1940 : * counting is done for shared PMDs.
1941 : * Return 'true' here. When there is
1942 : * no other sharing, huge_pmd_unshare
1943 : * returns false and we will unmap the
1944 : * actual page and drop map count
1945 : * to zero.
1946 : */
1947 : page_vma_mapped_walk_done(&pvmw);
1948 : break;
1949 : }
1950 : hugetlb_vma_unlock_write(vma);
1951 : }
1952 : /* Nuke the hugetlb page table entry */
1953 : pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1954 : } else {
1955 0 : flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1956 : /* Nuke the page table entry. */
1957 0 : if (should_defer_flush(mm, flags)) {
1958 : /*
1959 : * We clear the PTE but do not flush so potentially
1960 : * a remote CPU could still be writing to the folio.
1961 : * If the entry was previously clean then the
1962 : * architecture must guarantee that a clear->dirty
1963 : * transition on a cached TLB entry is written through
1964 : * and traps if the PTE is unmapped.
1965 : */
1966 : pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1967 :
1968 : set_tlb_ubc_flush_pending(mm, pteval);
1969 : } else {
1970 0 : pteval = ptep_clear_flush(vma, address, pvmw.pte);
1971 : }
1972 : }
1973 :
1974 : /* Set the dirty flag on the folio now the pte is gone. */
1975 0 : if (pte_dirty(pteval))
1976 0 : folio_mark_dirty(folio);
1977 :
1978 : /* Update high watermark before we lower rss */
1979 0 : update_hiwater_rss(mm);
1980 :
1981 0 : if (folio_is_device_private(folio)) {
1982 : unsigned long pfn = folio_pfn(folio);
1983 : swp_entry_t entry;
1984 : pte_t swp_pte;
1985 :
1986 : if (anon_exclusive)
1987 : BUG_ON(page_try_share_anon_rmap(subpage));
1988 :
1989 : /*
1990 : * Store the pfn of the page in a special migration
1991 : * pte. do_swap_page() will wait until the migration
1992 : * pte is removed and then restart fault handling.
1993 : */
1994 : entry = pte_to_swp_entry(pteval);
1995 : if (is_writable_device_private_entry(entry))
1996 : entry = make_writable_migration_entry(pfn);
1997 : else if (anon_exclusive)
1998 : entry = make_readable_exclusive_migration_entry(pfn);
1999 : else
2000 : entry = make_readable_migration_entry(pfn);
2001 : swp_pte = swp_entry_to_pte(entry);
2002 :
2003 : /*
2004 : * pteval maps a zone device page and is therefore
2005 : * a swap pte.
2006 : */
2007 : if (pte_swp_soft_dirty(pteval))
2008 : swp_pte = pte_swp_mksoft_dirty(swp_pte);
2009 : if (pte_swp_uffd_wp(pteval))
2010 : swp_pte = pte_swp_mkuffd_wp(swp_pte);
2011 : set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2012 : trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2013 : compound_order(&folio->page));
2014 : /*
2015 : * No need to invalidate here it will synchronize on
2016 : * against the special swap migration pte.
2017 : */
2018 0 : } else if (PageHWPoison(subpage)) {
2019 : pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2020 : if (folio_test_hugetlb(folio)) {
2021 : hugetlb_count_sub(folio_nr_pages(folio), mm);
2022 : set_huge_pte_at(mm, address, pvmw.pte, pteval);
2023 : } else {
2024 : dec_mm_counter(mm, mm_counter(&folio->page));
2025 : set_pte_at(mm, address, pvmw.pte, pteval);
2026 : }
2027 :
2028 0 : } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2029 : /*
2030 : * The guest indicated that the page content is of no
2031 : * interest anymore. Simply discard the pte, vmscan
2032 : * will take care of the rest.
2033 : * A future reference will then fault in a new zero
2034 : * page. When userfaultfd is active, we must not drop
2035 : * this page though, as its main user (postcopy
2036 : * migration) will not expect userfaults on already
2037 : * copied pages.
