LCOV - code coverage report
Current view: top level - mm - slub.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 593 1621 36.6 %
Date: 2023-07-19 18:55:55 Functions: 44 142 31.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * SLUB: A slab allocator that limits cache line use instead of queuing
       4             :  * objects in per cpu and per node lists.
       5             :  *
       6             :  * The allocator synchronizes using per slab locks or atomic operations
       7             :  * and only uses a centralized lock to manage a pool of partial slabs.
       8             :  *
       9             :  * (C) 2007 SGI, Christoph Lameter
      10             :  * (C) 2011 Linux Foundation, Christoph Lameter
      11             :  */
      12             : 
      13             : #include <linux/mm.h>
      14             : #include <linux/swap.h> /* mm_account_reclaimed_pages() */
      15             : #include <linux/module.h>
      16             : #include <linux/bit_spinlock.h>
      17             : #include <linux/interrupt.h>
      18             : #include <linux/swab.h>
      19             : #include <linux/bitops.h>
      20             : #include <linux/slab.h>
      21             : #include "slab.h"
      22             : #include <linux/proc_fs.h>
      23             : #include <linux/seq_file.h>
      24             : #include <linux/kasan.h>
      25             : #include <linux/kmsan.h>
      26             : #include <linux/cpu.h>
      27             : #include <linux/cpuset.h>
      28             : #include <linux/mempolicy.h>
      29             : #include <linux/ctype.h>
      30             : #include <linux/stackdepot.h>
      31             : #include <linux/debugobjects.h>
      32             : #include <linux/kallsyms.h>
      33             : #include <linux/kfence.h>
      34             : #include <linux/memory.h>
      35             : #include <linux/math64.h>
      36             : #include <linux/fault-inject.h>
      37             : #include <linux/stacktrace.h>
      38             : #include <linux/prefetch.h>
      39             : #include <linux/memcontrol.h>
      40             : #include <linux/random.h>
      41             : #include <kunit/test.h>
      42             : #include <kunit/test-bug.h>
      43             : #include <linux/sort.h>
      44             : 
      45             : #include <linux/debugfs.h>
      46             : #include <trace/events/kmem.h>
      47             : 
      48             : #include "internal.h"
      49             : 
      50             : /*
      51             :  * Lock order:
      52             :  *   1. slab_mutex (Global Mutex)
      53             :  *   2. node->list_lock (Spinlock)
      54             :  *   3. kmem_cache->cpu_slab->lock (Local lock)
      55             :  *   4. slab_lock(slab) (Only on some arches)
      56             :  *   5. object_map_lock (Only for debugging)
      57             :  *
      58             :  *   slab_mutex
      59             :  *
      60             :  *   The role of the slab_mutex is to protect the list of all the slabs
      61             :  *   and to synchronize major metadata changes to slab cache structures.
      62             :  *   Also synchronizes memory hotplug callbacks.
      63             :  *
      64             :  *   slab_lock
      65             :  *
      66             :  *   The slab_lock is a wrapper around the page lock, thus it is a bit
      67             :  *   spinlock.
      68             :  *
      69             :  *   The slab_lock is only used on arches that do not have the ability
      70             :  *   to do a cmpxchg_double. It only protects:
      71             :  *
      72             :  *      A. slab->freelist    -> List of free objects in a slab
      73             :  *      B. slab->inuse               -> Number of objects in use
      74             :  *      C. slab->objects     -> Number of objects in slab
      75             :  *      D. slab->frozen              -> frozen state
      76             :  *
      77             :  *   Frozen slabs
      78             :  *
      79             :  *   If a slab is frozen then it is exempt from list management. It is not
      80             :  *   on any list except per cpu partial list. The processor that froze the
      81             :  *   slab is the one who can perform list operations on the slab. Other
      82             :  *   processors may put objects onto the freelist but the processor that
      83             :  *   froze the slab is the only one that can retrieve the objects from the
      84             :  *   slab's freelist.
      85             :  *
      86             :  *   list_lock
      87             :  *
      88             :  *   The list_lock protects the partial and full list on each node and
      89             :  *   the partial slab counter. If taken then no new slabs may be added or
      90             :  *   removed from the lists nor make the number of partial slabs be modified.
      91             :  *   (Note that the total number of slabs is an atomic value that may be
      92             :  *   modified without taking the list lock).
      93             :  *
      94             :  *   The list_lock is a centralized lock and thus we avoid taking it as
      95             :  *   much as possible. As long as SLUB does not have to handle partial
      96             :  *   slabs, operations can continue without any centralized lock. F.e.
      97             :  *   allocating a long series of objects that fill up slabs does not require
      98             :  *   the list lock.
      99             :  *
     100             :  *   For debug caches, all allocations are forced to go through a list_lock
     101             :  *   protected region to serialize against concurrent validation.
     102             :  *
     103             :  *   cpu_slab->lock local lock
     104             :  *
     105             :  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
     106             :  *   except the stat counters. This is a percpu structure manipulated only by
     107             :  *   the local cpu, so the lock protects against being preempted or interrupted
     108             :  *   by an irq. Fast path operations rely on lockless operations instead.
     109             :  *
     110             :  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
     111             :  *   which means the lockless fastpath cannot be used as it might interfere with
     112             :  *   an in-progress slow path operations. In this case the local lock is always
     113             :  *   taken but it still utilizes the freelist for the common operations.
     114             :  *
     115             :  *   lockless fastpaths
     116             :  *
     117             :  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
     118             :  *   are fully lockless when satisfied from the percpu slab (and when
     119             :  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
     120             :  *   They also don't disable preemption or migration or irqs. They rely on
     121             :  *   the transaction id (tid) field to detect being preempted or moved to
     122             :  *   another cpu.
     123             :  *
     124             :  *   irq, preemption, migration considerations
     125             :  *
     126             :  *   Interrupts are disabled as part of list_lock or local_lock operations, or
     127             :  *   around the slab_lock operation, in order to make the slab allocator safe
     128             :  *   to use in the context of an irq.
     129             :  *
     130             :  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
     131             :  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
     132             :  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
     133             :  *   doesn't have to be revalidated in each section protected by the local lock.
     134             :  *
     135             :  * SLUB assigns one slab for allocation to each processor.
     136             :  * Allocations only occur from these slabs called cpu slabs.
     137             :  *
     138             :  * Slabs with free elements are kept on a partial list and during regular
     139             :  * operations no list for full slabs is used. If an object in a full slab is
     140             :  * freed then the slab will show up again on the partial lists.
     141             :  * We track full slabs for debugging purposes though because otherwise we
     142             :  * cannot scan all objects.
     143             :  *
     144             :  * Slabs are freed when they become empty. Teardown and setup is
     145             :  * minimal so we rely on the page allocators per cpu caches for
     146             :  * fast frees and allocs.
     147             :  *
     148             :  * slab->frozen              The slab is frozen and exempt from list processing.
     149             :  *                      This means that the slab is dedicated to a purpose
     150             :  *                      such as satisfying allocations for a specific
     151             :  *                      processor. Objects may be freed in the slab while
     152             :  *                      it is frozen but slab_free will then skip the usual
     153             :  *                      list operations. It is up to the processor holding
     154             :  *                      the slab to integrate the slab into the slab lists
     155             :  *                      when the slab is no longer needed.
     156             :  *
     157             :  *                      One use of this flag is to mark slabs that are
     158             :  *                      used for allocations. Then such a slab becomes a cpu
     159             :  *                      slab. The cpu slab may be equipped with an additional
     160             :  *                      freelist that allows lockless access to
     161             :  *                      free objects in addition to the regular freelist
     162             :  *                      that requires the slab lock.
     163             :  *
     164             :  * SLAB_DEBUG_FLAGS     Slab requires special handling due to debug
     165             :  *                      options set. This moves slab handling out of
     166             :  *                      the fast path and disables lockless freelists.
     167             :  */
     168             : 
     169             : /*
     170             :  * We could simply use migrate_disable()/enable() but as long as it's a
     171             :  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
     172             :  */
     173             : #ifndef CONFIG_PREEMPT_RT
     174             : #define slub_get_cpu_ptr(var)           get_cpu_ptr(var)
     175             : #define slub_put_cpu_ptr(var)           put_cpu_ptr(var)
     176             : #define USE_LOCKLESS_FAST_PATH()        (true)
     177             : #else
     178             : #define slub_get_cpu_ptr(var)           \
     179             : ({                                      \
     180             :         migrate_disable();              \
     181             :         this_cpu_ptr(var);              \
     182             : })
     183             : #define slub_put_cpu_ptr(var)           \
     184             : do {                                    \
     185             :         (void)(var);                    \
     186             :         migrate_enable();               \
     187             : } while (0)
     188             : #define USE_LOCKLESS_FAST_PATH()        (false)
     189             : #endif
     190             : 
     191             : #ifndef CONFIG_SLUB_TINY
     192             : #define __fastpath_inline __always_inline
     193             : #else
     194             : #define __fastpath_inline
     195             : #endif
     196             : 
     197             : #ifdef CONFIG_SLUB_DEBUG
     198             : #ifdef CONFIG_SLUB_DEBUG_ON
     199             : DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
     200             : #else
     201             : DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
     202             : #endif
     203             : #endif          /* CONFIG_SLUB_DEBUG */
     204             : 
     205             : /* Structure holding parameters for get_partial() call chain */
     206             : struct partial_context {
     207             :         struct slab **slab;
     208             :         gfp_t flags;
     209             :         unsigned int orig_size;
     210             : };
     211             : 
     212             : static inline bool kmem_cache_debug(struct kmem_cache *s)
     213             : {
     214       88772 :         return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
     215             : }
     216             : 
     217             : static inline bool slub_debug_orig_size(struct kmem_cache *s)
     218             : {
     219         342 :         return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
     220           0 :                         (s->flags & SLAB_KMALLOC));
     221             : }
     222             : 
     223           0 : void *fixup_red_left(struct kmem_cache *s, void *p)
     224             : {
     225        4388 :         if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
     226           0 :                 p += s->red_left_pad;
     227             : 
     228           0 :         return p;
     229             : }
     230             : 
     231             : static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
     232             : {
     233             : #ifdef CONFIG_SLUB_CPU_PARTIAL
     234             :         return !kmem_cache_debug(s);
     235             : #else
     236             :         return false;
     237             : #endif
     238             : }
     239             : 
     240             : /*
     241             :  * Issues still to be resolved:
     242             :  *
     243             :  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
     244             :  *
     245             :  * - Variable sizing of the per node arrays
     246             :  */
     247             : 
     248             : /* Enable to log cmpxchg failures */
     249             : #undef SLUB_DEBUG_CMPXCHG
     250             : 
     251             : #ifndef CONFIG_SLUB_TINY
     252             : /*
     253             :  * Minimum number of partial slabs. These will be left on the partial
     254             :  * lists even if they are empty. kmem_cache_shrink may reclaim them.
     255             :  */
     256             : #define MIN_PARTIAL 5
     257             : 
     258             : /*
     259             :  * Maximum number of desirable partial slabs.
     260             :  * The existence of more partial slabs makes kmem_cache_shrink
     261             :  * sort the partial list by the number of objects in use.
     262             :  */
     263             : #define MAX_PARTIAL 10
     264             : #else
     265             : #define MIN_PARTIAL 0
     266             : #define MAX_PARTIAL 0
     267             : #endif
     268             : 
     269             : #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
     270             :                                 SLAB_POISON | SLAB_STORE_USER)
     271             : 
     272             : /*
     273             :  * These debug flags cannot use CMPXCHG because there might be consistency
     274             :  * issues when checking or reading debug information
     275             :  */
     276             : #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
     277             :                                 SLAB_TRACE)
     278             : 
     279             : 
     280             : /*
     281             :  * Debugging flags that require metadata to be stored in the slab.  These get
     282             :  * disabled when slub_debug=O is used and a cache's min order increases with
     283             :  * metadata.
     284             :  */
     285             : #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
     286             : 
     287             : #define OO_SHIFT        16
     288             : #define OO_MASK         ((1 << OO_SHIFT) - 1)
     289             : #define MAX_OBJS_PER_PAGE       32767 /* since slab.objects is u15 */
     290             : 
     291             : /* Internal SLUB flags */
     292             : /* Poison object */
     293             : #define __OBJECT_POISON         ((slab_flags_t __force)0x80000000U)
     294             : /* Use cmpxchg_double */
     295             : #define __CMPXCHG_DOUBLE        ((slab_flags_t __force)0x40000000U)
     296             : 
     297             : /*
     298             :  * Tracking user of a slab.
     299             :  */
     300             : #define TRACK_ADDRS_COUNT 16
     301             : struct track {
     302             :         unsigned long addr;     /* Called from address */
     303             : #ifdef CONFIG_STACKDEPOT
     304             :         depot_stack_handle_t handle;
     305             : #endif
     306             :         int cpu;                /* Was running on cpu */
     307             :         int pid;                /* Pid context */
     308             :         unsigned long when;     /* When did the operation occur */
     309             : };
     310             : 
     311             : enum track_item { TRACK_ALLOC, TRACK_FREE };
     312             : 
     313             : #ifdef SLAB_SUPPORTS_SYSFS
     314             : static int sysfs_slab_add(struct kmem_cache *);
     315             : static int sysfs_slab_alias(struct kmem_cache *, const char *);
     316             : #else
     317             : static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
     318             : static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
     319             :                                                         { return 0; }
     320             : #endif
     321             : 
     322             : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
     323             : static void debugfs_slab_add(struct kmem_cache *);
     324             : #else
     325             : static inline void debugfs_slab_add(struct kmem_cache *s) { }
     326             : #endif
     327             : 
     328             : static inline void stat(const struct kmem_cache *s, enum stat_item si)
     329             : {
     330             : #ifdef CONFIG_SLUB_STATS
     331             :         /*
     332             :          * The rmw is racy on a preemptible kernel but this is acceptable, so
     333             :          * avoid this_cpu_add()'s irq-disable overhead.
     334             :          */
     335             :         raw_cpu_inc(s->cpu_slab->stat[si]);
     336             : #endif
     337             : }
     338             : 
     339             : /*
     340             :  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
     341             :  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
     342             :  * differ during memory hotplug/hotremove operations.
     343             :  * Protected by slab_mutex.
     344             :  */
     345             : static nodemask_t slab_nodes;
     346             : 
     347             : #ifndef CONFIG_SLUB_TINY
     348             : /*
     349             :  * Workqueue used for flush_cpu_slab().
     350             :  */
     351             : static struct workqueue_struct *flushwq;
     352             : #endif
     353             : 
     354             : /********************************************************************
     355             :  *                      Core slab cache functions
     356             :  *******************************************************************/
     357             : 
     358             : /*
     359             :  * Returns freelist pointer (ptr). With hardening, this is obfuscated
     360             :  * with an XOR of the address where the pointer is held and a per-cache
     361             :  * random number.
     362             :  */
     363             : static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
     364             :                                  unsigned long ptr_addr)
     365             : {
     366             : #ifdef CONFIG_SLAB_FREELIST_HARDENED
     367             :         /*
     368             :          * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
     369             :          * Normally, this doesn't cause any issues, as both set_freepointer()
     370             :          * and get_freepointer() are called with a pointer with the same tag.
     371             :          * However, there are some issues with CONFIG_SLUB_DEBUG code. For
     372             :          * example, when __free_slub() iterates over objects in a cache, it
     373             :          * passes untagged pointers to check_object(). check_object() in turns
     374             :          * calls get_freepointer() with an untagged pointer, which causes the
     375             :          * freepointer to be restored incorrectly.
     376             :          */
     377             :         return (void *)((unsigned long)ptr ^ s->random ^
     378             :                         swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
     379             : #else
     380             :         return ptr;
     381             : #endif
     382             : }
     383             : 
     384             : /* Returns the freelist pointer recorded at location ptr_addr. */
     385             : static inline void *freelist_dereference(const struct kmem_cache *s,
     386             :                                          void *ptr_addr)
     387             : {
     388      110790 :         return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
     389             :                             (unsigned long)ptr_addr);
     390             : }
     391             : 
     392             : static inline void *get_freepointer(struct kmem_cache *s, void *object)
     393             : {
     394      110790 :         object = kasan_reset_tag(object);
     395      221580 :         return freelist_dereference(s, object + s->offset);
     396             : }
     397             : 
     398             : #ifndef CONFIG_SLUB_TINY
     399             : static void prefetch_freepointer(const struct kmem_cache *s, void *object)
     400             : {
     401       59373 :         prefetchw(object + s->offset);
     402             : }
     403             : #endif
     404             : 
     405             : /*
     406             :  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
     407             :  * pointer value in the case the current thread loses the race for the next
     408             :  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
     409             :  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
     410             :  * KMSAN will still check all arguments of cmpxchg because of imperfect
     411             :  * handling of inline assembly.
     412             :  * To work around this problem, we apply __no_kmsan_checks to ensure that
     413             :  * get_freepointer_safe() returns initialized memory.
     414             :  */
     415             : __no_kmsan_checks
     416             : static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
     417             : {
     418             :         unsigned long freepointer_addr;
     419             :         void *p;
     420             : 
     421             :         if (!debug_pagealloc_enabled_static())
     422      118746 :                 return get_freepointer(s, object);
     423             : 
     424             :         object = kasan_reset_tag(object);
     425             :         freepointer_addr = (unsigned long)object + s->offset;
     426             :         copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
     427             :         return freelist_ptr(s, p, freepointer_addr);
     428             : }
     429             : 
     430             : static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
     431             : {
     432      149485 :         unsigned long freeptr_addr = (unsigned long)object + s->offset;
     433             : 
     434             : #ifdef CONFIG_SLAB_FREELIST_HARDENED
     435             :         BUG_ON(object == fp); /* naive detection of double free or corruption */
     436             : #endif
     437             : 
     438      149485 :         freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
     439      149485 :         *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
     440             : }
     441             : 
     442             : /* Loop over all objects in a slab */
     443             : #define for_each_object(__p, __s, __addr, __objects) \
     444             :         for (__p = fixup_red_left(__s, __addr); \
     445             :                 __p < (__addr) + (__objects) * (__s)->size; \
     446             :                 __p += (__s)->size)
     447             : 
     448             : static inline unsigned int order_objects(unsigned int order, unsigned int size)
     449             : {
     450         213 :         return ((unsigned int)PAGE_SIZE << order) / size;
     451             : }
     452             : 
     453             : static inline struct kmem_cache_order_objects oo_make(unsigned int order,
     454             :                 unsigned int size)
     455             : {
     456         106 :         struct kmem_cache_order_objects x = {
     457         212 :                 (order << OO_SHIFT) + order_objects(order, size)
     458             :         };
     459             : 
     460             :         return x;
     461             : }
     462             : 
     463             : static inline unsigned int oo_order(struct kmem_cache_order_objects x)
     464             : {
     465        6543 :         return x.x >> OO_SHIFT;
     466             : }
     467             : 
     468             : static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
     469             : {
     470          53 :         return x.x & OO_MASK;
     471             : }
     472             : 
     473             : #ifdef CONFIG_SLUB_CPU_PARTIAL
     474             : static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
     475             : {
     476             :         unsigned int nr_slabs;
     477             : 
     478             :         s->cpu_partial = nr_objects;
     479             : 
     480             :         /*
     481             :          * We take the number of objects but actually limit the number of
     482             :          * slabs on the per cpu partial list, in order to limit excessive
     483             :          * growth of the list. For simplicity we assume that the slabs will
     484             :          * be half-full.
     485             :          */
     486             :         nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
     487             :         s->cpu_partial_slabs = nr_slabs;
     488             : }
     489             : #else
     490             : static inline void
     491             : slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
     492             : {
     493             : }
     494             : #endif /* CONFIG_SLUB_CPU_PARTIAL */
     495             : 
     496             : /*
     497             :  * Per slab locking using the pagelock
     498             :  */
     499             : static __always_inline void slab_lock(struct slab *slab)
     500             : {
     501       42165 :         struct page *page = slab_page(slab);
     502             : 
     503             :         VM_BUG_ON_PAGE(PageTail(page), page);
     504       42165 :         bit_spin_lock(PG_locked, &page->flags);
     505             : }
     506             : 
     507             : static __always_inline void slab_unlock(struct slab *slab)
     508             : {
     509       42165 :         struct page *page = slab_page(slab);
     510             : 
     511             :         VM_BUG_ON_PAGE(PageTail(page), page);
     512       42165 :         __bit_spin_unlock(PG_locked, &page->flags);
     513             : }
     514             : 
     515             : /*
     516             :  * Interrupts must be disabled (for the fallback code to work right), typically
     517             :  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
     518             :  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
     519             :  * allocation/ free operation in hardirq context. Therefore nothing can
     520             :  * interrupt the operation.
     521             :  */
     522             : static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
     523             :                 void *freelist_old, unsigned long counters_old,
     524             :                 void *freelist_new, unsigned long counters_new,
     525             :                 const char *n)
     526             : {
     527             :         if (USE_LOCKLESS_FAST_PATH())
     528             :                 lockdep_assert_irqs_disabled();
     529             : #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
     530             :     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
     531             :         if (s->flags & __CMPXCHG_DOUBLE) {
     532             :                 if (cmpxchg_double(&slab->freelist, &slab->counters,
     533             :                                    freelist_old, counters_old,
     534             :                                    freelist_new, counters_new))
     535             :                         return true;
     536             :         } else
     537             : #endif
     538             :         {
     539        2327 :                 slab_lock(slab);
     540        4654 :                 if (slab->freelist == freelist_old &&
     541        2327 :                                         slab->counters == counters_old) {
     542        2327 :                         slab->freelist = freelist_new;
     543        2327 :                         slab->counters = counters_new;
     544        2327 :                         slab_unlock(slab);
     545             :                         return true;
     546             :                 }
     547           0 :                 slab_unlock(slab);
     548             :         }
     549             : 
     550             :         cpu_relax();
     551           0 :         stat(s, CMPXCHG_DOUBLE_FAIL);
     552             : 
     553             : #ifdef SLUB_DEBUG_CMPXCHG
     554             :         pr_info("%s %s: cmpxchg double redo ", n, s->name);
     555             : #endif
     556             : 
     557             :         return false;
     558             : }
     559             : 
     560       39838 : static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
     561             :                 void *freelist_old, unsigned long counters_old,
     562             :                 void *freelist_new, unsigned long counters_new,
     563             :                 const char *n)
     564             : {
     565             : #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
     566             :     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
     567             :         if (s->flags & __CMPXCHG_DOUBLE) {
     568             :                 if (cmpxchg_double(&slab->freelist, &slab->counters,
     569             :                                    freelist_old, counters_old,
     570             :                                    freelist_new, counters_new))
     571             :                         return true;
     572             :         } else
     573             : #endif
     574             :         {
     575             :                 unsigned long flags;
     576             : 
     577       39838 :                 local_irq_save(flags);
     578       39838 :                 slab_lock(slab);
     579       79676 :                 if (slab->freelist == freelist_old &&
     580       39838 :                                         slab->counters == counters_old) {
     581       39838 :                         slab->freelist = freelist_new;
     582       39838 :                         slab->counters = counters_new;
     583       39838 :                         slab_unlock(slab);
     584       79676 :                         local_irq_restore(flags);
     585             :                         return true;
     586             :                 }
     587           0 :                 slab_unlock(slab);
     588           0 :                 local_irq_restore(flags);
     589             :         }
     590             : 
     591             :         cpu_relax();
     592           0 :         stat(s, CMPXCHG_DOUBLE_FAIL);
     593             : 
     594             : #ifdef SLUB_DEBUG_CMPXCHG
     595             :         pr_info("%s %s: cmpxchg double redo ", n, s->name);
     596             : #endif
     597             : 
     598             :         return false;
     599             : }
     600             : 
     601             : #ifdef CONFIG_SLUB_DEBUG
     602             : static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
     603             : static DEFINE_SPINLOCK(object_map_lock);
     604             : 
     605           0 : static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
     606             :                        struct slab *slab)
     607             : {
     608           0 :         void *addr = slab_address(slab);
     609             :         void *p;
     610             : 
     611           0 :         bitmap_zero(obj_map, slab->objects);
     612             : 
     613           0 :         for (p = slab->freelist; p; p = get_freepointer(s, p))
     614           0 :                 set_bit(__obj_to_index(s, addr, p), obj_map);
     615           0 : }
     616             : 
     617             : #if IS_ENABLED(CONFIG_KUNIT)
     618           0 : static bool slab_add_kunit_errors(void)
     619             : {
     620             :         struct kunit_resource *resource;
     621             : 
     622           0 :         if (!kunit_get_current_test())
     623             :                 return false;
     624             : 
     625           0 :         resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
     626           0 :         if (!resource)
     627             :                 return false;
     628             : 
     629           0 :         (*(int *)resource->data)++;
     630           0 :         kunit_put_resource(resource);
     631           0 :         return true;
     632             : }
     633             : #else
     634             : static inline bool slab_add_kunit_errors(void) { return false; }
     635             : #endif
     636             : 
     637             : static inline unsigned int size_from_object(struct kmem_cache *s)
     638             : {
     639           0 :         if (s->flags & SLAB_RED_ZONE)
     640           0 :                 return s->size - s->red_left_pad;
     641             : 
     642             :         return s->size;
     643             : }
     644             : 
     645             : static inline void *restore_red_left(struct kmem_cache *s, void *p)
     646             : {
     647           0 :         if (s->flags & SLAB_RED_ZONE)
     648           0 :                 p -= s->red_left_pad;
     649             : 
     650             :         return p;
     651             : }
     652             : 
     653             : /*
     654             :  * Debug settings:
     655             :  */
     656             : #if defined(CONFIG_SLUB_DEBUG_ON)
     657             : static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
     658             : #else
     659             : static slab_flags_t slub_debug;
     660             : #endif
     661             : 
     662             : static char *slub_debug_string;
     663             : static int disable_higher_order_debug;
     664             : 
     665             : /*
     666             :  * slub is about to manipulate internal object metadata.  This memory lies
     667             :  * outside the range of the allocated object, so accessing it would normally
     668             :  * be reported by kasan as a bounds error.  metadata_access_enable() is used
     669             :  * to tell kasan that these accesses are OK.
     670             :  */
     671             : static inline void metadata_access_enable(void)
     672             : {
     673             :         kasan_disable_current();
     674             : }
     675             : 
     676             : static inline void metadata_access_disable(void)
     677             : {
     678             :         kasan_enable_current();
     679             : }
     680             : 
     681             : /*
     682             :  * Object debugging
     683             :  */
     684             : 
     685             : /* Verify that a pointer has an address that is valid within a slab page */
     686           0 : static inline int check_valid_pointer(struct kmem_cache *s,
     687             :                                 struct slab *slab, void *object)
     688             : {
     689             :         void *base;
     690             : 
     691           0 :         if (!object)
     692             :                 return 1;
     693             : 
     694           0 :         base = slab_address(slab);
     695           0 :         object = kasan_reset_tag(object);
     696           0 :         object = restore_red_left(s, object);
     697           0 :         if (object < base || object >= base + slab->objects * s->size ||
     698           0 :                 (object - base) % s->size) {
     699             :                 return 0;
     700             :         }
     701             : 
     702           0 :         return 1;
     703             : }
     704             : 
     705             : static void print_section(char *level, char *text, u8 *addr,
     706             :                           unsigned int length)
     707             : {
     708             :         metadata_access_enable();
     709           0 :         print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
     710           0 :                         16, 1, kasan_reset_tag((void *)addr), length, 1);
     711             :         metadata_access_disable();
     712             : }
     713             : 
     714             : /*
     715             :  * See comment in calculate_sizes().
     716             :  */
     717             : static inline bool freeptr_outside_object(struct kmem_cache *s)
     718             : {
     719             :         return s->offset >= s->inuse;
     720             : }
     721             : 
     722             : /*
     723             :  * Return offset of the end of info block which is inuse + free pointer if
     724             :  * not overlapping with object.
     725             :  */
     726             : static inline unsigned int get_info_end(struct kmem_cache *s)
     727             : {
     728           0 :         if (freeptr_outside_object(s))
     729           0 :                 return s->inuse + sizeof(void *);
     730             :         else
     731             :                 return s->inuse;
     732             : }
     733             : 
     734             : static struct track *get_track(struct kmem_cache *s, void *object,
     735             :         enum track_item alloc)
     736             : {
     737             :         struct track *p;
     738             : 
     739           0 :         p = object + get_info_end(s);
     740             : 
     741           0 :         return kasan_reset_tag(p + alloc);
     742             : }
     743             : 
     744             : #ifdef CONFIG_STACKDEPOT
     745           0 : static noinline depot_stack_handle_t set_track_prepare(void)
     746             : {
     747             :         depot_stack_handle_t handle;
     748             :         unsigned long entries[TRACK_ADDRS_COUNT];
     749             :         unsigned int nr_entries;
     750             : 
     751           0 :         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
     752           0 :         handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
     753             : 
     754           0 :         return handle;
     755             : }
     756             : #else
     757             : static inline depot_stack_handle_t set_track_prepare(void)
     758             : {
     759             :         return 0;
     760             : }
     761             : #endif
     762             : 
     763             : static void set_track_update(struct kmem_cache *s, void *object,
     764             :                              enum track_item alloc, unsigned long addr,
     765             :                              depot_stack_handle_t handle)
     766             : {
     767           0 :         struct track *p = get_track(s, object, alloc);
     768             : 
     769             : #ifdef CONFIG_STACKDEPOT
     770           0 :         p->handle = handle;
     771             : #endif
     772           0 :         p->addr = addr;
     773           0 :         p->cpu = smp_processor_id();
     774           0 :         p->pid = current->pid;
     775           0 :         p->when = jiffies;
     776             : }
     777             : 
     778             : static __always_inline void set_track(struct kmem_cache *s, void *object,
     779             :                                       enum track_item alloc, unsigned long addr)
     780             : {
     781           0 :         depot_stack_handle_t handle = set_track_prepare();
     782             : 
     783             :         set_track_update(s, object, alloc, addr, handle);
     784             : }
     785             : 
     786           1 : static void init_tracking(struct kmem_cache *s, void *object)
     787             : {
     788             :         struct track *p;
     789             : 
     790           1 :         if (!(s->flags & SLAB_STORE_USER))
     791             :                 return;
     792             : 
     793           0 :         p = get_track(s, object, TRACK_ALLOC);
     794           0 :         memset(p, 0, 2*sizeof(struct track));
     795             : }
     796             : 
     797           0 : static void print_track(const char *s, struct track *t, unsigned long pr_time)
     798             : {
     799             :         depot_stack_handle_t handle __maybe_unused;
     800             : 
     801           0 :         if (!t->addr)
     802             :                 return;
     803             : 
     804           0 :         pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
     805             :                s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
     806             : #ifdef CONFIG_STACKDEPOT
     807           0 :         handle = READ_ONCE(t->handle);
     808           0 :         if (handle)
     809           0 :                 stack_depot_print(handle);
     810             :         else
     811           0 :                 pr_err("object allocation/free stack trace missing\n");
     812             : #endif
     813             : }
     814             : 
     815           0 : void print_tracking(struct kmem_cache *s, void *object)
     816             : {
     817           0 :         unsigned long pr_time = jiffies;
     818           0 :         if (!(s->flags & SLAB_STORE_USER))
     819             :                 return;
     820             : 
     821           0 :         print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
     822           0 :         print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
     823             : }
     824             : 
     825             : static void print_slab_info(const struct slab *slab)
     826             : {
     827           0 :         struct folio *folio = (struct folio *)slab_folio(slab);
     828             : 
     829           0 :         pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
     830             :                slab, slab->objects, slab->inuse, slab->freelist,
     831             :                folio_flags(folio, 0));
     832             : }
     833             : 
     834             : /*
     835             :  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
     836             :  * family will round up the real request size to these fixed ones, so
     837             :  * there could be an extra area than what is requested. Save the original
     838             :  * request size in the meta data area, for better debug and sanity check.
