Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * linux/mm/vmstat.c
4 : *
5 : * Manages VM statistics
6 : * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 : *
8 : * zoned VM statistics
9 : * Copyright (C) 2006 Silicon Graphics, Inc.,
10 : * Christoph Lameter <christoph@lameter.com>
11 : * Copyright (C) 2008-2014 Christoph Lameter
12 : */
13 : #include <linux/fs.h>
14 : #include <linux/mm.h>
15 : #include <linux/err.h>
16 : #include <linux/module.h>
17 : #include <linux/slab.h>
18 : #include <linux/cpu.h>
19 : #include <linux/cpumask.h>
20 : #include <linux/vmstat.h>
21 : #include <linux/proc_fs.h>
22 : #include <linux/seq_file.h>
23 : #include <linux/debugfs.h>
24 : #include <linux/sched.h>
25 : #include <linux/math64.h>
26 : #include <linux/writeback.h>
27 : #include <linux/compaction.h>
28 : #include <linux/mm_inline.h>
29 : #include <linux/page_ext.h>
30 : #include <linux/page_owner.h>
31 :
32 : #include "internal.h"
33 :
34 : #ifdef CONFIG_NUMA
35 : int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 :
37 : /* zero numa counters within a zone */
38 : static void zero_zone_numa_counters(struct zone *zone)
39 : {
40 : int item, cpu;
41 :
42 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 : atomic_long_set(&zone->vm_numa_event[item], 0);
44 : for_each_online_cpu(cpu) {
45 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 : = 0;
47 : }
48 : }
49 : }
50 :
51 : /* zero numa counters of all the populated zones */
52 : static void zero_zones_numa_counters(void)
53 : {
54 : struct zone *zone;
55 :
56 : for_each_populated_zone(zone)
57 : zero_zone_numa_counters(zone);
58 : }
59 :
60 : /* zero global numa counters */
61 : static void zero_global_numa_counters(void)
62 : {
63 : int item;
64 :
65 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 : atomic_long_set(&vm_numa_event[item], 0);
67 : }
68 :
69 : static void invalid_numa_statistics(void)
70 : {
71 : zero_zones_numa_counters();
72 : zero_global_numa_counters();
73 : }
74 :
75 : static DEFINE_MUTEX(vm_numa_stat_lock);
76 :
77 : int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 : void *buffer, size_t *length, loff_t *ppos)
79 : {
80 : int ret, oldval;
81 :
82 : mutex_lock(&vm_numa_stat_lock);
83 : if (write)
84 : oldval = sysctl_vm_numa_stat;
85 : ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 : if (ret || !write)
87 : goto out;
88 :
89 : if (oldval == sysctl_vm_numa_stat)
90 : goto out;
91 : else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 : static_branch_enable(&vm_numa_stat_key);
93 : pr_info("enable numa statistics\n");
94 : } else {
95 : static_branch_disable(&vm_numa_stat_key);
96 : invalid_numa_statistics();
97 : pr_info("disable numa statistics, and clear numa counters\n");
98 : }
99 :
100 : out:
101 : mutex_unlock(&vm_numa_stat_lock);
102 : return ret;
103 : }
104 : #endif
105 :
106 : #ifdef CONFIG_VM_EVENT_COUNTERS
107 : DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 : EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 :
110 0 : static void sum_vm_events(unsigned long *ret)
111 : {
112 : int cpu;
113 : int i;
114 :
115 0 : memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 :
117 0 : for_each_online_cpu(cpu) {
118 : struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 :
120 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 0 : ret[i] += this->event[i];
122 : }
123 0 : }
124 :
125 : /*
126 : * Accumulate the vm event counters across all CPUs.
127 : * The result is unavoidably approximate - it can change
128 : * during and after execution of this function.
129 : */
130 0 : void all_vm_events(unsigned long *ret)
131 : {
132 : cpus_read_lock();
133 0 : sum_vm_events(ret);
134 : cpus_read_unlock();
135 0 : }
136 : EXPORT_SYMBOL_GPL(all_vm_events);
137 :
138 : /*
139 : * Fold the foreign cpu events into our own.
140 : *
141 : * This is adding to the events on one processor
142 : * but keeps the global counts constant.
143 : */
144 0 : void vm_events_fold_cpu(int cpu)
145 : {
146 0 : struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 : int i;
148 :
149 0 : for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 0 : count_vm_events(i, fold_state->event[i]);
151 0 : fold_state->event[i] = 0;
152 : }
153 0 : }
154 :
155 : #endif /* CONFIG_VM_EVENT_COUNTERS */
156 :
157 : /*
158 : * Manage combined zone based / global counters
159 : *
160 : * vm_stat contains the global counters
161 : */
162 : atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 : atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 : atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 : EXPORT_SYMBOL(vm_zone_stat);
166 : EXPORT_SYMBOL(vm_node_stat);
167 :
168 : #ifdef CONFIG_NUMA
169 : static void fold_vm_zone_numa_events(struct zone *zone)
170 : {
171 : unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 : int cpu;
173 : enum numa_stat_item item;
174 :
175 : for_each_online_cpu(cpu) {
176 : struct per_cpu_zonestat *pzstats;
177 :
178 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 : zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 : }
182 :
183 : for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 : zone_numa_event_add(zone_numa_events[item], zone, item);
185 : }
186 :
187 : void fold_vm_numa_events(void)
188 : {
189 : struct zone *zone;
190 :
191 : for_each_populated_zone(zone)
192 : fold_vm_zone_numa_events(zone);
193 : }
194 : #endif
195 :
196 : #ifdef CONFIG_SMP
197 :
198 : int calculate_pressure_threshold(struct zone *zone)
199 : {
200 : int threshold;
201 : int watermark_distance;
202 :
203 : /*
204 : * As vmstats are not up to date, there is drift between the estimated
205 : * and real values. For high thresholds and a high number of CPUs, it
206 : * is possible for the min watermark to be breached while the estimated
207 : * value looks fine. The pressure threshold is a reduced value such
208 : * that even the maximum amount of drift will not accidentally breach
209 : * the min watermark
210 : */
211 : watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 : threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213 :
214 : /*
215 : * Maximum threshold is 125
216 : */
217 : threshold = min(125, threshold);
218 :
219 : return threshold;
220 : }
221 :
222 : int calculate_normal_threshold(struct zone *zone)
223 : {
224 : int threshold;
225 : int mem; /* memory in 128 MB units */
226 :
227 : /*
228 : * The threshold scales with the number of processors and the amount
229 : * of memory per zone. More memory means that we can defer updates for
230 : * longer, more processors could lead to more contention.
231 : * fls() is used to have a cheap way of logarithmic scaling.
232 : *
233 : * Some sample thresholds:
234 : *
235 : * Threshold Processors (fls) Zonesize fls(mem)+1
236 : * ------------------------------------------------------------------
237 : * 8 1 1 0.9-1 GB 4
238 : * 16 2 2 0.9-1 GB 4
239 : * 20 2 2 1-2 GB 5
240 : * 24 2 2 2-4 GB 6
241 : * 28 2 2 4-8 GB 7
242 : * 32 2 2 8-16 GB 8
243 : * 4 2 2 <128M 1
244 : * 30 4 3 2-4 GB 5
245 : * 48 4 3 8-16 GB 8
246 : * 32 8 4 1-2 GB 4
247 : * 32 8 4 0.9-1GB 4
248 : * 10 16 5 <128M 1
249 : * 40 16 5 900M 4
250 : * 70 64 7 2-4 GB 5
251 : * 84 64 7 4-8 GB 6
252 : * 108 512 9 4-8 GB 6
253 : * 125 1024 10 8-16 GB 8
254 : * 125 1024 10 16-32 GB 9
255 : */
256 :
257 : mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258 :
259 : threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260 :
261 : /*
262 : * Maximum threshold is 125
263 : */
264 : threshold = min(125, threshold);
265 :
266 : return threshold;
267 : }
268 :
269 : /*
270 : * Refresh the thresholds for each zone.
271 : */
272 : void refresh_zone_stat_thresholds(void)
273 : {
274 : struct pglist_data *pgdat;
275 : struct zone *zone;
276 : int cpu;
277 : int threshold;
278 :
279 : /* Zero current pgdat thresholds */
280 : for_each_online_pgdat(pgdat) {
281 : for_each_online_cpu(cpu) {
282 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 : }
284 : }
285 :
286 : for_each_populated_zone(zone) {
287 : struct pglist_data *pgdat = zone->zone_pgdat;
288 : unsigned long max_drift, tolerate_drift;
289 :
290 : threshold = calculate_normal_threshold(zone);
291 :
292 : for_each_online_cpu(cpu) {
293 : int pgdat_threshold;
294 :
295 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 : = threshold;
297 :
298 : /* Base nodestat threshold on the largest populated zone. */
299 : pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 : per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 : = max(threshold, pgdat_threshold);
302 : }
303 :
304 : /*
305 : * Only set percpu_drift_mark if there is a danger that
306 : * NR_FREE_PAGES reports the low watermark is ok when in fact
307 : * the min watermark could be breached by an allocation
308 : */
309 : tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 : max_drift = num_online_cpus() * threshold;
311 : if (max_drift > tolerate_drift)
312 : zone->percpu_drift_mark = high_wmark_pages(zone) +
313 : max_drift;
314 : }
315 : }
316 :
317 : void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 : int (*calculate_pressure)(struct zone *))
319 : {
320 : struct zone *zone;
321 : int cpu;
322 : int threshold;
323 : int i;
324 :
325 : for (i = 0; i < pgdat->nr_zones; i++) {
326 : zone = &pgdat->node_zones[i];
327 : if (!zone->percpu_drift_mark)
328 : continue;
329 :
330 : threshold = (*calculate_pressure)(zone);
331 : for_each_online_cpu(cpu)
332 : per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 : = threshold;
334 : }
335 : }
336 :
337 : /*
338 : * For use when we know that interrupts are disabled,
339 : * or when we know that preemption is disabled and that
340 : * particular counter cannot be updated from interrupt context.
