LCOV - code coverage report
Current view: top level - include/linux - mm.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 45 246 18.3 %
Date: 2023-04-06 08:38:28 Functions: 1 13 7.7 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MM_H
       3             : #define _LINUX_MM_H
       4             : 
       5             : #include <linux/errno.h>
       6             : #include <linux/mmdebug.h>
       7             : #include <linux/gfp.h>
       8             : #include <linux/bug.h>
       9             : #include <linux/list.h>
      10             : #include <linux/mmzone.h>
      11             : #include <linux/rbtree.h>
      12             : #include <linux/atomic.h>
      13             : #include <linux/debug_locks.h>
      14             : #include <linux/mm_types.h>
      15             : #include <linux/mmap_lock.h>
      16             : #include <linux/range.h>
      17             : #include <linux/pfn.h>
      18             : #include <linux/percpu-refcount.h>
      19             : #include <linux/bit_spinlock.h>
      20             : #include <linux/shrinker.h>
      21             : #include <linux/resource.h>
      22             : #include <linux/page_ext.h>
      23             : #include <linux/err.h>
      24             : #include <linux/page-flags.h>
      25             : #include <linux/page_ref.h>
      26             : #include <linux/overflow.h>
      27             : #include <linux/sizes.h>
      28             : #include <linux/sched.h>
      29             : #include <linux/pgtable.h>
      30             : #include <linux/kasan.h>
      31             : #include <linux/memremap.h>
      32             : 
      33             : struct mempolicy;
      34             : struct anon_vma;
      35             : struct anon_vma_chain;
      36             : struct user_struct;
      37             : struct pt_regs;
      38             : 
      39             : extern int sysctl_page_lock_unfairness;
      40             : 
      41             : void init_mm_internals(void);
      42             : 
      43             : #ifndef CONFIG_NUMA             /* Don't use mapnrs, do it properly */
      44             : extern unsigned long max_mapnr;
      45             : 
      46             : static inline void set_max_mapnr(unsigned long limit)
      47             : {
      48             :         max_mapnr = limit;
      49             : }
      50             : #else
      51             : static inline void set_max_mapnr(unsigned long limit) { }
      52             : #endif
      53             : 
      54             : extern atomic_long_t _totalram_pages;
      55             : static inline unsigned long totalram_pages(void)
      56             : {
      57         282 :         return (unsigned long)atomic_long_read(&_totalram_pages);
      58             : }
      59             : 
      60             : static inline void totalram_pages_inc(void)
      61             : {
      62           0 :         atomic_long_inc(&_totalram_pages);
      63             : }
      64             : 
      65             : static inline void totalram_pages_dec(void)
      66             : {
      67             :         atomic_long_dec(&_totalram_pages);
      68             : }
      69             : 
      70             : static inline void totalram_pages_add(long count)
      71             : {
      72           1 :         atomic_long_add(count, &_totalram_pages);
      73             : }
      74             : 
      75             : extern void * high_memory;
      76             : extern int page_cluster;
      77             : extern const int page_cluster_max;
      78             : 
      79             : #ifdef CONFIG_SYSCTL
      80             : extern int sysctl_legacy_va_layout;
      81             : #else
      82             : #define sysctl_legacy_va_layout 0
      83             : #endif
      84             : 
      85             : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
      86             : extern const int mmap_rnd_bits_min;
      87             : extern const int mmap_rnd_bits_max;
      88             : extern int mmap_rnd_bits __read_mostly;
      89             : #endif
      90             : #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
      91             : extern const int mmap_rnd_compat_bits_min;
      92             : extern const int mmap_rnd_compat_bits_max;
      93             : extern int mmap_rnd_compat_bits __read_mostly;
      94             : #endif
      95             : 
      96             : #include <asm/page.h>
      97             : #include <asm/processor.h>
      98             : 
      99             : /*
     100             :  * Architectures that support memory tagging (assigning tags to memory regions,
     101             :  * embedding these tags into addresses that point to these memory regions, and
     102             :  * checking that the memory and the pointer tags match on memory accesses)
     103             :  * redefine this macro to strip tags from pointers.
     104             :  * It's defined as noop for architectures that don't support memory tagging.
     105             :  */
     106             : #ifndef untagged_addr
     107             : #define untagged_addr(addr) (addr)
     108             : #endif
     109             : 
     110             : #ifndef __pa_symbol
     111             : #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
     112             : #endif
     113             : 
     114             : #ifndef page_to_virt
     115             : #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
     116             : #endif
     117             : 
     118             : #ifndef lm_alias
     119             : #define lm_alias(x)     __va(__pa_symbol(x))
     120             : #endif
     121             : 
     122             : /*
     123             :  * To prevent common memory management code establishing
     124             :  * a zero page mapping on a read fault.