     839             :  */
     840         118 : static inline void set_orig_size(struct kmem_cache *s,
     841             :                                 void *object, unsigned int orig_size)
     842             : {
     843         118 :         void *p = kasan_reset_tag(object);
     844             : 
     845         118 :         if (!slub_debug_orig_size(s))
     846             :                 return;
     847             : 
     848             : #ifdef CONFIG_KASAN_GENERIC
     849             :         /*
     850             :          * KASAN could save its free meta data in object's data area at
     851             :          * offset 0, if the size is larger than 'orig_size', it will
     852             :          * overlap the data redzone in [orig_size+1, object_size], and
     853             :          * the check should be skipped.
     854             :          */
     855             :         if (kasan_metadata_size(s, true) > orig_size)
     856             :                 orig_size = s->object_size;
     857             : #endif
     858             : 
     859           0 :         p += get_info_end(s);
     860           0 :         p += sizeof(struct track) * 2;
     861             : 
     862           0 :         *(unsigned int *)p = orig_size;
     863             : }
     864             : 
     865           0 : static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
     866             : {
     867           0 :         void *p = kasan_reset_tag(object);
     868             : 
     869           0 :         if (!slub_debug_orig_size(s))
     870           0 :                 return s->object_size;
     871             : 
     872           0 :         p += get_info_end(s);
     873           0 :         p += sizeof(struct track) * 2;
     874             : 
     875           0 :         return *(unsigned int *)p;
     876             : }
     877             : 
     878         118 : void skip_orig_size_check(struct kmem_cache *s, const void *object)
     879             : {
     880         118 :         set_orig_size(s, (void *)object, s->object_size);
     881         118 : }
     882             : 
     883           0 : static void slab_bug(struct kmem_cache *s, char *fmt, ...)
     884             : {
     885             :         struct va_format vaf;
     886             :         va_list args;
     887             : 
     888           0 :         va_start(args, fmt);
     889           0 :         vaf.fmt = fmt;
     890           0 :         vaf.va = &args;
     891           0 :         pr_err("=============================================================================\n");
     892           0 :         pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
     893           0 :         pr_err("-----------------------------------------------------------------------------\n\n");
     894           0 :         va_end(args);
     895           0 : }
     896             : 
     897             : __printf(2, 3)
     898           0 : static void slab_fix(struct kmem_cache *s, char *fmt, ...)
     899             : {
     900             :         struct va_format vaf;
     901             :         va_list args;
     902             : 
     903           0 :         if (slab_add_kunit_errors())
     904           0 :                 return;
     905             : 
     906           0 :         va_start(args, fmt);
     907           0 :         vaf.fmt = fmt;
     908           0 :         vaf.va = &args;
     909           0 :         pr_err("FIX %s: %pV\n", s->name, &vaf);
     910           0 :         va_end(args);
     911             : }
     912             : 
     913           0 : static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
     914             : {
     915             :         unsigned int off;       /* Offset of last byte */
     916           0 :         u8 *addr = slab_address(slab);
     917             : 
     918           0 :         print_tracking(s, p);
     919             : 
     920           0 :         print_slab_info(slab);
     921             : 
     922           0 :         pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
     923             :                p, p - addr, get_freepointer(s, p));
     924             : 
     925           0 :         if (s->flags & SLAB_RED_ZONE)
     926           0 :                 print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
     927             :                               s->red_left_pad);
     928           0 :         else if (p > addr + 16)
     929           0 :                 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
     930             : 
     931           0 :         print_section(KERN_ERR,         "Object   ", p,
     932           0 :                       min_t(unsigned int, s->object_size, PAGE_SIZE));
     933           0 :         if (s->flags & SLAB_RED_ZONE)
     934           0 :                 print_section(KERN_ERR, "Redzone  ", p + s->object_size,
     935           0 :                         s->inuse - s->object_size);
     936             : 
     937           0 :         off = get_info_end(s);
     938             : 
     939           0 :         if (s->flags & SLAB_STORE_USER)
     940           0 :                 off += 2 * sizeof(struct track);
     941             : 
     942           0 :         if (slub_debug_orig_size(s))
     943           0 :                 off += sizeof(unsigned int);
     944             : 
     945           0 :         off += kasan_metadata_size(s, false);
     946             : 
     947           0 :         if (off != size_from_object(s))
     948             :                 /* Beginning of the filler is the free pointer */
     949           0 :                 print_section(KERN_ERR, "Padding  ", p + off,
     950           0 :                               size_from_object(s) - off);
     951             : 
     952           0 :         dump_stack();
     953           0 : }
     954             : 
     955           0 : static void object_err(struct kmem_cache *s, struct slab *slab,
     956             :                         u8 *object, char *reason)
     957             : {
     958           0 :         if (slab_add_kunit_errors())
     959             :                 return;
     960             : 
     961           0 :         slab_bug(s, "%s", reason);
     962           0 :         print_trailer(s, slab, object);
     963           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     964             : }
     965             : 
     966          82 : static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
     967             :                                void **freelist, void *nextfree)
     968             : {
     969          82 :         if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
     970           0 :             !check_valid_pointer(s, slab, nextfree) && freelist) {
     971           0 :                 object_err(s, slab, *freelist, "Freechain corrupt");
     972           0 :                 *freelist = NULL;
     973           0 :                 slab_fix(s, "Isolate corrupted freechain");
     974           0 :                 return true;
     975             :         }
     976             : 
     977             :         return false;
     978             : }
     979             : 
     980           0 : static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
     981             :                         const char *fmt, ...)
     982             : {
     983             :         va_list args;
     984             :         char buf[100];
     985             : 
     986           0 :         if (slab_add_kunit_errors())
     987           0 :                 return;
     988             : 
     989           0 :         va_start(args, fmt);
     990           0 :         vsnprintf(buf, sizeof(buf), fmt, args);
     991           0 :         va_end(args);
     992           0 :         slab_bug(s, "%s", buf);
     993           0 :         print_slab_info(slab);
     994           0 :         dump_stack();
     995           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     996             : }
     997             : 
     998           1 : static void init_object(struct kmem_cache *s, void *object, u8 val)
     999             : {
    1000           1 :         u8 *p = kasan_reset_tag(object);
    1001           1 :         unsigned int poison_size = s->object_size;
    1002             : 
    1003           1 :         if (s->flags & SLAB_RED_ZONE) {
    1004           0 :                 memset(p - s->red_left_pad, val, s->red_left_pad);
    1005             : 
    1006           0 :                 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
    1007             :                         /*
    1008             :                          * Redzone the extra allocated space by kmalloc than
    1009             :                          * requested, and the poison size will be limited to
    1010             :                          * the original request size accordingly.
    1011             :                          */
    1012           0 :                         poison_size = get_orig_size(s, object);
    1013             :                 }
    1014             :         }
    1015             : 
    1016           1 :         if (s->flags & __OBJECT_POISON) {
    1017           0 :                 memset(p, POISON_FREE, poison_size - 1);
    1018           0 :                 p[poison_size - 1] = POISON_END;
    1019             :         }
    1020             : 
    1021           1 :         if (s->flags & SLAB_RED_ZONE)
    1022           0 :                 memset(p + poison_size, val, s->inuse - poison_size);
    1023           1 : }
    1024             : 
    1025           0 : static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
    1026             :                                                 void *from, void *to)
    1027             : {
    1028           0 :         slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
    1029           0 :         memset(from, data, to - from);
    1030           0 : }
    1031             : 
    1032           0 : static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
    1033             :                         u8 *object, char *what,
    1034             :                         u8 *start, unsigned int value, unsigned int bytes)
    1035             : {
    1036             :         u8 *fault;
    1037             :         u8 *end;
    1038           0 :         u8 *addr = slab_address(slab);
    1039             : 
    1040             :         metadata_access_enable();
    1041           0 :         fault = memchr_inv(kasan_reset_tag(start), value, bytes);
    1042             :         metadata_access_disable();
    1043           0 :         if (!fault)
    1044             :                 return 1;
    1045             : 
    1046           0 :         end = start + bytes;
    1047           0 :         while (end > fault && end[-1] == value)
    1048           0 :                 end--;
    1049             : 
    1050           0 :         if (slab_add_kunit_errors())
    1051             :                 goto skip_bug_print;
    1052             : 
    1053           0 :         slab_bug(s, "%s overwritten", what);
    1054           0 :         pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
    1055             :                                         fault, end - 1, fault - addr,
    1056             :                                         fault[0], value);
    1057           0 :         print_trailer(s, slab, object);
    1058           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    1059             : 
    1060             : skip_bug_print:
    1061           0 :         restore_bytes(s, what, value, fault, end);
    1062           0 :         return 0;
    1063             : }
    1064             : 
    1065             : /*
    1066             :  * Object layout:
    1067             :  *
    1068             :  * object address
    1069             :  *      Bytes of the object to be managed.
    1070             :  *      If the freepointer may overlay the object then the free
    1071             :  *      pointer is at the middle of the object.
    1072             :  *
    1073             :  *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
    1074             :  *      0xa5 (POISON_END)
    1075             :  *
    1076             :  * object + s->object_size
    1077             :  *      Padding to reach word boundary. This is also used for Redzoning.
    1078             :  *      Padding is extended by another word if Redzoning is enabled and
    1079             :  *      object_size == inuse.
    1080             :  *
    1081             :  *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
    1082             :  *      0xcc (RED_ACTIVE) for objects in use.
    1083             :  *
    1084             :  * object + s->inuse
    1085             :  *      Meta data starts here.
    1086             :  *
    1087             :  *      A. Free pointer (if we cannot overwrite object on free)
    1088             :  *      B. Tracking data for SLAB_STORE_USER
    1089             :  *      C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
    1090             :  *      D. Padding to reach required alignment boundary or at minimum
    1091             :  *              one word if debugging is on to be able to detect writes
    1092             :  *              before the word boundary.
    1093             :  *
    1094             :  *      Padding is done using 0x5a (POISON_INUSE)
    1095             :  *
    1096             :  * object + s->size
    1097             :  *      Nothing is used beyond s->size.
    1098             :  *
    1099             :  * If slabcaches are merged then the object_size and inuse boundaries are mostly
    1100             :  * ignored. And therefore no slab options that rely on these boundaries
    1101             :  * may be used with merged slabcaches.
    1102             :  */
    1103             : 
    1104           0 : static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
    1105             : {
    1106           0 :         unsigned long off = get_info_end(s);    /* The end of info */
    1107             : 
    1108           0 :         if (s->flags & SLAB_STORE_USER) {
    1109             :                 /* We also have user information there */
    1110           0 :                 off += 2 * sizeof(struct track);
    1111             : 
    1112           0 :                 if (s->flags & SLAB_KMALLOC)
    1113           0 :                         off += sizeof(unsigned int);
    1114             :         }
    1115             : 
    1116           0 :         off += kasan_metadata_size(s, false);
    1117             : 
    1118           0 :         if (size_from_object(s) == off)
    1119             :                 return 1;
    1120             : 
    1121           0 :         return check_bytes_and_report(s, slab, p, "Object padding",
    1122           0 :                         p + off, POISON_INUSE, size_from_object(s) - off);
    1123             : }
    1124             : 
    1125             : /* Check the pad bytes at the end of a slab page */
    1126           0 : static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
    1127             : {
    1128             :         u8 *start;
    1129             :         u8 *fault;
    1130             :         u8 *end;
    1131             :         u8 *pad;
    1132             :         int length;
    1133             :         int remainder;
    1134             : 
    1135           0 :         if (!(s->flags & SLAB_POISON))
    1136             :                 return;
    1137             : 
    1138           0 :         start = slab_address(slab);
    1139           0 :         length = slab_size(slab);
    1140           0 :         end = start + length;
    1141           0 :         remainder = length % s->size;
    1142           0 :         if (!remainder)
    1143             :                 return;
    1144             : 
    1145           0 :         pad = end - remainder;
    1146             :         metadata_access_enable();
    1147           0 :         fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
    1148             :         metadata_access_disable();
    1149           0 :         if (!fault)
    1150             :                 return;
    1151           0 :         while (end > fault && end[-1] == POISON_INUSE)
    1152           0 :                 end--;
    1153             : 
    1154           0 :         slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
    1155             :                         fault, end - 1, fault - start);
    1156           0 :         print_section(KERN_ERR, "Padding ", pad, remainder);
    1157             : 
    1158           0 :         restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
    1159             : }
    1160             : 
    1161           0 : static int check_object(struct kmem_cache *s, struct slab *slab,
    1162             :                                         void *object, u8 val)
    1163             : {
    1164           0 :         u8 *p = object;
    1165           0 :         u8 *endobject = object + s->object_size;
    1166             :         unsigned int orig_size;
    1167             : 
    1168           0 :         if (s->flags & SLAB_RED_ZONE) {
    1169           0 :                 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
    1170           0 :                         object - s->red_left_pad, val, s->red_left_pad))
    1171             :                         return 0;
    1172             : 
    1173           0 :                 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
    1174           0 :                         endobject, val, s->inuse - s->object_size))
    1175             :                         return 0;
    1176             : 
    1177           0 :                 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
    1178           0 :                         orig_size = get_orig_size(s, object);
    1179             : 
    1180           0 :                         if (s->object_size > orig_size  &&
    1181           0 :                                 !check_bytes_and_report(s, slab, object,
    1182             :                                         "kmalloc Redzone", p + orig_size,
    1183             :                                         val, s->object_size - orig_size)) {
    1184             :                                 return 0;
    1185             :                         }
    1186             :                 }
    1187             :         } else {
    1188           0 :                 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
    1189           0 :                         check_bytes_and_report(s, slab, p, "Alignment padding",
    1190             :                                 endobject, POISON_INUSE,
    1191             :                                 s->inuse - s->object_size);
    1192             :                 }
    1193             :         }
    1194             : 
    1195           0 :         if (s->flags & SLAB_POISON) {
    1196           0 :                 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
    1197           0 :                         (!check_bytes_and_report(s, slab, p, "Poison", p,
    1198           0 :                                         POISON_FREE, s->object_size - 1) ||
    1199           0 :                          !check_bytes_and_report(s, slab, p, "End Poison",
    1200           0 :                                 p + s->object_size - 1, POISON_END, 1)))
    1201             :                         return 0;
    1202             :                 /*
    1203             :                  * check_pad_bytes cleans up on its own.
    1204             :                  */
    1205           0 :                 check_pad_bytes(s, slab, p);
    1206             :         }
    1207             : 
    1208           0 :         if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
    1209             :                 /*
    1210             :                  * Object and freepointer overlap. Cannot check
    1211             :                  * freepointer while object is allocated.
    1212             :                  */
    1213             :                 return 1;
    1214             : 
    1215             :         /* Check free pointer validity */
    1216           0 :         if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
    1217           0 :                 object_err(s, slab, p, "Freepointer corrupt");
    1218             :                 /*
    1219             :                  * No choice but to zap it and thus lose the remainder
    1220             :                  * of the free objects in this slab. May cause
    1221             :                  * another error because the object count is now wrong.
    1222             :                  */
    1223           0 :                 set_freepointer(s, p, NULL);
    1224           0 :                 return 0;
    1225             :         }
    1226             :         return 1;
    1227             : }
    1228             : 
    1229           0 : static int check_slab(struct kmem_cache *s, struct slab *slab)
    1230             : {
    1231             :         int maxobj;
    1232             : 
    1233           0 :         if (!folio_test_slab(slab_folio(slab))) {
    1234           0 :                 slab_err(s, slab, "Not a valid slab page");
    1235           0 :                 return 0;
    1236             :         }
    1237             : 
    1238           0 :         maxobj = order_objects(slab_order(slab), s->size);
    1239           0 :         if (slab->objects > maxobj) {
    1240           0 :                 slab_err(s, slab, "objects %u > max %u",
    1241             :                         slab->objects, maxobj);
    1242           0 :                 return 0;
    1243             :         }
    1244           0 :         if (slab->inuse > slab->objects) {
    1245           0 :                 slab_err(s, slab, "inuse %u > max %u",
    1246             :                         slab->inuse, slab->objects);
    1247           0 :                 return 0;
    1248             :         }
    1249             :         /* Slab_pad_check fixes things up after itself */
    1250           0 :         slab_pad_check(s, slab);
    1251           0 :         return 1;
    1252             : }
    1253             : 
    1254             : /*
    1255             :  * Determine if a certain object in a slab is on the freelist. Must hold the
    1256             :  * slab lock to guarantee that the chains are in a consistent state.
    1257             :  */
    1258           0 : static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
    1259             : {
    1260           0 :         int nr = 0;
    1261             :         void *fp;
    1262           0 :         void *object = NULL;
    1263             :         int max_objects;
    1264             : 
    1265           0 :         fp = slab->freelist;
    1266           0 :         while (fp && nr <= slab->objects) {
    1267           0 :                 if (fp == search)
    1268             :                         return 1;
    1269           0 :                 if (!check_valid_pointer(s, slab, fp)) {
    1270           0 :                         if (object) {
    1271           0 :                                 object_err(s, slab, object,
    1272             :                                         "Freechain corrupt");
    1273           0 :                                 set_freepointer(s, object, NULL);
    1274             :                         } else {
    1275           0 :                                 slab_err(s, slab, "Freepointer corrupt");
    1276           0 :                                 slab->freelist = NULL;
    1277           0 :                                 slab->inuse = slab->objects;
    1278           0 :                                 slab_fix(s, "Freelist cleared");
    1279           0 :                                 return 0;
    1280             :                         }
    1281             :                         break;
    1282             :                 }
    1283           0 :                 object = fp;
    1284           0 :                 fp = get_freepointer(s, object);
    1285           0 :                 nr++;
    1286             :         }
    1287             : 
    1288           0 :         max_objects = order_objects(slab_order(slab), s->size);
    1289           0 :         if (max_objects > MAX_OBJS_PER_PAGE)
    1290           0 :                 max_objects = MAX_OBJS_PER_PAGE;
    1291             : 
    1292           0 :         if (slab->objects != max_objects) {
    1293           0 :                 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
    1294             :                          slab->objects, max_objects);
    1295           0 :                 slab->objects = max_objects;
    1296           0 :                 slab_fix(s, "Number of objects adjusted");
    1297             :         }
    1298           0 :         if (slab->inuse != slab->objects - nr) {
    1299           0 :                 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
    1300             :                          slab->inuse, slab->objects - nr);
    1301           0 :                 slab->inuse = slab->objects - nr;
    1302           0 :                 slab_fix(s, "Object count adjusted");
    1303             :         }
    1304           0 :         return search == NULL;
    1305             : }
    1306             : 
    1307           0 : static void trace(struct kmem_cache *s, struct slab *slab, void *object,
    1308             :                                                                 int alloc)
    1309             : {
    1310           0 :         if (s->flags & SLAB_TRACE) {
    1311           0 :                 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
    1312             :                         s->name,
    1313             :                         alloc ? "alloc" : "free",
    1314             :                         object, slab->inuse,
    1315             :                         slab->freelist);
    1316             : 
    1317           0 :                 if (!alloc)
    1318           0 :                         print_section(KERN_INFO, "Object ", (void *)object,
    1319             :                                         s->object_size);
    1320             : 
    1321           0 :                 dump_stack();
    1322             :         }
    1323           0 : }
    1324             : 
    1325             : /*
    1326             :  * Tracking of fully allocated slabs for debugging purposes.
    1327             :  */
    1328             : static void add_full(struct kmem_cache *s,
    1329             :         struct kmem_cache_node *n, struct slab *slab)
    1330             : {
    1331           0 :         if (!(s->flags & SLAB_STORE_USER))
    1332             :                 return;
    1333             : 
    1334             :         lockdep_assert_held(&n->list_lock);
    1335           0 :         list_add(&slab->slab_list, &n->full);
    1336             : }
    1337             : 
    1338             : static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
    1339             : {
    1340        1847 :         if (!(s->flags & SLAB_STORE_USER))
    1341             :                 return;
    1342             : 
    1343             :         lockdep_assert_held(&n->list_lock);
    1344           0 :         list_del(&slab->slab_list);
    1345             : }
    1346             : 
    1347             : /* Tracking of the number of slabs for debugging purposes */
    1348             : static inline unsigned long slabs_node(struct kmem_cache *s, int node)
    1349             : {
    1350           0 :         struct kmem_cache_node *n = get_node(s, node);
    1351             : 
    1352           0 :         return atomic_long_read(&n->nr_slabs);
    1353             : }
    1354             : 
    1355             : static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
    1356             : {
    1357           0 :         return atomic_long_read(&n->nr_slabs);
    1358             : }
    1359             : 
    1360             : static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
    1361             : {
    1362        2195 :         struct kmem_cache_node *n = get_node(s, node);
    1363             : 
    1364             :         /*
    1365             :          * May be called early in order to allocate a slab for the
    1366             :          * kmem_cache_node structure. Solve the chicken-egg
    1367             :          * dilemma by deferring the increment of the count during
    1368             :          * bootstrap (see early_kmem_cache_node_alloc).
    1369             :          */
    1370        2195 :         if (likely(n)) {
    1371        4388 :                 atomic_long_inc(&n->nr_slabs);
    1372        2194 :                 atomic_long_add(objects, &n->total_objects);
    1373             :         }
    1374             : }
    1375             : static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
    1376             : {
    1377        1753 :         struct kmem_cache_node *n = get_node(s, node);
    1378             : 
    1379        3506 :         atomic_long_dec(&n->nr_slabs);
    1380        3506 :         atomic_long_sub(objects, &n->total_objects);
    1381             : }
    1382             : 
    1383             : /* Object debug checks for alloc/free paths */
    1384       51365 : static void setup_object_debug(struct kmem_cache *s, void *object)
    1385             : {
    1386      102730 :         if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
    1387             :                 return;
    1388             : 
    1389           0 :         init_object(s, object, SLUB_RED_INACTIVE);
    1390           0 :         init_tracking(s, object);
    1391             : }
    1392             : 
    1393             : static
    1394        2194 : void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
    1395             : {
    1396        4388 :         if (!kmem_cache_debug_flags(s, SLAB_POISON))
    1397             :                 return;
    1398             : 
    1399           0 :         metadata_access_enable();
    1400           0 :         memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
    1401             :         metadata_access_disable();
    1402             : }
    1403             : 
    1404           0 : static inline int alloc_consistency_checks(struct kmem_cache *s,
    1405             :                                         struct slab *slab, void *object)
    1406             : {
    1407           0 :         if (!check_slab(s, slab))
    1408             :                 return 0;
    1409             : 
    1410           0 :         if (!check_valid_pointer(s, slab, object)) {
    1411           0 :                 object_err(s, slab, object, "Freelist Pointer check fails");
    1412           0 :                 return 0;
    1413             :         }
    1414             : 
    1415           0 :         if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
    1416             :                 return 0;
    1417             : 
    1418           0 :         return 1;
    1419             : }
    1420             : 
    1421           0 : static noinline bool alloc_debug_processing(struct kmem_cache *s,
    1422             :                         struct slab *slab, void *object, int orig_size)
    1423             : {
    1424           0 :         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
    1425           0 :                 if (!alloc_consistency_checks(s, slab, object))
    1426             :                         goto bad;
    1427             :         }
    1428             : 
    1429             :         /* Success. Perform special debug activities for allocs */
    1430           0 :         trace(s, slab, object, 1);
    1431           0 :         set_orig_size(s, object, orig_size);
    1432           0 :         init_object(s, object, SLUB_RED_ACTIVE);
    1433           0 :         return true;
    1434             : 
    1435             : bad:
    1436           0 :         if (folio_test_slab(slab_folio(slab))) {
    1437             :                 /*
    1438             :                  * If this is a slab page then lets do the best we can
    1439             :                  * to avoid issues in the future. Marking all objects
    1440             :                  * as used avoids touching the remaining objects.
    1441             :                  */
    1442           0 :                 slab_fix(s, "Marking all objects used");
    1443           0 :                 slab->inuse = slab->objects;
    1444           0 :                 slab->freelist = NULL;
    1445             :         }
    1446             :         return false;
    1447             : }
    1448             : 
    1449           0 : static inline int free_consistency_checks(struct kmem_cache *s,
    1450             :                 struct slab *slab, void *object, unsigned long addr)
    1451             : {
    1452           0 :         if (!check_valid_pointer(s, slab, object)) {
    1453           0 :                 slab_err(s, slab, "Invalid object pointer 0x%p", object);
    1454             :                 return 0;
    1455             :         }
    1456             : 
    1457           0 :         if (on_freelist(s, slab, object)) {
    1458           0 :                 object_err(s, slab, object, "Object already free");
    1459             :                 return 0;
    1460             :         }
    1461             : 
    1462           0 :         if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
    1463             :                 return 0;
    1464             : 
    1465           0 :         if (unlikely(s != slab->slab_cache)) {
    1466           0 :                 if (!folio_test_slab(slab_folio(slab))) {
    1467           0 :                         slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
    1468             :                                  object);
    1469           0 :                 } else if (!slab->slab_cache) {
    1470           0 :                         pr_err("SLUB <none>: no slab for object 0x%p.\n",
    1471             :                                object);
    1472           0 :                         dump_stack();
    1473             :                 } else
    1474           0 :                         object_err(s, slab, object,
    1475             :                                         "page slab pointer corrupt.");
    1476             :                 return 0;
    1477             :         }
    1478             :         return 1;
    1479             : }
    1480             : 
    1481             : /*
    1482             :  * Parse a block of slub_debug options. Blocks are delimited by ';'
    1483             :  *
    1484             :  * @str:    start of block
    1485             :  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
    1486             :  * @slabs:  return start of list of slabs, or NULL when there's no list
    1487             :  * @init:   assume this is initial parsing and not per-kmem-create parsing
    1488             :  *
    1489             :  * returns the start of next block if there's any, or NULL
    1490             :  */
    1491             : static char *
    1492           0 : parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
    1493             : {
    1494           0 :         bool higher_order_disable = false;
    1495             : 
    1496             :         /* Skip any completely empty blocks */
    1497           0 :         while (*str && *str == ';')
    1498           0 :                 str++;
    1499             : 
    1500           0 :         if (*str == ',') {
    1501             :                 /*
    1502             :                  * No options but restriction on slabs. This means full
    1503             :                  * debugging for slabs matching a pattern.
    1504             :                  */
    1505           0 :                 *flags = DEBUG_DEFAULT_FLAGS;
    1506           0 :                 goto check_slabs;
    1507             :         }
    1508           0 :         *flags = 0;
    1509             : 
    1510             :         /* Determine which debug features should be switched on */
    1511           0 :         for (; *str && *str != ',' && *str != ';'; str++) {
    1512           0 :                 switch (tolower(*str)) {
    1513             :                 case '-':
    1514           0 :                         *flags = 0;
    1515           0 :                         break;
    1516             :                 case 'f':
    1517           0 :                         *flags |= SLAB_CONSISTENCY_CHECKS;
    1518           0 :                         break;
    1519             :                 case 'z':
    1520           0 :                         *flags |= SLAB_RED_ZONE;
    1521           0 :                         break;
    1522             :                 case 'p':
    1523           0 :                         *flags |= SLAB_POISON;
    1524           0 :                         break;
    1525             :                 case 'u':
    1526           0 :                         *flags |= SLAB_STORE_USER;
    1527           0 :                         break;
    1528             :                 case 't':
    1529           0 :                         *flags |= SLAB_TRACE;
    1530           0 :                         break;
    1531             :                 case 'a':
    1532             :                         *flags |= SLAB_FAILSLAB;
    1533           0 :                         break;
    1534             :                 case 'o':
    1535             :                         /*
    1536             :                          * Avoid enabling debugging on caches if its minimum
    1537             :                          * order would increase as a result.
    1538             :                          */
    1539             :                         higher_order_disable = true;
    1540             :                         break;
    1541             :                 default:
    1542           0 :                         if (init)
    1543           0 :                                 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
    1544             :                 }
    1545             :         }
    1546             : check_slabs:
    1547           0 :         if (*str == ',')
    1548           0 :                 *slabs = ++str;
    1549             :         else
    1550           0 :                 *slabs = NULL;
    1551             : 
    1552             :         /* Skip over the slab list */
    1553           0 :         while (*str && *str != ';')
    1554           0 :                 str++;
    1555             : 
    1556             :         /* Skip any completely empty blocks */
    1557           0 :         while (*str && *str == ';')
    1558           0 :                 str++;
    1559             : 
    1560           0 :         if (init && higher_order_disable)
    1561           0 :                 disable_higher_order_debug = 1;
    1562             : 
    1563           0 :         if (*str)
    1564             :                 return str;
    1565             :         else
    1566           0 :                 return NULL;
    1567             : }
    1568             : 
    1569           0 : static int __init setup_slub_debug(char *str)
    1570             : {
    1571             :         slab_flags_t flags;
    1572             :         slab_flags_t global_flags;
    1573             :         char *saved_str;
    1574             :         char *slab_list;
    1575           0 :         bool global_slub_debug_changed = false;
    1576           0 :         bool slab_list_specified = false;
    1577             : 
    1578           0 :         global_flags = DEBUG_DEFAULT_FLAGS;
    1579           0 :         if (*str++ != '=' || !*str)
    1580             :                 /*
    1581             :                  * No options specified. Switch on full debugging.
    1582             :                  */
    1583             :                 goto out;
    1584             : 
    1585             :         saved_str = str;
    1586           0 :         while (str) {
    1587           0 :                 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
    1588             : 
    1589           0 :                 if (!slab_list) {
    1590           0 :                         global_flags = flags;
    1591           0 :                         global_slub_debug_changed = true;
    1592             :                 } else {
    1593           0 :                         slab_list_specified = true;
    1594           0 :                         if (flags & SLAB_STORE_USER)
    1595           0 :                                 stack_depot_request_early_init();
    1596             :                 }
    1597             :         }
    1598             : 
    1599             :         /*
    1600             :          * For backwards compatibility, a single list of flags with list of
    1601             :          * slabs means debugging is only changed for those slabs, so the global
    1602             :          * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
    1603             :          * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
    1604             :          * long as there is no option specifying flags without a slab list.
    1605             :          */
    1606           0 :         if (slab_list_specified) {
    1607           0 :                 if (!global_slub_debug_changed)
    1608           0 :                         global_flags = slub_debug;
    1609           0 :                 slub_debug_string = saved_str;
    1610             :         }
    1611             : out:
    1612           0 :         slub_debug = global_flags;
    1613           0 :         if (slub_debug & SLAB_STORE_USER)
    1614           0 :                 stack_depot_request_early_init();
    1615           0 :         if (slub_debug != 0 || slub_debug_string)
    1616           0 :                 static_branch_enable(&slub_debug_enabled);
    1617             :         else
    1618           0 :                 static_branch_disable(&slub_debug_enabled);
    1619           0 :         if ((static_branch_unlikely(&init_on_alloc) ||
    1620           0 :              static_branch_unlikely(&init_on_free)) &&
    1621           0 :             (slub_debug & SLAB_POISON))
    1622           0 :                 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
    1623           0 :         return 1;
    1624             : }
    1625             : 
    1626             : __setup("slub_debug", setup_slub_debug);
    1627             : 
    1628             : /*
    1629             :  * kmem_cache_flags - apply debugging options to the cache
    1630             :  * @object_size:        the size of an object without meta data
    1631             :  * @flags:              flags to set
    1632             :  * @name:               name of the cache
    1633             :  *
    1634             :  * Debug option(s) are applied to @flags. In addition to the debug
    1635             :  * option(s), if a slab name (or multiple) is specified i.e.
    1636             :  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
    1637             :  * then only the select slabs will receive the debug option(s).
    1638             :  */
    1639         103 : slab_flags_t kmem_cache_flags(unsigned int object_size,
    1640             :         slab_flags_t flags, const char *name)
    1641             : {
    1642             :         char *iter;
    1643             :         size_t len;
    1644             :         char *next_block;
    1645             :         slab_flags_t block_flags;
    1646         103 :         slab_flags_t slub_debug_local = slub_debug;
    1647             : 
    1648         103 :         if (flags & SLAB_NO_USER_FLAGS)
    1649             :                 return flags;
    1650             : 
    1651             :         /*
    1652             :          * If the slab cache is for debugging (e.g. kmemleak) then
    1653             :          * don't store user (stack trace) information by default,
    1654             :          * but let the user enable it via the command line below.