341 : */
342 : void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 : long delta)
344 : {
345 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 : s8 __percpu *p = pcp->vm_stat_diff + item;
347 : long x;
348 : long t;
349 :
350 : /*
351 : * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 : * atomicity is provided by IRQs being disabled -- either explicitly
353 : * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 : * CPU migrations and preemption potentially corrupts a counter so
355 : * disable preemption.
356 : */
357 : preempt_disable_nested();
358 :
359 : x = delta + __this_cpu_read(*p);
360 :
361 : t = __this_cpu_read(pcp->stat_threshold);
362 :
363 : if (unlikely(abs(x) > t)) {
364 : zone_page_state_add(x, zone, item);
365 : x = 0;
366 : }
367 : __this_cpu_write(*p, x);
368 :
369 : preempt_enable_nested();
370 : }
371 : EXPORT_SYMBOL(__mod_zone_page_state);
372 :
373 : void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 : long delta)
375 : {
376 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 : long x;
379 : long t;
380 :
381 : if (vmstat_item_in_bytes(item)) {
382 : /*
383 : * Only cgroups use subpage accounting right now; at
384 : * the global level, these items still change in
385 : * multiples of whole pages. Store them as pages
386 : * internally to keep the per-cpu counters compact.
387 : */
388 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 : delta >>= PAGE_SHIFT;
390 : }
391 :
392 : /* See __mod_node_page_state */
393 : preempt_disable_nested();
394 :
395 : x = delta + __this_cpu_read(*p);
396 :
397 : t = __this_cpu_read(pcp->stat_threshold);
398 :
399 : if (unlikely(abs(x) > t)) {
400 : node_page_state_add(x, pgdat, item);
401 : x = 0;
402 : }
403 : __this_cpu_write(*p, x);
404 :
405 : preempt_enable_nested();
406 : }
407 : EXPORT_SYMBOL(__mod_node_page_state);
408 :
409 : /*
410 : * Optimized increment and decrement functions.
411 : *
412 : * These are only for a single page and therefore can take a struct page *
413 : * argument instead of struct zone *. This allows the inclusion of the code
414 : * generated for page_zone(page) into the optimized functions.
415 : *
416 : * No overflow check is necessary and therefore the differential can be
417 : * incremented or decremented in place which may allow the compilers to
418 : * generate better code.
419 : * The increment or decrement is known and therefore one boundary check can
420 : * be omitted.
421 : *
422 : * NOTE: These functions are very performance sensitive. Change only
423 : * with care.
424 : *
425 : * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 : * However, the code must first determine the differential location in a zone
427 : * based on the processor number and then inc/dec the counter. There is no
428 : * guarantee without disabling preemption that the processor will not change
429 : * in between and therefore the atomicity vs. interrupt cannot be exploited
430 : * in a useful way here.
431 : */
432 : void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 : {
434 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 : s8 __percpu *p = pcp->vm_stat_diff + item;
436 : s8 v, t;
437 :
438 : /* See __mod_node_page_state */
439 : preempt_disable_nested();
440 :
441 : v = __this_cpu_inc_return(*p);
442 : t = __this_cpu_read(pcp->stat_threshold);
443 : if (unlikely(v > t)) {
444 : s8 overstep = t >> 1;
445 :
446 : zone_page_state_add(v + overstep, zone, item);
447 : __this_cpu_write(*p, -overstep);
448 : }
449 :
450 : preempt_enable_nested();
451 : }
452 :
453 : void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 : {
455 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 : s8 v, t;
458 :
459 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460 :
461 : /* See __mod_node_page_state */
462 : preempt_disable_nested();
463 :
464 : v = __this_cpu_inc_return(*p);
465 : t = __this_cpu_read(pcp->stat_threshold);
466 : if (unlikely(v > t)) {
467 : s8 overstep = t >> 1;
468 :
469 : node_page_state_add(v + overstep, pgdat, item);
470 : __this_cpu_write(*p, -overstep);
471 : }
472 :
473 : preempt_enable_nested();
474 : }
475 :
476 : void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 : {
478 : __inc_zone_state(page_zone(page), item);
479 : }
480 : EXPORT_SYMBOL(__inc_zone_page_state);
481 :
482 : void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 : {
484 : __inc_node_state(page_pgdat(page), item);
485 : }
486 : EXPORT_SYMBOL(__inc_node_page_state);
487 :
488 : void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 : {
490 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 : s8 __percpu *p = pcp->vm_stat_diff + item;
492 : s8 v, t;
493 :
494 : /* See __mod_node_page_state */
495 : preempt_disable_nested();
496 :
497 : v = __this_cpu_dec_return(*p);
498 : t = __this_cpu_read(pcp->stat_threshold);
499 : if (unlikely(v < - t)) {
500 : s8 overstep = t >> 1;
501 :
502 : zone_page_state_add(v - overstep, zone, item);
503 : __this_cpu_write(*p, overstep);
504 : }
505 :
506 : preempt_enable_nested();
507 : }
508 :
509 : void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 : {
511 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 : s8 v, t;
514 :
515 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516 :
517 : /* See __mod_node_page_state */
518 : preempt_disable_nested();
519 :
520 : v = __this_cpu_dec_return(*p);
521 : t = __this_cpu_read(pcp->stat_threshold);
522 : if (unlikely(v < - t)) {
523 : s8 overstep = t >> 1;
524 :
525 : node_page_state_add(v - overstep, pgdat, item);
526 : __this_cpu_write(*p, overstep);
527 : }
528 :
529 : preempt_enable_nested();
530 : }
531 :
532 : void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 : {
534 : __dec_zone_state(page_zone(page), item);
535 : }
536 : EXPORT_SYMBOL(__dec_zone_page_state);
537 :
538 : void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 : {
540 : __dec_node_state(page_pgdat(page), item);
541 : }
542 : EXPORT_SYMBOL(__dec_node_page_state);
543 :
544 : #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 : /*
546 : * If we have cmpxchg_local support then we do not need to incur the overhead
547 : * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 : *
549 : * mod_state() modifies the zone counter state through atomic per cpu
550 : * operations.
551 : *
552 : * Overstep mode specifies how overstep should handled:
553 : * 0 No overstepping
554 : * 1 Overstepping half of threshold
555 : * -1 Overstepping minus half of threshold
556 : */
557 : static inline void mod_zone_state(struct zone *zone,
558 : enum zone_stat_item item, long delta, int overstep_mode)
559 : {
560 : struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 : s8 __percpu *p = pcp->vm_stat_diff + item;
562 : long o, n, t, z;
563 :
564 : do {
565 : z = 0; /* overflow to zone counters */
566 :
567 : /*
568 : * The fetching of the stat_threshold is racy. We may apply
569 : * a counter threshold to the wrong the cpu if we get
570 : * rescheduled while executing here. However, the next
571 : * counter update will apply the threshold again and
572 : * therefore bring the counter under the threshold again.
573 : *
574 : * Most of the time the thresholds are the same anyways
575 : * for all cpus in a zone.
576 : */
577 : t = this_cpu_read(pcp->stat_threshold);
578 :
579 : o = this_cpu_read(*p);
580 : n = delta + o;
581 :
582 : if (abs(n) > t) {
583 : int os = overstep_mode * (t >> 1) ;
584 :
585 : /* Overflow must be added to zone counters */
586 : z = n + os;
587 : n = -os;
588 : }
589 : } while (this_cpu_cmpxchg(*p, o, n) != o);
590 :
591 : if (z)
592 : zone_page_state_add(z, zone, item);
593 : }
594 :
595 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 : long delta)
597 : {
598 : mod_zone_state(zone, item, delta, 0);
599 : }
600 : EXPORT_SYMBOL(mod_zone_page_state);
601 :
602 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603 : {
604 : mod_zone_state(page_zone(page), item, 1, 1);
605 : }
606 : EXPORT_SYMBOL(inc_zone_page_state);
607 :
608 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609 : {
610 : mod_zone_state(page_zone(page), item, -1, -1);
611 : }
612 : EXPORT_SYMBOL(dec_zone_page_state);
613 :
614 : static inline void mod_node_state(struct pglist_data *pgdat,
615 : enum node_stat_item item, int delta, int overstep_mode)
616 : {
617 : struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 : s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 : long o, n, t, z;
620 :
621 : if (vmstat_item_in_bytes(item)) {
622 : /*
623 : * Only cgroups use subpage accounting right now; at
624 : * the global level, these items still change in
625 : * multiples of whole pages. Store them as pages
626 : * internally to keep the per-cpu counters compact.