2038 : */
2039 : dec_mm_counter(mm, mm_counter(&folio->page));
2040 : /* We have to invalidate as we cleared the pte */
2041 : mmu_notifier_invalidate_range(mm, address,
2042 : address + PAGE_SIZE);
2043 : } else {
2044 : swp_entry_t entry;
2045 : pte_t swp_pte;
2046 :
2047 0 : if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2048 : if (folio_test_hugetlb(folio))
2049 : set_huge_pte_at(mm, address, pvmw.pte, pteval);
2050 : else
2051 : set_pte_at(mm, address, pvmw.pte, pteval);
2052 : ret = false;
2053 : page_vma_mapped_walk_done(&pvmw);
2054 : break;
2055 : }
2056 : VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2057 : !anon_exclusive, subpage);
2058 :
2059 : /* See page_try_share_anon_rmap(): clear PTE first. */
2060 0 : if (anon_exclusive &&
2061 0 : page_try_share_anon_rmap(subpage)) {
2062 0 : if (folio_test_hugetlb(folio))
2063 : set_huge_pte_at(mm, address, pvmw.pte, pteval);
2064 : else
2065 0 : set_pte_at(mm, address, pvmw.pte, pteval);
2066 0 : ret = false;
2067 0 : page_vma_mapped_walk_done(&pvmw);
2068 : break;
2069 : }
2070 :
2071 : /*
2072 : * Store the pfn of the page in a special migration
2073 : * pte. do_swap_page() will wait until the migration
2074 : * pte is removed and then restart fault handling.
2075 : */
2076 0 : if (pte_write(pteval))
2077 0 : entry = make_writable_migration_entry(
2078 0 : page_to_pfn(subpage));
2079 0 : else if (anon_exclusive)
2080 0 : entry = make_readable_exclusive_migration_entry(
2081 0 : page_to_pfn(subpage));
2082 : else
2083 0 : entry = make_readable_migration_entry(
2084 0 : page_to_pfn(subpage));
2085 0 : if (pte_young(pteval))
2086 : entry = make_migration_entry_young(entry);
2087 0 : if (pte_dirty(pteval))
2088 : entry = make_migration_entry_dirty(entry);
2089 0 : swp_pte = swp_entry_to_pte(entry);
2090 0 : if (pte_soft_dirty(pteval))
2091 : swp_pte = pte_swp_mksoft_dirty(swp_pte);
2092 : if (pte_uffd_wp(pteval))
2093 : swp_pte = pte_swp_mkuffd_wp(swp_pte);
2094 0 : if (folio_test_hugetlb(folio))
2095 : set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2096 : else
2097 0 : set_pte_at(mm, address, pvmw.pte, swp_pte);
2098 0 : trace_set_migration_pte(address, pte_val(swp_pte),
2099 0 : compound_order(&folio->page));
2100 : /*
2101 : * No need to invalidate here it will synchronize on
2102 : * against the special swap migration pte.
2103 : */
2104 : }
2105 :
2106 : /*
2107 : * No need to call mmu_notifier_invalidate_range() it has be
2108 : * done above for all cases requiring it to happen under page
2109 : * table lock before mmu_notifier_invalidate_range_end()
2110 : *
2111 : * See Documentation/mm/mmu_notifier.rst
2112 : */
2113 0 : page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2114 0 : if (vma->vm_flags & VM_LOCKED)
2115 0 : mlock_drain_local();
2116 : folio_put(folio);
2117 : }
2118 :
2119 0 : mmu_notifier_invalidate_range_end(&range);
2120 :
2121 0 : return ret;
2122 : }
2123 :
2124 : /**
2125 : * try_to_migrate - try to replace all page table mappings with swap entries
2126 : * @folio: the folio to replace page table entries for
2127 : * @flags: action and flags
2128 : *
2129 : * Tries to remove all the page table entries which are mapping this folio and
2130 : * replace them with special swap entries. Caller must hold the folio lock.