    1655             :          */
    1656         103 :         if (flags & SLAB_NOLEAKTRACE)
    1657           0 :                 slub_debug_local &= ~SLAB_STORE_USER;
    1658             : 
    1659         103 :         len = strlen(name);
    1660         103 :         next_block = slub_debug_string;
    1661             :         /* Go through all blocks of debug options, see if any matches our slab's name */
    1662         206 :         while (next_block) {
    1663           0 :                 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
    1664           0 :                 if (!iter)
    1665           0 :                         continue;
    1666             :                 /* Found a block that has a slab list, search it */
    1667           0 :                 while (*iter) {
    1668             :                         char *end, *glob;
    1669             :                         size_t cmplen;
    1670             : 
    1671           0 :                         end = strchrnul(iter, ',');
    1672           0 :                         if (next_block && next_block < end)
    1673           0 :                                 end = next_block - 1;
    1674             : 
    1675           0 :                         glob = strnchr(iter, end - iter, '*');
    1676           0 :                         if (glob)
    1677           0 :                                 cmplen = glob - iter;
    1678             :                         else
    1679           0 :                                 cmplen = max_t(size_t, len, (end - iter));
    1680             : 
    1681           0 :                         if (!strncmp(name, iter, cmplen)) {
    1682           0 :                                 flags |= block_flags;
    1683           0 :                                 return flags;
    1684             :                         }
    1685             : 
    1686           0 :                         if (!*end || *end == ';')
    1687             :                                 break;
    1688           0 :                         iter = end + 1;
    1689             :                 }
    1690             :         }
    1691             : 
    1692         103 :         return flags | slub_debug_local;
    1693             : }
    1694             : #else /* !CONFIG_SLUB_DEBUG */
    1695             : static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
    1696             : static inline
    1697             : void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
    1698             : 
    1699             : static inline bool alloc_debug_processing(struct kmem_cache *s,
    1700             :         struct slab *slab, void *object, int orig_size) { return true; }
    1701             : 
    1702             : static inline bool free_debug_processing(struct kmem_cache *s,
    1703             :         struct slab *slab, void *head, void *tail, int *bulk_cnt,
    1704             :         unsigned long addr, depot_stack_handle_t handle) { return true; }
    1705             : 
    1706             : static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
    1707             : static inline int check_object(struct kmem_cache *s, struct slab *slab,
    1708             :                         void *object, u8 val) { return 1; }
    1709             : static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
    1710             : static inline void set_track(struct kmem_cache *s, void *object,
    1711             :                              enum track_item alloc, unsigned long addr) {}
    1712             : static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
    1713             :                                         struct slab *slab) {}
    1714             : static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
    1715             :                                         struct slab *slab) {}
    1716             : slab_flags_t kmem_cache_flags(unsigned int object_size,
    1717             :         slab_flags_t flags, const char *name)
    1718             : {
    1719             :         return flags;
    1720             : }
    1721             : #define slub_debug 0
    1722             : 
    1723             : #define disable_higher_order_debug 0
    1724             : 
    1725             : static inline unsigned long slabs_node(struct kmem_cache *s, int node)
    1726             :                                                         { return 0; }
    1727             : static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
    1728             :                                                         { return 0; }
    1729             : static inline void inc_slabs_node(struct kmem_cache *s, int node,
    1730             :                                                         int objects) {}
    1731             : static inline void dec_slabs_node(struct kmem_cache *s, int node,
    1732             :                                                         int objects) {}
    1733             : 
    1734             : #ifndef CONFIG_SLUB_TINY
    1735             : static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
    1736             :                                void **freelist, void *nextfree)
    1737             : {
    1738             :         return false;
    1739             : }
    1740             : #endif
    1741             : #endif /* CONFIG_SLUB_DEBUG */
    1742             : 
    1743             : /*
    1744             :  * Hooks for other subsystems that check memory allocations. In a typical
    1745             :  * production configuration these hooks all should produce no code at all.
    1746             :  */
    1747             : static __always_inline bool slab_free_hook(struct kmem_cache *s,
    1748             :                                                 void *x, bool init)
    1749             : {
    1750       49059 :         kmemleak_free_recursive(x, s->flags);
    1751       49059 :         kmsan_slab_free(s, x);
    1752             : 
    1753       49059 :         debug_check_no_locks_freed(x, s->object_size);
    1754             : 
    1755             :         if (!(s->flags & SLAB_DEBUG_OBJECTS))
    1756       49059 :                 debug_check_no_obj_freed(x, s->object_size);
    1757             : 
    1758             :         /* Use KCSAN to help debug racy use-after-free. */
    1759             :         if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
    1760             :                 __kcsan_check_access(x, s->object_size,
    1761             :                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
    1762             : 
    1763             :         /*
    1764             :          * As memory initialization might be integrated into KASAN,
    1765             :          * kasan_slab_free and initialization memset's must be
    1766             :          * kept together to avoid discrepancies in behavior.
    1767             :          *
    1768             :          * The initialization memset's clear the object and the metadata,
    1769             :          * but don't touch the SLAB redzone.
    1770             :          */
    1771       49059 :         if (init) {
    1772             :                 int rsize;
    1773             : 
    1774             :                 if (!kasan_has_integrated_init())
    1775           0 :                         memset(kasan_reset_tag(x), 0, s->object_size);
    1776           0 :                 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
    1777           0 :                 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
    1778           0 :                        s->size - s->inuse - rsize);
    1779             :         }
    1780             :         /* KASAN might put x into memory quarantine, delaying its reuse. */
    1781       49059 :         return kasan_slab_free(s, x, init);
    1782             : }
    1783             : 
    1784       49059 : static inline bool slab_free_freelist_hook(struct kmem_cache *s,
    1785             :                                            void **head, void **tail,
    1786             :                                            int *cnt)
    1787             : {
    1788             : 
    1789             :         void *object;
    1790       49059 :         void *next = *head;
    1791       49059 :         void *old_tail = *tail ? *tail : *head;
    1792             : 
    1793       49059 :         if (is_kfence_address(next)) {
    1794             :                 slab_free_hook(s, next, false);
    1795             :                 return true;
    1796             :         }
    1797             : 
    1798             :         /* Head and tail of the reconstructed freelist */
    1799       49059 :         *head = NULL;
    1800       49059 :         *tail = NULL;
    1801             : 
    1802             :         do {
    1803       49059 :                 object = next;
    1804       98118 :                 next = get_freepointer(s, object);
    1805             : 
    1806             :                 /* If object's reuse doesn't have to be delayed */
    1807      147177 :                 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
    1808             :                         /* Move object to the new freelist */
    1809       98118 :                         set_freepointer(s, object, *head);
    1810       49059 :                         *head = object;
    1811       49059 :                         if (!*tail)
    1812       49059 :                                 *tail = object;
    1813             :                 } else {
    1814             :                         /*
    1815             :                          * Adjust the reconstructed freelist depth
    1816             :                          * accordingly if object's reuse is delayed.
    1817             :                          */
    1818             :                         --(*cnt);
    1819             :                 }
    1820       49059 :         } while (object != old_tail);
    1821             : 
    1822       49059 :         if (*head == *tail)
    1823       49059 :                 *tail = NULL;
    1824             : 
    1825       49059 :         return *head != NULL;
    1826             : }
    1827             : 
    1828             : static void *setup_object(struct kmem_cache *s, void *object)
    1829             : {
    1830       51365 :         setup_object_debug(s, object);
    1831       51365 :         object = kasan_init_slab_obj(s, object);
    1832       51365 :         if (unlikely(s->ctor)) {
    1833         260 :                 kasan_unpoison_object_data(s, object);
    1834         260 :                 s->ctor(object);
    1835         260 :                 kasan_poison_object_data(s, object);
    1836             :         }
    1837             :         return object;
    1838             : }
    1839             : 
    1840             : /*
    1841             :  * Slab allocation and freeing
    1842             :  */
    1843        2194 : static inline struct slab *alloc_slab_page(gfp_t flags, int node,
    1844             :                 struct kmem_cache_order_objects oo)
    1845             : {
    1846             :         struct folio *folio;
    1847             :         struct slab *slab;
    1848        2194 :         unsigned int order = oo_order(oo);
    1849             : 
    1850        2194 :         if (node == NUMA_NO_NODE)
    1851        2193 :                 folio = (struct folio *)alloc_pages(flags, order);
    1852             :         else
    1853           1 :                 folio = (struct folio *)__alloc_pages_node(node, flags, order);
    1854             : 
    1855        2194 :         if (!folio)
    1856             :                 return NULL;
    1857             : 
    1858        2194 :         slab = folio_slab(folio);
    1859        2194 :         __folio_set_slab(folio);
    1860             :         /* Make the flag visible before any changes to folio->mapping */
    1861        2194 :         smp_wmb();
    1862        4388 :         if (folio_is_pfmemalloc(folio))
    1863             :                 slab_set_pfmemalloc(slab);
    1864             : 
    1865             :         return slab;
    1866             : }
    1867             : 
    1868             : #ifdef CONFIG_SLAB_FREELIST_RANDOM
    1869             : /* Pre-initialize the random sequence cache */
    1870             : static int init_cache_random_seq(struct kmem_cache *s)
    1871             : {
    1872             :         unsigned int count = oo_objects(s->oo);
    1873             :         int err;
    1874             : 
    1875             :         /* Bailout if already initialised */
    1876             :         if (s->random_seq)
    1877             :                 return 0;
    1878             : 
    1879             :         err = cache_random_seq_create(s, count, GFP_KERNEL);
    1880             :         if (err) {
    1881             :                 pr_err("SLUB: Unable to initialize free list for %s\n",
    1882             :                         s->name);
    1883             :                 return err;
    1884             :         }
    1885             : 
    1886             :         /* Transform to an offset on the set of pages */
    1887             :         if (s->random_seq) {
    1888             :                 unsigned int i;
    1889             : 
    1890             :                 for (i = 0; i < count; i++)
    1891             :                         s->random_seq[i] *= s->size;
    1892             :         }
    1893             :         return 0;
    1894             : }
    1895             : 
    1896             : /* Initialize each random sequence freelist per cache */
    1897             : static void __init init_freelist_randomization(void)
    1898             : {
    1899             :         struct kmem_cache *s;
    1900             : 
    1901             :         mutex_lock(&slab_mutex);
    1902             : 
    1903             :         list_for_each_entry(s, &slab_caches, list)
    1904             :                 init_cache_random_seq(s);
    1905             : 
    1906             :         mutex_unlock(&slab_mutex);
    1907             : }
    1908             : 
    1909             : /* Get the next entry on the pre-computed freelist randomized */
    1910             : static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
    1911             :                                 unsigned long *pos, void *start,
    1912             :                                 unsigned long page_limit,
    1913             :                                 unsigned long freelist_count)
    1914             : {
    1915             :         unsigned int idx;
    1916             : 
    1917             :         /*
    1918             :          * If the target page allocation failed, the number of objects on the
    1919             :          * page might be smaller than the usual size defined by the cache.
    1920             :          */
    1921             :         do {
    1922             :                 idx = s->random_seq[*pos];
    1923             :                 *pos += 1;
    1924             :                 if (*pos >= freelist_count)
    1925             :                         *pos = 0;
    1926             :         } while (unlikely(idx >= page_limit));
    1927             : 
    1928             :         return (char *)start + idx;
    1929             : }
    1930             : 
    1931             : /* Shuffle the single linked freelist based on a random pre-computed sequence */
    1932             : static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
    1933             : {
    1934             :         void *start;
    1935             :         void *cur;
    1936             :         void *next;
    1937             :         unsigned long idx, pos, page_limit, freelist_count;
    1938             : 
    1939             :         if (slab->objects < 2 || !s->random_seq)
    1940             :                 return false;
    1941             : 
    1942             :         freelist_count = oo_objects(s->oo);
    1943             :         pos = get_random_u32_below(freelist_count);
    1944             : 
    1945             :         page_limit = slab->objects * s->size;
    1946             :         start = fixup_red_left(s, slab_address(slab));
    1947             : 
    1948             :         /* First entry is used as the base of the freelist */
    1949             :         cur = next_freelist_entry(s, slab, &pos, start, page_limit,
    1950             :                                 freelist_count);
    1951             :         cur = setup_object(s, cur);
    1952             :         slab->freelist = cur;
    1953             : 
    1954             :         for (idx = 1; idx < slab->objects; idx++) {
    1955             :                 next = next_freelist_entry(s, slab, &pos, start, page_limit,
    1956             :                         freelist_count);
    1957             :                 next = setup_object(s, next);
    1958             :                 set_freepointer(s, cur, next);
    1959             :                 cur = next;
    1960             :         }
    1961             :         set_freepointer(s, cur, NULL);
    1962             : 
    1963             :         return true;
    1964             : }
    1965             : #else
    1966             : static inline int init_cache_random_seq(struct kmem_cache *s)
    1967             : {
    1968             :         return 0;
    1969             : }
    1970             : static inline void init_freelist_randomization(void) { }
    1971             : static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
    1972             : {
    1973             :         return false;
    1974             : }
    1975             : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
    1976             : 
    1977        2194 : static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
    1978             : {
    1979             :         struct slab *slab;
    1980        2194 :         struct kmem_cache_order_objects oo = s->oo;
    1981             :         gfp_t alloc_gfp;
    1982             :         void *start, *p, *next;
    1983             :         int idx;
    1984             :         bool shuffle;
    1985             : 
    1986        2194 :         flags &= gfp_allowed_mask;
    1987             : 
    1988        2194 :         flags |= s->allocflags;
    1989             : 
    1990             :         /*
    1991             :          * Let the initial higher-order allocation fail under memory pressure
    1992             :          * so we fall-back to the minimum order allocation.
    1993             :          */
    1994        2194 :         alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
    1995        4349 :         if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
    1996          74 :                 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
    1997             : 
    1998        2194 :         slab = alloc_slab_page(alloc_gfp, node, oo);
    1999        2194 :         if (unlikely(!slab)) {
    2000           0 :                 oo = s->min;
    2001           0 :                 alloc_gfp = flags;
    2002             :                 /*
    2003             :                  * Allocation may have failed due to fragmentation.
    2004             :                  * Try a lower order alloc if possible
    2005             :                  */
    2006           0 :                 slab = alloc_slab_page(alloc_gfp, node, oo);
    2007           0 :                 if (unlikely(!slab))
    2008             :                         return NULL;
    2009             :                 stat(s, ORDER_FALLBACK);
    2010             :         }
    2011             : 
    2012        2194 :         slab->objects = oo_objects(oo);
    2013        2194 :         slab->inuse = 0;
    2014        2194 :         slab->frozen = 0;
    2015             : 
    2016        4388 :         account_slab(slab, oo_order(oo), s, flags);
    2017             : 
    2018        2194 :         slab->slab_cache = s;
    2019             : 
    2020        2194 :         kasan_poison_slab(slab);
    2021             : 
    2022        2194 :         start = slab_address(slab);
    2023             : 
    2024        2194 :         setup_slab_debug(s, slab, start);
    2025             : 
    2026        2194 :         shuffle = shuffle_freelist(s, slab);
    2027             : 
    2028             :         if (!shuffle) {
    2029        2194 :                 start = fixup_red_left(s, start);
    2030        2194 :                 start = setup_object(s, start);
    2031        2194 :                 slab->freelist = start;
    2032       51365 :                 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
    2033       49171 :                         next = p + s->size;
    2034       49171 :                         next = setup_object(s, next);
    2035       98342 :                         set_freepointer(s, p, next);
    2036       49171 :                         p = next;
    2037             :                 }
    2038        2194 :                 set_freepointer(s, p, NULL);
    2039             :         }
    2040             : 
    2041        2194 :         return slab;
    2042             : }
    2043             : 
    2044        2194 : static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
    2045             : {
    2046        2194 :         if (unlikely(flags & GFP_SLAB_BUG_MASK))
    2047           0 :                 flags = kmalloc_fix_flags(flags);
    2048             : 
    2049        2194 :         WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
    2050             : 
    2051        2194 :         return allocate_slab(s,
    2052             :                 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
    2053             : }
    2054             : 
    2055        1753 : static void __free_slab(struct kmem_cache *s, struct slab *slab)
    2056             : {
    2057        1753 :         struct folio *folio = slab_folio(slab);
    2058        1753 :         int order = folio_order(folio);
    2059        1753 :         int pages = 1 << order;
    2060             : 
    2061        1753 :         __slab_clear_pfmemalloc(slab);
    2062        1753 :         folio->mapping = NULL;
    2063             :         /* Make the mapping reset visible before clearing the flag */
    2064        1753 :         smp_wmb();
    2065        1753 :         __folio_clear_slab(folio);
    2066        3506 :         mm_account_reclaimed_pages(pages);
    2067        1753 :         unaccount_slab(slab, order, s);
    2068        1753 :         __free_pages(&folio->page, order);
    2069        1753 : }
    2070             : 
    2071           0 : static void rcu_free_slab(struct rcu_head *h)
    2072             : {
    2073           0 :         struct slab *slab = container_of(h, struct slab, rcu_head);
    2074             : 
    2075           0 :         __free_slab(slab->slab_cache, slab);
    2076           0 : }
    2077             : 
    2078        1753 : static void free_slab(struct kmem_cache *s, struct slab *slab)
    2079             : {
    2080        3506 :         if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
    2081             :                 void *p;
    2082             : 
    2083           0 :                 slab_pad_check(s, slab);
    2084           0 :                 for_each_object(p, s, slab_address(slab), slab->objects)
    2085           0 :                         check_object(s, slab, p, SLUB_RED_INACTIVE);
    2086             :         }
    2087             : 
    2088        1753 :         if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
    2089           0 :                 call_rcu(&slab->rcu_head, rcu_free_slab);
    2090             :         else
    2091        1753 :                 __free_slab(s, slab);
    2092        1753 : }
    2093             : 
    2094             : static void discard_slab(struct kmem_cache *s, struct slab *slab)
    2095             : {
    2096        5259 :         dec_slabs_node(s, slab_nid(slab), slab->objects);
    2097        1753 :         free_slab(s, slab);
    2098             : }
    2099             : 
    2100             : /*
    2101             :  * Management of partially allocated slabs.
    2102             :  */
    2103             : static inline void
    2104             : __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
    2105             : {
    2106        1850 :         n->nr_partial++;
    2107           2 :         if (tail == DEACTIVATE_TO_TAIL)
    2108        1847 :                 list_add_tail(&slab->slab_list, &n->partial);
    2109             :         else
    2110           3 :                 list_add(&slab->slab_list, &n->partial);
    2111             : }
    2112             : 
    2113             : static inline void add_partial(struct kmem_cache_node *n,
    2114             :                                 struct slab *slab, int tail)
    2115             : {
    2116             :         lockdep_assert_held(&n->list_lock);
    2117           2 :         __add_partial(n, slab, tail);
    2118             : }
    2119             : 
    2120             : static inline void remove_partial(struct kmem_cache_node *n,
    2121             :                                         struct slab *slab)
    2122             : {
    2123             :         lockdep_assert_held(&n->list_lock);
    2124        3670 :         list_del(&slab->slab_list);
    2125        1835 :         n->nr_partial--;
    2126             : }
    2127             : 
    2128             : /*
    2129             :  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
    2130             :  * slab from the n->partial list. Remove only a single object from the slab, do
    2131             :  * the alloc_debug_processing() checks and leave the slab on the list, or move
    2132             :  * it to full list if it was the last free object.
    2133             :  */
    2134           0 : static void *alloc_single_from_partial(struct kmem_cache *s,
    2135             :                 struct kmem_cache_node *n, struct slab *slab, int orig_size)
    2136             : {
    2137             :         void *object;
    2138             : 
    2139             :         lockdep_assert_held(&n->list_lock);
    2140             : 
    2141           0 :         object = slab->freelist;
    2142           0 :         slab->freelist = get_freepointer(s, object);
    2143           0 :         slab->inuse++;
    2144             : 
    2145           0 :         if (!alloc_debug_processing(s, slab, object, orig_size)) {
    2146           0 :                 remove_partial(n, slab);
    2147           0 :                 return NULL;
    2148             :         }
    2149             : 
    2150           0 :         if (slab->inuse == slab->objects) {
    2151           0 :                 remove_partial(n, slab);
    2152           0 :                 add_full(s, n, slab);
    2153             :         }
    2154             : 
    2155             :         return object;
    2156             : }
    2157             : 
    2158             : /*
    2159             :  * Called only for kmem_cache_debug() caches to allocate from a freshly
    2160             :  * allocated slab. Allocate a single object instead of whole freelist
    2161             :  * and put the slab to the partial (or full) list.
    2162             :  */
    2163           0 : static void *alloc_single_from_new_slab(struct kmem_cache *s,
    2164             :                                         struct slab *slab, int orig_size)
    2165             : {
    2166           0 :         int nid = slab_nid(slab);
    2167           0 :         struct kmem_cache_node *n = get_node(s, nid);
    2168             :         unsigned long flags;
    2169             :         void *object;
    2170             : 
    2171             : 
    2172           0 :         object = slab->freelist;
    2173           0 :         slab->freelist = get_freepointer(s, object);
    2174           0 :         slab->inuse = 1;
    2175             : 
    2176           0 :         if (!alloc_debug_processing(s, slab, object, orig_size))
    2177             :                 /*
    2178             :                  * It's not really expected that this would fail on a
    2179             :                  * freshly allocated slab, but a concurrent memory
    2180             :                  * corruption in theory could cause that.
    2181             :                  */
    2182             :                 return NULL;
    2183             : 
    2184           0 :         spin_lock_irqsave(&n->list_lock, flags);
    2185             : 
    2186           0 :         if (slab->inuse == slab->objects)
    2187           0 :                 add_full(s, n, slab);
    2188             :         else
    2189             :                 add_partial(n, slab, DEACTIVATE_TO_HEAD);
    2190             : 
    2191           0 :         inc_slabs_node(s, nid, slab->objects);
    2192           0 :         spin_unlock_irqrestore(&n->list_lock, flags);
    2193             : 
    2194           0 :         return object;
    2195             : }
    2196             : 
    2197             : /*
    2198             :  * Remove slab from the partial list, freeze it and
    2199             :  * return the pointer to the freelist.
    2200             :  *
    2201             :  * Returns a list of objects or NULL if it fails.
    2202             :  */
    2203          82 : static inline void *acquire_slab(struct kmem_cache *s,
    2204             :                 struct kmem_cache_node *n, struct slab *slab,
    2205             :                 int mode)
    2206             : {
    2207             :         void *freelist;
    2208             :         unsigned long counters;
    2209             :         struct slab new;
    2210             : 
    2211             :         lockdep_assert_held(&n->list_lock);
    2212             : 
    2213             :         /*
    2214             :          * Zap the freelist and set the frozen bit.
    2215             :          * The old freelist is the list of objects for the
    2216             :          * per cpu allocation list.
    2217             :          */
    2218          82 :         freelist = slab->freelist;
    2219          82 :         counters = slab->counters;
    2220          82 :         new.counters = counters;
    2221          82 :         if (mode) {
    2222          82 :                 new.inuse = slab->objects;
    2223          82 :                 new.freelist = NULL;
    2224             :         } else {
    2225             :                 new.freelist = freelist;
    2226             :         }
    2227             : 
    2228             :         VM_BUG_ON(new.frozen);
    2229          82 :         new.frozen = 1;
    2230             : 
    2231         164 :         if (!__cmpxchg_double_slab(s, slab,
    2232             :                         freelist, counters,
    2233             :                         new.freelist, new.counters,
    2234             :                         "acquire_slab"))
    2235             :                 return NULL;
    2236             : 
    2237         164 :         remove_partial(n, slab);
    2238          82 :         WARN_ON(!freelist);
    2239             :         return freelist;
    2240             : }
    2241             : 
    2242             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    2243             : static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
    2244             : #else
    2245             : static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
    2246             :                                    int drain) { }
    2247             : #endif
    2248             : static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
    2249             : 
    2250             : /*
    2251             :  * Try to allocate a partial slab from a specific node.
    2252             :  */
    2253        2275 : static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
    2254             :                               struct partial_context *pc)
    2255             : {
    2256             :         struct slab *slab, *slab2;
    2257        2275 :         void *object = NULL;
    2258             :         unsigned long flags;
    2259        2275 :         unsigned int partial_slabs = 0;
    2260             : 
    2261             :         /*
    2262             :          * Racy check. If we mistakenly see no partial slabs then we
    2263             :          * just allocate an empty slab. If we mistakenly try to get a
    2264             :          * partial slab and there is none available then get_partial()
    2265             :          * will return NULL.
    2266             :          */
    2267        2275 :         if (!n || !n->nr_partial)
    2268             :                 return NULL;
    2269             : 
    2270          82 :         spin_lock_irqsave(&n->list_lock, flags);
    2271          82 :         list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
    2272             :                 void *t;
    2273             : 
    2274         164 :                 if (!pfmemalloc_match(slab, pc->flags))
    2275           0 :                         continue;
    2276             : 
    2277          82 :                 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
    2278           0 :                         object = alloc_single_from_partial(s, n, slab,
    2279           0 :                                                         pc->orig_size);
    2280           0 :                         if (object)
    2281             :                                 break;
    2282           0 :                         continue;
    2283             :                 }
    2284             : 
    2285          82 :                 t = acquire_slab(s, n, slab, object == NULL);
    2286          82 :                 if (!t)
    2287             :                         break;
    2288             : 
    2289          82 :                 if (!object) {
    2290          82 :                         *pc->slab = slab;
    2291          82 :                         stat(s, ALLOC_FROM_PARTIAL);
    2292          82 :                         object = t;
    2293             :                 } else {
    2294             :                         put_cpu_partial(s, slab, 0);
    2295             :                         stat(s, CPU_PARTIAL_NODE);
    2296             :                         partial_slabs++;
    2297             :                 }
    2298             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    2299             :                 if (!kmem_cache_has_cpu_partial(s)
    2300             :                         || partial_slabs > s->cpu_partial_slabs / 2)
    2301             :                         break;
    2302             : #else
    2303             :                 break;
    2304             : #endif
    2305             : 
    2306             :         }
    2307         164 :         spin_unlock_irqrestore(&n->list_lock, flags);
    2308          82 :         return object;
    2309             : }
    2310             : 
    2311             : /*
    2312             :  * Get a slab from somewhere. Search in increasing NUMA distances.
    2313             :  */
    2314             : static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
    2315             : {
    2316             : #ifdef CONFIG_NUMA
    2317             :         struct zonelist *zonelist;
    2318             :         struct zoneref *z;
    2319             :         struct zone *zone;
    2320             :         enum zone_type highest_zoneidx = gfp_zone(pc->flags);
    2321             :         void *object;
    2322             :         unsigned int cpuset_mems_cookie;
    2323             : 
    2324             :         /*
    2325             :          * The defrag ratio allows a configuration of the tradeoffs between
    2326             :          * inter node defragmentation and node local allocations. A lower
    2327             :          * defrag_ratio increases the tendency to do local allocations
    2328             :          * instead of attempting to obtain partial slabs from other nodes.
    2329             :          *
    2330             :          * If the defrag_ratio is set to 0 then kmalloc() always
    2331             :          * returns node local objects. If the ratio is higher then kmalloc()
    2332             :          * may return off node objects because partial slabs are obtained
    2333             :          * from other nodes and filled up.
    2334             :          *
    2335             :          * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
    2336             :          * (which makes defrag_ratio = 1000) then every (well almost)
    2337             :          * allocation will first attempt to defrag slab caches on other nodes.
    2338             :          * This means scanning over all nodes to look for partial slabs which
    2339             :          * may be expensive if we do it every time we are trying to find a slab
    2340             :          * with available objects.
    2341             :          */
    2342             :         if (!s->remote_node_defrag_ratio ||
    2343             :                         get_cycles() % 1024 > s->remote_node_defrag_ratio)
    2344             :                 return NULL;
    2345             : 
    2346             :         do {
    2347             :                 cpuset_mems_cookie = read_mems_allowed_begin();
    2348             :                 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
    2349             :                 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
    2350             :                         struct kmem_cache_node *n;
    2351             : 
    2352             :                         n = get_node(s, zone_to_nid(zone));
    2353             : 
    2354             :                         if (n && cpuset_zone_allowed(zone, pc->flags) &&
    2355             :                                         n->nr_partial > s->min_partial) {
    2356             :                                 object = get_partial_node(s, n, pc);
    2357             :                                 if (object) {
    2358             :                                         /*
    2359             :                                          * Don't check read_mems_allowed_retry()
    2360             :                                          * here - if mems_allowed was updated in
    2361             :                                          * parallel, that was a harmless race
    2362             :                                          * between allocation and the cpuset
    2363             :                                          * update
    2364             :                                          */
    2365             :                                         return object;
    2366             :                                 }
    2367             :                         }
    2368             :                 }
    2369             :         } while (read_mems_allowed_retry(cpuset_mems_cookie));
    2370             : #endif  /* CONFIG_NUMA */
    2371             :         return NULL;
    2372             : }
    2373             : 
    2374             : /*
    2375             :  * Get a partial slab, lock it and return it.
    2376             :  */
    2377        2275 : static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
    2378             : {
    2379             :         void *object;
    2380        2275 :         int searchnode = node;
    2381             : 
    2382        2275 :         if (node == NUMA_NO_NODE)
    2383        2273 :                 searchnode = numa_mem_id();
    2384             : 
    2385        2275 :         object = get_partial_node(s, get_node(s, searchnode), pc);
    2386        2275 :         if (object || node != NUMA_NO_NODE)
    2387             :                 return object;
    2388             : 
    2389        2193 :         return get_any_partial(s, pc);
    2390             : }
    2391             : 
    2392             : #ifndef CONFIG_SLUB_TINY
    2393             : 
    2394             : #ifdef CONFIG_PREEMPTION
    2395             : /*
    2396             :  * Calculate the next globally unique transaction for disambiguation
    2397             :  * during cmpxchg. The transactions start with the cpu number and are then
    2398             :  * incremented by CONFIG_NR_CPUS.
    2399             :  */
    2400             : #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
    2401             : #else
    2402             : /*
    2403             :  * No preemption supported therefore also no need to check for
    2404             :  * different cpus.
    2405             :  */
    2406             : #define TID_STEP 1
    2407             : #endif /* CONFIG_PREEMPTION */
    2408             : 
    2409             : static inline unsigned long next_tid(unsigned long tid)
    2410             : {
    2411       73118 :         return tid + TID_STEP;
    2412             : }
    2413             : 
    2414             : #ifdef SLUB_DEBUG_CMPXCHG
    2415             : static inline unsigned int tid_to_cpu(unsigned long tid)
    2416             : {
    2417             :         return tid % TID_STEP;
    2418             : }
    2419             : 
    2420             : static inline unsigned long tid_to_event(unsigned long tid)
    2421             : {
    2422             :         return tid / TID_STEP;
    2423             : }
    2424             : #endif
    2425             : 
    2426             : static inline unsigned int init_tid(int cpu)
    2427             : {
    2428          53 :         return cpu;
    2429             : }
    2430             : 
    2431             : static inline void note_cmpxchg_failure(const char *n,
    2432             :                 const struct kmem_cache *s, unsigned long tid)
    2433             : {
    2434             : #ifdef SLUB_DEBUG_CMPXCHG
    2435             :         unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
    2436             : 
    2437             :         pr_info("%s %s: cmpxchg redo ", n, s->name);
    2438             : 
    2439             : #ifdef CONFIG_PREEMPTION
    2440             :         if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
    2441             :                 pr_warn("due to cpu change %d -> %d\n",
    2442             :                         tid_to_cpu(tid), tid_to_cpu(actual_tid));
    2443             :         else
    2444             : #endif
    2445             :         if (tid_to_event(tid) != tid_to_event(actual_tid))
    2446             :                 pr_warn("due to cpu running other code. Event %ld->%ld\n",
    2447             :                         tid_to_event(tid), tid_to_event(actual_tid));
    2448             :         else
    2449             :                 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
    2450             :                         actual_tid, tid, next_tid(tid));
    2451             : #endif
    2452             :         stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
    2453             : }
    2454             : 
    2455             : static void init_kmem_cache_cpus(struct kmem_cache *s)
    2456             : {
    2457             :         int cpu;
    2458             :         struct kmem_cache_cpu *c;
    2459             : 
    2460          53 :         for_each_possible_cpu(cpu) {
    2461          53 :                 c = per_cpu_ptr(s->cpu_slab, cpu);
    2462          53 :                 local_lock_init(&c->lock);
    2463          53 :                 c->tid = init_tid(cpu);
    2464             :         }
    2465             : }
    2466             : 
    2467             : /*
    2468             :  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
    2469             :  * unfreezes the slabs and puts it on the proper list.