627 : */
628 : VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 : delta >>= PAGE_SHIFT;
630 : }
631 :
632 : do {
633 : z = 0; /* overflow to node counters */
634 :
635 : /*
636 : * The fetching of the stat_threshold is racy. We may apply
637 : * a counter threshold to the wrong the cpu if we get
638 : * rescheduled while executing here. However, the next
639 : * counter update will apply the threshold again and
640 : * therefore bring the counter under the threshold again.
641 : *
642 : * Most of the time the thresholds are the same anyways
643 : * for all cpus in a node.
644 : */
645 : t = this_cpu_read(pcp->stat_threshold);
646 :
647 : o = this_cpu_read(*p);
648 : n = delta + o;
649 :
650 : if (abs(n) > t) {
651 : int os = overstep_mode * (t >> 1) ;
652 :
653 : /* Overflow must be added to node counters */
654 : z = n + os;
655 : n = -os;
656 : }
657 : } while (this_cpu_cmpxchg(*p, o, n) != o);
658 :
659 : if (z)
660 : node_page_state_add(z, pgdat, item);
661 : }
662 :
663 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 : long delta)
665 : {
666 : mod_node_state(pgdat, item, delta, 0);
667 : }
668 : EXPORT_SYMBOL(mod_node_page_state);
669 :
670 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671 : {
672 : mod_node_state(pgdat, item, 1, 1);
673 : }
674 :
675 : void inc_node_page_state(struct page *page, enum node_stat_item item)
676 : {
677 : mod_node_state(page_pgdat(page), item, 1, 1);
678 : }
679 : EXPORT_SYMBOL(inc_node_page_state);
680 :
681 : void dec_node_page_state(struct page *page, enum node_stat_item item)
682 : {
683 : mod_node_state(page_pgdat(page), item, -1, -1);
684 : }
685 : EXPORT_SYMBOL(dec_node_page_state);
686 : #else
687 : /*
688 : * Use interrupt disable to serialize counter updates
689 : */
690 : void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 : long delta)
692 : {
693 : unsigned long flags;
694 :
695 : local_irq_save(flags);
696 : __mod_zone_page_state(zone, item, delta);
697 : local_irq_restore(flags);
698 : }
699 : EXPORT_SYMBOL(mod_zone_page_state);
700 :
701 : void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702 : {
703 : unsigned long flags;
704 : struct zone *zone;
705 :
706 : zone = page_zone(page);
707 : local_irq_save(flags);
708 : __inc_zone_state(zone, item);
709 : local_irq_restore(flags);
710 : }
711 : EXPORT_SYMBOL(inc_zone_page_state);
712 :
713 : void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714 : {
715 : unsigned long flags;
716 :
717 : local_irq_save(flags);
718 : __dec_zone_page_state(page, item);
719 : local_irq_restore(flags);
720 : }
721 : EXPORT_SYMBOL(dec_zone_page_state);
722 :
723 : void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724 : {
725 : unsigned long flags;
726 :
727 : local_irq_save(flags);
728 : __inc_node_state(pgdat, item);
729 : local_irq_restore(flags);
730 : }
731 : EXPORT_SYMBOL(inc_node_state);
732 :
733 : void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 : long delta)
735 : {
736 : unsigned long flags;
737 :
738 : local_irq_save(flags);
739 : __mod_node_page_state(pgdat, item, delta);
740 : local_irq_restore(flags);
741 : }
742 : EXPORT_SYMBOL(mod_node_page_state);
743 :
744 : void inc_node_page_state(struct page *page, enum node_stat_item item)
745 : {
746 : unsigned long flags;
747 : struct pglist_data *pgdat;
748 :
749 : pgdat = page_pgdat(page);
750 : local_irq_save(flags);
751 : __inc_node_state(pgdat, item);
752 : local_irq_restore(flags);
753 : }
754 : EXPORT_SYMBOL(inc_node_page_state);
755 :
756 : void dec_node_page_state(struct page *page, enum node_stat_item item)
757 : {
758 : unsigned long flags;
759 :
760 : local_irq_save(flags);
761 : __dec_node_page_state(page, item);
762 : local_irq_restore(flags);
763 : }
764 : EXPORT_SYMBOL(dec_node_page_state);
765 : #endif
766 :
767 : /*
768 : * Fold a differential into the global counters.
769 : * Returns the number of counters updated.
770 : */
771 : static int fold_diff(int *zone_diff, int *node_diff)
772 : {
773 : int i;
774 : int changes = 0;
775 :
776 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 : if (zone_diff[i]) {
778 : atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 : changes++;
780 : }
781 :
782 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 : if (node_diff[i]) {
784 : atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 : changes++;
786 : }
787 : return changes;
788 : }
789 :
790 : /*
791 : * Update the zone counters for the current cpu.
792 : *
793 : * Note that refresh_cpu_vm_stats strives to only access
794 : * node local memory. The per cpu pagesets on remote zones are placed
795 : * in the memory local to the processor using that pageset. So the
796 : * loop over all zones will access a series of cachelines local to
797 : * the processor.
798 : *
799 : * The call to zone_page_state_add updates the cachelines with the
800 : * statistics in the remote zone struct as well as the global cachelines
801 : * with the global counters. These could cause remote node cache line
802 : * bouncing and will have to be only done when necessary.
803 : *
804 : * The function returns the number of global counters updated.
805 : */
806 : static int refresh_cpu_vm_stats(bool do_pagesets)
807 : {
808 : struct pglist_data *pgdat;
809 : struct zone *zone;
810 : int i;
811 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 : int changes = 0;
814 :
815 : for_each_populated_zone(zone) {
816 : struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817 : #ifdef CONFIG_NUMA
818 : struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819 : #endif
820 :
821 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 : int v;
823 :
824 : v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 : if (v) {
826 :
827 : atomic_long_add(v, &zone->vm_stat[i]);
828 : global_zone_diff[i] += v;
829 : #ifdef CONFIG_NUMA
830 : /* 3 seconds idle till flush */
831 : __this_cpu_write(pcp->expire, 3);
832 : #endif
833 : }
834 : }
835 : #ifdef CONFIG_NUMA
836 :
837 : if (do_pagesets) {
838 : cond_resched();
839 : /*
840 : * Deal with draining the remote pageset of this
841 : * processor
842 : *
843 : * Check if there are pages remaining in this pageset
844 : * if not then there is nothing to expire.
845 : */
846 : if (!__this_cpu_read(pcp->expire) ||
847 : !__this_cpu_read(pcp->count))
848 : continue;
849 :
850 : /*
851 : * We never drain zones local to this processor.
852 : */
853 : if (zone_to_nid(zone) == numa_node_id()) {
854 : __this_cpu_write(pcp->expire, 0);
855 : continue;
856 : }
857 :
858 : if (__this_cpu_dec_return(pcp->expire))
859 : continue;
860 :
861 : if (__this_cpu_read(pcp->count)) {
862 : drain_zone_pages(zone, this_cpu_ptr(pcp));
863 : changes++;
864 : }
865 : }
866 : #endif
867 : }
868 :
869 : for_each_online_pgdat(pgdat) {
870 : struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871 :
872 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 : int v;
874 :
875 : v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 : if (v) {
877 : atomic_long_add(v, &pgdat->vm_stat[i]);
878 : global_node_diff[i] += v;
879 : }
880 : }
881 : }
882 :
883 : changes += fold_diff(global_zone_diff, global_node_diff);
884 : return changes;
885 : }
886 :
887 : /*
888 : * Fold the data for an offline cpu into the global array.
889 : * There cannot be any access by the offline cpu and therefore
890 : * synchronization is simplified.
891 : */
892 : void cpu_vm_stats_fold(int cpu)
893 : {
894 : struct pglist_data *pgdat;
895 : struct zone *zone;
896 : int i;
897 : int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 : int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899 :
900 : for_each_populated_zone(zone) {
901 : struct per_cpu_zonestat *pzstats;
902 :
903 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904 :
905 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 : if (pzstats->vm_stat_diff[i]) {
907 : int v;
908 :
909 : v = pzstats->vm_stat_diff[i];
910 : pzstats->vm_stat_diff[i] = 0;
911 : atomic_long_add(v, &zone->vm_stat[i]);
912 : global_zone_diff[i] += v;
913 : }
914 : }
915 : #ifdef CONFIG_NUMA
916 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 : if (pzstats->vm_numa_event[i]) {
918 : unsigned long v;
919 :
920 : v = pzstats->vm_numa_event[i];
921 : pzstats->vm_numa_event[i] = 0;
922 : zone_numa_event_add(v, zone, i);
923 : }
924 : }
925 : #endif
926 : }
927 :
928 : for_each_online_pgdat(pgdat) {
929 : struct per_cpu_nodestat *p;
930 :
931 : p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932 :
933 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 : if (p->vm_node_stat_diff[i]) {
935 : int v;
936 :
937 : v = p->vm_node_stat_diff[i];
938 : p->vm_node_stat_diff[i] = 0;
939 : atomic_long_add(v, &pgdat->vm_stat[i]);
940 : global_node_diff[i] += v;
941 : }
942 : }
943 :
944 : fold_diff(global_zone_diff, global_node_diff);
945 : }
946 :
947 : /*
948 : * this is only called if !populated_zone(zone), which implies no other users of
949 : * pset->vm_stat_diff[] exist.