     125             :  * This macro should be defined within <asm/pgtable.h>.
     126             :  * s390 does this to prevent multiplexing of hardware bits
     127             :  * related to the physical page in case of virtualization.
     128             :  */
     129             : #ifndef mm_forbids_zeropage
     130             : #define mm_forbids_zeropage(X)  (0)
     131             : #endif
     132             : 
     133             : /*
     134             :  * On some architectures it is expensive to call memset() for small sizes.
     135             :  * If an architecture decides to implement their own version of
     136             :  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
     137             :  * define their own version of this macro in <asm/pgtable.h>
     138             :  */
     139             : #if BITS_PER_LONG == 64
     140             : /* This function must be updated when the size of struct page grows above 96
     141             :  * or reduces below 56. The idea that compiler optimizes out switch()
     142             :  * statement, and only leaves move/store instructions. Also the compiler can
     143             :  * combine write statements if they are both assignments and can be reordered,
     144             :  * this can result in several of the writes here being dropped.
     145             :  */
     146             : #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
     147             : static inline void __mm_zero_struct_page(struct page *page)
     148             : {
     149      262670 :         unsigned long *_pp = (void *)page;
     150             : 
     151             :          /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
     152             :         BUILD_BUG_ON(sizeof(struct page) & 7);
     153             :         BUILD_BUG_ON(sizeof(struct page) < 56);
     154             :         BUILD_BUG_ON(sizeof(struct page) > 96);
     155             : 
     156             :         switch (sizeof(struct page)) {
     157             :         case 96:
     158             :                 _pp[11] = 0;
     159             :                 fallthrough;
     160             :         case 88:
     161             :                 _pp[10] = 0;
     162             :                 fallthrough;
     163             :         case 80:
     164             :                 _pp[9] = 0;
     165             :                 fallthrough;
     166             :         case 72:
     167             :                 _pp[8] = 0;
     168             :                 fallthrough;
     169             :         case 64:
     170             :                 _pp[7] = 0;
     171             :                 fallthrough;
     172             :         case 56:
     173      262670 :                 _pp[6] = 0;
     174      262670 :                 _pp[5] = 0;
     175      262670 :                 _pp[4] = 0;
     176      262670 :                 _pp[3] = 0;
     177             :                 _pp[2] = 0;
     178             :                 _pp[1] = 0;
     179             :                 _pp[0] = 0;
     180             :         }
     181             : }
     182             : #else
     183             : #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
     184             : #endif
     185             : 
     186             : /*
     187             :  * Default maximum number of active map areas, this limits the number of vmas
     188             :  * per mm struct. Users can overwrite this number by sysctl but there is a
     189             :  * problem.
     190             :  *
     191             :  * When a program's coredump is generated as ELF format, a section is created
     192             :  * per a vma. In ELF, the number of sections is represented in unsigned short.
     193             :  * This means the number of sections should be smaller than 65535 at coredump.
     194             :  * Because the kernel adds some informative sections to a image of program at
     195             :  * generating coredump, we need some margin. The number of extra sections is
     196             :  * 1-3 now and depends on arch. We use "5" as safe margin, here.
     197             :  *
     198             :  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
     199             :  * not a hard limit any more. Although some userspace tools can be surprised by
     200             :  * that.
     201             :  */
     202             : #define MAPCOUNT_ELF_CORE_MARGIN        (5)
     203             : #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
     204             : 
     205             : extern int sysctl_max_map_count;
     206             : 
     207             : extern unsigned long sysctl_user_reserve_kbytes;
     208             : extern unsigned long sysctl_admin_reserve_kbytes;
     209             : 
     210             : extern int sysctl_overcommit_memory;
     211             : extern int sysctl_overcommit_ratio;
     212             : extern unsigned long sysctl_overcommit_kbytes;
     213             : 
     214             : int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
     215             :                 loff_t *);
     216             : int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
     217             :                 loff_t *);
     218             : int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
     219             :                 loff_t *);
     220             : 
     221             : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
     222             : #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
     223             : #define folio_page_idx(folio, p)        (page_to_pfn(p) - folio_pfn(folio))
     224             : #else
     225             : #define nth_page(page,n) ((page) + (n))
     226             : #define folio_page_idx(folio, p)        ((p) - &(folio)->page)
     227             : #endif
     228             : 
     229             : /* to align the pointer to the (next) page boundary */
     230             : #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
     231             : 
     232             : /* to align the pointer to the (prev) page boundary */
     233             : #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
     234             : 
     235             : /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
     236             : #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
     237             : 
     238             : #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
     239             : static inline struct folio *lru_to_folio(struct list_head *head)
     240             : {
     241           0 :         return list_entry((head)->prev, struct folio, lru);
     242             : }
     243             : 
     244             : void setup_initial_init_mm(void *start_code, void *end_code,
     245             :                            void *end_data, void *brk);
     246             : 
     247             : /*
     248             :  * Linux kernel virtual memory manager primitives.