    2470             :  * Assumes the slab has been already safely taken away from kmem_cache_cpu
    2471             :  * by the caller.
    2472             :  */
    2473           2 : static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
    2474             :                             void *freelist)
    2475             : {
    2476             :         enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
    2477           6 :         struct kmem_cache_node *n = get_node(s, slab_nid(slab));
    2478           2 :         int free_delta = 0;
    2479           2 :         enum slab_modes mode = M_NONE;
    2480             :         void *nextfree, *freelist_iter, *freelist_tail;
    2481           2 :         int tail = DEACTIVATE_TO_HEAD;
    2482           2 :         unsigned long flags = 0;
    2483             :         struct slab new;
    2484             :         struct slab old;
    2485             : 
    2486           2 :         if (slab->freelist) {
    2487           0 :                 stat(s, DEACTIVATE_REMOTE_FREES);
    2488           0 :                 tail = DEACTIVATE_TO_TAIL;
    2489             :         }
    2490             : 
    2491             :         /*
    2492             :          * Stage one: Count the objects on cpu's freelist as free_delta and
    2493             :          * remember the last object in freelist_tail for later splicing.
    2494             :          */
    2495           2 :         freelist_tail = NULL;
    2496           2 :         freelist_iter = freelist;
    2497          86 :         while (freelist_iter) {
    2498         164 :                 nextfree = get_freepointer(s, freelist_iter);
    2499             : 
    2500             :                 /*
    2501             :                  * If 'nextfree' is invalid, it is possible that the object at
    2502             :                  * 'freelist_iter' is already corrupted.  So isolate all objects
    2503             :                  * starting at 'freelist_iter' by skipping them.
    2504             :                  */
    2505          82 :                 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
    2506             :                         break;
    2507             : 
    2508          82 :                 freelist_tail = freelist_iter;
    2509          82 :                 free_delta++;
    2510             : 
    2511          82 :                 freelist_iter = nextfree;
    2512             :         }
    2513             : 
    2514             :         /*
    2515             :          * Stage two: Unfreeze the slab while splicing the per-cpu
    2516             :          * freelist to the head of slab's freelist.
    2517             :          *
    2518             :          * Ensure that the slab is unfrozen while the list presence
    2519             :          * reflects the actual number of objects during unfreeze.
    2520             :          *
    2521             :          * We first perform cmpxchg holding lock and insert to list
    2522             :          * when it succeed. If there is mismatch then the slab is not
    2523             :          * unfrozen and number of objects in the slab may have changed.
    2524             :          * Then release lock and retry cmpxchg again.
    2525             :          */
    2526             : redo:
    2527             : 
    2528           2 :         old.freelist = READ_ONCE(slab->freelist);
    2529           2 :         old.counters = READ_ONCE(slab->counters);
    2530             :         VM_BUG_ON(!old.frozen);
    2531             : 
    2532             :         /* Determine target state of the slab */
    2533           2 :         new.counters = old.counters;
    2534           2 :         if (freelist_tail) {
    2535           2 :                 new.inuse -= free_delta;
    2536           4 :                 set_freepointer(s, freelist_tail, old.freelist);
    2537           2 :                 new.freelist = freelist;
    2538             :         } else
    2539             :                 new.freelist = old.freelist;
    2540             : 
    2541           2 :         new.frozen = 0;
    2542             : 
    2543           2 :         if (!new.inuse && n->nr_partial >= s->min_partial) {
    2544             :                 mode = M_FREE;
    2545           2 :         } else if (new.freelist) {
    2546           2 :                 mode = M_PARTIAL;
    2547             :                 /*
    2548             :                  * Taking the spinlock removes the possibility that
    2549             :                  * acquire_slab() will see a slab that is frozen
    2550             :                  */
    2551           2 :                 spin_lock_irqsave(&n->list_lock, flags);
    2552             :         } else {
    2553             :                 mode = M_FULL_NOLIST;
    2554             :         }
    2555             : 
    2556             : 
    2557           2 :         if (!cmpxchg_double_slab(s, slab,
    2558             :                                 old.freelist, old.counters,
    2559             :                                 new.freelist, new.counters,
    2560             :                                 "unfreezing slab")) {
    2561           0 :                 if (mode == M_PARTIAL)
    2562           0 :                         spin_unlock_irqrestore(&n->list_lock, flags);
    2563             :                 goto redo;
    2564             :         }
    2565             : 
    2566             : 
    2567           2 :         if (mode == M_PARTIAL) {
    2568           2 :                 add_partial(n, slab, tail);
    2569           4 :                 spin_unlock_irqrestore(&n->list_lock, flags);
    2570           2 :                 stat(s, tail);
    2571           0 :         } else if (mode == M_FREE) {
    2572           0 :                 stat(s, DEACTIVATE_EMPTY);
    2573             :                 discard_slab(s, slab);
    2574             :                 stat(s, FREE_SLAB);
    2575             :         } else if (mode == M_FULL_NOLIST) {
    2576             :                 stat(s, DEACTIVATE_FULL);
    2577             :         }
    2578           2 : }
    2579             : 
    2580             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    2581             : static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
    2582             : {
    2583             :         struct kmem_cache_node *n = NULL, *n2 = NULL;
    2584             :         struct slab *slab, *slab_to_discard = NULL;
    2585             :         unsigned long flags = 0;
    2586             : 
    2587             :         while (partial_slab) {
    2588             :                 struct slab new;
    2589             :                 struct slab old;
    2590             : 
    2591             :                 slab = partial_slab;
    2592             :                 partial_slab = slab->next;
    2593             : 
    2594             :                 n2 = get_node(s, slab_nid(slab));
    2595             :                 if (n != n2) {
    2596             :                         if (n)
    2597             :                                 spin_unlock_irqrestore(&n->list_lock, flags);
    2598             : 
    2599             :                         n = n2;
    2600             :                         spin_lock_irqsave(&n->list_lock, flags);
    2601             :                 }
    2602             : 
    2603             :                 do {
    2604             : 
    2605             :                         old.freelist = slab->freelist;
    2606             :                         old.counters = slab->counters;
    2607             :                         VM_BUG_ON(!old.frozen);
    2608             : 
    2609             :                         new.counters = old.counters;
    2610             :                         new.freelist = old.freelist;
    2611             : 
    2612             :                         new.frozen = 0;
    2613             : 
    2614             :                 } while (!__cmpxchg_double_slab(s, slab,
    2615             :                                 old.freelist, old.counters,
    2616             :                                 new.freelist, new.counters,
    2617             :                                 "unfreezing slab"));
    2618             : 
    2619             :                 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
    2620             :                         slab->next = slab_to_discard;
    2621             :                         slab_to_discard = slab;
    2622             :                 } else {
    2623             :                         add_partial(n, slab, DEACTIVATE_TO_TAIL);
    2624             :                         stat(s, FREE_ADD_PARTIAL);
    2625             :                 }
    2626             :         }
    2627             : 
    2628             :         if (n)
    2629             :                 spin_unlock_irqrestore(&n->list_lock, flags);
    2630             : 
    2631             :         while (slab_to_discard) {
    2632             :                 slab = slab_to_discard;
    2633             :                 slab_to_discard = slab_to_discard->next;
    2634             : 
    2635             :                 stat(s, DEACTIVATE_EMPTY);
    2636             :                 discard_slab(s, slab);
    2637             :                 stat(s, FREE_SLAB);
    2638             :         }
    2639             : }
    2640             : 
    2641             : /*
    2642             :  * Unfreeze all the cpu partial slabs.
    2643             :  */
    2644             : static void unfreeze_partials(struct kmem_cache *s)
    2645             : {
    2646             :         struct slab *partial_slab;
    2647             :         unsigned long flags;
    2648             : 
    2649             :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    2650             :         partial_slab = this_cpu_read(s->cpu_slab->partial);
    2651             :         this_cpu_write(s->cpu_slab->partial, NULL);
    2652             :         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    2653             : 
    2654             :         if (partial_slab)
    2655             :                 __unfreeze_partials(s, partial_slab);
    2656             : }
    2657             : 
    2658             : static void unfreeze_partials_cpu(struct kmem_cache *s,
    2659             :                                   struct kmem_cache_cpu *c)
    2660             : {
    2661             :         struct slab *partial_slab;
    2662             : 
    2663             :         partial_slab = slub_percpu_partial(c);
    2664             :         c->partial = NULL;
    2665             : 
    2666             :         if (partial_slab)
    2667             :                 __unfreeze_partials(s, partial_slab);
    2668             : }
    2669             : 
    2670             : /*
    2671             :  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
    2672             :  * partial slab slot if available.
    2673             :  *
    2674             :  * If we did not find a slot then simply move all the partials to the
    2675             :  * per node partial list.
    2676             :  */
    2677             : static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
    2678             : {
    2679             :         struct slab *oldslab;
    2680             :         struct slab *slab_to_unfreeze = NULL;
    2681             :         unsigned long flags;
    2682             :         int slabs = 0;
    2683             : 
    2684             :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    2685             : 
    2686             :         oldslab = this_cpu_read(s->cpu_slab->partial);
    2687             : 
    2688             :         if (oldslab) {
    2689             :                 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
    2690             :                         /*
    2691             :                          * Partial array is full. Move the existing set to the
    2692             :                          * per node partial list. Postpone the actual unfreezing
    2693             :                          * outside of the critical section.
    2694             :                          */
    2695             :                         slab_to_unfreeze = oldslab;
    2696             :                         oldslab = NULL;
    2697             :                 } else {
    2698             :                         slabs = oldslab->slabs;
    2699             :                 }
    2700             :         }
    2701             : 
    2702             :         slabs++;
    2703             : 
    2704             :         slab->slabs = slabs;
    2705             :         slab->next = oldslab;
    2706             : 
    2707             :         this_cpu_write(s->cpu_slab->partial, slab);
    2708             : 
    2709             :         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    2710             : 
    2711             :         if (slab_to_unfreeze) {
    2712             :                 __unfreeze_partials(s, slab_to_unfreeze);
    2713             :                 stat(s, CPU_PARTIAL_DRAIN);
    2714             :         }
    2715             : }
    2716             : 
    2717             : #else   /* CONFIG_SLUB_CPU_PARTIAL */
    2718             : 
    2719             : static inline void unfreeze_partials(struct kmem_cache *s) { }
    2720             : static inline void unfreeze_partials_cpu(struct kmem_cache *s,
    2721             :                                   struct kmem_cache_cpu *c) { }
    2722             : 
    2723             : #endif  /* CONFIG_SLUB_CPU_PARTIAL */
    2724             : 
    2725           0 : static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
    2726             : {
    2727             :         unsigned long flags;
    2728             :         struct slab *slab;
    2729             :         void *freelist;
    2730             : 
    2731           0 :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    2732             : 
    2733           0 :         slab = c->slab;
    2734           0 :         freelist = c->freelist;
    2735             : 
    2736           0 :         c->slab = NULL;
    2737           0 :         c->freelist = NULL;
    2738           0 :         c->tid = next_tid(c->tid);
    2739             : 
    2740           0 :         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    2741             : 
    2742           0 :         if (slab) {
    2743           0 :                 deactivate_slab(s, slab, freelist);
    2744           0 :                 stat(s, CPUSLAB_FLUSH);
    2745             :         }
    2746           0 : }
    2747             : 
    2748           2 : static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
    2749             : {
    2750           2 :         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
    2751           2 :         void *freelist = c->freelist;
    2752           2 :         struct slab *slab = c->slab;
    2753             : 
    2754           2 :         c->slab = NULL;
    2755           2 :         c->freelist = NULL;
    2756           4 :         c->tid = next_tid(c->tid);
    2757             : 
    2758           2 :         if (slab) {
    2759           2 :                 deactivate_slab(s, slab, freelist);
    2760           2 :                 stat(s, CPUSLAB_FLUSH);
    2761             :         }
    2762             : 
    2763           2 :         unfreeze_partials_cpu(s, c);
    2764           2 : }
    2765             : 
    2766             : struct slub_flush_work {
    2767             :         struct work_struct work;
    2768             :         struct kmem_cache *s;
    2769             :         bool skip;
    2770             : };
    2771             : 
    2772             : /*
    2773             :  * Flush cpu slab.
    2774             :  *
    2775             :  * Called from CPU work handler with migration disabled.
    2776             :  */
    2777           0 : static void flush_cpu_slab(struct work_struct *w)
    2778             : {
    2779             :         struct kmem_cache *s;
    2780             :         struct kmem_cache_cpu *c;
    2781             :         struct slub_flush_work *sfw;
    2782             : 
    2783           0 :         sfw = container_of(w, struct slub_flush_work, work);
    2784             : 
    2785           0 :         s = sfw->s;
    2786           0 :         c = this_cpu_ptr(s->cpu_slab);
    2787             : 
    2788           0 :         if (c->slab)
    2789           0 :                 flush_slab(s, c);
    2790             : 
    2791           0 :         unfreeze_partials(s);
    2792           0 : }
    2793             : 
    2794             : static bool has_cpu_slab(int cpu, struct kmem_cache *s)
    2795             : {
    2796           0 :         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
    2797             : 
    2798           0 :         return c->slab || slub_percpu_partial(c);
    2799             : }
    2800             : 
    2801             : static DEFINE_MUTEX(flush_lock);
    2802             : static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
    2803             : 
    2804           0 : static void flush_all_cpus_locked(struct kmem_cache *s)
    2805             : {
    2806             :         struct slub_flush_work *sfw;
    2807             :         unsigned int cpu;
    2808             : 
    2809             :         lockdep_assert_cpus_held();
    2810           0 :         mutex_lock(&flush_lock);
    2811             : 
    2812           0 :         for_each_online_cpu(cpu) {
    2813           0 :                 sfw = &per_cpu(slub_flush, cpu);
    2814           0 :                 if (!has_cpu_slab(cpu, s)) {
    2815           0 :                         sfw->skip = true;
    2816           0 :                         continue;
    2817             :                 }
    2818           0 :                 INIT_WORK(&sfw->work, flush_cpu_slab);
    2819           0 :                 sfw->skip = false;
    2820           0 :                 sfw->s = s;
    2821           0 :                 queue_work_on(cpu, flushwq, &sfw->work);
    2822             :         }
    2823             : 
    2824           0 :         for_each_online_cpu(cpu) {
    2825           0 :                 sfw = &per_cpu(slub_flush, cpu);
    2826           0 :                 if (sfw->skip)
    2827           0 :                         continue;
    2828           0 :                 flush_work(&sfw->work);
    2829             :         }
    2830             : 
    2831           0 :         mutex_unlock(&flush_lock);
    2832           0 : }
    2833             : 
    2834             : static void flush_all(struct kmem_cache *s)
    2835             : {
    2836             :         cpus_read_lock();
    2837           0 :         flush_all_cpus_locked(s);
    2838             :         cpus_read_unlock();
    2839             : }
    2840             : 
    2841             : /*
    2842             :  * Use the cpu notifier to insure that the cpu slabs are flushed when
    2843             :  * necessary.
    2844             :  */
    2845           0 : static int slub_cpu_dead(unsigned int cpu)
    2846             : {
    2847             :         struct kmem_cache *s;
    2848             : 
    2849           0 :         mutex_lock(&slab_mutex);
    2850           0 :         list_for_each_entry(s, &slab_caches, list)
    2851           0 :                 __flush_cpu_slab(s, cpu);
    2852           0 :         mutex_unlock(&slab_mutex);
    2853           0 :         return 0;
    2854             : }
    2855             : 
    2856             : #else /* CONFIG_SLUB_TINY */
    2857             : static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
    2858             : static inline void flush_all(struct kmem_cache *s) { }
    2859             : static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
    2860             : static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
    2861             : #endif /* CONFIG_SLUB_TINY */
    2862             : 
    2863             : /*
    2864             :  * Check if the objects in a per cpu structure fit numa
    2865             :  * locality expectations.
    2866             :  */
    2867             : static inline int node_match(struct slab *slab, int node)
    2868             : {
    2869             : #ifdef CONFIG_NUMA
    2870             :         if (node != NUMA_NO_NODE && slab_nid(slab) != node)
    2871             :                 return 0;
    2872             : #endif
    2873             :         return 1;
    2874             : }
    2875             : 
    2876             : #ifdef CONFIG_SLUB_DEBUG
    2877           0 : static int count_free(struct slab *slab)
    2878             : {
    2879           0 :         return slab->objects - slab->inuse;
    2880             : }
    2881             : 
    2882             : static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
    2883             : {
    2884           0 :         return atomic_long_read(&n->total_objects);
    2885             : }
    2886             : 
    2887             : /* Supports checking bulk free of a constructed freelist */
    2888           0 : static inline bool free_debug_processing(struct kmem_cache *s,
    2889             :         struct slab *slab, void *head, void *tail, int *bulk_cnt,
    2890             :         unsigned long addr, depot_stack_handle_t handle)
    2891             : {
    2892           0 :         bool checks_ok = false;
    2893           0 :         void *object = head;
    2894           0 :         int cnt = 0;
    2895             : 
    2896           0 :         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
    2897           0 :                 if (!check_slab(s, slab))
    2898             :                         goto out;
    2899             :         }
    2900             : 
    2901           0 :         if (slab->inuse < *bulk_cnt) {
    2902           0 :                 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
    2903             :                          slab->inuse, *bulk_cnt);
    2904           0 :                 goto out;
    2905             :         }
    2906             : 
    2907             : next_object:
    2908             : 
    2909           0 :         if (++cnt > *bulk_cnt)
    2910             :                 goto out_cnt;
    2911             : 
    2912           0 :         if (s->flags & SLAB_CONSISTENCY_CHECKS) {
    2913           0 :                 if (!free_consistency_checks(s, slab, object, addr))
    2914             :                         goto out;
    2915             :         }
    2916             : 
    2917           0 :         if (s->flags & SLAB_STORE_USER)
    2918             :                 set_track_update(s, object, TRACK_FREE, addr, handle);
    2919           0 :         trace(s, slab, object, 0);
    2920             :         /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
    2921           0 :         init_object(s, object, SLUB_RED_INACTIVE);
    2922             : 
    2923             :         /* Reached end of constructed freelist yet? */
    2924           0 :         if (object != tail) {
    2925           0 :                 object = get_freepointer(s, object);
    2926           0 :                 goto next_object;
    2927             :         }
    2928             :         checks_ok = true;
    2929             : 
    2930             : out_cnt:
    2931           0 :         if (cnt != *bulk_cnt) {
    2932           0 :                 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
    2933             :                          *bulk_cnt, cnt);
    2934           0 :                 *bulk_cnt = cnt;
    2935             :         }
    2936             : 
    2937             : out:
    2938             : 
    2939           0 :         if (!checks_ok)
    2940           0 :                 slab_fix(s, "Object at 0x%p not freed", object);
    2941             : 
    2942           0 :         return checks_ok;
    2943             : }
    2944             : #endif /* CONFIG_SLUB_DEBUG */
    2945             : 
    2946             : #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
    2947           0 : static unsigned long count_partial(struct kmem_cache_node *n,
    2948             :                                         int (*get_count)(struct slab *))
    2949             : {
    2950             :         unsigned long flags;
    2951           0 :         unsigned long x = 0;
    2952             :         struct slab *slab;
    2953             : 
    2954           0 :         spin_lock_irqsave(&n->list_lock, flags);
    2955           0 :         list_for_each_entry(slab, &n->partial, slab_list)
    2956           0 :                 x += get_count(slab);
    2957           0 :         spin_unlock_irqrestore(&n->list_lock, flags);
    2958           0 :         return x;
    2959             : }
    2960             : #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
    2961             : 
    2962             : #ifdef CONFIG_SLUB_DEBUG
    2963             : static noinline void
    2964           0 : slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
    2965             : {
    2966             :         static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
    2967             :                                       DEFAULT_RATELIMIT_BURST);
    2968             :         int node;
    2969             :         struct kmem_cache_node *n;
    2970             : 
    2971           0 :         if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
    2972             :                 return;
    2973             : 
    2974           0 :         pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
    2975             :                 nid, gfpflags, &gfpflags);
    2976           0 :         pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
    2977             :                 s->name, s->object_size, s->size, oo_order(s->oo),
    2978             :                 oo_order(s->min));
    2979             : 
    2980           0 :         if (oo_order(s->min) > get_order(s->object_size))
    2981           0 :                 pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
    2982             :                         s->name);
    2983             : 
    2984           0 :         for_each_kmem_cache_node(s, node, n) {
    2985             :                 unsigned long nr_slabs;
    2986             :                 unsigned long nr_objs;
    2987             :                 unsigned long nr_free;
    2988             : 
    2989           0 :                 nr_free  = count_partial(n, count_free);
    2990           0 :                 nr_slabs = node_nr_slabs(n);
    2991           0 :                 nr_objs  = node_nr_objs(n);
    2992             : 
    2993           0 :                 pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
    2994             :                         node, nr_slabs, nr_objs, nr_free);
    2995             :         }
    2996             : }
    2997             : #else /* CONFIG_SLUB_DEBUG */
    2998             : static inline void
    2999             : slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
    3000             : #endif
    3001             : 
    3002             : static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
    3003             : {
    3004        4602 :         if (unlikely(slab_test_pfmemalloc(slab)))
    3005           0 :                 return gfp_pfmemalloc_allowed(gfpflags);
    3006             : 
    3007             :         return true;
    3008             : }
    3009             : 
    3010             : #ifndef CONFIG_SLUB_TINY
    3011             : /*
    3012             :  * Check the slab->freelist and either transfer the freelist to the
    3013             :  * per cpu freelist or deactivate the slab.
    3014             :  *
    3015             :  * The slab is still frozen if the return value is not NULL.
    3016             :  *
    3017             :  * If this function returns NULL then the slab has been unfrozen.
    3018             :  */
    3019             : static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
    3020             : {
    3021             :         struct slab new;
    3022             :         unsigned long counters;
    3023             :         void *freelist;
    3024             : 
    3025             :         lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
    3026             : 
    3027             :         do {
    3028        2245 :                 freelist = slab->freelist;
    3029        2245 :                 counters = slab->counters;
    3030             : 
    3031        2245 :                 new.counters = counters;
    3032             :                 VM_BUG_ON(!new.frozen);
    3033             : 
    3034        2245 :                 new.inuse = slab->objects;
    3035        2245 :                 new.frozen = freelist != NULL;
    3036             : 
    3037        4490 :         } while (!__cmpxchg_double_slab(s, slab,
    3038             :                 freelist, counters,
    3039             :                 NULL, new.counters,
    3040        2245 :                 "get_freelist"));
    3041             : 
    3042             :         return freelist;
    3043             : }
    3044             : 
    3045             : /*
    3046             :  * Slow path. The lockless freelist is empty or we need to perform
    3047             :  * debugging duties.
    3048             :  *
    3049             :  * Processing is still very fast if new objects have been freed to the
    3050             :  * regular freelist. In that case we simply take over the regular freelist
    3051             :  * as the lockless freelist and zap the regular freelist.
    3052             :  *
    3053             :  * If that is not working then we fall back to the partial lists. We take the
    3054             :  * first element of the freelist as the object to allocate now and move the
    3055             :  * rest of the freelist to the lockless freelist.
    3056             :  *
    3057             :  * And if we were unable to get a new slab from the partial slab lists then
    3058             :  * we need to allocate a new slab. This is the slowest path since it involves
    3059             :  * a call to the page allocator and the setup of a new slab.
    3060             :  *
    3061             :  * Version of __slab_alloc to use when we know that preemption is
    3062             :  * already disabled (which is the case for bulk allocation).
    3063             :  */
    3064        2275 : static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
    3065             :                           unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
    3066             : {
    3067             :         void *freelist;
    3068             :         struct slab *slab;
    3069             :         unsigned long flags;
    3070             :         struct partial_context pc;
    3071             : 
    3072        2275 :         stat(s, ALLOC_SLOWPATH);
    3073             : 
    3074             : reread_slab:
    3075             : 
    3076        2275 :         slab = READ_ONCE(c->slab);
    3077        2275 :         if (!slab) {
    3078             :                 /*
    3079             :                  * if the node is not online or has no normal memory, just
    3080             :                  * ignore the node constraint
    3081             :                  */
    3082          32 :                 if (unlikely(node != NUMA_NO_NODE &&
    3083             :                              !node_isset(node, slab_nodes)))
    3084           0 :                         node = NUMA_NO_NODE;
    3085             :                 goto new_slab;
    3086             :         }
    3087             : redo:
    3088             : 
    3089        2245 :         if (unlikely(!node_match(slab, node))) {
    3090             :                 /*
    3091             :                  * same as above but node_match() being false already
    3092             :                  * implies node != NUMA_NO_NODE
    3093             :                  */
    3094             :                 if (!node_isset(node, slab_nodes)) {
    3095             :                         node = NUMA_NO_NODE;
    3096             :                 } else {
    3097             :                         stat(s, ALLOC_NODE_MISMATCH);
    3098             :                         goto deactivate_slab;
    3099             :                 }
    3100             :         }
    3101             : 
    3102             :         /*
    3103             :          * By rights, we should be searching for a slab page that was
    3104             :          * PFMEMALLOC but right now, we are losing the pfmemalloc
    3105             :          * information when the page leaves the per-cpu allocator
    3106             :          */
    3107        4490 :         if (unlikely(!pfmemalloc_match(slab, gfpflags)))
    3108             :                 goto deactivate_slab;
    3109             : 
    3110             :         /* must check again c->slab in case we got preempted and it changed */
    3111        2245 :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    3112        2245 :         if (unlikely(slab != c->slab)) {
    3113           0 :                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3114             :                 goto reread_slab;
    3115             :         }
    3116        2245 :         freelist = c->freelist;
    3117        2245 :         if (freelist)
    3118             :                 goto load_freelist;
    3119             : 
    3120        2245 :         freelist = get_freelist(s, slab);
    3121             : 
    3122        2245 :         if (!freelist) {
    3123        2245 :                 c->slab = NULL;
    3124        4490 :                 c->tid = next_tid(c->tid);
    3125        2245 :                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3126             :                 stat(s, DEACTIVATE_BYPASS);
    3127             :                 goto new_slab;
    3128             :         }
    3129             : 
    3130             :         stat(s, ALLOC_REFILL);
    3131             : 
    3132             : load_freelist:
    3133             : 
    3134        2275 :         lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
    3135             : 
    3136             :         /*
    3137             :          * freelist is pointing to the list of objects to be used.
    3138             :          * slab is pointing to the slab from which the objects are obtained.
    3139             :          * That slab must be frozen for per cpu allocations to work.
    3140             :          */
    3141             :         VM_BUG_ON(!c->slab->frozen);
    3142        4550 :         c->freelist = get_freepointer(s, freelist);
    3143        4550 :         c->tid = next_tid(c->tid);
    3144        4550 :         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3145        2275 :         return freelist;
    3146             : 
    3147             : deactivate_slab:
    3148             : 
    3149           0 :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    3150           0 :         if (slab != c->slab) {
    3151           0 :                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3152             :                 goto reread_slab;
    3153             :         }
    3154           0 :         freelist = c->freelist;
    3155           0 :         c->slab = NULL;
    3156           0 :         c->freelist = NULL;
    3157           0 :         c->tid = next_tid(c->tid);
    3158           0 :         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3159           0 :         deactivate_slab(s, slab, freelist);
    3160             : 
    3161             : new_slab:
    3162             : 
    3163             :         if (slub_percpu_partial(c)) {
    3164             :                 local_lock_irqsave(&s->cpu_slab->lock, flags);
    3165             :                 if (unlikely(c->slab)) {
    3166             :                         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3167             :                         goto reread_slab;
    3168             :                 }
    3169             :                 if (unlikely(!slub_percpu_partial(c))) {
    3170             :                         local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3171             :                         /* we were preempted and partial list got empty */
    3172             :                         goto new_objects;
    3173             :                 }
    3174             : 
    3175             :                 slab = c->slab = slub_percpu_partial(c);
    3176             :                 slub_set_percpu_partial(c, slab);
    3177             :                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3178             :                 stat(s, CPU_PARTIAL_ALLOC);
    3179             :                 goto redo;
    3180             :         }
    3181             : 
    3182             : new_objects:
    3183             : 
    3184        2275 :         pc.flags = gfpflags;
    3185        2275 :         pc.slab = &slab;
    3186        2275 :         pc.orig_size = orig_size;
    3187        2275 :         freelist = get_partial(s, node, &pc);
    3188        2275 :         if (freelist)
    3189             :                 goto check_new_slab;
    3190             : 
    3191        2193 :         slub_put_cpu_ptr(s->cpu_slab);
    3192        2193 :         slab = new_slab(s, gfpflags, node);
    3193        2193 :         c = slub_get_cpu_ptr(s->cpu_slab);
    3194             : 
    3195        2193 :         if (unlikely(!slab)) {
    3196           0 :                 slab_out_of_memory(s, gfpflags, node);
    3197           0 :                 return NULL;
    3198             :         }
    3199             : 
    3200        2193 :         stat(s, ALLOC_SLAB);
    3201             : 
    3202        2193 :         if (kmem_cache_debug(s)) {
    3203           0 :                 freelist = alloc_single_from_new_slab(s, slab, orig_size);
    3204             : 
    3205           0 :                 if (unlikely(!freelist))
    3206             :                         goto new_objects;
    3207             : 
    3208           0 :                 if (s->flags & SLAB_STORE_USER)
    3209             :                         set_track(s, freelist, TRACK_ALLOC, addr);
    3210             : 
    3211             :                 return freelist;
    3212             :         }
    3213             : 
    3214             :         /*
    3215             :          * No other reference to the slab yet so we can
    3216             :          * muck around with it freely without cmpxchg
    3217             :          */
    3218        2193 :         freelist = slab->freelist;
    3219        2193 :         slab->freelist = NULL;
    3220        2193 :         slab->inuse = slab->objects;
    3221        2193 :         slab->frozen = 1;
    3222             : 
    3223        4386 :         inc_slabs_node(s, slab_nid(slab), slab->objects);
    3224             : 
    3225             : check_new_slab:
    3226             : 
    3227        2275 :         if (kmem_cache_debug(s)) {
    3228             :                 /*
    3229             :                  * For debug caches here we had to go through
    3230             :                  * alloc_single_from_partial() so just store the tracking info
    3231             :                  * and return the object
    3232             :                  */
    3233           0 :                 if (s->flags & SLAB_STORE_USER)
    3234             :                         set_track(s, freelist, TRACK_ALLOC, addr);
    3235             : 
    3236             :                 return freelist;
    3237             :         }
    3238             : 
    3239        4550 :         if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
    3240             :                 /*
    3241             :                  * For !pfmemalloc_match() case we don't load freelist so that
    3242             :                  * we don't make further mismatched allocations easier.
    3243             :                  */
    3244           0 :                 deactivate_slab(s, slab, get_freepointer(s, freelist));
    3245           0 :                 return freelist;
    3246             :         }
    3247             : 
    3248             : retry_load_slab:
    3249             : 
    3250        2275 :         local_lock_irqsave(&s->cpu_slab->lock, flags);
    3251        2275 :         if (unlikely(c->slab)) {
    3252           0 :                 void *flush_freelist = c->freelist;
    3253           0 :                 struct slab *flush_slab = c->slab;
    3254             : 
    3255           0 :                 c->slab = NULL;
    3256           0 :                 c->freelist = NULL;
    3257           0 :                 c->tid = next_tid(c->tid);
    3258             : 
    3259           0 :                 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
    3260             : 
    3261           0 :                 deactivate_slab(s, flush_slab, flush_freelist);
    3262             : 
    3263           0 :                 stat(s, CPUSLAB_FLUSH);
    3264             : 
    3265             :                 goto retry_load_slab;
    3266             :         }
    3267        2275 :         c->slab = slab;
    3268             : 
    3269        2275 :         goto load_freelist;
    3270             : }
    3271             : 
    3272             : /*
    3273             :  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
    3274             :  * disabled. Compensates for possible cpu changes by refetching the per cpu area
    3275             :  * pointer.