2131 : */
2132 0 : void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2133 : {
2134 0 : struct rmap_walk_control rwc = {
2135 : .rmap_one = try_to_migrate_one,
2136 0 : .arg = (void *)flags,
2137 : .done = folio_not_mapped,
2138 : .anon_lock = folio_lock_anon_vma_read,
2139 : };
2140 :
2141 : /*
2142 : * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2143 : * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2144 : */
2145 0 : if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2146 : TTU_SYNC | TTU_BATCH_FLUSH)))
2147 0 : return;
2148 :
2149 0 : if (folio_is_zone_device(folio) &&
2150 : (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2151 : return;
2152 :
2153 : /*
2154 : * During exec, a temporary VMA is setup and later moved.
2155 : * The VMA is moved under the anon_vma lock but not the
2156 : * page tables leading to a race where migration cannot
2157 : * find the migration ptes. Rather than increasing the
2158 : * locking requirements of exec(), migration skips
2159 : * temporary VMAs until after exec() completes.
2160 : */
2161 0 : if (!folio_test_ksm(folio) && folio_test_anon(folio))
2162 0 : rwc.invalid_vma = invalid_migration_vma;
2163 :
2164 0 : if (flags & TTU_RMAP_LOCKED)
2165 0 : rmap_walk_locked(folio, &rwc);
2166 : else
2167 0 : rmap_walk(folio, &rwc);
2168 : }
2169 :
2170 : #ifdef CONFIG_DEVICE_PRIVATE
2171 : struct make_exclusive_args {
2172 : struct mm_struct *mm;
2173 : unsigned long address;
2174 : void *owner;
2175 : bool valid;
2176 : };
2177 :
2178 : static bool page_make_device_exclusive_one(struct folio *folio,
2179 : struct vm_area_struct *vma, unsigned long address, void *priv)
2180 : {
2181 : struct mm_struct *mm = vma->vm_mm;
2182 : DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2183 : struct make_exclusive_args *args = priv;
2184 : pte_t pteval;
2185 : struct page *subpage;
2186 : bool ret = true;
2187 : struct mmu_notifier_range range;
2188 : swp_entry_t entry;
2189 : pte_t swp_pte;
2190 :
2191 : mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2192 : vma->vm_mm, address, min(vma->vm_end,
2193 : address + folio_size(folio)),
2194 : args->owner);
2195 : mmu_notifier_invalidate_range_start(&range);
2196 :
2197 : while (page_vma_mapped_walk(&pvmw)) {
2198 : /* Unexpected PMD-mapped THP? */
2199 : VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2200 :
2201 : if (!pte_present(*pvmw.pte)) {
2202 : ret = false;
2203 : page_vma_mapped_walk_done(&pvmw);
2204 : break;
2205 : }
2206 :
2207 : subpage = folio_page(folio,
2208 : pte_pfn(*pvmw.pte) - folio_pfn(folio));
2209 : address = pvmw.address;
2210 :
2211 : /* Nuke the page table entry. */
2212 : flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2213 : pteval = ptep_clear_flush(vma, address, pvmw.pte);
2214 :
2215 : /* Set the dirty flag on the folio now the pte is gone. */
2216 : if (pte_dirty(pteval))
2217 : folio_mark_dirty(folio);
2218 :
2219 : /*
2220 : * Check that our target page is still mapped at the expected
2221 : * address.
2222 : */
2223 : if (args->mm == mm && args->address == address &&
2224 : pte_write(pteval))
2225 : args->valid = true;
2226 :
2227 : /*
2228 : * Store the pfn of the page in a special migration
2229 : * pte. do_swap_page() will wait until the migration
2230 : * pte is removed and then restart fault handling.