950 : */
951 : void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952 : {
953 : unsigned long v;
954 : int i;
955 :
956 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 : if (pzstats->vm_stat_diff[i]) {
958 : v = pzstats->vm_stat_diff[i];
959 : pzstats->vm_stat_diff[i] = 0;
960 : zone_page_state_add(v, zone, i);
961 : }
962 : }
963 :
964 : #ifdef CONFIG_NUMA
965 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 : if (pzstats->vm_numa_event[i]) {
967 : v = pzstats->vm_numa_event[i];
968 : pzstats->vm_numa_event[i] = 0;
969 : zone_numa_event_add(v, zone, i);
970 : }
971 : }
972 : #endif
973 : }
974 : #endif
975 :
976 : #ifdef CONFIG_NUMA
977 : /*
978 : * Determine the per node value of a stat item. This function
979 : * is called frequently in a NUMA machine, so try to be as
980 : * frugal as possible.
981 : */
982 : unsigned long sum_zone_node_page_state(int node,
983 : enum zone_stat_item item)
984 : {
985 : struct zone *zones = NODE_DATA(node)->node_zones;
986 : int i;
987 : unsigned long count = 0;
988 :
989 : for (i = 0; i < MAX_NR_ZONES; i++)
990 : count += zone_page_state(zones + i, item);
991 :
992 : return count;
993 : }
994 :
995 : /* Determine the per node value of a numa stat item. */
996 : unsigned long sum_zone_numa_event_state(int node,
997 : enum numa_stat_item item)
998 : {
999 : struct zone *zones = NODE_DATA(node)->node_zones;
1000 : unsigned long count = 0;
1001 : int i;
1002 :
1003 : for (i = 0; i < MAX_NR_ZONES; i++)
1004 : count += zone_numa_event_state(zones + i, item);
1005 :
1006 : return count;
1007 : }
1008 :
1009 : /*
1010 : * Determine the per node value of a stat item.
1011 : */
1012 : unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 : enum node_stat_item item)
1014 : {
1015 : long x = atomic_long_read(&pgdat->vm_stat[item]);
1016 : #ifdef CONFIG_SMP
1017 : if (x < 0)
1018 : x = 0;
1019 : #endif
1020 : return x;
1021 : }
1022 :
1023 : unsigned long node_page_state(struct pglist_data *pgdat,
1024 : enum node_stat_item item)
1025 : {
1026 : VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027 :
1028 : return node_page_state_pages(pgdat, item);
1029 : }
1030 : #endif
1031 :
1032 : #ifdef CONFIG_COMPACTION
1033 :
1034 : struct contig_page_info {
1035 : unsigned long free_pages;
1036 : unsigned long free_blocks_total;
1037 : unsigned long free_blocks_suitable;
1038 : };
1039 :
1040 : /*
1041 : * Calculate the number of free pages in a zone, how many contiguous
1042 : * pages are free and how many are large enough to satisfy an allocation of
1043 : * the target size. Note that this function makes no attempt to estimate
1044 : * how many suitable free blocks there *might* be if MOVABLE pages were
1045 : * migrated. Calculating that is possible, but expensive and can be
1046 : * figured out from userspace
1047 : */
1048 : static void fill_contig_page_info(struct zone *zone,
1049 : unsigned int suitable_order,
1050 : struct contig_page_info *info)
1051 : {
1052 : unsigned int order;
1053 :
1054 53 : info->free_pages = 0;
1055 53 : info->free_blocks_total = 0;
1056 53 : info->free_blocks_suitable = 0;
1057 :
1058 636 : for (order = 0; order <= MAX_ORDER; order++) {
1059 : unsigned long blocks;
1060 :
1061 : /*
1062 : * Count number of free blocks.
1063 : *
1064 : * Access to nr_free is lockless as nr_free is used only for
1065 : * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 : */
1067 583 : blocks = data_race(zone->free_area[order].nr_free);
1068 583 : info->free_blocks_total += blocks;
1069 :
1070 : /* Count free base pages */
1071 583 : info->free_pages += blocks << order;
1072 :
1073 : /* Count the suitable free blocks */
1074 583 : if (order >= suitable_order)
1075 106 : info->free_blocks_suitable += blocks <<
1076 106 : (order - suitable_order);
1077 : }
1078 : }
1079 :
1080 : /*
1081 : * A fragmentation index only makes sense if an allocation of a requested
1082 : * size would fail. If that is true, the fragmentation index indicates
1083 : * whether external fragmentation or a lack of memory was the problem.
1084 : * The value can be used to determine if page reclaim or compaction
1085 : * should be used
1086 : */
1087 0 : static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088 : {
1089 0 : unsigned long requested = 1UL << order;
1090 :
1091 0 : if (WARN_ON_ONCE(order > MAX_ORDER))
1092 : return 0;
1093 :
1094 0 : if (!info->free_blocks_total)
1095 : return 0;
1096 :
1097 : /* Fragmentation index only makes sense when a request would fail */
1098 0 : if (info->free_blocks_suitable)
1099 : return -1000;
1100 :
1101 : /*
1102 : * Index is between 0 and 1 so return within 3 decimal places
1103 : *
1104 : * 0 => allocation would fail due to lack of memory
1105 : * 1 => allocation would fail due to fragmentation
1106 : */
1107 0 : return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108 : }
1109 :
1110 : /*
1111 : * Calculates external fragmentation within a zone wrt the given order.
1112 : * It is defined as the percentage of pages found in blocks of size
1113 : * less than 1 << order. It returns values in range [0, 100].
1114 : */
1115 53 : unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116 : {
1117 : struct contig_page_info info;
1118 :
1119 53 : fill_contig_page_info(zone, order, &info);
1120 53 : if (info.free_pages == 0)
1121 : return 0;
1122 :
1123 159 : return div_u64((info.free_pages -
1124 106 : (info.free_blocks_suitable << order)) * 100,
1125 : info.free_pages);
1126 : }
1127 :
1128 : /* Same as __fragmentation index but allocs contig_page_info on stack */
1129 0 : int fragmentation_index(struct zone *zone, unsigned int order)
1130 : {
1131 : struct contig_page_info info;
1132 :
1133 0 : fill_contig_page_info(zone, order, &info);
1134 0 : return __fragmentation_index(order, &info);
1135 : }
1136 : #endif
1137 :
1138 : #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 : defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140 : #ifdef CONFIG_ZONE_DMA
1141 : #define TEXT_FOR_DMA(xx) xx "_dma",
1142 : #else
1143 : #define TEXT_FOR_DMA(xx)
1144 : #endif
1145 :
1146 : #ifdef CONFIG_ZONE_DMA32
1147 : #define TEXT_FOR_DMA32(xx) xx "_dma32",
1148 : #else
1149 : #define TEXT_FOR_DMA32(xx)
1150 : #endif
1151 :
1152 : #ifdef CONFIG_HIGHMEM
1153 : #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154 : #else
1155 : #define TEXT_FOR_HIGHMEM(xx)
1156 : #endif
1157 :
1158 : #ifdef CONFIG_ZONE_DEVICE
1159 : #define TEXT_FOR_DEVICE(xx) xx "_device",
1160 : #else
1161 : #define TEXT_FOR_DEVICE(xx)
1162 : #endif
1163 :
1164 : #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 : TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 : TEXT_FOR_DEVICE(xx)
1167 :
1168 : const char * const vmstat_text[] = {
1169 : /* enum zone_stat_item counters */
1170 : "nr_free_pages",
1171 : "nr_zone_inactive_anon",
1172 : "nr_zone_active_anon",
1173 : "nr_zone_inactive_file",
1174 : "nr_zone_active_file",
1175 : "nr_zone_unevictable",
1176 : "nr_zone_write_pending",
1177 : "nr_mlock",
1178 : "nr_bounce",