    3276             :  */
    3277             : static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
    3278             :                           unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
    3279             : {
    3280             :         void *p;
    3281             : 
    3282             : #ifdef CONFIG_PREEMPT_COUNT
    3283             :         /*
    3284             :          * We may have been preempted and rescheduled on a different
    3285             :          * cpu before disabling preemption. Need to reload cpu area
    3286             :          * pointer.
    3287             :          */
    3288             :         c = slub_get_cpu_ptr(s->cpu_slab);
    3289             : #endif
    3290             : 
    3291        2275 :         p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
    3292             : #ifdef CONFIG_PREEMPT_COUNT
    3293             :         slub_put_cpu_ptr(s->cpu_slab);
    3294             : #endif
    3295             :         return p;
    3296             : }
    3297             : 
    3298             : static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
    3299             :                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
    3300             : {
    3301             :         struct kmem_cache_cpu *c;
    3302             :         struct slab *slab;
    3303             :         unsigned long tid;
    3304             :         void *object;
    3305             : 
    3306             : redo:
    3307             :         /*
    3308             :          * Must read kmem_cache cpu data via this cpu ptr. Preemption is
    3309             :          * enabled. We may switch back and forth between cpus while
    3310             :          * reading from one cpu area. That does not matter as long
    3311             :          * as we end up on the original cpu again when doing the cmpxchg.
    3312             :          *
    3313             :          * We must guarantee that tid and kmem_cache_cpu are retrieved on the
    3314             :          * same cpu. We read first the kmem_cache_cpu pointer and use it to read
    3315             :          * the tid. If we are preempted and switched to another cpu between the
    3316             :          * two reads, it's OK as the two are still associated with the same cpu
    3317             :          * and cmpxchg later will validate the cpu.
    3318             :          */
    3319       61648 :         c = raw_cpu_ptr(s->cpu_slab);
    3320       61648 :         tid = READ_ONCE(c->tid);
    3321             : 
    3322             :         /*
    3323             :          * Irqless object alloc/free algorithm used here depends on sequence
    3324             :          * of fetching cpu_slab's data. tid should be fetched before anything
    3325             :          * on c to guarantee that object and slab associated with previous tid
    3326             :          * won't be used with current tid. If we fetch tid first, object and
    3327             :          * slab could be one associated with next tid and our alloc/free
    3328             :          * request will be failed. In this case, we will retry. So, no problem.
    3329             :          */
    3330       61648 :         barrier();
    3331             : 
    3332             :         /*
    3333             :          * The transaction ids are globally unique per cpu and per operation on
    3334             :          * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
    3335             :          * occurs on the right processor and that there was no operation on the
    3336             :          * linked list in between.
    3337             :          */
    3338             : 
    3339       61648 :         object = c->freelist;
    3340       61648 :         slab = c->slab;
    3341             : 
    3342       61648 :         if (!USE_LOCKLESS_FAST_PATH() ||
    3343      121021 :             unlikely(!object || !slab || !node_match(slab, node))) {
    3344        4206 :                 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
    3345             :         } else {
    3346       59373 :                 void *next_object = get_freepointer_safe(s, object);
    3347             : 
    3348             :                 /*
    3349             :                  * The cmpxchg will only match if there was no additional
    3350             :                  * operation and if we are on the right processor.
    3351             :                  *
    3352             :                  * The cmpxchg does the following atomically (without lock
    3353             :                  * semantics!)
    3354             :                  * 1. Relocate first pointer to the current per cpu area.
    3355             :                  * 2. Verify that tid and freelist have not been changed
    3356             :                  * 3. If they were not changed replace tid and freelist
    3357             :                  *
    3358             :                  * Since this is without lock semantics the protection is only
    3359             :                  * against code executing on this cpu *not* from access by
    3360             :                  * other cpus.
    3361             :                  */
    3362      237492 :                 if (unlikely(!this_cpu_cmpxchg_double(
    3363             :                                 s->cpu_slab->freelist, s->cpu_slab->tid,
    3364             :                                 object, tid,
    3365             :                                 next_object, next_tid(tid)))) {
    3366             : 
    3367             :                         note_cmpxchg_failure("slab_alloc", s, tid);
    3368             :                         goto redo;
    3369             :                 }
    3370       59373 :                 prefetch_freepointer(s, next_object);
    3371             :                 stat(s, ALLOC_FASTPATH);
    3372             :         }
    3373             : 
    3374             :         return object;
    3375             : }
    3376             : #else /* CONFIG_SLUB_TINY */
    3377             : static void *__slab_alloc_node(struct kmem_cache *s,
    3378             :                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
    3379             : {
    3380             :         struct partial_context pc;
    3381             :         struct slab *slab;
    3382             :         void *object;
    3383             : 
    3384             :         pc.flags = gfpflags;
    3385             :         pc.slab = &slab;
    3386             :         pc.orig_size = orig_size;
    3387             :         object = get_partial(s, node, &pc);
    3388             : 
    3389             :         if (object)
    3390             :                 return object;
    3391             : 
    3392             :         slab = new_slab(s, gfpflags, node);
    3393             :         if (unlikely(!slab)) {
    3394             :                 slab_out_of_memory(s, gfpflags, node);
    3395             :                 return NULL;
    3396             :         }
    3397             : 
    3398             :         object = alloc_single_from_new_slab(s, slab, orig_size);
    3399             : 
    3400             :         return object;
    3401             : }
    3402             : #endif /* CONFIG_SLUB_TINY */
    3403             : 
    3404             : /*
    3405             :  * If the object has been wiped upon free, make sure it's fully initialized by
    3406             :  * zeroing out freelist pointer.
    3407             :  */
    3408             : static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
    3409             :                                                    void *obj)
    3410             : {
    3411       61648 :         if (unlikely(slab_want_init_on_free(s)) && obj)
    3412           0 :                 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
    3413             :                         0, sizeof(void *));
    3414             : }
    3415             : 
    3416             : /*
    3417             :  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
    3418             :  * have the fastpath folded into their functions. So no function call
    3419             :  * overhead for requests that can be satisfied on the fastpath.
    3420             :  *
    3421             :  * The fastpath works by first checking if the lockless freelist can be used.
    3422             :  * If not then __slab_alloc is called for slow processing.
    3423             :  *
    3424             :  * Otherwise we can simply pick the next object from the lockless free list.
    3425             :  */
    3426             : static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
    3427             :                 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
    3428             : {
    3429             :         void *object;
    3430       61648 :         struct obj_cgroup *objcg = NULL;
    3431       61648 :         bool init = false;
    3432             : 
    3433      123296 :         s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
    3434       61648 :         if (!s)
    3435             :                 return NULL;
    3436             : 
    3437       61648 :         object = kfence_alloc(s, orig_size, gfpflags);
    3438             :         if (unlikely(object))
    3439             :                 goto out;
    3440             : 
    3441       61648 :         object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
    3442             : 
    3443      123296 :         maybe_wipe_obj_freeptr(s, object);
    3444      123296 :         init = slab_want_init_on_alloc(gfpflags, s);
    3445             : 
    3446             : out:
    3447             :         /*
    3448             :          * When init equals 'true', like for kzalloc() family, only
    3449             :          * @orig_size bytes might be zeroed instead of s->object_size
    3450             :          */
    3451       61648 :         slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
    3452             : 
    3453       61648 :         return object;
    3454             : }
    3455             : 
    3456             : static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
    3457             :                 gfp_t gfpflags, unsigned long addr, size_t orig_size)
    3458             : {
    3459       13669 :         return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
    3460             : }
    3461             : 
    3462             : static __fastpath_inline
    3463             : void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
    3464             :                              gfp_t gfpflags)
    3465             : {
    3466       27338 :         void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
    3467             : 
    3468       13669 :         trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
    3469             : 
    3470             :         return ret;
    3471             : }
    3472             : 
    3473       13569 : void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
    3474             : {
    3475       13569 :         return __kmem_cache_alloc_lru(s, NULL, gfpflags);
    3476             : }
    3477             : EXPORT_SYMBOL(kmem_cache_alloc);
    3478             : 
    3479         100 : void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
    3480             :                            gfp_t gfpflags)
    3481             : {
    3482         100 :         return __kmem_cache_alloc_lru(s, lru, gfpflags);
    3483             : }
    3484             : EXPORT_SYMBOL(kmem_cache_alloc_lru);
    3485             : 
    3486       47251 : void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
    3487             :                               int node, size_t orig_size,
    3488             :                               unsigned long caller)
    3489             : {
    3490       47251 :         return slab_alloc_node(s, NULL, gfpflags, node,
    3491             :                                caller, orig_size);
    3492             : }
    3493             : 
    3494         728 : void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
    3495             : {
    3496        1456 :         void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
    3497             : 
    3498         728 :         trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
    3499             : 
    3500         728 :         return ret;
    3501             : }
    3502             : EXPORT_SYMBOL(kmem_cache_alloc_node);
    3503             : 
    3504           0 : static noinline void free_to_partial_list(
    3505             :         struct kmem_cache *s, struct slab *slab,
    3506             :         void *head, void *tail, int bulk_cnt,
    3507             :         unsigned long addr)
    3508             : {
    3509           0 :         struct kmem_cache_node *n = get_node(s, slab_nid(slab));
    3510           0 :         struct slab *slab_free = NULL;
    3511           0 :         int cnt = bulk_cnt;
    3512             :         unsigned long flags;
    3513           0 :         depot_stack_handle_t handle = 0;
    3514             : 
    3515           0 :         if (s->flags & SLAB_STORE_USER)
    3516           0 :                 handle = set_track_prepare();
    3517             : 
    3518           0 :         spin_lock_irqsave(&n->list_lock, flags);
    3519             : 
    3520           0 :         if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
    3521           0 :                 void *prior = slab->freelist;
    3522             : 
    3523             :                 /* Perform the actual freeing while we still hold the locks */
    3524           0 :                 slab->inuse -= cnt;
    3525           0 :                 set_freepointer(s, tail, prior);
    3526           0 :                 slab->freelist = head;
    3527             : 
    3528             :                 /*
    3529             :                  * If the slab is empty, and node's partial list is full,
    3530             :                  * it should be discarded anyway no matter it's on full or
    3531             :                  * partial list.
    3532             :                  */
    3533           0 :                 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
    3534           0 :                         slab_free = slab;
    3535             : 
    3536           0 :                 if (!prior) {
    3537             :                         /* was on full list */
    3538           0 :                         remove_full(s, n, slab);
    3539           0 :                         if (!slab_free) {
    3540             :                                 add_partial(n, slab, DEACTIVATE_TO_TAIL);
    3541             :                                 stat(s, FREE_ADD_PARTIAL);
    3542             :                         }
    3543           0 :                 } else if (slab_free) {
    3544           0 :                         remove_partial(n, slab);
    3545             :                         stat(s, FREE_REMOVE_PARTIAL);
    3546             :                 }
    3547             :         }
    3548             : 
    3549           0 :         if (slab_free) {
    3550             :                 /*
    3551             :                  * Update the counters while still holding n->list_lock to
    3552             :                  * prevent spurious validation warnings
    3553             :                  */
    3554           0 :                 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
    3555             :         }
    3556             : 
    3557           0 :         spin_unlock_irqrestore(&n->list_lock, flags);
    3558             : 
    3559           0 :         if (slab_free) {
    3560           0 :                 stat(s, FREE_SLAB);
    3561           0 :                 free_slab(s, slab_free);
    3562             :         }
    3563           0 : }
    3564             : 
    3565             : /*
    3566             :  * Slow path handling. This may still be called frequently since objects
    3567             :  * have a longer lifetime than the cpu slabs in most processing loads.
    3568             :  *
    3569             :  * So we still attempt to reduce cache line usage. Just take the slab
    3570             :  * lock and free the item. If there is no additional partial slab
    3571             :  * handling required then we can return immediately.
    3572             :  */
    3573       39836 : static void __slab_free(struct kmem_cache *s, struct slab *slab,
    3574             :                         void *head, void *tail, int cnt,
    3575             :                         unsigned long addr)
    3576             : 
    3577             : {
    3578             :         void *prior;
    3579             :         int was_frozen;
    3580             :         struct slab new;
    3581             :         unsigned long counters;
    3582       39836 :         struct kmem_cache_node *n = NULL;
    3583             :         unsigned long flags;
    3584             : 
    3585       39836 :         stat(s, FREE_SLOWPATH);
    3586             : 
    3587       39836 :         if (kfence_free(head))
    3588       38083 :                 return;
    3589             : 
    3590       39836 :         if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
    3591           0 :                 free_to_partial_list(s, slab, head, tail, cnt, addr);
    3592           0 :                 return;
    3593             :         }
    3594             : 
    3595             :         do {
    3596       39836 :                 if (unlikely(n)) {
    3597           0 :                         spin_unlock_irqrestore(&n->list_lock, flags);
    3598           0 :                         n = NULL;
    3599             :                 }
    3600       39836 :                 prior = slab->freelist;
    3601       39836 :                 counters = slab->counters;
    3602       79672 :                 set_freepointer(s, tail, prior);
    3603       39836 :                 new.counters = counters;
    3604       39836 :                 was_frozen = new.frozen;
    3605       39836 :                 new.inuse -= cnt;
    3606       39836 :                 if ((!new.inuse || !prior) && !was_frozen) {
    3607             : 
    3608        3634 :                         if (kmem_cache_has_cpu_partial(s) && !prior) {
    3609             : 
    3610             :                                 /*
    3611             :                                  * Slab was on no list before and will be
    3612             :                                  * partially empty
    3613             :                                  * We can defer the list move and instead
    3614             :                                  * freeze it.
    3615             :                                  */
    3616             :                                 new.frozen = 1;
    3617             : 
    3618             :                         } else { /* Needs to be taken off a list */
    3619             : 
    3620       10902 :                                 n = get_node(s, slab_nid(slab));
    3621             :                                 /*
    3622             :                                  * Speculatively acquire the list_lock.
    3623             :                                  * If the cmpxchg does not succeed then we may
    3624             :                                  * drop the list_lock without any processing.
    3625             :                                  *
    3626             :                                  * Otherwise the list_lock will synchronize with
    3627             :                                  * other processors updating the list of slabs.
    3628             :                                  */
    3629        3634 :                                 spin_lock_irqsave(&n->list_lock, flags);
    3630             : 
    3631             :                         }
    3632             :                 }
    3633             : 
    3634       39836 :         } while (!cmpxchg_double_slab(s, slab,
    3635             :                 prior, counters,
    3636             :                 head, new.counters,
    3637       39836 :                 "__slab_free"));
    3638             : 
    3639       39836 :         if (likely(!n)) {
    3640             : 
    3641             :                 if (likely(was_frozen)) {
    3642             :                         /*
    3643             :                          * The list lock was not taken therefore no list
    3644             :                          * activity can be necessary.
    3645             :                          */
    3646             :                         stat(s, FREE_FROZEN);
    3647             :                 } else if (new.frozen) {
    3648             :                         /*
    3649             :                          * If we just froze the slab then put it onto the
    3650             :                          * per cpu partial list.
    3651             :                          */
    3652             :                         put_cpu_partial(s, slab, 1);
    3653             :                         stat(s, CPU_PARTIAL_FREE);
    3654             :                 }
    3655             : 
    3656             :                 return;
    3657             :         }
    3658             : 
    3659        3634 :         if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
    3660             :                 goto slab_empty;
    3661             : 
    3662             :         /*
    3663             :          * Objects left in the slab. If it was not on the partial list before
    3664             :          * then add it.
    3665             :          */
    3666        1881 :         if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
    3667        3694 :                 remove_full(s, n, slab);
    3668             :                 add_partial(n, slab, DEACTIVATE_TO_TAIL);
    3669             :                 stat(s, FREE_ADD_PARTIAL);
    3670             :         }
    3671        1881 :         spin_unlock_irqrestore(&n->list_lock, flags);
    3672             :         return;
    3673             : 
    3674             : slab_empty:
    3675        1753 :         if (prior) {
    3676             :                 /*
    3677             :                  * Slab on the partial list.
    3678             :                  */
    3679        1753 :                 remove_partial(n, slab);
    3680             :                 stat(s, FREE_REMOVE_PARTIAL);
    3681             :         } else {
    3682             :                 /* Slab must be on the full list */
    3683           0 :                 remove_full(s, n, slab);
    3684             :         }
    3685             : 
    3686        3506 :         spin_unlock_irqrestore(&n->list_lock, flags);
    3687        1753 :         stat(s, FREE_SLAB);
    3688        1753 :         discard_slab(s, slab);
    3689             : }
    3690             : 
    3691             : #ifndef CONFIG_SLUB_TINY
    3692             : /*
    3693             :  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
    3694             :  * can perform fastpath freeing without additional function calls.
    3695             :  *
    3696             :  * The fastpath is only possible if we are freeing to the current cpu slab
    3697             :  * of this processor. This typically the case if we have just allocated
    3698             :  * the item before.
    3699             :  *
    3700             :  * If fastpath is not possible then fall back to __slab_free where we deal
    3701             :  * with all sorts of special processing.
    3702             :  *
    3703             :  * Bulk free of a freelist with several objects (all pointing to the
    3704             :  * same slab) possible by specifying head and tail ptr, plus objects
    3705             :  * count (cnt). Bulk free indicated by tail pointer being set.
    3706             :  */
    3707             : static __always_inline void do_slab_free(struct kmem_cache *s,
    3708             :                                 struct slab *slab, void *head, void *tail,
    3709             :                                 int cnt, unsigned long addr)
    3710             : {
    3711       49059 :         void *tail_obj = tail ? : head;
    3712             :         struct kmem_cache_cpu *c;
    3713             :         unsigned long tid;
    3714             :         void **freelist;
    3715             : 
    3716             : redo:
    3717             :         /*
    3718             :          * Determine the currently cpus per cpu slab.
    3719             :          * The cpu may change afterward. However that does not matter since
    3720             :          * data is retrieved via this pointer. If we are on the same cpu
    3721             :          * during the cmpxchg then the free will succeed.
    3722             :          */
    3723       49059 :         c = raw_cpu_ptr(s->cpu_slab);
    3724       49059 :         tid = READ_ONCE(c->tid);
    3725             : 
    3726             :         /* Same with comment on barrier() in slab_alloc_node() */
    3727       49059 :         barrier();
    3728             : 
    3729       49059 :         if (unlikely(slab != c->slab)) {
    3730       39836 :                 __slab_free(s, slab, head, tail_obj, cnt, addr);
    3731             :                 return;
    3732             :         }
    3733             : 
    3734             :         if (USE_LOCKLESS_FAST_PATH()) {
    3735        9223 :                 freelist = READ_ONCE(c->freelist);
    3736             : 
    3737       18446 :                 set_freepointer(s, tail_obj, freelist);
    3738             : 
    3739       36892 :                 if (unlikely(!this_cpu_cmpxchg_double(
    3740             :                                 s->cpu_slab->freelist, s->cpu_slab->tid,
    3741             :                                 freelist, tid,
    3742             :                                 head, next_tid(tid)))) {
    3743             : 
    3744             :                         note_cmpxchg_failure("slab_free", s, tid);
    3745             :                         goto redo;
    3746             :                 }
    3747             :         } else {
    3748             :                 /* Update the free list under the local lock */
    3749             :                 local_lock(&s->cpu_slab->lock);
    3750             :                 c = this_cpu_ptr(s->cpu_slab);
    3751             :                 if (unlikely(slab != c->slab)) {
    3752             :                         local_unlock(&s->cpu_slab->lock);
    3753             :                         goto redo;
    3754             :                 }
    3755             :                 tid = c->tid;
    3756             :                 freelist = c->freelist;
    3757             : 
    3758             :                 set_freepointer(s, tail_obj, freelist);
    3759             :                 c->freelist = head;
    3760             :                 c->tid = next_tid(tid);
    3761             : 
    3762             :                 local_unlock(&s->cpu_slab->lock);
    3763             :         }
    3764             :         stat(s, FREE_FASTPATH);
    3765             : }
    3766             : #else /* CONFIG_SLUB_TINY */
    3767             : static void do_slab_free(struct kmem_cache *s,
    3768             :                                 struct slab *slab, void *head, void *tail,
    3769             :                                 int cnt, unsigned long addr)
    3770             : {
    3771             :         void *tail_obj = tail ? : head;
    3772             : 
    3773             :         __slab_free(s, slab, head, tail_obj, cnt, addr);
    3774             : }
    3775             : #endif /* CONFIG_SLUB_TINY */
    3776             : 
    3777             : static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
    3778             :                                       void *head, void *tail, void **p, int cnt,
    3779             :                                       unsigned long addr)
    3780             : {
    3781       49059 :         memcg_slab_free_hook(s, slab, p, cnt);
    3782             :         /*
    3783             :          * With KASAN enabled slab_free_freelist_hook modifies the freelist
    3784             :          * to remove objects, whose reuse must be delayed.
    3785             :          */
    3786       49059 :         if (slab_free_freelist_hook(s, &head, &tail, &cnt))
    3787       49059 :                 do_slab_free(s, slab, head, tail, cnt, addr);
    3788             : }
    3789             : 
    3790             : #ifdef CONFIG_KASAN_GENERIC
    3791             : void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
    3792             : {
    3793             :         do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
    3794             : }
    3795             : #endif
    3796             : 
    3797       43506 : void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
    3798             : {
    3799      130518 :         slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
    3800       43506 : }
    3801             : 
    3802        5553 : void kmem_cache_free(struct kmem_cache *s, void *x)
    3803             : {
    3804        5553 :         s = cache_from_obj(s, x);
    3805        5553 :         if (!s)
    3806             :                 return;
    3807        5553 :         trace_kmem_cache_free(_RET_IP_, x, s);
    3808       11106 :         slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
    3809             : }
    3810             : EXPORT_SYMBOL(kmem_cache_free);
    3811             : 
    3812             : struct detached_freelist {
    3813             :         struct slab *slab;
    3814             :         void *tail;
    3815             :         void *freelist;
    3816             :         int cnt;
    3817             :         struct kmem_cache *s;
    3818             : };
    3819             : 
    3820             : /*
    3821             :  * This function progressively scans the array with free objects (with
    3822             :  * a limited look ahead) and extract objects belonging to the same
    3823             :  * slab.  It builds a detached freelist directly within the given
    3824             :  * slab/objects.  This can happen without any need for
    3825             :  * synchronization, because the objects are owned by running process.
    3826             :  * The freelist is build up as a single linked list in the objects.
    3827             :  * The idea is, that this detached freelist can then be bulk
    3828             :  * transferred to the real freelist(s), but only requiring a single
    3829             :  * synchronization primitive.  Look ahead in the array is limited due
    3830             :  * to performance reasons.
    3831             :  */
    3832             : static inline
    3833           0 : int build_detached_freelist(struct kmem_cache *s, size_t size,
    3834             :                             void **p, struct detached_freelist *df)
    3835             : {
    3836           0 :         int lookahead = 3;
    3837             :         void *object;
    3838             :         struct folio *folio;
    3839             :         size_t same;
    3840             : 
    3841           0 :         object = p[--size];
    3842           0 :         folio = virt_to_folio(object);
    3843           0 :         if (!s) {
    3844             :                 /* Handle kalloc'ed objects */
    3845           0 :                 if (unlikely(!folio_test_slab(folio))) {
    3846           0 :                         free_large_kmalloc(folio, object);
    3847           0 :                         df->slab = NULL;
    3848           0 :                         return size;
    3849             :                 }
    3850             :                 /* Derive kmem_cache from object */
    3851           0 :                 df->slab = folio_slab(folio);
    3852           0 :                 df->s = df->slab->slab_cache;
    3853             :         } else {
    3854           0 :                 df->slab = folio_slab(folio);
    3855           0 :                 df->s = cache_from_obj(s, object); /* Support for memcg */
    3856             :         }
    3857             : 
    3858             :         /* Start new detached freelist */
    3859           0 :         df->tail = object;
    3860           0 :         df->freelist = object;
    3861           0 :         df->cnt = 1;
    3862             : 
    3863           0 :         if (is_kfence_address(object))
    3864             :                 return size;
    3865             : 
    3866           0 :         set_freepointer(df->s, object, NULL);
    3867             : 
    3868           0 :         same = size;
    3869           0 :         while (size) {
    3870           0 :                 object = p[--size];
    3871             :                 /* df->slab is always set at this point */
    3872           0 :                 if (df->slab == virt_to_slab(object)) {
    3873             :                         /* Opportunity build freelist */
    3874           0 :                         set_freepointer(df->s, object, df->freelist);
    3875           0 :                         df->freelist = object;
    3876           0 :                         df->cnt++;
    3877           0 :                         same--;
    3878           0 :                         if (size != same)
    3879           0 :                                 swap(p[size], p[same]);
    3880           0 :                         continue;
    3881             :                 }
    3882             : 
    3883             :                 /* Limit look ahead search */
    3884           0 :                 if (!--lookahead)
    3885             :                         break;
    3886             :         }
    3887             : 
    3888           0 :         return same;
    3889             : }
    3890             : 
    3891             : /* Note that interrupts must be enabled when calling this function. */
    3892           0 : void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
    3893             : {
    3894           0 :         if (!size)
    3895             :                 return;
    3896             : 
    3897             :         do {
    3898             :                 struct detached_freelist df;
    3899             : 
    3900           0 :                 size = build_detached_freelist(s, size, p, &df);
    3901           0 :                 if (!df.slab)
    3902           0 :                         continue;
    3903             : 
    3904           0 :                 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
    3905           0 :                           _RET_IP_);
    3906           0 :         } while (likely(size));
    3907             : }
    3908             : EXPORT_SYMBOL(kmem_cache_free_bulk);
    3909             : 
    3910             : #ifndef CONFIG_SLUB_TINY
    3911           0 : static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
    3912             :                         size_t size, void **p, struct obj_cgroup *objcg)
    3913             : {
    3914             :         struct kmem_cache_cpu *c;
    3915             :         unsigned long irqflags;
    3916             :         int i;
    3917             : 
    3918             :         /*
    3919             :          * Drain objects in the per cpu slab, while disabling local
    3920             :          * IRQs, which protects against PREEMPT and interrupts
    3921             :          * handlers invoking normal fastpath.
    3922             :          */
    3923           0 :         c = slub_get_cpu_ptr(s->cpu_slab);
    3924           0 :         local_lock_irqsave(&s->cpu_slab->lock, irqflags);
    3925             : 
    3926           0 :         for (i = 0; i < size; i++) {
    3927           0 :                 void *object = kfence_alloc(s, s->object_size, flags);
    3928             : 
    3929             :                 if (unlikely(object)) {
    3930             :                         p[i] = object;
    3931             :                         continue;
    3932             :                 }
    3933             : 
    3934           0 :                 object = c->freelist;
    3935           0 :                 if (unlikely(!object)) {
    3936             :                         /*
    3937             :                          * We may have removed an object from c->freelist using
    3938             :                          * the fastpath in the previous iteration; in that case,
    3939             :                          * c->tid has not been bumped yet.
    3940             :                          * Since ___slab_alloc() may reenable interrupts while
    3941             :                          * allocating memory, we should bump c->tid now.
    3942             :                          */
    3943           0 :                         c->tid = next_tid(c->tid);
    3944             : 
    3945           0 :                         local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
    3946             : 
    3947             :                         /*
    3948             :                          * Invoking slow path likely have side-effect
    3949             :                          * of re-populating per CPU c->freelist
    3950             :                          */
    3951           0 :                         p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
    3952           0 :                                             _RET_IP_, c, s->object_size);
    3953           0 :                         if (unlikely(!p[i]))
    3954             :                                 goto error;
    3955             : 
    3956           0 :                         c = this_cpu_ptr(s->cpu_slab);
    3957           0 :                         maybe_wipe_obj_freeptr(s, p[i]);
    3958             : 
    3959           0 :                         local_lock_irqsave(&s->cpu_slab->lock, irqflags);
    3960             : 
    3961           0 :                         continue; /* goto for-loop */
    3962             :                 }
    3963           0 :                 c->freelist = get_freepointer(s, object);
    3964           0 :                 p[i] = object;
    3965           0 :                 maybe_wipe_obj_freeptr(s, p[i]);
    3966             :         }
    3967           0 :         c->tid = next_tid(c->tid);
    3968           0 :         local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
    3969           0 :         slub_put_cpu_ptr(s->cpu_slab);
    3970             : 
    3971           0 :         return i;
    3972             : 
    3973             : error:
    3974           0 :         slub_put_cpu_ptr(s->cpu_slab);
    3975           0 :         slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
    3976           0 :         kmem_cache_free_bulk(s, i, p);
    3977           0 :         return 0;
    3978             : 
    3979             : }
    3980             : #else /* CONFIG_SLUB_TINY */
    3981             : static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
    3982             :                         size_t size, void **p, struct obj_cgroup *objcg)
    3983             : {
    3984             :         int i;
    3985             : 
    3986             :         for (i = 0; i < size; i++) {
    3987             :                 void *object = kfence_alloc(s, s->object_size, flags);
    3988             : 
    3989             :                 if (unlikely(object)) {
    3990             :                         p[i] = object;
    3991             :                         continue;
    3992             :                 }
    3993             : 
    3994             :                 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
    3995             :                                          _RET_IP_, s->object_size);
    3996             :                 if (unlikely(!p[i]))
    3997             :                         goto error;
    3998             : 
    3999             :                 maybe_wipe_obj_freeptr(s, p[i]);
    4000             :         }
    4001             : 
    4002             :         return i;
    4003             : 
    4004             : error:
    4005             :         slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
    4006             :         kmem_cache_free_bulk(s, i, p);
    4007             :         return 0;
    4008             : }
    4009             : #endif /* CONFIG_SLUB_TINY */
    4010             : 
    4011             : /* Note that interrupts must be enabled when calling this function. */
    4012           0 : int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
    4013             :                           void **p)
    4014             : {
    4015             :         int i;
    4016           0 :         struct obj_cgroup *objcg = NULL;
    4017             : 
    4018           0 :         if (!size)
    4019             :                 return 0;
    4020             : 
    4021             :         /* memcg and kmem_cache debug support */
    4022           0 :         s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
    4023           0 :         if (unlikely(!s))
    4024             :                 return 0;
    4025             : 
    4026           0 :         i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
    4027             : 
    4028             :         /*
    4029             :          * memcg and kmem_cache debug support and memory initialization.
    4030             :          * Done outside of the IRQ disabled fastpath loop.
    4031             :          */
    4032           0 :         if (i != 0)
    4033           0 :                 slab_post_alloc_hook(s, objcg, flags, size, p,
    4034           0 :                         slab_want_init_on_alloc(flags, s), s->object_size);
    4035             :         return i;
    4036             : }
    4037             : EXPORT_SYMBOL(kmem_cache_alloc_bulk);
    4038             : 
    4039             : 
    4040             : /*
    4041             :  * Object placement in a slab is made very easy because we always start at
    4042             :  * offset 0. If we tune the size of the object to the alignment then we can
    4043             :  * get the required alignment by putting one properly sized object after
    4044             :  * another.
    4045             :  *
    4046             :  * Notice that the allocation order determines the sizes of the per cpu
    4047             :  * caches. Each processor has always one slab available for allocations.
    4048             :  * Increasing the allocation order reduces the number of times that slabs
    4049             :  * must be moved on and off the partial lists and is therefore a factor in
    4050             :  * locking overhead.
    4051             :  */
    4052             : 
    4053             : /*
    4054             :  * Minimum / Maximum order of slab pages. This influences locking overhead
    4055             :  * and slab fragmentation. A higher order reduces the number of partial slabs
    4056             :  * and increases the number of allocations possible without having to
    4057             :  * take the list_lock.