2231 : */
2232 : if (pte_write(pteval))
2233 : entry = make_writable_device_exclusive_entry(
2234 : page_to_pfn(subpage));
2235 : else
2236 : entry = make_readable_device_exclusive_entry(
2237 : page_to_pfn(subpage));
2238 : swp_pte = swp_entry_to_pte(entry);
2239 : if (pte_soft_dirty(pteval))
2240 : swp_pte = pte_swp_mksoft_dirty(swp_pte);
2241 : if (pte_uffd_wp(pteval))
2242 : swp_pte = pte_swp_mkuffd_wp(swp_pte);
2243 :
2244 : set_pte_at(mm, address, pvmw.pte, swp_pte);
2245 :
2246 : /*
2247 : * There is a reference on the page for the swap entry which has
2248 : * been removed, so shouldn't take another.
2249 : */
2250 : page_remove_rmap(subpage, vma, false);
2251 : }
2252 :
2253 : mmu_notifier_invalidate_range_end(&range);
2254 :
2255 : return ret;
2256 : }
2257 :
2258 : /**
2259 : * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2260 : * @folio: The folio to replace page table entries for.
2261 : * @mm: The mm_struct where the folio is expected to be mapped.
2262 : * @address: Address where the folio is expected to be mapped.
2263 : * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2264 : *
2265 : * Tries to remove all the page table entries which are mapping this
2266 : * folio and replace them with special device exclusive swap entries to
2267 : * grant a device exclusive access to the folio.
2268 : *
2269 : * Context: Caller must hold the folio lock.
2270 : * Return: false if the page is still mapped, or if it could not be unmapped
2271 : * from the expected address. Otherwise returns true (success).
2272 : */
2273 : static bool folio_make_device_exclusive(struct folio *folio,
2274 : struct mm_struct *mm, unsigned long address, void *owner)
2275 : {
2276 : struct make_exclusive_args args = {
2277 : .mm = mm,
2278 : .address = address,
2279 : .owner = owner,
2280 : .valid = false,
2281 : };
2282 : struct rmap_walk_control rwc = {
2283 : .rmap_one = page_make_device_exclusive_one,
2284 : .done = folio_not_mapped,
2285 : .anon_lock = folio_lock_anon_vma_read,
2286 : .arg = &args,
2287 : };
2288 :
2289 : /*
2290 : * Restrict to anonymous folios for now to avoid potential writeback
2291 : * issues.
2292 : */
2293 : if (!folio_test_anon(folio))
2294 : return false;
2295 :
2296 : rmap_walk(folio, &rwc);
2297 :
2298 : return args.valid && !folio_mapcount(folio);
2299 : }
2300 :
2301 : /**
2302 : * make_device_exclusive_range() - Mark a range for exclusive use by a device
2303 : * @mm: mm_struct of associated target process
2304 : * @start: start of the region to mark for exclusive device access
2305 : * @end: end address of region
2306 : * @pages: returns the pages which were successfully marked for exclusive access
2307 : * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2308 : *
2309 : * Returns: number of pages found in the range by GUP. A page is marked for
2310 : * exclusive access only if the page pointer is non-NULL.
2311 : *
2312 : * This function finds ptes mapping page(s) to the given address range, locks
2313 : * them and replaces mappings with special swap entries preventing userspace CPU
2314 : * access. On fault these entries are replaced with the original mapping after
2315 : * calling MMU notifiers.
2316 : *
2317 : * A driver using this to program access from a device must use a mmu notifier
2318 : * critical section to hold a device specific lock during programming. Once
2319 : * programming is complete it should drop the page lock and reference after
2320 : * which point CPU access to the page will revoke the exclusive access.