1179 : #if IS_ENABLED(CONFIG_ZSMALLOC)
1180 : "nr_zspages",
1181 : #endif
1182 : "nr_free_cma",
1183 :
1184 : /* enum numa_stat_item counters */
1185 : #ifdef CONFIG_NUMA
1186 : "numa_hit",
1187 : "numa_miss",
1188 : "numa_foreign",
1189 : "numa_interleave",
1190 : "numa_local",
1191 : "numa_other",
1192 : #endif
1193 :
1194 : /* enum node_stat_item counters */
1195 : "nr_inactive_anon",
1196 : "nr_active_anon",
1197 : "nr_inactive_file",
1198 : "nr_active_file",
1199 : "nr_unevictable",
1200 : "nr_slab_reclaimable",
1201 : "nr_slab_unreclaimable",
1202 : "nr_isolated_anon",
1203 : "nr_isolated_file",
1204 : "workingset_nodes",
1205 : "workingset_refault_anon",
1206 : "workingset_refault_file",
1207 : "workingset_activate_anon",
1208 : "workingset_activate_file",
1209 : "workingset_restore_anon",
1210 : "workingset_restore_file",
1211 : "workingset_nodereclaim",
1212 : "nr_anon_pages",
1213 : "nr_mapped",
1214 : "nr_file_pages",
1215 : "nr_dirty",
1216 : "nr_writeback",
1217 : "nr_writeback_temp",
1218 : "nr_shmem",
1219 : "nr_shmem_hugepages",
1220 : "nr_shmem_pmdmapped",
1221 : "nr_file_hugepages",
1222 : "nr_file_pmdmapped",
1223 : "nr_anon_transparent_hugepages",
1224 : "nr_vmscan_write",
1225 : "nr_vmscan_immediate_reclaim",
1226 : "nr_dirtied",
1227 : "nr_written",
1228 : "nr_throttled_written",
1229 : "nr_kernel_misc_reclaimable",
1230 : "nr_foll_pin_acquired",
1231 : "nr_foll_pin_released",
1232 : "nr_kernel_stack",
1233 : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234 : "nr_shadow_call_stack",
1235 : #endif
1236 : "nr_page_table_pages",
1237 : "nr_sec_page_table_pages",
1238 : #ifdef CONFIG_SWAP
1239 : "nr_swapcached",
1240 : #endif
1241 : #ifdef CONFIG_NUMA_BALANCING
1242 : "pgpromote_success",
1243 : "pgpromote_candidate",
1244 : #endif
1245 :
1246 : /* enum writeback_stat_item counters */
1247 : "nr_dirty_threshold",
1248 : "nr_dirty_background_threshold",
1249 :
1250 : #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 : /* enum vm_event_item counters */
1252 : "pgpgin",
1253 : "pgpgout",
1254 : "pswpin",
1255 : "pswpout",
1256 :
1257 : TEXTS_FOR_ZONES("pgalloc")
1258 : TEXTS_FOR_ZONES("allocstall")
1259 : TEXTS_FOR_ZONES("pgskip")
1260 :
1261 : "pgfree",
1262 : "pgactivate",
1263 : "pgdeactivate",
1264 : "pglazyfree",
1265 :
1266 : "pgfault",
1267 : "pgmajfault",
1268 : "pglazyfreed",
1269 :
1270 : "pgrefill",
1271 : "pgreuse",
1272 : "pgsteal_kswapd",
1273 : "pgsteal_direct",
1274 : "pgsteal_khugepaged",
1275 : "pgdemote_kswapd",
1276 : "pgdemote_direct",
1277 : "pgdemote_khugepaged",
1278 : "pgscan_kswapd",
1279 : "pgscan_direct",
1280 : "pgscan_khugepaged",
1281 : "pgscan_direct_throttle",
1282 : "pgscan_anon",
1283 : "pgscan_file",
1284 : "pgsteal_anon",
1285 : "pgsteal_file",
1286 :
1287 : #ifdef CONFIG_NUMA
1288 : "zone_reclaim_failed",
1289 : #endif
1290 : "pginodesteal",
1291 : "slabs_scanned",
1292 : "kswapd_inodesteal",
1293 : "kswapd_low_wmark_hit_quickly",
1294 : "kswapd_high_wmark_hit_quickly",
1295 : "pageoutrun",
1296 :
1297 : "pgrotated",
1298 :
1299 : "drop_pagecache",
1300 : "drop_slab",
1301 : "oom_kill",
1302 :
1303 : #ifdef CONFIG_NUMA_BALANCING
1304 : "numa_pte_updates",
1305 : "numa_huge_pte_updates",
1306 : "numa_hint_faults",
1307 : "numa_hint_faults_local",
1308 : "numa_pages_migrated",
1309 : #endif
1310 : #ifdef CONFIG_MIGRATION
1311 : "pgmigrate_success",
1312 : "pgmigrate_fail",
1313 : "thp_migration_success",
1314 : "thp_migration_fail",
1315 : "thp_migration_split",
1316 : #endif
1317 : #ifdef CONFIG_COMPACTION
1318 : "compact_migrate_scanned",
1319 : "compact_free_scanned",
1320 : "compact_isolated",
1321 : "compact_stall",
1322 : "compact_fail",
1323 : "compact_success",
1324 : "compact_daemon_wake",
1325 : "compact_daemon_migrate_scanned",
1326 : "compact_daemon_free_scanned",
1327 : #endif
1328 :
1329 : #ifdef CONFIG_HUGETLB_PAGE
1330 : "htlb_buddy_alloc_success",
1331 : "htlb_buddy_alloc_fail",
1332 : #endif
1333 : #ifdef CONFIG_CMA
1334 : "cma_alloc_success",
1335 : "cma_alloc_fail",
1336 : #endif
1337 : "unevictable_pgs_culled",
1338 : "unevictable_pgs_scanned",
1339 : "unevictable_pgs_rescued",
1340 : "unevictable_pgs_mlocked",
1341 : "unevictable_pgs_munlocked",
1342 : "unevictable_pgs_cleared",
1343 : "unevictable_pgs_stranded",
1344 :
1345 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346 : "thp_fault_alloc",
1347 : "thp_fault_fallback",
1348 : "thp_fault_fallback_charge",
1349 : "thp_collapse_alloc",
1350 : "thp_collapse_alloc_failed",
1351 : "thp_file_alloc",
1352 : "thp_file_fallback",
1353 : "thp_file_fallback_charge",
1354 : "thp_file_mapped",
1355 : "thp_split_page",
1356 : "thp_split_page_failed",
1357 : "thp_deferred_split_page",
1358 : "thp_split_pmd",
1359 : "thp_scan_exceed_none_pte",
1360 : "thp_scan_exceed_swap_pte",
1361 : "thp_scan_exceed_share_pte",
1362 : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363 : "thp_split_pud",
1364 : #endif
1365 : "thp_zero_page_alloc",
1366 : "thp_zero_page_alloc_failed",
1367 : "thp_swpout",
1368 : "thp_swpout_fallback",
1369 : #endif
1370 : #ifdef CONFIG_MEMORY_BALLOON
1371 : "balloon_inflate",
1372 : "balloon_deflate",
1373 : #ifdef CONFIG_BALLOON_COMPACTION
1374 : "balloon_migrate",
1375 : #endif
1376 : #endif /* CONFIG_MEMORY_BALLOON */
1377 : #ifdef CONFIG_DEBUG_TLBFLUSH
1378 : "nr_tlb_remote_flush",
1379 : "nr_tlb_remote_flush_received",
1380 : "nr_tlb_local_flush_all",
1381 : "nr_tlb_local_flush_one",
1382 : #endif /* CONFIG_DEBUG_TLBFLUSH */
1383 :
1384 : #ifdef CONFIG_SWAP
1385 : "swap_ra",
1386 : "swap_ra_hit",
1387 : #ifdef CONFIG_KSM
1388 : "ksm_swpin_copy",
1389 : #endif
1390 : #endif
1391 : #ifdef CONFIG_KSM
1392 : "cow_ksm",
1393 : #endif
1394 : #ifdef CONFIG_ZSWAP
1395 : "zswpin",
1396 : "zswpout",
1397 : #endif
1398 : #ifdef CONFIG_X86
1399 : "direct_map_level2_splits",
1400 : "direct_map_level3_splits",
1401 : #endif
1402 : #ifdef CONFIG_PER_VMA_LOCK_STATS
1403 : "vma_lock_success",
1404 : "vma_lock_abort",
1405 : "vma_lock_retry",
1406 : "vma_lock_miss",
1407 : #endif
1408 : #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1409 : };
1410 : #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1411 :
1412 : #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1413 : defined(CONFIG_PROC_FS)
1414 0 : static void *frag_start(struct seq_file *m, loff_t *pos)
1415 : {
1416 : pg_data_t *pgdat;
1417 0 : loff_t node = *pos;
1418 :
1419 0 : for (pgdat = first_online_pgdat();
1420 0 : pgdat && node;
1421 0 : pgdat = next_online_pgdat(pgdat))
1422 0 : --node;
1423 :
1424 0 : return pgdat;
1425 : }
1426 :
1427 0 : static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1428 : {
1429 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1430 :
1431 0 : (*pos)++;
1432 0 : return next_online_pgdat(pgdat);
1433 : }
1434 :
1435 0 : static void frag_stop(struct seq_file *m, void *arg)
1436 : {
1437 0 : }
1438 :
1439 : /*
1440 : * Walk zones in a node and print using a callback.
1441 : * If @assert_populated is true, only use callback for zones that are populated.