    4058             :  */
    4059             : static unsigned int slub_min_order;
    4060             : static unsigned int slub_max_order =
    4061             :         IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
    4062             : static unsigned int slub_min_objects;
    4063             : 
    4064             : /*
    4065             :  * Calculate the order of allocation given an slab object size.
    4066             :  *
    4067             :  * The order of allocation has significant impact on performance and other
    4068             :  * system components. Generally order 0 allocations should be preferred since
    4069             :  * order 0 does not cause fragmentation in the page allocator. Larger objects
    4070             :  * be problematic to put into order 0 slabs because there may be too much
    4071             :  * unused space left. We go to a higher order if more than 1/16th of the slab
    4072             :  * would be wasted.
    4073             :  *
    4074             :  * In order to reach satisfactory performance we must ensure that a minimum
    4075             :  * number of objects is in one slab. Otherwise we may generate too much
    4076             :  * activity on the partial lists which requires taking the list_lock. This is
    4077             :  * less a concern for large slabs though which are rarely used.
    4078             :  *
    4079             :  * slub_max_order specifies the order where we begin to stop considering the
    4080             :  * number of objects in a slab as critical. If we reach slub_max_order then
    4081             :  * we try to keep the page order as low as possible. So we accept more waste
    4082             :  * of space in favor of a small page order.
    4083             :  *
    4084             :  * Higher order allocations also allow the placement of more objects in a
    4085             :  * slab and thereby reduce object handling overhead. If the user has
    4086             :  * requested a higher minimum order then we start with that one instead of
    4087             :  * the smallest order which will fit the object.
    4088             :  */
    4089          54 : static inline unsigned int calc_slab_order(unsigned int size,
    4090             :                 unsigned int min_objects, unsigned int max_order,
    4091             :                 unsigned int fract_leftover)
    4092             : {
    4093          54 :         unsigned int min_order = slub_min_order;
    4094             :         unsigned int order;
    4095             : 
    4096          54 :         if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
    4097           0 :                 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
    4098             : 
    4099         164 :         for (order = max(min_order, (unsigned int)get_order(min_objects * size));
    4100           2 :                         order <= max_order; order++) {
    4101             : 
    4102          55 :                 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
    4103             :                 unsigned int rem;
    4104             : 
    4105          55 :                 rem = slab_size % size;
    4106             : 
    4107          55 :                 if (rem <= slab_size / fract_leftover)
    4108             :                         break;
    4109             :         }
    4110             : 
    4111             :         return order;
    4112             : }
    4113             : 
    4114          53 : static inline int calculate_order(unsigned int size)
    4115             : {
    4116             :         unsigned int order;
    4117             :         unsigned int min_objects;
    4118             :         unsigned int max_objects;
    4119             :         unsigned int nr_cpus;
    4120             : 
    4121             :         /*
    4122             :          * Attempt to find best configuration for a slab. This
    4123             :          * works by first attempting to generate a layout with
    4124             :          * the best configuration and backing off gradually.
    4125             :          *
    4126             :          * First we increase the acceptable waste in a slab. Then
    4127             :          * we reduce the minimum objects required in a slab.
    4128             :          */
    4129          53 :         min_objects = slub_min_objects;
    4130          53 :         if (!min_objects) {
    4131             :                 /*
    4132             :                  * Some architectures will only update present cpus when
    4133             :                  * onlining them, so don't trust the number if it's just 1. But
    4134             :                  * we also don't want to use nr_cpu_ids always, as on some other
    4135             :                  * architectures, there can be many possible cpus, but never
    4136             :                  * onlined. Here we compromise between trying to avoid too high
    4137             :                  * order on systems that appear larger than they are, and too
    4138             :                  * low order on systems that appear smaller than they are.
    4139             :                  */
    4140          53 :                 nr_cpus = num_present_cpus();
    4141             :                 if (nr_cpus <= 1)
    4142          53 :                         nr_cpus = nr_cpu_ids;
    4143          53 :                 min_objects = 4 * (fls(nr_cpus) + 1);
    4144             :         }
    4145         106 :         max_objects = order_objects(slub_max_order, size);
    4146          53 :         min_objects = min(min_objects, max_objects);
    4147             : 
    4148         106 :         while (min_objects > 1) {
    4149             :                 unsigned int fraction;
    4150             : 
    4151             :                 fraction = 16;
    4152          54 :                 while (fraction >= 4) {
    4153          54 :                         order = calc_slab_order(size, min_objects,
    4154             :                                         slub_max_order, fraction);
    4155          54 :                         if (order <= slub_max_order)
    4156          53 :                                 return order;
    4157           1 :                         fraction /= 2;
    4158             :                 }
    4159           0 :                 min_objects--;
    4160             :         }
    4161             : 
    4162             :         /*
    4163             :          * We were unable to place multiple objects in a slab. Now
    4164             :          * lets see if we can place a single object there.
    4165             :          */
    4166           0 :         order = calc_slab_order(size, 1, slub_max_order, 1);
    4167           0 :         if (order <= slub_max_order)
    4168           0 :                 return order;
    4169             : 
    4170             :         /*
    4171             :          * Doh this slab cannot be placed using slub_max_order.
    4172             :          */
    4173           0 :         order = calc_slab_order(size, 1, MAX_ORDER, 1);
    4174           0 :         if (order <= MAX_ORDER)
    4175           0 :                 return order;
    4176             :         return -ENOSYS;
    4177             : }
    4178             : 
    4179             : static void
    4180             : init_kmem_cache_node(struct kmem_cache_node *n)
    4181             : {
    4182          53 :         n->nr_partial = 0;
    4183          53 :         spin_lock_init(&n->list_lock);
    4184         106 :         INIT_LIST_HEAD(&n->partial);
    4185             : #ifdef CONFIG_SLUB_DEBUG
    4186         106 :         atomic_long_set(&n->nr_slabs, 0);
    4187         106 :         atomic_long_set(&n->total_objects, 0);
    4188         106 :         INIT_LIST_HEAD(&n->full);
    4189             : #endif
    4190             : }
    4191             : 
    4192             : #ifndef CONFIG_SLUB_TINY
    4193          53 : static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
    4194             : {
    4195             :         BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
    4196             :                         NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
    4197             :                         sizeof(struct kmem_cache_cpu));
    4198             : 
    4199             :         /*
    4200             :          * Must align to double word boundary for the double cmpxchg
    4201             :          * instructions to work; see __pcpu_double_call_return_bool().
    4202             :          */
    4203          53 :         s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
    4204             :                                      2 * sizeof(void *));
    4205             : 
    4206          53 :         if (!s->cpu_slab)
    4207             :                 return 0;
    4208             : 
    4209             :         init_kmem_cache_cpus(s);
    4210             : 
    4211             :         return 1;
    4212             : }
    4213             : #else
    4214             : static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
    4215             : {
    4216             :         return 1;
    4217             : }
    4218             : #endif /* CONFIG_SLUB_TINY */
    4219             : 
    4220             : static struct kmem_cache *kmem_cache_node;
    4221             : 
    4222             : /*
    4223             :  * No kmalloc_node yet so do it by hand. We know that this is the first
    4224             :  * slab on the node for this slabcache. There are no concurrent accesses
    4225             :  * possible.
    4226             :  *
    4227             :  * Note that this function only works on the kmem_cache_node
    4228             :  * when allocating for the kmem_cache_node. This is used for bootstrapping
    4229             :  * memory on a fresh node that has no slab structures yet.
    4230             :  */
    4231           1 : static void early_kmem_cache_node_alloc(int node)
    4232             : {
    4233             :         struct slab *slab;
    4234             :         struct kmem_cache_node *n;
    4235             : 
    4236           1 :         BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
    4237             : 
    4238           1 :         slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
    4239             : 
    4240           1 :         BUG_ON(!slab);
    4241           3 :         inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
    4242           2 :         if (slab_nid(slab) != node) {
    4243           0 :                 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
    4244           0 :                 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
    4245             :         }
    4246             : 
    4247           1 :         n = slab->freelist;
    4248           1 :         BUG_ON(!n);
    4249             : #ifdef CONFIG_SLUB_DEBUG
    4250           1 :         init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
    4251           1 :         init_tracking(kmem_cache_node, n);
    4252             : #endif
    4253           1 :         n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
    4254           2 :         slab->freelist = get_freepointer(kmem_cache_node, n);
    4255           1 :         slab->inuse = 1;
    4256           1 :         kmem_cache_node->node[node] = n;
    4257           1 :         init_kmem_cache_node(n);
    4258           2 :         inc_slabs_node(kmem_cache_node, node, slab->objects);
    4259             : 
    4260             :         /*
    4261             :          * No locks need to be taken here as it has just been
    4262             :          * initialized and there is no concurrent access.
    4263             :          */
    4264           1 :         __add_partial(n, slab, DEACTIVATE_TO_HEAD);
    4265           1 : }
    4266             : 
    4267           0 : static void free_kmem_cache_nodes(struct kmem_cache *s)
    4268             : {
    4269             :         int node;
    4270             :         struct kmem_cache_node *n;
    4271             : 
    4272           0 :         for_each_kmem_cache_node(s, node, n) {
    4273           0 :                 s->node[node] = NULL;
    4274           0 :                 kmem_cache_free(kmem_cache_node, n);
    4275             :         }
    4276           0 : }
    4277             : 
    4278           0 : void __kmem_cache_release(struct kmem_cache *s)
    4279             : {
    4280           0 :         cache_random_seq_destroy(s);
    4281             : #ifndef CONFIG_SLUB_TINY
    4282           0 :         free_percpu(s->cpu_slab);
    4283             : #endif
    4284           0 :         free_kmem_cache_nodes(s);
    4285           0 : }
    4286             : 
    4287          53 : static int init_kmem_cache_nodes(struct kmem_cache *s)
    4288             : {
    4289             :         int node;
    4290             : 
    4291         159 :         for_each_node_mask(node, slab_nodes) {
    4292             :                 struct kmem_cache_node *n;
    4293             : 
    4294          53 :                 if (slab_state == DOWN) {
    4295           1 :                         early_kmem_cache_node_alloc(node);
    4296           1 :                         continue;
    4297             :                 }
    4298          52 :                 n = kmem_cache_alloc_node(kmem_cache_node,
    4299             :                                                 GFP_KERNEL, node);
    4300             : 
    4301          52 :                 if (!n) {
    4302           0 :                         free_kmem_cache_nodes(s);
    4303           0 :                         return 0;
    4304             :                 }
    4305             : 
    4306          52 :                 init_kmem_cache_node(n);
    4307          52 :                 s->node[node] = n;
    4308             :         }
    4309             :         return 1;
    4310             : }
    4311             : 
    4312             : static void set_cpu_partial(struct kmem_cache *s)
    4313             : {
    4314             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    4315             :         unsigned int nr_objects;
    4316             : 
    4317             :         /*
    4318             :          * cpu_partial determined the maximum number of objects kept in the
    4319             :          * per cpu partial lists of a processor.
    4320             :          *
    4321             :          * Per cpu partial lists mainly contain slabs that just have one
    4322             :          * object freed. If they are used for allocation then they can be
    4323             :          * filled up again with minimal effort. The slab will never hit the
    4324             :          * per node partial lists and therefore no locking will be required.
    4325             :          *
    4326             :          * For backwards compatibility reasons, this is determined as number
    4327             :          * of objects, even though we now limit maximum number of pages, see
    4328             :          * slub_set_cpu_partial()
    4329             :          */
    4330             :         if (!kmem_cache_has_cpu_partial(s))
    4331             :                 nr_objects = 0;
    4332             :         else if (s->size >= PAGE_SIZE)
    4333             :                 nr_objects = 6;
    4334             :         else if (s->size >= 1024)
    4335             :                 nr_objects = 24;
    4336             :         else if (s->size >= 256)
    4337             :                 nr_objects = 52;
    4338             :         else
    4339             :                 nr_objects = 120;
    4340             : 
    4341             :         slub_set_cpu_partial(s, nr_objects);
    4342             : #endif
    4343             : }
    4344             : 
    4345             : /*
    4346             :  * calculate_sizes() determines the order and the distribution of data within
    4347             :  * a slab object.
    4348             :  */
    4349          53 : static int calculate_sizes(struct kmem_cache *s)
    4350             : {
    4351          53 :         slab_flags_t flags = s->flags;
    4352          53 :         unsigned int size = s->object_size;
    4353             :         unsigned int order;
    4354             : 
    4355             :         /*
    4356             :          * Round up object size to the next word boundary. We can only
    4357             :          * place the free pointer at word boundaries and this determines
    4358             :          * the possible location of the free pointer.
    4359             :          */
    4360          53 :         size = ALIGN(size, sizeof(void *));
    4361             : 
    4362             : #ifdef CONFIG_SLUB_DEBUG
    4363             :         /*
    4364             :          * Determine if we can poison the object itself. If the user of
    4365             :          * the slab may touch the object after free or before allocation
    4366             :          * then we should never poison the object itself.
    4367             :          */
    4368          53 :         if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
    4369           0 :                         !s->ctor)
    4370           0 :                 s->flags |= __OBJECT_POISON;
    4371             :         else
    4372          53 :                 s->flags &= ~__OBJECT_POISON;
    4373             : 
    4374             : 
    4375             :         /*
    4376             :          * If we are Redzoning then check if there is some space between the
    4377             :          * end of the object and the free pointer. If not then add an
    4378             :          * additional word to have some bytes to store Redzone information.
    4379             :          */
    4380          53 :         if ((flags & SLAB_RED_ZONE) && size == s->object_size)
    4381           0 :                 size += sizeof(void *);
    4382             : #endif
    4383             : 
    4384             :         /*
    4385             :          * With that we have determined the number of bytes in actual use
    4386             :          * by the object and redzoning.
    4387             :          */
    4388          53 :         s->inuse = size;
    4389             : 
    4390          53 :         if (slub_debug_orig_size(s) ||
    4391          48 :             (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
    4392          48 :             ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
    4393          48 :             s->ctor) {
    4394             :                 /*
    4395             :                  * Relocate free pointer after the object if it is not
    4396             :                  * permitted to overwrite the first word of the object on
    4397             :                  * kmem_cache_free.
    4398             :                  *
    4399             :                  * This is the case if we do RCU, have a constructor or
    4400             :                  * destructor, are poisoning the objects, or are
    4401             :                  * redzoning an object smaller than sizeof(void *).
    4402             :                  *
    4403             :                  * The assumption that s->offset >= s->inuse means free
    4404             :                  * pointer is outside of the object is used in the
    4405             :                  * freeptr_outside_object() function. If that is no
    4406             :                  * longer true, the function needs to be modified.
    4407             :                  */
    4408          10 :                 s->offset = size;
    4409          10 :                 size += sizeof(void *);
    4410             :         } else {
    4411             :                 /*
    4412             :                  * Store freelist pointer near middle of object to keep
    4413             :                  * it away from the edges of the object to avoid small
    4414             :                  * sized over/underflows from neighboring allocations.
    4415             :                  */
    4416          43 :                 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
    4417             :         }
    4418             : 
    4419             : #ifdef CONFIG_SLUB_DEBUG
    4420          53 :         if (flags & SLAB_STORE_USER) {
    4421             :                 /*
    4422             :                  * Need to store information about allocs and frees after
    4423             :                  * the object.
    4424             :                  */
    4425           0 :                 size += 2 * sizeof(struct track);
    4426             : 
    4427             :                 /* Save the original kmalloc request size */
    4428           0 :                 if (flags & SLAB_KMALLOC)
    4429           0 :                         size += sizeof(unsigned int);
    4430             :         }
    4431             : #endif
    4432             : 
    4433          53 :         kasan_cache_create(s, &size, &s->flags);
    4434             : #ifdef CONFIG_SLUB_DEBUG
    4435          53 :         if (flags & SLAB_RED_ZONE) {
    4436             :                 /*
    4437             :                  * Add some empty padding so that we can catch
    4438             :                  * overwrites from earlier objects rather than let
    4439             :                  * tracking information or the free pointer be
    4440             :                  * corrupted if a user writes before the start
    4441             :                  * of the object.
    4442             :                  */
    4443           0 :                 size += sizeof(void *);
    4444             : 
    4445             :                 s->red_left_pad = sizeof(void *);
    4446           0 :                 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
    4447           0 :                 size += s->red_left_pad;
    4448             :         }
    4449             : #endif
    4450             : 
    4451             :         /*
    4452             :          * SLUB stores one object immediately after another beginning from
    4453             :          * offset 0. In order to align the objects we have to simply size
    4454             :          * each object to conform to the alignment.
    4455             :          */
    4456          53 :         size = ALIGN(size, s->align);
    4457          53 :         s->size = size;
    4458          53 :         s->reciprocal_size = reciprocal_value(size);
    4459          53 :         order = calculate_order(size);
    4460             : 
    4461          53 :         if ((int)order < 0)
    4462             :                 return 0;
    4463             : 
    4464          53 :         s->allocflags = 0;
    4465          53 :         if (order)
    4466          18 :                 s->allocflags |= __GFP_COMP;
    4467             : 
    4468          53 :         if (s->flags & SLAB_CACHE_DMA)
    4469           0 :                 s->allocflags |= GFP_DMA;
    4470             : 
    4471          53 :         if (s->flags & SLAB_CACHE_DMA32)
    4472           0 :                 s->allocflags |= GFP_DMA32;
    4473             : 
    4474          53 :         if (s->flags & SLAB_RECLAIM_ACCOUNT)
    4475          18 :                 s->allocflags |= __GFP_RECLAIMABLE;
    4476             : 
    4477             :         /*
    4478             :          * Determine the number of objects per slab
    4479             :          */
    4480         106 :         s->oo = oo_make(order, size);
    4481         159 :         s->min = oo_make(get_order(size), size);
    4482             : 
    4483          53 :         return !!oo_objects(s->oo);
    4484             : }
    4485             : 
    4486          53 : static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
    4487             : {
    4488          53 :         s->flags = kmem_cache_flags(s->size, flags, s->name);
    4489             : #ifdef CONFIG_SLAB_FREELIST_HARDENED
    4490             :         s->random = get_random_long();
    4491             : #endif
    4492             : 
    4493          53 :         if (!calculate_sizes(s))
    4494             :                 goto error;
    4495          53 :         if (disable_higher_order_debug) {
    4496             :                 /*
    4497             :                  * Disable debugging flags that store metadata if the min slab
    4498             :                  * order increased.
    4499             :                  */
    4500           0 :                 if (get_order(s->size) > get_order(s->object_size)) {
    4501           0 :                         s->flags &= ~DEBUG_METADATA_FLAGS;
    4502           0 :                         s->offset = 0;
    4503           0 :                         if (!calculate_sizes(s))
    4504             :                                 goto error;
    4505             :                 }
    4506             :         }
    4507             : 
    4508             : #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    4509             :     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
    4510             :         if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
    4511             :                 /* Enable fast mode */
    4512             :                 s->flags |= __CMPXCHG_DOUBLE;
    4513             : #endif
    4514             : 
    4515             :         /*
    4516             :          * The larger the object size is, the more slabs we want on the partial
    4517             :          * list to avoid pounding the page allocator excessively.
    4518             :          */
    4519         106 :         s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
    4520          53 :         s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
    4521             : 
    4522          53 :         set_cpu_partial(s);
    4523             : 
    4524             : #ifdef CONFIG_NUMA
    4525             :         s->remote_node_defrag_ratio = 1000;
    4526             : #endif
    4527             : 
    4528             :         /* Initialize the pre-computed randomized freelist if slab is up */
    4529             :         if (slab_state >= UP) {
    4530             :                 if (init_cache_random_seq(s))
    4531             :                         goto error;
    4532             :         }
    4533             : 
    4534          53 :         if (!init_kmem_cache_nodes(s))
    4535             :                 goto error;
    4536             : 
    4537          53 :         if (alloc_kmem_cache_cpus(s))
    4538             :                 return 0;
    4539             : 
    4540             : error:
    4541           0 :         __kmem_cache_release(s);
    4542           0 :         return -EINVAL;
    4543             : }
    4544             : 
    4545           0 : static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
    4546             :                               const char *text)
    4547             : {
    4548             : #ifdef CONFIG_SLUB_DEBUG
    4549           0 :         void *addr = slab_address(slab);
    4550             :         void *p;
    4551             : 
    4552           0 :         slab_err(s, slab, text, s->name);
    4553             : 
    4554           0 :         spin_lock(&object_map_lock);
    4555           0 :         __fill_map(object_map, s, slab);
    4556             : 
    4557           0 :         for_each_object(p, s, addr, slab->objects) {
    4558             : 
    4559           0 :                 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
    4560           0 :                         pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
    4561           0 :                         print_tracking(s, p);
    4562             :                 }
    4563             :         }
    4564           0 :         spin_unlock(&object_map_lock);
    4565             : #endif
    4566           0 : }
    4567             : 
    4568             : /*
    4569             :  * Attempt to free all partial slabs on a node.
    4570             :  * This is called from __kmem_cache_shutdown(). We must take list_lock
    4571             :  * because sysfs file might still access partial list after the shutdowning.
    4572             :  */
    4573           0 : static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
    4574             : {
    4575           0 :         LIST_HEAD(discard);
    4576             :         struct slab *slab, *h;
    4577             : 
    4578           0 :         BUG_ON(irqs_disabled());
    4579           0 :         spin_lock_irq(&n->list_lock);
    4580           0 :         list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
    4581           0 :                 if (!slab->inuse) {
    4582           0 :                         remove_partial(n, slab);
    4583           0 :                         list_add(&slab->slab_list, &discard);
    4584             :                 } else {
    4585           0 :                         list_slab_objects(s, slab,
    4586             :                           "Objects remaining in %s on __kmem_cache_shutdown()");
    4587             :                 }
    4588             :         }
    4589           0 :         spin_unlock_irq(&n->list_lock);
    4590             : 
    4591           0 :         list_for_each_entry_safe(slab, h, &discard, slab_list)
    4592           0 :                 discard_slab(s, slab);
    4593           0 : }
    4594             : 
    4595           0 : bool __kmem_cache_empty(struct kmem_cache *s)
    4596             : {
    4597             :         int node;
    4598             :         struct kmem_cache_node *n;
    4599             : 
    4600           0 :         for_each_kmem_cache_node(s, node, n)
    4601           0 :                 if (n->nr_partial || slabs_node(s, node))
    4602             :                         return false;
    4603             :         return true;
    4604             : }
    4605             : 
    4606             : /*
    4607             :  * Release all resources used by a slab cache.
    4608             :  */
    4609           0 : int __kmem_cache_shutdown(struct kmem_cache *s)
    4610             : {
    4611             :         int node;
    4612             :         struct kmem_cache_node *n;
    4613             : 
    4614           0 :         flush_all_cpus_locked(s);
    4615             :         /* Attempt to free all objects */
    4616           0 :         for_each_kmem_cache_node(s, node, n) {
    4617           0 :                 free_partial(s, n);
    4618           0 :                 if (n->nr_partial || slabs_node(s, node))
    4619             :                         return 1;
    4620             :         }
    4621             :         return 0;
    4622             : }
    4623             : 
    4624             : #ifdef CONFIG_PRINTK
    4625           0 : void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
    4626             : {
    4627             :         void *base;
    4628             :         int __maybe_unused i;
    4629             :         unsigned int objnr;
    4630             :         void *objp;
    4631             :         void *objp0;
    4632           0 :         struct kmem_cache *s = slab->slab_cache;
    4633             :         struct track __maybe_unused *trackp;
    4634             : 
    4635           0 :         kpp->kp_ptr = object;
    4636           0 :         kpp->kp_slab = slab;
    4637           0 :         kpp->kp_slab_cache = s;
    4638           0 :         base = slab_address(slab);
    4639           0 :         objp0 = kasan_reset_tag(object);
    4640             : #ifdef CONFIG_SLUB_DEBUG
    4641           0 :         objp = restore_red_left(s, objp0);
    4642             : #else
    4643             :         objp = objp0;
    4644             : #endif
    4645           0 :         objnr = obj_to_index(s, slab, objp);
    4646           0 :         kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
    4647           0 :         objp = base + s->size * objnr;
    4648           0 :         kpp->kp_objp = objp;
    4649           0 :         if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
    4650           0 :                          || (objp - base) % s->size) ||
    4651           0 :             !(s->flags & SLAB_STORE_USER))
    4652             :                 return;
    4653             : #ifdef CONFIG_SLUB_DEBUG
    4654           0 :         objp = fixup_red_left(s, objp);
    4655           0 :         trackp = get_track(s, objp, TRACK_ALLOC);
    4656           0 :         kpp->kp_ret = (void *)trackp->addr;
    4657             : #ifdef CONFIG_STACKDEPOT
    4658             :         {
    4659             :                 depot_stack_handle_t handle;
    4660             :                 unsigned long *entries;
    4661             :                 unsigned int nr_entries;
    4662             : 
    4663           0 :                 handle = READ_ONCE(trackp->handle);
    4664           0 :                 if (handle) {
    4665           0 :                         nr_entries = stack_depot_fetch(handle, &entries);
    4666           0 :                         for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
    4667           0 :                                 kpp->kp_stack[i] = (void *)entries[i];
    4668             :                 }
    4669             : 
    4670           0 :                 trackp = get_track(s, objp, TRACK_FREE);
    4671           0 :                 handle = READ_ONCE(trackp->handle);
    4672           0 :                 if (handle) {
    4673           0 :                         nr_entries = stack_depot_fetch(handle, &entries);
    4674           0 :                         for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
    4675           0 :                                 kpp->kp_free_stack[i] = (void *)entries[i];
    4676             :                 }
    4677             :         }
    4678             : #endif
    4679             : #endif
    4680             : }
    4681             : #endif
    4682             : 
    4683             : /********************************************************************
    4684             :  *              Kmalloc subsystem
    4685             :  *******************************************************************/
    4686             : 
    4687           0 : static int __init setup_slub_min_order(char *str)
    4688             : {
    4689           0 :         get_option(&str, (int *)&slub_min_order);
    4690             : 
    4691           0 :         return 1;
    4692             : }
    4693             : 
    4694             : __setup("slub_min_order=", setup_slub_min_order);
    4695             : 
    4696           0 : static int __init setup_slub_max_order(char *str)
    4697             : {
    4698           0 :         get_option(&str, (int *)&slub_max_order);
    4699           0 :         slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
    4700             : 
    4701           0 :         return 1;
    4702             : }
    4703             : 
    4704             : __setup("slub_max_order=", setup_slub_max_order);
    4705             : 
    4706           0 : static int __init setup_slub_min_objects(char *str)
    4707             : {
    4708           0 :         get_option(&str, (int *)&slub_min_objects);
    4709             : 
    4710           0 :         return 1;
    4711             : }
    4712             : 
    4713             : __setup("slub_min_objects=", setup_slub_min_objects);
    4714             : 
    4715             : #ifdef CONFIG_HARDENED_USERCOPY
    4716             : /*
    4717             :  * Rejects incorrectly sized objects and objects that are to be copied
    4718             :  * to/from userspace but do not fall entirely within the containing slab
    4719             :  * cache's usercopy region.
    4720             :  *
    4721             :  * Returns NULL if check passes, otherwise const char * to name of cache
    4722             :  * to indicate an error.
    4723             :  */
    4724             : void __check_heap_object(const void *ptr, unsigned long n,
    4725             :                          const struct slab *slab, bool to_user)
    4726             : {
    4727             :         struct kmem_cache *s;
    4728             :         unsigned int offset;
    4729             :         bool is_kfence = is_kfence_address(ptr);
    4730             : 
    4731             :         ptr = kasan_reset_tag(ptr);
    4732             : 
    4733             :         /* Find object and usable object size. */
    4734             :         s = slab->slab_cache;
    4735             : 
    4736             :         /* Reject impossible pointers. */
    4737             :         if (ptr < slab_address(slab))
    4738             :                 usercopy_abort("SLUB object not in SLUB page?!", NULL,
    4739             :                                to_user, 0, n);
    4740             : 
    4741             :         /* Find offset within object. */
    4742             :         if (is_kfence)
    4743             :                 offset = ptr - kfence_object_start(ptr);
    4744             :         else
    4745             :                 offset = (ptr - slab_address(slab)) % s->size;
    4746             : 
    4747             :         /* Adjust for redzone and reject if within the redzone. */
    4748             :         if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
    4749             :                 if (offset < s->red_left_pad)
    4750             :                         usercopy_abort("SLUB object in left red zone",
    4751             :                                        s->name, to_user, offset, n);
    4752             :                 offset -= s->red_left_pad;
    4753             :         }
    4754             : 
    4755             :         /* Allow address range falling entirely within usercopy region. */
    4756             :         if (offset >= s->useroffset &&
    4757             :             offset - s->useroffset <= s->usersize &&
    4758             :             n <= s->useroffset - offset + s->usersize)
    4759             :                 return;
    4760             : 
    4761             :         usercopy_abort("SLUB object", s->name, to_user, offset, n);
    4762             : }
    4763             : #endif /* CONFIG_HARDENED_USERCOPY */
    4764             : 
    4765             : #define SHRINK_PROMOTE_MAX 32
    4766             : 
    4767             : /*
    4768             :  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
    4769             :  * up most to the head of the partial lists. New allocations will then
    4770             :  * fill those up and thus they can be removed from the partial lists.
    4771             :  *
    4772             :  * The slabs with the least items are placed last. This results in them
    4773             :  * being allocated from last increasing the chance that the last objects
    4774             :  * are freed in them.
    4775             :  */
    4776           0 : static int __kmem_cache_do_shrink(struct kmem_cache *s)
    4777             : {
    4778             :         int node;
    4779             :         int i;
    4780             :         struct kmem_cache_node *n;
    4781             :         struct slab *slab;
    4782             :         struct slab *t;
    4783             :         struct list_head discard;
    4784             :         struct list_head promote[SHRINK_PROMOTE_MAX];
    4785             :         unsigned long flags;
    4786           0 :         int ret = 0;
    4787             : 
    4788           0 :         for_each_kmem_cache_node(s, node, n) {
    4789           0 :                 INIT_LIST_HEAD(&discard);
    4790           0 :                 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
    4791           0 :                         INIT_LIST_HEAD(promote + i);
    4792             : 
    4793           0 :                 spin_lock_irqsave(&n->list_lock, flags);
    4794             : 
    4795             :                 /*
    4796             :                  * Build lists of slabs to discard or promote.
    4797             :                  *
    4798             :                  * Note that concurrent frees may occur while we hold the
    4799             :                  * list_lock. slab->inuse here is the upper limit.
    4800             :                  */
    4801           0 :                 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
    4802           0 :                         int free = slab->objects - slab->inuse;
    4803             : 
    4804             :                         /* Do not reread slab->inuse */
    4805           0 :                         barrier();
    4806             : 
    4807             :                         /* We do not keep full slabs on the list */
    4808           0 :                         BUG_ON(free <= 0);
    4809             : 
    4810           0 :                         if (free == slab->objects) {
    4811           0 :                                 list_move(&slab->slab_list, &discard);
    4812           0 :                                 n->nr_partial--;
    4813           0 :                                 dec_slabs_node(s, node, slab->objects);
    4814           0 :                         } else if (free <= SHRINK_PROMOTE_MAX)
    4815           0 :                                 list_move(&slab->slab_list, promote + free - 1);
    4816             :                 }
    4817             : 
    4818             :                 /*
    4819             :                  * Promote the slabs filled up most to the head of the
    4820             :                  * partial list.