2321 : */
2322 : int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2323 : unsigned long end, struct page **pages,
2324 : void *owner)
2325 : {
2326 : long npages = (end - start) >> PAGE_SHIFT;
2327 : long i;
2328 :
2329 : npages = get_user_pages_remote(mm, start, npages,
2330 : FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2331 : pages, NULL, NULL);
2332 : if (npages < 0)
2333 : return npages;
2334 :
2335 : for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2336 : struct folio *folio = page_folio(pages[i]);
2337 : if (PageTail(pages[i]) || !folio_trylock(folio)) {
2338 : folio_put(folio);
2339 : pages[i] = NULL;
2340 : continue;
2341 : }
2342 :
2343 : if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2344 : folio_unlock(folio);
2345 : folio_put(folio);
2346 : pages[i] = NULL;
2347 : }
2348 : }
2349 :
2350 : return npages;
2351 : }
2352 : EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2353 : #endif
2354 :
2355 0 : void __put_anon_vma(struct anon_vma *anon_vma)
2356 : {
2357 0 : struct anon_vma *root = anon_vma->root;
2358 :
2359 0 : anon_vma_free(anon_vma);
2360 0 : if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2361 0 : anon_vma_free(root);
2362 0 : }
2363 :
2364 0 : static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2365 : struct rmap_walk_control *rwc)
2366 : {
2367 : struct anon_vma *anon_vma;
2368 :
2369 0 : if (rwc->anon_lock)
2370 0 : return rwc->anon_lock(folio, rwc);
2371 :
2372 : /*
2373 : * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2374 : * because that depends on page_mapped(); but not all its usages
2375 : * are holding mmap_lock. Users without mmap_lock are required to
2376 : * take a reference count to prevent the anon_vma disappearing
2377 : */
2378 0 : anon_vma = folio_anon_vma(folio);
2379 0 : if (!anon_vma)
2380 : return NULL;
2381 :
2382 0 : if (anon_vma_trylock_read(anon_vma))
2383 : goto out;
2384 :
2385 0 : if (rwc->try_lock) {
2386 0 : anon_vma = NULL;
2387 0 : rwc->contended = true;
2388 0 : goto out;
2389 : }
2390 :
2391 0 : anon_vma_lock_read(anon_vma);
2392 : out:
2393 : return anon_vma;
2394 : }
2395 :
2396 : /*
2397 : * rmap_walk_anon - do something to anonymous page using the object-based
2398 : * rmap method
2399 : * @page: the page to be handled
2400 : * @rwc: control variable according to each walk type
2401 : *
2402 : * Find all the mappings of a page using the mapping pointer and the vma chains
2403 : * contained in the anon_vma struct it points to.
2404 : */
2405 0 : static void rmap_walk_anon(struct folio *folio,
2406 : struct rmap_walk_control *rwc, bool locked)
2407 : {
2408 : struct anon_vma *anon_vma;
2409 : pgoff_t pgoff_start, pgoff_end;
2410 : struct anon_vma_chain *avc;
2411 :
2412 0 : if (locked) {
2413 0 : anon_vma = folio_anon_vma(folio);
2414 : /* anon_vma disappear under us? */
2415 : VM_BUG_ON_FOLIO(!anon_vma, folio);
2416 : } else {
2417 0 : anon_vma = rmap_walk_anon_lock(folio, rwc);
2418 : }
2419 0 : if (!anon_vma)
2420 : return;
2421 :
2422 0 : pgoff_start = folio_pgoff(folio);
2423 0 : pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2424 0 : anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2425 : pgoff_start, pgoff_end) {
2426 0 : struct vm_area_struct *vma = avc->vma;
2427 0 : unsigned long address = vma_address(&folio->page, vma);
2428 :
2429 : VM_BUG_ON_VMA(address == -EFAULT, vma);
2430 0 : cond_resched();
2431 :
2432 0 : if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2433 0 : continue;
2434 :
2435 0 : if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2436 : break;
2437 0 : if (rwc->done && rwc->done(folio))
2438 : break;
2439 : }
2440 :
2441 0 : if (!locked)
2442 0 : anon_vma_unlock_read(anon_vma);
2443 : }
2444 :
2445 : /*
2446 : * rmap_walk_file - do something to file page using the object-based rmap method
2447 : * @page: the page to be handled
2448 : * @rwc: control variable according to each walk type
2449 : *
2450 : * Find all the mappings of a page using the mapping pointer and the vma chains
2451 : * contained in the address_space struct it points to.