1442 : */
1443 0 : static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1444 : bool assert_populated, bool nolock,
1445 : void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1446 : {
1447 : struct zone *zone;
1448 0 : struct zone *node_zones = pgdat->node_zones;
1449 : unsigned long flags;
1450 :
1451 0 : for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1452 0 : if (assert_populated && !populated_zone(zone))
1453 0 : continue;
1454 :
1455 0 : if (!nolock)
1456 0 : spin_lock_irqsave(&zone->lock, flags);
1457 0 : print(m, pgdat, zone);
1458 0 : if (!nolock)
1459 0 : spin_unlock_irqrestore(&zone->lock, flags);
1460 : }
1461 0 : }
1462 : #endif
1463 :
1464 : #ifdef CONFIG_PROC_FS
1465 0 : static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1466 : struct zone *zone)
1467 : {
1468 : int order;
1469 :
1470 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1471 0 : for (order = 0; order <= MAX_ORDER; ++order)
1472 : /*
1473 : * Access to nr_free is lockless as nr_free is used only for
1474 : * printing purposes. Use data_race to avoid KCSAN warning.
1475 : */
1476 0 : seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1477 0 : seq_putc(m, '\n');
1478 0 : }
1479 :
1480 : /*
1481 : * This walks the free areas for each zone.
1482 : */
1483 0 : static int frag_show(struct seq_file *m, void *arg)
1484 : {
1485 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1486 0 : walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1487 0 : return 0;
1488 : }
1489 :
1490 0 : static void pagetypeinfo_showfree_print(struct seq_file *m,
1491 : pg_data_t *pgdat, struct zone *zone)
1492 : {
1493 : int order, mtype;
1494 :
1495 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1496 0 : seq_printf(m, "Node %4d, zone %8s, type %12s ",
1497 : pgdat->node_id,
1498 : zone->name,
1499 : migratetype_names[mtype]);
1500 0 : for (order = 0; order <= MAX_ORDER; ++order) {
1501 0 : unsigned long freecount = 0;
1502 : struct free_area *area;
1503 : struct list_head *curr;
1504 0 : bool overflow = false;
1505 :
1506 0 : area = &(zone->free_area[order]);
1507 :
1508 0 : list_for_each(curr, &area->free_list[mtype]) {
1509 : /*
1510 : * Cap the free_list iteration because it might
1511 : * be really large and we are under a spinlock
1512 : * so a long time spent here could trigger a
1513 : * hard lockup detector. Anyway this is a
1514 : * debugging tool so knowing there is a handful
1515 : * of pages of this order should be more than
1516 : * sufficient.
1517 : */
1518 0 : if (++freecount >= 100000) {
1519 : overflow = true;
1520 : break;
1521 : }
1522 : }
1523 0 : seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1524 0 : spin_unlock_irq(&zone->lock);
1525 0 : cond_resched();
1526 0 : spin_lock_irq(&zone->lock);
1527 : }
1528 0 : seq_putc(m, '\n');
1529 : }
1530 0 : }
1531 :
1532 : /* Print out the free pages at each order for each migatetype */
1533 0 : static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1534 : {
1535 : int order;
1536 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1537 :
1538 : /* Print header */
1539 0 : seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1540 0 : for (order = 0; order <= MAX_ORDER; ++order)
1541 0 : seq_printf(m, "%6d ", order);
1542 0 : seq_putc(m, '\n');
1543 :
1544 0 : walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1545 0 : }
1546 :
1547 0 : static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1548 : pg_data_t *pgdat, struct zone *zone)
1549 : {
1550 : int mtype;
1551 : unsigned long pfn;
1552 0 : unsigned long start_pfn = zone->zone_start_pfn;
1553 0 : unsigned long end_pfn = zone_end_pfn(zone);
1554 0 : unsigned long count[MIGRATE_TYPES] = { 0, };
1555 :
1556 0 : for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1557 : struct page *page;
1558 :
1559 0 : page = pfn_to_online_page(pfn);
1560 0 : if (!page)
1561 0 : continue;
1562 :
1563 0 : if (page_zone(page) != zone)
1564 0 : continue;
1565 :
1566 0 : mtype = get_pageblock_migratetype(page);
1567 :
1568 0 : if (mtype < MIGRATE_TYPES)
1569 0 : count[mtype]++;
1570 : }
1571 :
1572 : /* Print counts */
1573 0 : seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1574 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1575 0 : seq_printf(m, "%12lu ", count[mtype]);
1576 0 : seq_putc(m, '\n');
1577 0 : }
1578 :
1579 : /* Print out the number of pageblocks for each migratetype */
1580 0 : static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1581 : {
1582 : int mtype;
1583 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1584 :
1585 0 : seq_printf(m, "\n%-23s", "Number of blocks type ");
1586 0 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1587 0 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1588 0 : seq_putc(m, '\n');
1589 0 : walk_zones_in_node(m, pgdat, true, false,
1590 : pagetypeinfo_showblockcount_print);
1591 0 : }
1592 :
1593 : /*
1594 : * Print out the number of pageblocks for each migratetype that contain pages
1595 : * of other types. This gives an indication of how well fallbacks are being
1596 : * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1597 : * to determine what is going on
1598 : */
1599 : static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1600 : {
1601 : #ifdef CONFIG_PAGE_OWNER
1602 : int mtype;
1603 :
1604 : if (!static_branch_unlikely(&page_owner_inited))
1605 : return;
1606 :
1607 : drain_all_pages(NULL);
1608 :
1609 : seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1610 : for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1611 : seq_printf(m, "%12s ", migratetype_names[mtype]);
1612 : seq_putc(m, '\n');
1613 :
1614 : walk_zones_in_node(m, pgdat, true, true,
1615 : pagetypeinfo_showmixedcount_print);
1616 : #endif /* CONFIG_PAGE_OWNER */
1617 : }
1618 :
1619 : /*
1620 : * This prints out statistics in relation to grouping pages by mobility.
1621 : * It is expensive to collect so do not constantly read the file.
1622 : */
1623 0 : static int pagetypeinfo_show(struct seq_file *m, void *arg)
1624 : {
1625 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1626 :
1627 : /* check memoryless node */
1628 0 : if (!node_state(pgdat->node_id, N_MEMORY))
1629 : return 0;
1630 :
1631 0 : seq_printf(m, "Page block order: %d\n", pageblock_order);
1632 0 : seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1633 0 : seq_putc(m, '\n');
1634 0 : pagetypeinfo_showfree(m, pgdat);
1635 0 : pagetypeinfo_showblockcount(m, pgdat);
1636 0 : pagetypeinfo_showmixedcount(m, pgdat);
1637 :
1638 0 : return 0;
1639 : }
1640 :
1641 : static const struct seq_operations fragmentation_op = {
1642 : .start = frag_start,
1643 : .next = frag_next,
1644 : .stop = frag_stop,
1645 : .show = frag_show,
1646 : };
1647 :
1648 : static const struct seq_operations pagetypeinfo_op = {
1649 : .start = frag_start,
1650 : .next = frag_next,
1651 : .stop = frag_stop,
1652 : .show = pagetypeinfo_show,
1653 : };
1654 :
1655 : static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1656 : {
1657 : int zid;
1658 :
1659 0 : for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1660 0 : struct zone *compare = &pgdat->node_zones[zid];
1661 :
1662 0 : if (populated_zone(compare))
1663 0 : return zone == compare;
1664 : }
1665 :
1666 : return false;
1667 : }
1668 :
1669 0 : static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1670 : struct zone *zone)
1671 : {
1672 : int i;
1673 0 : seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1674 0 : if (is_zone_first_populated(pgdat, zone)) {
1675 0 : seq_printf(m, "\n per-node stats");
1676 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1677 0 : unsigned long pages = node_page_state_pages(pgdat, i);
1678 :
1679 0 : if (vmstat_item_print_in_thp(i))
1680 : pages /= HPAGE_PMD_NR;
1681 0 : seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1682 : pages);
1683 : }
1684 : }
1685 0 : seq_printf(m,
1686 : "\n pages free %lu"
1687 : "\n boost %lu"
1688 : "\n min %lu"
1689 : "\n low %lu"
1690 : "\n high %lu"
1691 : "\n spanned %lu"
1692 : "\n present %lu"
1693 : "\n managed %lu"
1694 : "\n cma %lu",
1695 : zone_page_state(zone, NR_FREE_PAGES),
1696 : zone->watermark_boost,
1697 0 : min_wmark_pages(zone),
1698 0 : low_wmark_pages(zone),
1699 0 : high_wmark_pages(zone),
1700 : zone->spanned_pages,
1701 : zone->present_pages,
1702 : zone_managed_pages(zone),