    4821             :                  */
    4822           0 :                 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
    4823           0 :                         list_splice(promote + i, &n->partial);
    4824             : 
    4825           0 :                 spin_unlock_irqrestore(&n->list_lock, flags);
    4826             : 
    4827             :                 /* Release empty slabs */
    4828           0 :                 list_for_each_entry_safe(slab, t, &discard, slab_list)
    4829           0 :                         free_slab(s, slab);
    4830             : 
    4831           0 :                 if (slabs_node(s, node))
    4832           0 :                         ret = 1;
    4833             :         }
    4834             : 
    4835           0 :         return ret;
    4836             : }
    4837             : 
    4838           0 : int __kmem_cache_shrink(struct kmem_cache *s)
    4839             : {
    4840           0 :         flush_all(s);
    4841           0 :         return __kmem_cache_do_shrink(s);
    4842             : }
    4843             : 
    4844             : static int slab_mem_going_offline_callback(void *arg)
    4845             : {
    4846             :         struct kmem_cache *s;
    4847             : 
    4848             :         mutex_lock(&slab_mutex);
    4849             :         list_for_each_entry(s, &slab_caches, list) {
    4850             :                 flush_all_cpus_locked(s);
    4851             :                 __kmem_cache_do_shrink(s);
    4852             :         }
    4853             :         mutex_unlock(&slab_mutex);
    4854             : 
    4855             :         return 0;
    4856             : }
    4857             : 
    4858             : static void slab_mem_offline_callback(void *arg)
    4859             : {
    4860             :         struct memory_notify *marg = arg;
    4861             :         int offline_node;
    4862             : 
    4863             :         offline_node = marg->status_change_nid_normal;
    4864             : 
    4865             :         /*
    4866             :          * If the node still has available memory. we need kmem_cache_node
    4867             :          * for it yet.
    4868             :          */
    4869             :         if (offline_node < 0)
    4870             :                 return;
    4871             : 
    4872             :         mutex_lock(&slab_mutex);
    4873             :         node_clear(offline_node, slab_nodes);
    4874             :         /*
    4875             :          * We no longer free kmem_cache_node structures here, as it would be
    4876             :          * racy with all get_node() users, and infeasible to protect them with
    4877             :          * slab_mutex.
    4878             :          */
    4879             :         mutex_unlock(&slab_mutex);
    4880             : }
    4881             : 
    4882             : static int slab_mem_going_online_callback(void *arg)
    4883             : {
    4884             :         struct kmem_cache_node *n;
    4885             :         struct kmem_cache *s;
    4886             :         struct memory_notify *marg = arg;
    4887             :         int nid = marg->status_change_nid_normal;
    4888             :         int ret = 0;
    4889             : 
    4890             :         /*
    4891             :          * If the node's memory is already available, then kmem_cache_node is
    4892             :          * already created. Nothing to do.
    4893             :          */
    4894             :         if (nid < 0)
    4895             :                 return 0;
    4896             : 
    4897             :         /*
    4898             :          * We are bringing a node online. No memory is available yet. We must
    4899             :          * allocate a kmem_cache_node structure in order to bring the node
    4900             :          * online.
    4901             :          */
    4902             :         mutex_lock(&slab_mutex);
    4903             :         list_for_each_entry(s, &slab_caches, list) {
    4904             :                 /*
    4905             :                  * The structure may already exist if the node was previously
    4906             :                  * onlined and offlined.
    4907             :                  */
    4908             :                 if (get_node(s, nid))
    4909             :                         continue;
    4910             :                 /*
    4911             :                  * XXX: kmem_cache_alloc_node will fallback to other nodes
    4912             :                  *      since memory is not yet available from the node that
    4913             :                  *      is brought up.
    4914             :                  */
    4915             :                 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
    4916             :                 if (!n) {
    4917             :                         ret = -ENOMEM;
    4918             :                         goto out;
    4919             :                 }
    4920             :                 init_kmem_cache_node(n);
    4921             :                 s->node[nid] = n;
    4922             :         }
    4923             :         /*
    4924             :          * Any cache created after this point will also have kmem_cache_node
    4925             :          * initialized for the new node.
    4926             :          */
    4927             :         node_set(nid, slab_nodes);
    4928             : out:
    4929             :         mutex_unlock(&slab_mutex);
    4930             :         return ret;
    4931             : }
    4932             : 
    4933             : static int slab_memory_callback(struct notifier_block *self,
    4934             :                                 unsigned long action, void *arg)
    4935             : {
    4936             :         int ret = 0;
    4937             : 
    4938             :         switch (action) {
    4939             :         case MEM_GOING_ONLINE:
    4940             :                 ret = slab_mem_going_online_callback(arg);
    4941             :                 break;
    4942             :         case MEM_GOING_OFFLINE:
    4943             :                 ret = slab_mem_going_offline_callback(arg);
    4944             :                 break;
    4945             :         case MEM_OFFLINE:
    4946             :         case MEM_CANCEL_ONLINE:
    4947             :                 slab_mem_offline_callback(arg);
    4948             :                 break;
    4949             :         case MEM_ONLINE:
    4950             :         case MEM_CANCEL_OFFLINE:
    4951             :                 break;
    4952             :         }
    4953             :         if (ret)
    4954             :                 ret = notifier_from_errno(ret);
    4955             :         else
    4956             :                 ret = NOTIFY_OK;
    4957             :         return ret;
    4958             : }
    4959             : 
    4960             : /********************************************************************
    4961             :  *                      Basic setup of slabs
    4962             :  *******************************************************************/
    4963             : 
    4964             : /*
    4965             :  * Used for early kmem_cache structures that were allocated using
    4966             :  * the page allocator. Allocate them properly then fix up the pointers
    4967             :  * that may be pointing to the wrong kmem_cache structure.
    4968             :  */
    4969             : 
    4970           2 : static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
    4971             : {
    4972             :         int node;
    4973           4 :         struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
    4974             :         struct kmem_cache_node *n;
    4975             : 
    4976           2 :         memcpy(s, static_cache, kmem_cache->object_size);
    4977             : 
    4978             :         /*
    4979             :          * This runs very early, and only the boot processor is supposed to be
    4980             :          * up.  Even if it weren't true, IRQs are not up so we couldn't fire
    4981             :          * IPIs around.
    4982             :          */
    4983           2 :         __flush_cpu_slab(s, smp_processor_id());
    4984           6 :         for_each_kmem_cache_node(s, node, n) {
    4985             :                 struct slab *p;
    4986             : 
    4987           4 :                 list_for_each_entry(p, &n->partial, slab_list)
    4988           2 :                         p->slab_cache = s;
    4989             : 
    4990             : #ifdef CONFIG_SLUB_DEBUG
    4991           2 :                 list_for_each_entry(p, &n->full, slab_list)
    4992           0 :                         p->slab_cache = s;
    4993             : #endif
    4994             :         }
    4995           4 :         list_add(&s->list, &slab_caches);
    4996           2 :         return s;
    4997             : }
    4998             : 
    4999           1 : void __init kmem_cache_init(void)
    5000             : {
    5001             :         static __initdata struct kmem_cache boot_kmem_cache,
    5002             :                 boot_kmem_cache_node;
    5003             :         int node;
    5004             : 
    5005             :         if (debug_guardpage_minorder())
    5006             :                 slub_max_order = 0;
    5007             : 
    5008             :         /* Print slub debugging pointers without hashing */
    5009           1 :         if (__slub_debug_enabled())
    5010           0 :                 no_hash_pointers_enable(NULL);
    5011             : 
    5012           1 :         kmem_cache_node = &boot_kmem_cache_node;
    5013           1 :         kmem_cache = &boot_kmem_cache;
    5014             : 
    5015             :         /*
    5016             :          * Initialize the nodemask for which we will allocate per node
    5017             :          * structures. Here we don't need taking slab_mutex yet.
    5018             :          */
    5019           3 :         for_each_node_state(node, N_NORMAL_MEMORY)
    5020             :                 node_set(node, slab_nodes);
    5021             : 
    5022           1 :         create_boot_cache(kmem_cache_node, "kmem_cache_node",
    5023             :                 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
    5024             : 
    5025           1 :         hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
    5026             : 
    5027             :         /* Able to allocate the per node structures */
    5028           1 :         slab_state = PARTIAL;
    5029             : 
    5030           1 :         create_boot_cache(kmem_cache, "kmem_cache",
    5031             :                         offsetof(struct kmem_cache, node) +
    5032             :                                 nr_node_ids * sizeof(struct kmem_cache_node *),
    5033             :                        SLAB_HWCACHE_ALIGN, 0, 0);
    5034             : 
    5035           1 :         kmem_cache = bootstrap(&boot_kmem_cache);
    5036           1 :         kmem_cache_node = bootstrap(&boot_kmem_cache_node);
    5037             : 
    5038             :         /* Now we can use the kmem_cache to allocate kmalloc slabs */
    5039           1 :         setup_kmalloc_cache_index_table();
    5040           1 :         create_kmalloc_caches(0);
    5041             : 
    5042             :         /* Setup random freelists for each cache */
    5043           1 :         init_freelist_randomization();
    5044             : 
    5045           1 :         cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
    5046             :                                   slub_cpu_dead);
    5047             : 
    5048           1 :         pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
    5049             :                 cache_line_size(),
    5050             :                 slub_min_order, slub_max_order, slub_min_objects,
    5051             :                 nr_cpu_ids, nr_node_ids);
    5052           1 : }
    5053             : 
    5054           1 : void __init kmem_cache_init_late(void)
    5055             : {
    5056             : #ifndef CONFIG_SLUB_TINY
    5057           1 :         flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
    5058           1 :         WARN_ON(!flushwq);
    5059             : #endif
    5060           1 : }
    5061             : 
    5062             : struct kmem_cache *
    5063          57 : __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
    5064             :                    slab_flags_t flags, void (*ctor)(void *))
    5065             : {
    5066             :         struct kmem_cache *s;
    5067             : 
    5068          57 :         s = find_mergeable(size, align, flags, name, ctor);
    5069          57 :         if (s) {
    5070          32 :                 if (sysfs_slab_alias(s, name))
    5071             :                         return NULL;
    5072             : 
    5073          32 :                 s->refcount++;
    5074             : 
    5075             :                 /*
    5076             :                  * Adjust the object sizes so that we clear
    5077             :                  * the complete object on kzalloc.
    5078             :                  */
    5079          32 :                 s->object_size = max(s->object_size, size);
    5080          32 :                 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
    5081             :         }
    5082             : 
    5083             :         return s;
    5084             : }
    5085             : 
    5086          53 : int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
    5087             : {
    5088             :         int err;
    5089             : 
    5090          53 :         err = kmem_cache_open(s, flags);
    5091          53 :         if (err)
    5092             :                 return err;
    5093             : 
    5094             :         /* Mutex is not taken during early boot */
    5095          53 :         if (slab_state <= UP)
    5096             :                 return 0;
    5097             : 
    5098           0 :         err = sysfs_slab_add(s);
    5099           0 :         if (err) {
    5100           0 :                 __kmem_cache_release(s);
    5101           0 :                 return err;
    5102             :         }
    5103             : 
    5104             :         if (s->flags & SLAB_STORE_USER)
    5105             :                 debugfs_slab_add(s);
    5106             : 
    5107             :         return 0;
    5108             : }
    5109             : 
    5110             : #ifdef SLAB_SUPPORTS_SYSFS
    5111           0 : static int count_inuse(struct slab *slab)
    5112             : {
    5113           0 :         return slab->inuse;
    5114             : }
    5115             : 
    5116           0 : static int count_total(struct slab *slab)
    5117             : {
    5118           0 :         return slab->objects;
    5119             : }
    5120             : #endif
    5121             : 
    5122             : #ifdef CONFIG_SLUB_DEBUG
    5123           0 : static void validate_slab(struct kmem_cache *s, struct slab *slab,
    5124             :                           unsigned long *obj_map)
    5125             : {
    5126             :         void *p;
    5127           0 :         void *addr = slab_address(slab);
    5128             : 
    5129           0 :         if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
    5130             :                 return;
    5131             : 
    5132             :         /* Now we know that a valid freelist exists */
    5133           0 :         __fill_map(obj_map, s, slab);
    5134           0 :         for_each_object(p, s, addr, slab->objects) {
    5135           0 :                 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
    5136             :                          SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
    5137             : 
    5138           0 :                 if (!check_object(s, slab, p, val))
    5139             :                         break;
    5140             :         }
    5141             : }
    5142             : 
    5143           0 : static int validate_slab_node(struct kmem_cache *s,
    5144             :                 struct kmem_cache_node *n, unsigned long *obj_map)
    5145             : {
    5146           0 :         unsigned long count = 0;
    5147             :         struct slab *slab;
    5148             :         unsigned long flags;
    5149             : 
    5150           0 :         spin_lock_irqsave(&n->list_lock, flags);
    5151             : 
    5152           0 :         list_for_each_entry(slab, &n->partial, slab_list) {
    5153           0 :                 validate_slab(s, slab, obj_map);
    5154           0 :                 count++;
    5155             :         }
    5156           0 :         if (count != n->nr_partial) {
    5157           0 :                 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
    5158             :                        s->name, count, n->nr_partial);
    5159           0 :                 slab_add_kunit_errors();
    5160             :         }
    5161             : 
    5162           0 :         if (!(s->flags & SLAB_STORE_USER))
    5163             :                 goto out;
    5164             : 
    5165           0 :         list_for_each_entry(slab, &n->full, slab_list) {
    5166           0 :                 validate_slab(s, slab, obj_map);
    5167           0 :                 count++;
    5168             :         }
    5169           0 :         if (count != atomic_long_read(&n->nr_slabs)) {
    5170           0 :                 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
    5171             :                        s->name, count, atomic_long_read(&n->nr_slabs));
    5172           0 :                 slab_add_kunit_errors();
    5173             :         }
    5174             : 
    5175             : out:
    5176           0 :         spin_unlock_irqrestore(&n->list_lock, flags);
    5177           0 :         return count;
    5178             : }
    5179             : 
    5180           0 : long validate_slab_cache(struct kmem_cache *s)
    5181             : {
    5182             :         int node;
    5183           0 :         unsigned long count = 0;
    5184             :         struct kmem_cache_node *n;
    5185             :         unsigned long *obj_map;
    5186             : 
    5187           0 :         obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
    5188           0 :         if (!obj_map)
    5189             :                 return -ENOMEM;
    5190             : 
    5191           0 :         flush_all(s);
    5192           0 :         for_each_kmem_cache_node(s, node, n)
    5193           0 :                 count += validate_slab_node(s, n, obj_map);
    5194             : 
    5195           0 :         bitmap_free(obj_map);
    5196             : 
    5197           0 :         return count;
    5198             : }
    5199             : EXPORT_SYMBOL(validate_slab_cache);
    5200             : 
    5201             : #ifdef CONFIG_DEBUG_FS
    5202             : /*
    5203             :  * Generate lists of code addresses where slabcache objects are allocated
    5204             :  * and freed.
    5205             :  */
    5206             : 
    5207             : struct location {
    5208             :         depot_stack_handle_t handle;
    5209             :         unsigned long count;
    5210             :         unsigned long addr;
    5211             :         unsigned long waste;
    5212             :         long long sum_time;
    5213             :         long min_time;
    5214             :         long max_time;
    5215             :         long min_pid;
    5216             :         long max_pid;
    5217             :         DECLARE_BITMAP(cpus, NR_CPUS);
    5218             :         nodemask_t nodes;
    5219             : };
    5220             : 
    5221             : struct loc_track {
    5222             :         unsigned long max;
    5223             :         unsigned long count;
    5224             :         struct location *loc;
    5225             :         loff_t idx;
    5226             : };
    5227             : 
    5228             : static struct dentry *slab_debugfs_root;
    5229             : 
    5230             : static void free_loc_track(struct loc_track *t)
    5231             : {
    5232             :         if (t->max)
    5233             :                 free_pages((unsigned long)t->loc,
    5234             :                         get_order(sizeof(struct location) * t->max));
    5235             : }
    5236             : 
    5237             : static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
    5238             : {
    5239             :         struct location *l;
    5240             :         int order;
    5241             : 
    5242             :         order = get_order(sizeof(struct location) * max);
    5243             : 
    5244             :         l = (void *)__get_free_pages(flags, order);
    5245             :         if (!l)
    5246             :                 return 0;
    5247             : 
    5248             :         if (t->count) {
    5249             :                 memcpy(l, t->loc, sizeof(struct location) * t->count);
    5250             :                 free_loc_track(t);
    5251             :         }
    5252             :         t->max = max;
    5253             :         t->loc = l;
    5254             :         return 1;
    5255             : }
    5256             : 
    5257             : static int add_location(struct loc_track *t, struct kmem_cache *s,
    5258             :                                 const struct track *track,
    5259             :                                 unsigned int orig_size)
    5260             : {
    5261             :         long start, end, pos;
    5262             :         struct location *l;
    5263             :         unsigned long caddr, chandle, cwaste;
    5264             :         unsigned long age = jiffies - track->when;
    5265             :         depot_stack_handle_t handle = 0;
    5266             :         unsigned int waste = s->object_size - orig_size;
    5267             : 
    5268             : #ifdef CONFIG_STACKDEPOT
    5269             :         handle = READ_ONCE(track->handle);
    5270             : #endif
    5271             :         start = -1;
    5272             :         end = t->count;
    5273             : 
    5274             :         for ( ; ; ) {
    5275             :                 pos = start + (end - start + 1) / 2;
    5276             : 
    5277             :                 /*
    5278             :                  * There is nothing at "end". If we end up there
    5279             :                  * we need to add something to before end.
    5280             :                  */
    5281             :                 if (pos == end)
    5282             :                         break;
    5283             : 
    5284             :                 l = &t->loc[pos];
    5285             :                 caddr = l->addr;
    5286             :                 chandle = l->handle;
    5287             :                 cwaste = l->waste;
    5288             :                 if ((track->addr == caddr) && (handle == chandle) &&
    5289             :                         (waste == cwaste)) {
    5290             : 
    5291             :                         l->count++;
    5292             :                         if (track->when) {
    5293             :                                 l->sum_time += age;
    5294             :                                 if (age < l->min_time)
    5295             :                                         l->min_time = age;
    5296             :                                 if (age > l->max_time)
    5297             :                                         l->max_time = age;
    5298             : 
    5299             :                                 if (track->pid < l->min_pid)
    5300             :                                         l->min_pid = track->pid;
    5301             :                                 if (track->pid > l->max_pid)
    5302             :                                         l->max_pid = track->pid;
    5303             : 
    5304             :                                 cpumask_set_cpu(track->cpu,
    5305             :                                                 to_cpumask(l->cpus));
    5306             :                         }
    5307             :                         node_set(page_to_nid(virt_to_page(track)), l->nodes);
    5308             :                         return 1;
    5309             :                 }
    5310             : 
    5311             :                 if (track->addr < caddr)
    5312             :                         end = pos;
    5313             :                 else if (track->addr == caddr && handle < chandle)
    5314             :                         end = pos;
    5315             :                 else if (track->addr == caddr && handle == chandle &&
    5316             :                                 waste < cwaste)
    5317             :                         end = pos;
    5318             :                 else
    5319             :                         start = pos;
    5320             :         }
    5321             : 
    5322             :         /*
    5323             :          * Not found. Insert new tracking element.
    5324             :          */
    5325             :         if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
    5326             :                 return 0;
    5327             : 
    5328             :         l = t->loc + pos;
    5329             :         if (pos < t->count)
    5330             :                 memmove(l + 1, l,
    5331             :                         (t->count - pos) * sizeof(struct location));
    5332             :         t->count++;
    5333             :         l->count = 1;
    5334             :         l->addr = track->addr;
    5335             :         l->sum_time = age;
    5336             :         l->min_time = age;
    5337             :         l->max_time = age;
    5338             :         l->min_pid = track->pid;
    5339             :         l->max_pid = track->pid;
    5340             :         l->handle = handle;
    5341             :         l->waste = waste;
    5342             :         cpumask_clear(to_cpumask(l->cpus));
    5343             :         cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
    5344             :         nodes_clear(l->nodes);
    5345             :         node_set(page_to_nid(virt_to_page(track)), l->nodes);
    5346             :         return 1;
    5347             : }
    5348             : 
    5349             : static void process_slab(struct loc_track *t, struct kmem_cache *s,
    5350             :                 struct slab *slab, enum track_item alloc,
    5351             :                 unsigned long *obj_map)
    5352             : {
    5353             :         void *addr = slab_address(slab);
    5354             :         bool is_alloc = (alloc == TRACK_ALLOC);
    5355             :         void *p;
    5356             : 
    5357             :         __fill_map(obj_map, s, slab);
    5358             : 
    5359             :         for_each_object(p, s, addr, slab->objects)
    5360             :                 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
    5361             :                         add_location(t, s, get_track(s, p, alloc),
    5362             :                                      is_alloc ? get_orig_size(s, p) :
    5363             :                                                 s->object_size);
    5364             : }
    5365             : #endif  /* CONFIG_DEBUG_FS   */
    5366             : #endif  /* CONFIG_SLUB_DEBUG */
    5367             : 
    5368             : #ifdef SLAB_SUPPORTS_SYSFS
    5369             : enum slab_stat_type {
    5370             :         SL_ALL,                 /* All slabs */
    5371             :         SL_PARTIAL,             /* Only partially allocated slabs */
    5372             :         SL_CPU,                 /* Only slabs used for cpu caches */
    5373             :         SL_OBJECTS,             /* Determine allocated objects not slabs */
    5374             :         SL_TOTAL                /* Determine object capacity not slabs */
    5375             : };
    5376             : 
    5377             : #define SO_ALL          (1 << SL_ALL)
    5378             : #define SO_PARTIAL      (1 << SL_PARTIAL)
    5379             : #define SO_CPU          (1 << SL_CPU)
    5380             : #define SO_OBJECTS      (1 << SL_OBJECTS)
    5381             : #define SO_TOTAL        (1 << SL_TOTAL)
    5382             : 
    5383           0 : static ssize_t show_slab_objects(struct kmem_cache *s,
    5384             :                                  char *buf, unsigned long flags)
    5385             : {
    5386           0 :         unsigned long total = 0;
    5387             :         int node;
    5388             :         int x;
    5389             :         unsigned long *nodes;
    5390           0 :         int len = 0;
    5391             : 
    5392           0 :         nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
    5393           0 :         if (!nodes)
    5394             :                 return -ENOMEM;
    5395             : 
    5396           0 :         if (flags & SO_CPU) {
    5397             :                 int cpu;
    5398             : 
    5399           0 :                 for_each_possible_cpu(cpu) {
    5400           0 :                         struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
    5401             :                                                                cpu);
    5402             :                         int node;
    5403             :                         struct slab *slab;
    5404             : 
    5405           0 :                         slab = READ_ONCE(c->slab);
    5406           0 :                         if (!slab)
    5407           0 :                                 continue;
    5408             : 
    5409           0 :                         node = slab_nid(slab);
    5410           0 :                         if (flags & SO_TOTAL)
    5411           0 :                                 x = slab->objects;
    5412           0 :                         else if (flags & SO_OBJECTS)
    5413           0 :                                 x = slab->inuse;
    5414             :                         else
    5415             :                                 x = 1;
    5416             : 
    5417           0 :                         total += x;
    5418           0 :                         nodes[node] += x;
    5419             : 
    5420             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    5421             :                         slab = slub_percpu_partial_read_once(c);
    5422             :                         if (slab) {
    5423             :                                 node = slab_nid(slab);
    5424             :                                 if (flags & SO_TOTAL)
    5425             :                                         WARN_ON_ONCE(1);
    5426             :                                 else if (flags & SO_OBJECTS)
    5427             :                                         WARN_ON_ONCE(1);
    5428             :                                 else
    5429             :                                         x = slab->slabs;
    5430             :                                 total += x;
    5431             :                                 nodes[node] += x;
    5432             :                         }
    5433             : #endif
    5434             :                 }
    5435             :         }
    5436             : 
    5437             :         /*
    5438             :          * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
    5439             :          * already held which will conflict with an existing lock order:
    5440             :          *
    5441             :          * mem_hotplug_lock->slab_mutex->kernfs_mutex
    5442             :          *
    5443             :          * We don't really need mem_hotplug_lock (to hold off
    5444             :          * slab_mem_going_offline_callback) here because slab's memory hot
    5445             :          * unplug code doesn't destroy the kmem_cache->node[] data.