     249             :  * The idea being to have a "virtual" mm in the same way
     250             :  * we have a virtual fs - giving a cleaner interface to the
     251             :  * mm details, and allowing different kinds of memory mappings
     252             :  * (from shared memory to executable loading to arbitrary
     253             :  * mmap() functions).
     254             :  */
     255             : 
     256             : struct vm_area_struct *vm_area_alloc(struct mm_struct *);
     257             : struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
     258             : void vm_area_free(struct vm_area_struct *);
     259             : 
     260             : #ifndef CONFIG_MMU
     261             : extern struct rb_root nommu_region_tree;
     262             : extern struct rw_semaphore nommu_region_sem;
     263             : 
     264             : extern unsigned int kobjsize(const void *objp);
     265             : #endif
     266             : 
     267             : /*
     268             :  * vm_flags in vm_area_struct, see mm_types.h.
     269             :  * When changing, update also include/trace/events/mmflags.h
     270             :  */
     271             : #define VM_NONE         0x00000000
     272             : 
     273             : #define VM_READ         0x00000001      /* currently active flags */
     274             : #define VM_WRITE        0x00000002
     275             : #define VM_EXEC         0x00000004
     276             : #define VM_SHARED       0x00000008
     277             : 
     278             : /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
     279             : #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
     280             : #define VM_MAYWRITE     0x00000020
     281             : #define VM_MAYEXEC      0x00000040
     282             : #define VM_MAYSHARE     0x00000080
     283             : 
     284             : #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
     285             : #ifdef CONFIG_MMU
     286             : #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
     287             : #else /* CONFIG_MMU */
     288             : #define VM_MAYOVERLAY   0x00000200      /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
     289             : #define VM_UFFD_MISSING 0
     290             : #endif /* CONFIG_MMU */
     291             : #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
     292             : #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
     293             : 
     294             : #define VM_LOCKED       0x00002000
     295             : #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
     296             : 
     297             :                                         /* Used by sys_madvise() */
     298             : #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
     299             : #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
     300             : 
     301             : #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
     302             : #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
     303             : #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
     304             : #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
     305             : #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
     306             : #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
     307             : #define VM_SYNC         0x00800000      /* Synchronous page faults */
     308             : #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
     309             : #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
     310             : #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
     311             : 
     312             : #ifdef CONFIG_MEM_SOFT_DIRTY
     313             : # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
     314             : #else
     315             : # define VM_SOFTDIRTY   0
     316             : #endif
     317             : 
     318             : #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
     319             : #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
     320             : #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
     321             : #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
     322             : 
     323             : #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
     324             : #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
     325             : #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
     326             : #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
     327             : #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
     328             : #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
     329             : #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
     330             : #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
     331             : #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
     332             : #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
     333             : #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
     334             : #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
     335             : 
     336             : #ifdef CONFIG_ARCH_HAS_PKEYS
     337             : # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
     338             : # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
     339             : # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
     340             : # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
     341             : # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
     342             : #ifdef CONFIG_PPC
     343             : # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
     344             : #else
     345             : # define VM_PKEY_BIT4  0
     346             : #endif
     347             : #endif /* CONFIG_ARCH_HAS_PKEYS */
     348             : 
     349             : #if defined(CONFIG_X86)
     350             : # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
     351             : #elif defined(CONFIG_PPC)
     352             : # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
     353             : #elif defined(CONFIG_PARISC)
     354             : # define VM_GROWSUP     VM_ARCH_1
     355             : #elif defined(CONFIG_IA64)
     356             : # define VM_GROWSUP     VM_ARCH_1
     357             : #elif defined(CONFIG_SPARC64)
     358             : # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
     359             : # define VM_ARCH_CLEAR  VM_SPARC_ADI
     360             : #elif defined(CONFIG_ARM64)
     361             : # define VM_ARM64_BTI   VM_ARCH_1       /* BTI guarded page, a.k.a. GP bit */
     362             : # define VM_ARCH_CLEAR  VM_ARM64_BTI
     363             : #elif !defined(CONFIG_MMU)