1703 : zone_cma_pages(zone));
1704 :
1705 0 : seq_printf(m,
1706 : "\n protection: (%ld",
1707 : zone->lowmem_reserve[0]);
1708 0 : for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1709 0 : seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1710 0 : seq_putc(m, ')');
1711 :
1712 : /* If unpopulated, no other information is useful */
1713 0 : if (!populated_zone(zone)) {
1714 0 : seq_putc(m, '\n');
1715 0 : return;
1716 : }
1717 :
1718 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1719 0 : seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1720 : zone_page_state(zone, i));
1721 :
1722 : #ifdef CONFIG_NUMA
1723 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1724 : seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1725 : zone_numa_event_state(zone, i));
1726 : #endif
1727 :
1728 0 : seq_printf(m, "\n pagesets");
1729 0 : for_each_online_cpu(i) {
1730 : struct per_cpu_pages *pcp;
1731 : struct per_cpu_zonestat __maybe_unused *pzstats;
1732 :
1733 0 : pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1734 0 : seq_printf(m,
1735 : "\n cpu: %i"
1736 : "\n count: %i"
1737 : "\n high: %i"
1738 : "\n batch: %i",
1739 : i,
1740 : pcp->count,
1741 : pcp->high,
1742 : pcp->batch);
1743 : #ifdef CONFIG_SMP
1744 : pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1745 : seq_printf(m, "\n vm stats threshold: %d",
1746 : pzstats->stat_threshold);
1747 : #endif
1748 : }
1749 0 : seq_printf(m,
1750 : "\n node_unreclaimable: %u"
1751 : "\n start_pfn: %lu",
1752 0 : pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1753 : zone->zone_start_pfn);
1754 0 : seq_putc(m, '\n');
1755 : }
1756 :
1757 : /*
1758 : * Output information about zones in @pgdat. All zones are printed regardless
1759 : * of whether they are populated or not: lowmem_reserve_ratio operates on the
1760 : * set of all zones and userspace would not be aware of such zones if they are
1761 : * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1762 : */
1763 0 : static int zoneinfo_show(struct seq_file *m, void *arg)
1764 : {
1765 0 : pg_data_t *pgdat = (pg_data_t *)arg;
1766 0 : walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1767 0 : return 0;
1768 : }
1769 :
1770 : static const struct seq_operations zoneinfo_op = {
1771 : .start = frag_start, /* iterate over all zones. The same as in
1772 : * fragmentation. */
1773 : .next = frag_next,
1774 : .stop = frag_stop,
1775 : .show = zoneinfo_show,
1776 : };
1777 :
1778 : #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1779 : NR_VM_NUMA_EVENT_ITEMS + \
1780 : NR_VM_NODE_STAT_ITEMS + \
1781 : NR_VM_WRITEBACK_STAT_ITEMS + \
1782 : (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1783 : NR_VM_EVENT_ITEMS : 0))
1784 :
1785 0 : static void *vmstat_start(struct seq_file *m, loff_t *pos)
1786 : {
1787 : unsigned long *v;
1788 : int i;
1789 :
1790 0 : if (*pos >= NR_VMSTAT_ITEMS)
1791 : return NULL;
1792 :
1793 : BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1794 : fold_vm_numa_events();
1795 0 : v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1796 0 : m->private = v;
1797 0 : if (!v)
1798 : return ERR_PTR(-ENOMEM);
1799 0 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1800 0 : v[i] = global_zone_page_state(i);
1801 : v += NR_VM_ZONE_STAT_ITEMS;
1802 :
1803 : #ifdef CONFIG_NUMA
1804 : for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1805 : v[i] = global_numa_event_state(i);
1806 : v += NR_VM_NUMA_EVENT_ITEMS;
1807 : #endif
1808 :
1809 0 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1810 0 : v[i] = global_node_page_state_pages(i);
1811 0 : if (vmstat_item_print_in_thp(i))
1812 : v[i] /= HPAGE_PMD_NR;
1813 : }
1814 0 : v += NR_VM_NODE_STAT_ITEMS;
1815 :
1816 0 : global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1817 : v + NR_DIRTY_THRESHOLD);
1818 0 : v += NR_VM_WRITEBACK_STAT_ITEMS;
1819 :
1820 : #ifdef CONFIG_VM_EVENT_COUNTERS
1821 0 : all_vm_events(v);
1822 0 : v[PGPGIN] /= 2; /* sectors -> kbytes */
1823 0 : v[PGPGOUT] /= 2;
1824 : #endif
1825 0 : return (unsigned long *)m->private + *pos;
1826 : }
1827 :
1828 0 : static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1829 : {
1830 0 : (*pos)++;
1831 0 : if (*pos >= NR_VMSTAT_ITEMS)
1832 : return NULL;
1833 0 : return (unsigned long *)m->private + *pos;
1834 : }
1835 :
1836 0 : static int vmstat_show(struct seq_file *m, void *arg)
1837 : {
1838 0 : unsigned long *l = arg;
1839 0 : unsigned long off = l - (unsigned long *)m->private;
1840 :
1841 0 : seq_puts(m, vmstat_text[off]);
1842 0 : seq_put_decimal_ull(m, " ", *l);
1843 0 : seq_putc(m, '\n');
1844 :
1845 0 : if (off == NR_VMSTAT_ITEMS - 1) {
1846 : /*
1847 : * We've come to the end - add any deprecated counters to avoid
1848 : * breaking userspace which might depend on them being present.
1849 : */
1850 0 : seq_puts(m, "nr_unstable 0\n");
1851 : }
1852 0 : return 0;
1853 : }
1854 :
1855 0 : static void vmstat_stop(struct seq_file *m, void *arg)
1856 : {
1857 0 : kfree(m->private);
1858 0 : m->private = NULL;
1859 0 : }
1860 :
1861 : static const struct seq_operations vmstat_op = {
1862 : .start = vmstat_start,
1863 : .next = vmstat_next,
1864 : .stop = vmstat_stop,
1865 : .show = vmstat_show,
1866 : };
1867 : #endif /* CONFIG_PROC_FS */
1868 :
1869 : #ifdef CONFIG_SMP
1870 : static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1871 : int sysctl_stat_interval __read_mostly = HZ;
1872 :
1873 : #ifdef CONFIG_PROC_FS
1874 : static void refresh_vm_stats(struct work_struct *work)
1875 : {
1876 : refresh_cpu_vm_stats(true);
1877 : }
1878 :
1879 : int vmstat_refresh(struct ctl_table *table, int write,
1880 : void *buffer, size_t *lenp, loff_t *ppos)
1881 : {
1882 : long val;
1883 : int err;
1884 : int i;
1885 :
1886 : /*
1887 : * The regular update, every sysctl_stat_interval, may come later
1888 : * than expected: leaving a significant amount in per_cpu buckets.
1889 : * This is particularly misleading when checking a quantity of HUGE
1890 : * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1891 : * which can equally be echo'ed to or cat'ted from (by root),
1892 : * can be used to update the stats just before reading them.
1893 : *
1894 : * Oh, and since global_zone_page_state() etc. are so careful to hide
1895 : * transiently negative values, report an error here if any of
1896 : * the stats is negative, so we know to go looking for imbalance.
1897 : */
1898 : err = schedule_on_each_cpu(refresh_vm_stats);
1899 : if (err)
1900 : return err;
1901 : for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1902 : /*
1903 : * Skip checking stats known to go negative occasionally.
1904 : */
1905 : switch (i) {
1906 : case NR_ZONE_WRITE_PENDING:
1907 : case NR_FREE_CMA_PAGES:
1908 : continue;
1909 : }
1910 : val = atomic_long_read(&vm_zone_stat[i]);
1911 : if (val < 0) {
1912 : pr_warn("%s: %s %ld\n",
1913 : __func__, zone_stat_name(i), val);
1914 : }
1915 : }
1916 : for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1917 : /*
1918 : * Skip checking stats known to go negative occasionally.
1919 : */
1920 : switch (i) {
1921 : case NR_WRITEBACK:
1922 : continue;
1923 : }
1924 : val = atomic_long_read(&vm_node_stat[i]);
1925 : if (val < 0) {
1926 : pr_warn("%s: %s %ld\n",
1927 : __func__, node_stat_name(i), val);
1928 : }
1929 : }
1930 : if (write)
1931 : *ppos += *lenp;
1932 : else
1933 : *lenp = 0;
1934 : return 0;
1935 : }
1936 : #endif /* CONFIG_PROC_FS */
1937 :
1938 : static void vmstat_update(struct work_struct *w)
1939 : {
1940 : if (refresh_cpu_vm_stats(true)) {
1941 : /*
1942 : * Counters were updated so we expect more updates
1943 : * to occur in the future. Keep on running the
1944 : * update worker thread.
1945 : */
1946 : queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1947 : this_cpu_ptr(&vmstat_work),
1948 : round_jiffies_relative(sysctl_stat_interval));
1949 : }
1950 : }
1951 :
1952 : /*
1953 : * Check if the diffs for a certain cpu indicate that
1954 : * an update is needed.
1955 : */
1956 : static bool need_update(int cpu)
1957 : {
1958 : pg_data_t *last_pgdat = NULL;
1959 : struct zone *zone;
1960 :
1961 : for_each_populated_zone(zone) {
1962 : struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1963 : struct per_cpu_nodestat *n;
1964 :
1965 : /*
1966 : * The fast way of checking if there are any vmstat diffs.