    5446             :          */
    5447             : 
    5448             : #ifdef CONFIG_SLUB_DEBUG
    5449           0 :         if (flags & SO_ALL) {
    5450             :                 struct kmem_cache_node *n;
    5451             : 
    5452           0 :                 for_each_kmem_cache_node(s, node, n) {
    5453             : 
    5454           0 :                         if (flags & SO_TOTAL)
    5455           0 :                                 x = atomic_long_read(&n->total_objects);
    5456           0 :                         else if (flags & SO_OBJECTS)
    5457           0 :                                 x = atomic_long_read(&n->total_objects) -
    5458           0 :                                         count_partial(n, count_free);
    5459             :                         else
    5460           0 :                                 x = atomic_long_read(&n->nr_slabs);
    5461           0 :                         total += x;
    5462           0 :                         nodes[node] += x;
    5463             :                 }
    5464             : 
    5465             :         } else
    5466             : #endif
    5467           0 :         if (flags & SO_PARTIAL) {
    5468             :                 struct kmem_cache_node *n;
    5469             : 
    5470           0 :                 for_each_kmem_cache_node(s, node, n) {
    5471           0 :                         if (flags & SO_TOTAL)
    5472           0 :                                 x = count_partial(n, count_total);
    5473           0 :                         else if (flags & SO_OBJECTS)
    5474           0 :                                 x = count_partial(n, count_inuse);
    5475             :                         else
    5476           0 :                                 x = n->nr_partial;
    5477           0 :                         total += x;
    5478           0 :                         nodes[node] += x;
    5479             :                 }
    5480             :         }
    5481             : 
    5482           0 :         len += sysfs_emit_at(buf, len, "%lu", total);
    5483             : #ifdef CONFIG_NUMA
    5484             :         for (node = 0; node < nr_node_ids; node++) {
    5485             :                 if (nodes[node])
    5486             :                         len += sysfs_emit_at(buf, len, " N%d=%lu",
    5487             :                                              node, nodes[node]);
    5488             :         }
    5489             : #endif
    5490           0 :         len += sysfs_emit_at(buf, len, "\n");
    5491           0 :         kfree(nodes);
    5492             : 
    5493           0 :         return len;
    5494             : }
    5495             : 
    5496             : #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
    5497             : #define to_slab(n) container_of(n, struct kmem_cache, kobj)
    5498             : 
    5499             : struct slab_attribute {
    5500             :         struct attribute attr;
    5501             :         ssize_t (*show)(struct kmem_cache *s, char *buf);
    5502             :         ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
    5503             : };
    5504             : 
    5505             : #define SLAB_ATTR_RO(_name) \
    5506             :         static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
    5507             : 
    5508             : #define SLAB_ATTR(_name) \
    5509             :         static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
    5510             : 
    5511           0 : static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
    5512             : {
    5513           0 :         return sysfs_emit(buf, "%u\n", s->size);
    5514             : }
    5515             : SLAB_ATTR_RO(slab_size);
    5516             : 
    5517           0 : static ssize_t align_show(struct kmem_cache *s, char *buf)
    5518             : {
    5519           0 :         return sysfs_emit(buf, "%u\n", s->align);
    5520             : }
    5521             : SLAB_ATTR_RO(align);
    5522             : 
    5523           0 : static ssize_t object_size_show(struct kmem_cache *s, char *buf)
    5524             : {
    5525           0 :         return sysfs_emit(buf, "%u\n", s->object_size);
    5526             : }
    5527             : SLAB_ATTR_RO(object_size);
    5528             : 
    5529           0 : static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
    5530             : {
    5531           0 :         return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
    5532             : }
    5533             : SLAB_ATTR_RO(objs_per_slab);
    5534             : 
    5535           0 : static ssize_t order_show(struct kmem_cache *s, char *buf)
    5536             : {
    5537           0 :         return sysfs_emit(buf, "%u\n", oo_order(s->oo));
    5538             : }
    5539             : SLAB_ATTR_RO(order);
    5540             : 
    5541           0 : static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
    5542             : {
    5543           0 :         return sysfs_emit(buf, "%lu\n", s->min_partial);
    5544             : }
    5545             : 
    5546           0 : static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
    5547             :                                  size_t length)
    5548             : {
    5549             :         unsigned long min;
    5550             :         int err;
    5551             : 
    5552           0 :         err = kstrtoul(buf, 10, &min);
    5553           0 :         if (err)
    5554           0 :                 return err;
    5555             : 
    5556           0 :         s->min_partial = min;
    5557           0 :         return length;
    5558             : }
    5559             : SLAB_ATTR(min_partial);
    5560             : 
    5561           0 : static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
    5562             : {
    5563           0 :         unsigned int nr_partial = 0;
    5564             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    5565             :         nr_partial = s->cpu_partial;
    5566             : #endif
    5567             : 
    5568           0 :         return sysfs_emit(buf, "%u\n", nr_partial);
    5569             : }
    5570             : 
    5571           0 : static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
    5572             :                                  size_t length)
    5573             : {
    5574             :         unsigned int objects;
    5575             :         int err;
    5576             : 
    5577           0 :         err = kstrtouint(buf, 10, &objects);
    5578           0 :         if (err)
    5579           0 :                 return err;
    5580           0 :         if (objects && !kmem_cache_has_cpu_partial(s))
    5581             :                 return -EINVAL;
    5582             : 
    5583           0 :         slub_set_cpu_partial(s, objects);
    5584           0 :         flush_all(s);
    5585           0 :         return length;
    5586             : }
    5587             : SLAB_ATTR(cpu_partial);
    5588             : 
    5589           0 : static ssize_t ctor_show(struct kmem_cache *s, char *buf)
    5590             : {
    5591           0 :         if (!s->ctor)
    5592             :                 return 0;
    5593           0 :         return sysfs_emit(buf, "%pS\n", s->ctor);
    5594             : }
    5595             : SLAB_ATTR_RO(ctor);
    5596             : 
    5597           0 : static ssize_t aliases_show(struct kmem_cache *s, char *buf)
    5598             : {
    5599           0 :         return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
    5600             : }
    5601             : SLAB_ATTR_RO(aliases);
    5602             : 
    5603           0 : static ssize_t partial_show(struct kmem_cache *s, char *buf)
    5604             : {
    5605           0 :         return show_slab_objects(s, buf, SO_PARTIAL);
    5606             : }
    5607             : SLAB_ATTR_RO(partial);
    5608             : 
    5609           0 : static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
    5610             : {
    5611           0 :         return show_slab_objects(s, buf, SO_CPU);
    5612             : }
    5613             : SLAB_ATTR_RO(cpu_slabs);
    5614             : 
    5615           0 : static ssize_t objects_show(struct kmem_cache *s, char *buf)
    5616             : {
    5617           0 :         return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
    5618             : }
    5619             : SLAB_ATTR_RO(objects);
    5620             : 
    5621           0 : static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
    5622             : {
    5623           0 :         return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
    5624             : }
    5625             : SLAB_ATTR_RO(objects_partial);
    5626             : 
    5627           0 : static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
    5628             : {
    5629           0 :         int objects = 0;
    5630           0 :         int slabs = 0;
    5631             :         int cpu __maybe_unused;
    5632           0 :         int len = 0;
    5633             : 
    5634             : #ifdef CONFIG_SLUB_CPU_PARTIAL
    5635             :         for_each_online_cpu(cpu) {
    5636             :                 struct slab *slab;
    5637             : 
    5638             :                 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
    5639             : 
    5640             :                 if (slab)
    5641             :                         slabs += slab->slabs;
    5642             :         }
    5643             : #endif
    5644             : 
    5645             :         /* Approximate half-full slabs, see slub_set_cpu_partial() */
    5646           0 :         objects = (slabs * oo_objects(s->oo)) / 2;
    5647           0 :         len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
    5648             : 
    5649             : #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
    5650             :         for_each_online_cpu(cpu) {
    5651             :                 struct slab *slab;
    5652             : 
    5653             :                 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
    5654             :                 if (slab) {
    5655             :                         slabs = READ_ONCE(slab->slabs);
    5656             :                         objects = (slabs * oo_objects(s->oo)) / 2;
    5657             :                         len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
    5658             :                                              cpu, objects, slabs);
    5659             :                 }
    5660             :         }
    5661             : #endif
    5662           0 :         len += sysfs_emit_at(buf, len, "\n");
    5663             : 
    5664           0 :         return len;
    5665             : }
    5666             : SLAB_ATTR_RO(slabs_cpu_partial);
    5667             : 
    5668           0 : static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
    5669             : {
    5670           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
    5671             : }
    5672             : SLAB_ATTR_RO(reclaim_account);
    5673             : 
    5674           0 : static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
    5675             : {
    5676           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
    5677             : }
    5678             : SLAB_ATTR_RO(hwcache_align);
    5679             : 
    5680             : #ifdef CONFIG_ZONE_DMA
    5681             : static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
    5682             : {
    5683             :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
    5684             : }
    5685             : SLAB_ATTR_RO(cache_dma);
    5686             : #endif
    5687             : 
    5688             : #ifdef CONFIG_HARDENED_USERCOPY
    5689             : static ssize_t usersize_show(struct kmem_cache *s, char *buf)
    5690             : {
    5691             :         return sysfs_emit(buf, "%u\n", s->usersize);
    5692             : }
    5693             : SLAB_ATTR_RO(usersize);
    5694             : #endif
    5695             : 
    5696           0 : static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
    5697             : {
    5698           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
    5699             : }
    5700             : SLAB_ATTR_RO(destroy_by_rcu);
    5701             : 
    5702             : #ifdef CONFIG_SLUB_DEBUG
    5703           0 : static ssize_t slabs_show(struct kmem_cache *s, char *buf)
    5704             : {
    5705           0 :         return show_slab_objects(s, buf, SO_ALL);
    5706             : }
    5707             : SLAB_ATTR_RO(slabs);
    5708             : 
    5709           0 : static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
    5710             : {
    5711           0 :         return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
    5712             : }
    5713             : SLAB_ATTR_RO(total_objects);
    5714             : 
    5715           0 : static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
    5716             : {
    5717           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
    5718             : }
    5719             : SLAB_ATTR_RO(sanity_checks);
    5720             : 
    5721           0 : static ssize_t trace_show(struct kmem_cache *s, char *buf)
    5722             : {
    5723           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
    5724             : }
    5725             : SLAB_ATTR_RO(trace);
    5726             : 
    5727           0 : static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
    5728             : {
    5729           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
    5730             : }
    5731             : 
    5732             : SLAB_ATTR_RO(red_zone);
    5733             : 
    5734           0 : static ssize_t poison_show(struct kmem_cache *s, char *buf)
    5735             : {
    5736           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
    5737             : }
    5738             : 
    5739             : SLAB_ATTR_RO(poison);
    5740             : 
    5741           0 : static ssize_t store_user_show(struct kmem_cache *s, char *buf)
    5742             : {
    5743           0 :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
    5744             : }
    5745             : 
    5746             : SLAB_ATTR_RO(store_user);
    5747             : 
    5748           0 : static ssize_t validate_show(struct kmem_cache *s, char *buf)
    5749             : {
    5750           0 :         return 0;
    5751             : }
    5752             : 
    5753           0 : static ssize_t validate_store(struct kmem_cache *s,
    5754             :                         const char *buf, size_t length)
    5755             : {
    5756           0 :         int ret = -EINVAL;
    5757             : 
    5758           0 :         if (buf[0] == '1' && kmem_cache_debug(s)) {
    5759           0 :                 ret = validate_slab_cache(s);
    5760           0 :                 if (ret >= 0)
    5761           0 :                         ret = length;
    5762             :         }
    5763           0 :         return ret;
    5764             : }
    5765             : SLAB_ATTR(validate);
    5766             : 
    5767             : #endif /* CONFIG_SLUB_DEBUG */
    5768             : 
    5769             : #ifdef CONFIG_FAILSLAB
    5770             : static ssize_t failslab_show(struct kmem_cache *s, char *buf)
    5771             : {
    5772             :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
    5773             : }
    5774             : 
    5775             : static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
    5776             :                                 size_t length)
    5777             : {
    5778             :         if (s->refcount > 1)
    5779             :                 return -EINVAL;
    5780             : 
    5781             :         if (buf[0] == '1')
    5782             :                 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
    5783             :         else
    5784             :                 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
    5785             : 
    5786             :         return length;
    5787             : }
    5788             : SLAB_ATTR(failslab);
    5789             : #endif
    5790             : 
    5791           0 : static ssize_t shrink_show(struct kmem_cache *s, char *buf)
    5792             : {
    5793           0 :         return 0;
    5794             : }
    5795             : 
    5796           0 : static ssize_t shrink_store(struct kmem_cache *s,
    5797             :                         const char *buf, size_t length)
    5798             : {
    5799           0 :         if (buf[0] == '1')
    5800           0 :                 kmem_cache_shrink(s);
    5801             :         else
    5802             :                 return -EINVAL;
    5803           0 :         return length;
    5804             : }
    5805             : SLAB_ATTR(shrink);
    5806             : 
    5807             : #ifdef CONFIG_NUMA
    5808             : static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
    5809             : {
    5810             :         return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
    5811             : }
    5812             : 
    5813             : static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
    5814             :                                 const char *buf, size_t length)
    5815             : {
    5816             :         unsigned int ratio;
    5817             :         int err;
    5818             : 
    5819             :         err = kstrtouint(buf, 10, &ratio);
    5820             :         if (err)
    5821             :                 return err;
    5822             :         if (ratio > 100)
    5823             :                 return -ERANGE;
    5824             : 
    5825             :         s->remote_node_defrag_ratio = ratio * 10;
    5826             : 
    5827             :         return length;
    5828             : }
    5829             : SLAB_ATTR(remote_node_defrag_ratio);
    5830             : #endif
    5831             : 
    5832             : #ifdef CONFIG_SLUB_STATS
    5833             : static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
    5834             : {
    5835             :         unsigned long sum  = 0;
    5836             :         int cpu;
    5837             :         int len = 0;
    5838             :         int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
    5839             : 
    5840             :         if (!data)
    5841             :                 return -ENOMEM;
    5842             : 
    5843             :         for_each_online_cpu(cpu) {
    5844             :                 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
    5845             : 
    5846             :                 data[cpu] = x;
    5847             :                 sum += x;
    5848             :         }
    5849             : 
    5850             :         len += sysfs_emit_at(buf, len, "%lu", sum);
    5851             : 
    5852             : #ifdef CONFIG_SMP
    5853             :         for_each_online_cpu(cpu) {
    5854             :                 if (data[cpu])
    5855             :                         len += sysfs_emit_at(buf, len, " C%d=%u",
    5856             :                                              cpu, data[cpu]);
    5857             :         }
    5858             : #endif
    5859             :         kfree(data);
    5860             :         len += sysfs_emit_at(buf, len, "\n");
    5861             : 
    5862             :         return len;
    5863             : }
    5864             : 
    5865             : static void clear_stat(struct kmem_cache *s, enum stat_item si)
    5866             : {
    5867             :         int cpu;
    5868             : 
    5869             :         for_each_online_cpu(cpu)
    5870             :                 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
    5871             : }
    5872             : 
    5873             : #define STAT_ATTR(si, text)                                     \
    5874             : static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
    5875             : {                                                               \
    5876             :         return show_stat(s, buf, si);                           \
    5877             : }                                                               \
    5878             : static ssize_t text##_store(struct kmem_cache *s,               \
    5879             :                                 const char *buf, size_t length) \
    5880             : {                                                               \
    5881             :         if (buf[0] != '0')                                      \
    5882             :                 return -EINVAL;                                 \
    5883             :         clear_stat(s, si);                                      \
    5884             :         return length;                                          \
    5885             : }                                                               \
    5886             : SLAB_ATTR(text);                                                \
    5887             : 
    5888             : STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
    5889             : STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
    5890             : STAT_ATTR(FREE_FASTPATH, free_fastpath);
    5891             : STAT_ATTR(FREE_SLOWPATH, free_slowpath);
    5892             : STAT_ATTR(FREE_FROZEN, free_frozen);
    5893             : STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
    5894             : STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
    5895             : STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
    5896             : STAT_ATTR(ALLOC_SLAB, alloc_slab);
    5897             : STAT_ATTR(ALLOC_REFILL, alloc_refill);
    5898             : STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
    5899             : STAT_ATTR(FREE_SLAB, free_slab);
    5900             : STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
    5901             : STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
    5902             : STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
    5903             : STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
    5904             : STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
    5905             : STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
    5906             : STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
    5907             : STAT_ATTR(ORDER_FALLBACK, order_fallback);
    5908             : STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
    5909             : STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
    5910             : STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
    5911             : STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
    5912             : STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
    5913             : STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
    5914             : #endif  /* CONFIG_SLUB_STATS */
    5915             : 
    5916             : #ifdef CONFIG_KFENCE
    5917             : static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
    5918             : {
    5919             :         return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
    5920             : }
    5921             : 
    5922             : static ssize_t skip_kfence_store(struct kmem_cache *s,
    5923             :                         const char *buf, size_t length)
    5924             : {
    5925             :         int ret = length;
    5926             : 
    5927             :         if (buf[0] == '0')
    5928             :                 s->flags &= ~SLAB_SKIP_KFENCE;
    5929             :         else if (buf[0] == '1')
    5930             :                 s->flags |= SLAB_SKIP_KFENCE;
    5931             :         else
    5932             :                 ret = -EINVAL;
    5933             : 
    5934             :         return ret;
    5935             : }
    5936             : SLAB_ATTR(skip_kfence);
    5937             : #endif
    5938             : 
    5939             : static struct attribute *slab_attrs[] = {
    5940             :         &slab_size_attr.attr,
    5941             :         &object_size_attr.attr,
    5942             :         &objs_per_slab_attr.attr,
    5943             :         &order_attr.attr,
    5944             :         &min_partial_attr.attr,
    5945             :         &cpu_partial_attr.attr,
    5946             :         &objects_attr.attr,
    5947             :         &objects_partial_attr.attr,
    5948             :         &partial_attr.attr,
    5949             :         &cpu_slabs_attr.attr,
    5950             :         &ctor_attr.attr,
    5951             :         &aliases_attr.attr,
    5952             :         &align_attr.attr,
    5953             :         &hwcache_align_attr.attr,
    5954             :         &reclaim_account_attr.attr,
    5955             :         &destroy_by_rcu_attr.attr,
    5956             :         &shrink_attr.attr,
    5957             :         &slabs_cpu_partial_attr.attr,
    5958             : #ifdef CONFIG_SLUB_DEBUG
    5959             :         &total_objects_attr.attr,
    5960             :         &slabs_attr.attr,
    5961             :         &sanity_checks_attr.attr,
    5962             :         &trace_attr.attr,
    5963             :         &red_zone_attr.attr,
    5964             :         &poison_attr.attr,
    5965             :         &store_user_attr.attr,
    5966             :         &validate_attr.attr,
    5967             : #endif
    5968             : #ifdef CONFIG_ZONE_DMA
    5969             :         &cache_dma_attr.attr,
    5970             : #endif
    5971             : #ifdef CONFIG_NUMA
    5972             :         &remote_node_defrag_ratio_attr.attr,
    5973             : #endif
    5974             : #ifdef CONFIG_SLUB_STATS
    5975             :         &alloc_fastpath_attr.attr,
    5976             :         &alloc_slowpath_attr.attr,
    5977             :         &free_fastpath_attr.attr,
    5978             :         &free_slowpath_attr.attr,
    5979             :         &free_frozen_attr.attr,
    5980             :         &free_add_partial_attr.attr,
    5981             :         &free_remove_partial_attr.attr,
    5982             :         &alloc_from_partial_attr.attr,
    5983             :         &alloc_slab_attr.attr,
    5984             :         &alloc_refill_attr.attr,
    5985             :         &alloc_node_mismatch_attr.attr,
    5986             :         &free_slab_attr.attr,
    5987             :         &cpuslab_flush_attr.attr,
    5988             :         &deactivate_full_attr.attr,
    5989             :         &deactivate_empty_attr.attr,
    5990             :         &deactivate_to_head_attr.attr,
    5991             :         &deactivate_to_tail_attr.attr,
    5992             :         &deactivate_remote_frees_attr.attr,
    5993             :         &deactivate_bypass_attr.attr,
    5994             :         &order_fallback_attr.attr,
    5995             :         &cmpxchg_double_fail_attr.attr,
    5996             :         &cmpxchg_double_cpu_fail_attr.attr,
    5997             :         &cpu_partial_alloc_attr.attr,
    5998             :         &cpu_partial_free_attr.attr,
    5999             :         &cpu_partial_node_attr.attr,
    6000             :         &cpu_partial_drain_attr.attr,
    6001             : #endif
    6002             : #ifdef CONFIG_FAILSLAB
    6003             :         &failslab_attr.attr,
    6004             : #endif
    6005             : #ifdef CONFIG_HARDENED_USERCOPY
    6006             :         &usersize_attr.attr,
    6007             : #endif
    6008             : #ifdef CONFIG_KFENCE
    6009             :         &skip_kfence_attr.attr,
    6010             : #endif
    6011             : 
    6012             :         NULL
    6013             : };
    6014             : 
    6015             : static const struct attribute_group slab_attr_group = {
    6016             :         .attrs = slab_attrs,
    6017             : };
    6018             : 
    6019           0 : static ssize_t slab_attr_show(struct kobject *kobj,
    6020             :                                 struct attribute *attr,
    6021             :                                 char *buf)
    6022             : {
    6023             :         struct slab_attribute *attribute;
    6024             :         struct kmem_cache *s;
    6025             : 
    6026           0 :         attribute = to_slab_attr(attr);
    6027           0 :         s = to_slab(kobj);
    6028             : 
    6029           0 :         if (!attribute->show)
    6030             :                 return -EIO;
    6031             : 
    6032           0 :         return attribute->show(s, buf);
    6033             : }
    6034             : 
    6035           0 : static ssize_t slab_attr_store(struct kobject *kobj,
    6036             :                                 struct attribute *attr,
    6037             :                                 const char *buf, size_t len)
    6038             : {
    6039             :         struct slab_attribute *attribute;
    6040             :         struct kmem_cache *s;
    6041             : 
    6042           0 :         attribute = to_slab_attr(attr);
    6043           0 :         s = to_slab(kobj);
    6044             : 
    6045           0 :         if (!attribute->store)
    6046             :                 return -EIO;
    6047             : 
    6048           0 :         return attribute->store(s, buf, len);
    6049             : }
    6050             : 
    6051           0 : static void kmem_cache_release(struct kobject *k)
    6052             : {
    6053           0 :         slab_kmem_cache_release(to_slab(k));
    6054           0 : }
    6055             : 
    6056             : static const struct sysfs_ops slab_sysfs_ops = {
    6057             :         .show = slab_attr_show,
    6058             :         .store = slab_attr_store,
    6059             : };
    6060             : 
    6061             : static const struct kobj_type slab_ktype = {
    6062             :         .sysfs_ops = &slab_sysfs_ops,
    6063             :         .release = kmem_cache_release,
    6064             : };
    6065             : 
    6066             : static struct kset *slab_kset;
    6067             : 
    6068             : static inline struct kset *cache_kset(struct kmem_cache *s)
    6069             : {
    6070          53 :         return slab_kset;
    6071             : }
    6072             : 
    6073             : #define ID_STR_LENGTH 32
    6074             : 
    6075             : /* Create a unique string id for a slab cache:
    6076             :  *
    6077             :  * Format       :[flags-]size
    6078             :  */
    6079          41 : static char *create_unique_id(struct kmem_cache *s)
    6080             : {
    6081          41 :         char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
    6082          41 :         char *p = name;
    6083             : 
    6084          41 :         if (!name)
    6085             :                 return ERR_PTR(-ENOMEM);
    6086             : 
    6087          41 :         *p++ = ':';
    6088             :         /*
    6089             :          * First flags affecting slabcache operations. We will only
    6090             :          * get here for aliasable slabs so we do not need to support
    6091             :          * too many flags. The flags here must cover all flags that
    6092             :          * are matched during merging to guarantee that the id is
    6093             :          * unique.
    6094             :          */
    6095          41 :         if (s->flags & SLAB_CACHE_DMA)
    6096           0 :                 *p++ = 'd';
    6097          41 :         if (s->flags & SLAB_CACHE_DMA32)
    6098           0 :                 *p++ = 'D';
    6099          41 :         if (s->flags & SLAB_RECLAIM_ACCOUNT)
    6100          14 :                 *p++ = 'a';
    6101          41 :         if (s->flags & SLAB_CONSISTENCY_CHECKS)
    6102           0 :                 *p++ = 'F';
    6103             :         if (s->flags & SLAB_ACCOUNT)
    6104             :                 *p++ = 'A';
    6105          41 :         if (p != name + 1)
    6106          14 :                 *p++ = '-';
    6107          41 :         p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
    6108             : 
    6109          41 :         if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
    6110           0 :                 kfree(name);
    6111           0 :                 return ERR_PTR(-EINVAL);
    6112             :         }
    6113             :         kmsan_unpoison_memory(name, p - name);
    6114             :         return name;
    6115             : }
    6116             : 
    6117          53 : static int sysfs_slab_add(struct kmem_cache *s)
    6118             : {
    6119             :         int err;
    6120             :         const char *name;
    6121         106 :         struct kset *kset = cache_kset(s);
    6122          53 :         int unmergeable = slab_unmergeable(s);
    6123             : 
    6124          53 :         if (!unmergeable && disable_higher_order_debug &&
    6125           0 :                         (slub_debug & DEBUG_METADATA_FLAGS))
    6126           0 :                 unmergeable = 1;
    6127             : 
    6128          53 :         if (unmergeable) {
    6129             :                 /*
    6130             :                  * Slabcache can never be merged so we can use the name proper.
    6131             :                  * This is typically the case for debug situations. In that
    6132             :                  * case we can catch duplicate names easily.
    6133             :                  */
    6134          12 :                 sysfs_remove_link(&slab_kset->kobj, s->name);
    6135          12 :                 name = s->name;
    6136             :         } else {
    6137             :                 /*
    6138             :                  * Create a unique name for the slab as a target
    6139             :                  * for the symlinks.
    6140             :                  */
    6141          41 :                 name = create_unique_id(s);
    6142          41 :                 if (IS_ERR(name))
    6143           0 :                         return PTR_ERR(name);
    6144             :         }
    6145             : 
    6146          53 :         s->kobj.kset = kset;
    6147          53 :         err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
    6148          53 :         if (err)
    6149             :                 goto out;
    6150             : 
    6151          53 :         err = sysfs_create_group(&s->kobj, &slab_attr_group);
    6152          53 :         if (err)
    6153             :                 goto out_del_kobj;
    6154             : 
    6155          53 :         if (!unmergeable) {
    6156             :                 /* Setup first alias */
    6157          41 :                 sysfs_slab_alias(s, s->name);
    6158             :         }
    6159             : out:
    6160          53 :         if (!unmergeable)
    6161          41 :                 kfree(name);
    6162             :         return err;
    6163             : out_del_kobj:
    6164           0 :         kobject_del(&s->kobj);
    6165           0 :         goto out;
    6166             : }
    6167             : 
    6168           0 : void sysfs_slab_unlink(struct kmem_cache *s)
    6169             : {
    6170           0 :         if (slab_state >= FULL)
    6171           0 :                 kobject_del(&s->kobj);
    6172           0 : }
    6173             : 
    6174           0 : void sysfs_slab_release(struct kmem_cache *s)
    6175             : {
    6176           0 :         if (slab_state >= FULL)
    6177           0 :                 kobject_put(&s->kobj);
    6178           0 : }
    6179             : 
    6180             : /*
    6181             :  * Need to buffer aliases during bootup until sysfs becomes
    6182             :  * available lest we lose that information.
    6183             :  */
    6184             : struct saved_alias {
    6185             :         struct kmem_cache *s;
    6186             :         const char *name;
    6187             :         struct saved_alias *next;
    6188             : };
    6189             : 
    6190             : static struct saved_alias *alias_list;
    6191             : 
    6192         105 : static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
    6193             : {
    6194             :         struct saved_alias *al;
    6195             : 
    6196         105 :         if (slab_state == FULL) {
    6197             :                 /*
    6198             :                  * If we have a leftover link then remove it.
    6199             :                  */
    6200          73 :                 sysfs_remove_link(&slab_kset->kobj, name);
    6201          73 :                 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
    6202             :         }
    6203             : 
    6204          32 :         al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
    6205          32 :         if (!al)
    6206             :                 return -ENOMEM;
    6207             : 
    6208          32 :         al->s = s;
    6209          32 :         al->name = name;
    6210          32 :         al->next = alias_list;
    6211          32 :         alias_list = al;
    6212          32 :         kmsan_unpoison_memory(al, sizeof(*al));
    6213          32 :         return 0;
    6214             : }
    6215             : 
    6216           1 : static int __init slab_sysfs_init(void)
    6217             : {
    6218             :         struct kmem_cache *s;
    6219             :         int err;
    6220             : 
    6221           1 :         mutex_lock(&slab_mutex);
    6222             : 
    6223           1 :         slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
    6224           1 :         if (!slab_kset) {
    6225           0 :                 mutex_unlock(&slab_mutex);
    6226           0 :                 pr_err("Cannot register slab subsystem.\n");
    6227           0 :                 return -ENOSYS;
    6228             :         }
    6229             : 
    6230           1 :         slab_state = FULL;
    6231             : 
    6232          54 :         list_for_each_entry(s, &slab_caches, list) {
    6233          53 :                 err = sysfs_slab_add(s);
    6234          53 :                 if (err)
    6235           0 :                         pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
    6236             :                                s->name);
    6237             :         }
    6238             : 
    6239          33 :         while (alias_list) {
    6240          32 :                 struct saved_alias *al = alias_list;
    6241             : 
    6242          32 :                 alias_list = alias_list->next;
    6243          32 :                 err = sysfs_slab_alias(al->s, al->name);
    6244          32 :                 if (err)
    6245           0 :                         pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
    6246             :                                al->name);
    6247          32 :                 kfree(al);
    6248             :         }
    6249             : 
    6250           1 :         mutex_unlock(&slab_mutex);
    6251           1 :         return 0;
    6252             : }
    6253             : late_initcall(slab_sysfs_init);
    6254             : #endif /* SLAB_SUPPORTS_SYSFS */
    6255             : 
    6256             : #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
    6257             : static int slab_debugfs_show(struct seq_file *seq, void *v)
    6258             : {
    6259             :         struct loc_track *t = seq->private;
    6260             :         struct location *l;
    6261             :         unsigned long idx;
    6262             : 
    6263             :         idx = (unsigned long) t->idx;
    6264             :         if (idx < t->count) {
    6265             :                 l = &t->loc[idx];
    6266             : 
    6267             :                 seq_printf(seq, "%7ld ", l->count);
    6268             : 
    6269             :                 if (l->addr)
    6270             :                         seq_printf(seq, "%pS", (void *)l->addr);
    6271             :                 else
    6272             :                         seq_puts(seq, "<not-available>");
    6273             : 
    6274             :                 if (l->waste)
    6275             :                         seq_printf(seq, " waste=%lu/%lu",
    6276             :                                 l->count * l->waste, l->waste);
    6277             : 
    6278             :                 if (l->sum_time != l->min_time) {
    6279             :                         seq_printf(seq, " age=%ld/%llu/%ld",
    6280             :                                 l->min_time, div_u64(l->sum_time, l->count),
    6281             :                                 l->max_time);
    6282             :                 } else
    6283             :                         seq_printf(seq, " age=%ld", l->min_time);
    6284             : 
    6285             :                 if (l->min_pid != l->max_pid)
    6286             :                         seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
    6287             :                 else
    6288             :                         seq_printf(seq, " pid=%ld",
    6289             :                                 l->min_pid);
    6290             : 
    6291             :                 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
    6292             :                         seq_printf(seq, " cpus=%*pbl",
    6293             :                                  cpumask_pr_args(to_cpumask(l->cpus)));
    6294             : 
    6295             :                 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
    6296             :                         seq_printf(seq, " nodes=%*pbl",
    6297             :                                  nodemask_pr_args(&l->nodes));
    6298             : 
    6299             : #ifdef CONFIG_STACKDEPOT
    6300             :                 {
    6301             :                         depot_stack_handle_t handle;
    6302             :                         unsigned long *entries;
    6303             :                         unsigned int nr_entries, j;
    6304             : 
    6305             :                         handle = READ_ONCE(l->handle);
    6306             :                         if (handle) {
    6307             :                                 nr_entries = stack_depot_fetch(handle, &entries);
    6308             :                                 seq_puts(seq, "\n");
    6309             :                                 for (j = 0; j < nr_entries; j++)
    6310             :                                         seq_printf(seq, "        %pS\n", (void *)entries[j]);
    6311             :                         }
    6312             :                 }
    6313             : #endif
    6314             :                 seq_puts(seq, "\n");
    6315             :         }
    6316             : 
    6317             :         if (!idx && !t->count)
    6318             :                 seq_puts(seq, "No data\n");
    6319             : 
    6320             :         return 0;
    6321             : }
    6322             : 
    6323             : static void slab_debugfs_stop(struct seq_file *seq, void *v)
    6324             : {
    6325             : }
    6326             : 
    6327             : static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
    6328             : {
    6329             :         struct loc_track *t = seq->private;
    6330             : 
    6331             :         t->idx = ++(*ppos);
    6332             :         if (*ppos <= t->count)
    6333             :                 return ppos;
    6334             : 
    6335             :         return NULL;
    6336             : }
    6337             : 
    6338             : static int cmp_loc_by_count(const void *a, const void *b, const void *data)
    6339             : {
    6340             :         struct location *loc1 = (struct location *)a;
    6341             :         struct location *loc2 = (struct location *)b;
    6342             : 
    6343             :         if (loc1->count > loc2->count)
    6344             :                 return -1;
    6345             :         else
    6346             :                 return 1;
    6347             : }
    6348             : 
    6349             : static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
    6350             : {
    6351             :         struct loc_track *t = seq->private;
    6352             : 
    6353             :         t->idx = *ppos;
    6354             :         return ppos;
    6355             : }
    6356             : 
    6357             : static const struct seq_operations slab_debugfs_sops = {
    6358             :         .start  = slab_debugfs_start,
    6359             :         .next   = slab_debugfs_next,
    6360             :         .stop   = slab_debugfs_stop,
    6361             :         .show   = slab_debugfs_show,
    6362             : };
    6363             : 
    6364             : static int slab_debug_trace_open(struct inode *inode, struct file *filep)
    6365             : {
    6366             : 
    6367             :         struct kmem_cache_node *n;
    6368             :         enum track_item alloc;
    6369             :         int node;
    6370             :         struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
    6371             :                                                 sizeof(struct loc_track));
    6372             :         struct kmem_cache *s = file_inode(filep)->i_private;
    6373             :         unsigned long *obj_map;
    6374             : 
    6375             :         if (!t)
    6376             :                 return -ENOMEM;
    6377             : 
    6378             :         obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
    6379             :         if (!obj_map) {
    6380             :                 seq_release_private(inode, filep);
    6381             :                 return -ENOMEM;
    6382             :         }
    6383             : 
    6384             :         if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
    6385             :                 alloc = TRACK_ALLOC;
    6386             :         else
    6387             :                 alloc = TRACK_FREE;
    6388             : 
    6389             :         if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
    6390             :                 bitmap_free(obj_map);
    6391             :                 seq_release_private(inode, filep);
    6392             :                 return -ENOMEM;
    6393             :         }
    6394             : 
    6395             :         for_each_kmem_cache_node(s, node, n) {
    6396             :                 unsigned long flags;
    6397             :                 struct slab *slab;
    6398             : 
    6399             :                 if (!atomic_long_read(&n->nr_slabs))
    6400             :                         continue;
    6401             : 
    6402             :                 spin_lock_irqsave(&n->list_lock, flags);
    6403             :                 list_for_each_entry(slab, &n->partial, slab_list)
    6404             :                         process_slab(t, s, slab, alloc, obj_map);
    6405             :                 list_for_each_entry(slab, &n->full, slab_list)
    6406             :                         process_slab(t, s, slab, alloc, obj_map);
    6407             :                 spin_unlock_irqrestore(&n->list_lock, flags);
    6408             :         }
    6409             : 
    6410             :         /* Sort locations by count */
    6411             :         sort_r(t->loc, t->count, sizeof(struct location),
    6412             :                 cmp_loc_by_count, NULL, NULL);
    6413             : 
    6414             :         bitmap_free(obj_map);
    6415             :         return 0;
    6416             : }
    6417             : 
    6418             : static int slab_debug_trace_release(struct inode *inode, struct file *file)
    6419             : {
    6420             :         struct seq_file *seq = file->private_data;
    6421             :         struct loc_track *t = seq->private;
    6422             : 
    6423             :         free_loc_track(t);
    6424             :         return seq_release_private(inode, file);
    6425             : }
    6426             : 
    6427             : static const struct file_operations slab_debugfs_fops = {
    6428             :         .open    = slab_debug_trace_open,
    6429             :         .read    = seq_read,
    6430             :         .llseek  = seq_lseek,
    6431             :         .release = slab_debug_trace_release,
    6432             : };
    6433             : 
    6434             : static void debugfs_slab_add(struct kmem_cache *s)
    6435             : {
    6436             :         struct dentry *slab_cache_dir;
    6437             : 
    6438             :         if (unlikely(!slab_debugfs_root))
    6439             :                 return;
    6440             : 
    6441             :         slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
    6442             : 
    6443             :         debugfs_create_file("alloc_traces", 0400,
    6444             :                 slab_cache_dir, s, &slab_debugfs_fops);
    6445             : 
    6446             :         debugfs_create_file("free_traces", 0400,
    6447             :                 slab_cache_dir, s, &slab_debugfs_fops);
    6448             : }
    6449             : 
    6450             : void debugfs_slab_release(struct kmem_cache *s)
    6451             : {
    6452             :         debugfs_lookup_and_remove(s->name, slab_debugfs_root);
    6453             : }
    6454             : 
    6455             : static int __init slab_debugfs_init(void)
    6456             : {
    6457             :         struct kmem_cache *s;
    6458             : 
    6459             :         slab_debugfs_root = debugfs_create_dir("slab", NULL);
    6460             : 
    6461             :         list_for_each_entry(s, &slab_caches, list)
    6462             :                 if (s->flags & SLAB_STORE_USER)
    6463             :                         debugfs_slab_add(s);
    6464             : 
    6465             :         return 0;
    6466             : 
    6467             : }
    6468             : __initcall(slab_debugfs_init);
    6469             : #endif
    6470             : /*
    6471             :  * The /proc/slabinfo ABI
    6472             :  */
    6473             : #ifdef CONFIG_SLUB_DEBUG
    6474           0 : void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
    6475             : {
    6476           0 :         unsigned long nr_slabs = 0;
    6477           0 :         unsigned long nr_objs = 0;
    6478           0 :         unsigned long nr_free = 0;
    6479             :         int node;
    6480             :         struct kmem_cache_node *n;
    6481             : 
    6482           0 :         for_each_kmem_cache_node(s, node, n) {
    6483           0 :                 nr_slabs += node_nr_slabs(n);
    6484           0 :                 nr_objs += node_nr_objs(n);
    6485           0 :                 nr_free += count_partial(n, count_free);
    6486             :         }
    6487             : 
    6488           0 :         sinfo->active_objs = nr_objs - nr_free;
    6489           0 :         sinfo->num_objs = nr_objs;
    6490           0 :         sinfo->active_slabs = nr_slabs;
    6491           0 :         sinfo->num_slabs = nr_slabs;
    6492           0 :         sinfo->objects_per_slab = oo_objects(s->oo);
    6493           0 :         sinfo->cache_order = oo_order(s->oo);
    6494           0 : }
    6495             : 
    6496           0 : void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
    6497             : {
    6498           0 : }
    6499             : 
    6500           0 : ssize_t slabinfo_write(struct file *file, const char __user *buffer,
    6501             :                        size_t count, loff_t *ppos)
    6502             : {
    6503           0 :         return -EIO;
    6504             : }
    6505             : #endif /* CONFIG_SLUB_DEBUG */

Generated by: LCOV version 1.14