2452 : */
2453 0 : static void rmap_walk_file(struct folio *folio,
2454 : struct rmap_walk_control *rwc, bool locked)
2455 : {
2456 0 : struct address_space *mapping = folio_mapping(folio);
2457 : pgoff_t pgoff_start, pgoff_end;
2458 : struct vm_area_struct *vma;
2459 :
2460 : /*
2461 : * The page lock not only makes sure that page->mapping cannot
2462 : * suddenly be NULLified by truncation, it makes sure that the
2463 : * structure at mapping cannot be freed and reused yet,
2464 : * so we can safely take mapping->i_mmap_rwsem.
2465 : */
2466 : VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2467 :
2468 0 : if (!mapping)
2469 : return;
2470 :
2471 0 : pgoff_start = folio_pgoff(folio);
2472 0 : pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2473 0 : if (!locked) {
2474 0 : if (i_mmap_trylock_read(mapping))
2475 : goto lookup;
2476 :
2477 0 : if (rwc->try_lock) {
2478 0 : rwc->contended = true;
2479 0 : return;
2480 : }
2481 :
2482 : i_mmap_lock_read(mapping);
2483 : }
2484 : lookup:
2485 0 : vma_interval_tree_foreach(vma, &mapping->i_mmap,
2486 : pgoff_start, pgoff_end) {
2487 0 : unsigned long address = vma_address(&folio->page, vma);
2488 :
2489 : VM_BUG_ON_VMA(address == -EFAULT, vma);
2490 0 : cond_resched();
2491 :
2492 0 : if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2493 0 : continue;
2494 :
2495 0 : if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2496 : goto done;
2497 0 : if (rwc->done && rwc->done(folio))
2498 : goto done;
2499 : }
2500 :
2501 : done:
2502 0 : if (!locked)
2503 : i_mmap_unlock_read(mapping);
2504 : }
2505 :
2506 0 : void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2507 : {
2508 0 : if (unlikely(folio_test_ksm(folio)))
2509 : rmap_walk_ksm(folio, rwc);
2510 0 : else if (folio_test_anon(folio))
2511 0 : rmap_walk_anon(folio, rwc, false);
2512 : else
2513 0 : rmap_walk_file(folio, rwc, false);
2514 0 : }
2515 :
2516 : /* Like rmap_walk, but caller holds relevant rmap lock */
2517 0 : void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2518 : {
2519 : /* no ksm support for now */
2520 : VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2521 0 : if (folio_test_anon(folio))
2522 0 : rmap_walk_anon(folio, rwc, true);
2523 : else
2524 0 : rmap_walk_file(folio, rwc, true);
2525 0 : }
2526 :
2527 : #ifdef CONFIG_HUGETLB_PAGE
2528 : /*
2529 : * The following two functions are for anonymous (private mapped) hugepages.
2530 : * Unlike common anonymous pages, anonymous hugepages have no accounting code
2531 : * and no lru code, because we handle hugepages differently from common pages.
2532 : *
2533 : * RMAP_COMPOUND is ignored.
2534 : */
2535 : void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2536 : unsigned long address, rmap_t flags)
2537 : {
2538 : struct folio *folio = page_folio(page);
2539 : struct anon_vma *anon_vma = vma->anon_vma;
2540 : int first;
2541 :
2542 : BUG_ON(!folio_test_locked(folio));
2543 : BUG_ON(!anon_vma);
2544 : /* address might be in next vma when migration races vma_merge */
2545 : first = atomic_inc_and_test(&folio->_entire_mapcount);
2546 : VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2547 : VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2548 : if (first)
2549 : __page_set_anon_rmap(folio, page, vma, address,
2550 : !!(flags & RMAP_EXCLUSIVE));
2551 : }
2552 :
2553 : void hugepage_add_new_anon_rmap(struct folio *folio,
2554 : struct vm_area_struct *vma, unsigned long address)
2555 : {
2556 : BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2557 : /* increment count (starts at -1) */
2558 : atomic_set(&folio->_entire_mapcount, 0);
2559 : folio_clear_hugetlb_restore_reserve(folio);
2560 : __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2561 : }
2562 : #endif /* CONFIG_HUGETLB_PAGE */
|