1967 : */
1968 : if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1969 : return true;
1970 :
1971 : if (last_pgdat == zone->zone_pgdat)
1972 : continue;
1973 : last_pgdat = zone->zone_pgdat;
1974 : n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1975 : if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1976 : return true;
1977 : }
1978 : return false;
1979 : }
1980 :
1981 : /*
1982 : * Switch off vmstat processing and then fold all the remaining differentials
1983 : * until the diffs stay at zero. The function is used by NOHZ and can only be
1984 : * invoked when tick processing is not active.
1985 : */
1986 : void quiet_vmstat(void)
1987 : {
1988 : if (system_state != SYSTEM_RUNNING)
1989 : return;
1990 :
1991 : if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1992 : return;
1993 :
1994 : if (!need_update(smp_processor_id()))
1995 : return;
1996 :
1997 : /*
1998 : * Just refresh counters and do not care about the pending delayed
1999 : * vmstat_update. It doesn't fire that often to matter and canceling
2000 : * it would be too expensive from this path.
2001 : * vmstat_shepherd will take care about that for us.
2002 : */
2003 : refresh_cpu_vm_stats(false);
2004 : }
2005 :
2006 : /*
2007 : * Shepherd worker thread that checks the
2008 : * differentials of processors that have their worker
2009 : * threads for vm statistics updates disabled because of
2010 : * inactivity.
2011 : */
2012 : static void vmstat_shepherd(struct work_struct *w);
2013 :
2014 : static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2015 :
2016 : static void vmstat_shepherd(struct work_struct *w)
2017 : {
2018 : int cpu;
2019 :
2020 : cpus_read_lock();
2021 : /* Check processors whose vmstat worker threads have been disabled */
2022 : for_each_online_cpu(cpu) {
2023 : struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2024 :
2025 : if (!delayed_work_pending(dw) && need_update(cpu))
2026 : queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2027 :
2028 : cond_resched();
2029 : }
2030 : cpus_read_unlock();
2031 :
2032 : schedule_delayed_work(&shepherd,
2033 : round_jiffies_relative(sysctl_stat_interval));
2034 : }
2035 :
2036 : static void __init start_shepherd_timer(void)
2037 : {
2038 : int cpu;
2039 :
2040 : for_each_possible_cpu(cpu)
2041 : INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2042 : vmstat_update);
2043 :
2044 : schedule_delayed_work(&shepherd,
2045 : round_jiffies_relative(sysctl_stat_interval));
2046 : }
2047 :
2048 : static void __init init_cpu_node_state(void)
2049 : {
2050 : int node;
2051 :
2052 : for_each_online_node(node) {
2053 : if (!cpumask_empty(cpumask_of_node(node)))
2054 : node_set_state(node, N_CPU);
2055 : }
2056 : }
2057 :
2058 : static int vmstat_cpu_online(unsigned int cpu)
2059 : {
2060 : refresh_zone_stat_thresholds();
2061 :
2062 : if (!node_state(cpu_to_node(cpu), N_CPU)) {
2063 : node_set_state(cpu_to_node(cpu), N_CPU);
2064 : }
2065 :
2066 : return 0;
2067 : }
2068 :
2069 : static int vmstat_cpu_down_prep(unsigned int cpu)
2070 : {
2071 : cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2072 : return 0;
2073 : }
2074 :
2075 : static int vmstat_cpu_dead(unsigned int cpu)
2076 : {
2077 : const struct cpumask *node_cpus;
2078 : int node;
2079 :
2080 : node = cpu_to_node(cpu);
2081 :
2082 : refresh_zone_stat_thresholds();
2083 : node_cpus = cpumask_of_node(node);
2084 : if (!cpumask_empty(node_cpus))
2085 : return 0;
2086 :
2087 : node_clear_state(node, N_CPU);
2088 :
2089 : return 0;
2090 : }
2091 :
2092 : #endif
2093 :
2094 : struct workqueue_struct *mm_percpu_wq;
2095 :
2096 1 : void __init init_mm_internals(void)
2097 : {
2098 : int ret __maybe_unused;
2099 :
2100 1 : mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2101 :
2102 : #ifdef CONFIG_SMP
2103 : ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2104 : NULL, vmstat_cpu_dead);
2105 : if (ret < 0)
2106 : pr_err("vmstat: failed to register 'dead' hotplug state\n");
2107 :
2108 : ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2109 : vmstat_cpu_online,
2110 : vmstat_cpu_down_prep);
2111 : if (ret < 0)
2112 : pr_err("vmstat: failed to register 'online' hotplug state\n");
2113 :
2114 : cpus_read_lock();
2115 : init_cpu_node_state();
2116 : cpus_read_unlock();
2117 :
2118 : start_shepherd_timer();
2119 : #endif
2120 : #ifdef CONFIG_PROC_FS
2121 1 : proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2122 1 : proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2123 1 : proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2124 1 : proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2125 : #endif
2126 1 : }
2127 :
2128 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2129 :
2130 : /*
2131 : * Return an index indicating how much of the available free memory is
2132 : * unusable for an allocation of the requested size.
2133 : */
2134 : static int unusable_free_index(unsigned int order,
2135 : struct contig_page_info *info)
2136 : {
2137 : /* No free memory is interpreted as all free memory is unusable */
2138 : if (info->free_pages == 0)
2139 : return 1000;
2140 :
2141 : /*
2142 : * Index should be a value between 0 and 1. Return a value to 3
2143 : * decimal places.
2144 : *
2145 : * 0 => no fragmentation
2146 : * 1 => high fragmentation
2147 : */
2148 : return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2149 :
2150 : }
2151 :
2152 : static void unusable_show_print(struct seq_file *m,
2153 : pg_data_t *pgdat, struct zone *zone)
2154 : {
2155 : unsigned int order;
2156 : int index;
2157 : struct contig_page_info info;
2158 :
2159 : seq_printf(m, "Node %d, zone %8s ",
2160 : pgdat->node_id,
2161 : zone->name);
2162 : for (order = 0; order <= MAX_ORDER; ++order) {
2163 : fill_contig_page_info(zone, order, &info);
2164 : index = unusable_free_index(order, &info);
2165 : seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2166 : }
2167 :
2168 : seq_putc(m, '\n');
2169 : }
2170 :
2171 : /*
2172 : * Display unusable free space index
2173 : *
2174 : * The unusable free space index measures how much of the available free
2175 : * memory cannot be used to satisfy an allocation of a given size and is a
2176 : * value between 0 and 1. The higher the value, the more of free memory is
2177 : * unusable and by implication, the worse the external fragmentation is. This
2178 : * can be expressed as a percentage by multiplying by 100.
2179 : */
2180 : static int unusable_show(struct seq_file *m, void *arg)
2181 : {
2182 : pg_data_t *pgdat = (pg_data_t *)arg;
2183 :
2184 : /* check memoryless node */
2185 : if (!node_state(pgdat->node_id, N_MEMORY))
2186 : return 0;
2187 :
2188 : walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2189 :
2190 : return 0;
2191 : }
2192 :
2193 : static const struct seq_operations unusable_sops = {
2194 : .start = frag_start,
2195 : .next = frag_next,
2196 : .stop = frag_stop,
2197 : .show = unusable_show,
2198 : };
2199 :
2200 : DEFINE_SEQ_ATTRIBUTE(unusable);
2201 :
2202 : static void extfrag_show_print(struct seq_file *m,
2203 : pg_data_t *pgdat, struct zone *zone)
2204 : {
2205 : unsigned int order;
2206 : int index;
2207 :
2208 : /* Alloc on stack as interrupts are disabled for zone walk */
2209 : struct contig_page_info info;
2210 :
2211 : seq_printf(m, "Node %d, zone %8s ",
2212 : pgdat->node_id,
2213 : zone->name);
2214 : for (order = 0; order <= MAX_ORDER; ++order) {
2215 : fill_contig_page_info(zone, order, &info);
2216 : index = __fragmentation_index(order, &info);
2217 : seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2218 : }
2219 :
2220 : seq_putc(m, '\n');
2221 : }
2222 :
2223 : /*
2224 : * Display fragmentation index for orders that allocations would fail for
2225 : */
2226 : static int extfrag_show(struct seq_file *m, void *arg)
2227 : {
2228 : pg_data_t *pgdat = (pg_data_t *)arg;
2229 :
2230 : walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2231 :
2232 : return 0;
2233 : }
2234 :
2235 : static const struct seq_operations extfrag_sops = {
2236 : .start = frag_start,
2237 : .next = frag_next,
2238 : .stop = frag_stop,
2239 : .show = extfrag_show,
2240 : };
2241 :
2242 : DEFINE_SEQ_ATTRIBUTE(extfrag);
2243 :
2244 : static int __init extfrag_debug_init(void)
2245 : {
2246 : struct dentry *extfrag_debug_root;
2247 :
2248 : extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2249 :
2250 : debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2251 : &unusable_fops);
2252 :
2253 : debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2254 : &extfrag_fops);
2255 :
2256 : return 0;
2257 : }
2258 :
2259 : module_init(extfrag_debug_init);
2260 : #endif
|