     364             : # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
     365             : #endif
     366             : 
     367             : #if defined(CONFIG_ARM64_MTE)
     368             : # define VM_MTE         VM_HIGH_ARCH_0  /* Use Tagged memory for access control */
     369             : # define VM_MTE_ALLOWED VM_HIGH_ARCH_1  /* Tagged memory permitted */
     370             : #else
     371             : # define VM_MTE         VM_NONE
     372             : # define VM_MTE_ALLOWED VM_NONE
     373             : #endif
     374             : 
     375             : #ifndef VM_GROWSUP
     376             : # define VM_GROWSUP     VM_NONE
     377             : #endif
     378             : 
     379             : #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
     380             : # define VM_UFFD_MINOR_BIT      37
     381             : # define VM_UFFD_MINOR          BIT(VM_UFFD_MINOR_BIT)  /* UFFD minor faults */
     382             : #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
     383             : # define VM_UFFD_MINOR          VM_NONE
     384             : #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
     385             : 
     386             : /* Bits set in the VMA until the stack is in its final location */
     387             : #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
     388             : 
     389             : #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
     390             : 
     391             : /* Common data flag combinations */
     392             : #define VM_DATA_FLAGS_TSK_EXEC  (VM_READ | VM_WRITE | TASK_EXEC | \
     393             :                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
     394             : #define VM_DATA_FLAGS_NON_EXEC  (VM_READ | VM_WRITE | VM_MAYREAD | \
     395             :                                  VM_MAYWRITE | VM_MAYEXEC)
     396             : #define VM_DATA_FLAGS_EXEC      (VM_READ | VM_WRITE | VM_EXEC | \
     397             :                                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
     398             : 
     399             : #ifndef VM_DATA_DEFAULT_FLAGS           /* arch can override this */
     400             : #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
     401             : #endif
     402             : 
     403             : #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
     404             : #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
     405             : #endif
     406             : 
     407             : #ifdef CONFIG_STACK_GROWSUP
     408             : #define VM_STACK        VM_GROWSUP
     409             : #else
     410             : #define VM_STACK        VM_GROWSDOWN
     411             : #endif
     412             : 
     413             : #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
     414             : 
     415             : /* VMA basic access permission flags */
     416             : #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
     417             : 
     418             : 
     419             : /*
     420             :  * Special vmas that are non-mergable, non-mlock()able.
     421             :  */
     422             : #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
     423             : 
     424             : /* This mask prevents VMA from being scanned with khugepaged */
     425             : #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
     426             : 
     427             : /* This mask defines which mm->def_flags a process can inherit its parent */
     428             : #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
     429             : 
     430             : /* This mask represents all the VMA flag bits used by mlock */
     431             : #define VM_LOCKED_MASK  (VM_LOCKED | VM_LOCKONFAULT)
     432             : 
     433             : /* Arch-specific flags to clear when updating VM flags on protection change */
     434             : #ifndef VM_ARCH_CLEAR
     435             : # define VM_ARCH_CLEAR  VM_NONE
     436             : #endif
     437             : #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
     438             : 
     439             : /*
     440             :  * mapping from the currently active vm_flags protection bits (the
     441             :  * low four bits) to a page protection mask..
     442             :  */
     443             : 
     444             : /*
     445             :  * The default fault flags that should be used by most of the
     446             :  * arch-specific page fault handlers.
     447             :  */
     448             : #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
     449             :                              FAULT_FLAG_KILLABLE | \
     450             :                              FAULT_FLAG_INTERRUPTIBLE)
     451             : 
     452             : /**
     453             :  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
     454             :  * @flags: Fault flags.
     455             :  *
     456             :  * This is mostly used for places where we want to try to avoid taking
     457             :  * the mmap_lock for too long a time when waiting for another condition
     458             :  * to change, in which case we can try to be polite to release the
     459             :  * mmap_lock in the first round to avoid potential starvation of other
     460             :  * processes that would also want the mmap_lock.
     461             :  *
     462             :  * Return: true if the page fault allows retry and this is the first
     463             :  * attempt of the fault handling; false otherwise.
     464             :  */
     465             : static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
     466             : {
     467           0 :         return (flags & FAULT_FLAG_ALLOW_RETRY) &&
     468             :             (!(flags & FAULT_FLAG_TRIED));
     469             : }
     470             : 
     471             : #define FAULT_FLAG_TRACE \
     472             :         { FAULT_FLAG_WRITE,             "WRITE" }, \
     473             :         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
     474             :         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
     475             :         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
     476             :         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
     477             :         { FAULT_FLAG_TRIED,             "TRIED" }, \
     478             :         { FAULT_FLAG_USER,              "USER" }, \
     479             :         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
     480             :         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }, \
     481             :         { FAULT_FLAG_INTERRUPTIBLE,     "INTERRUPTIBLE" }
     482             : 
     483             : /*
     484             :  * vm_fault is filled by the pagefault handler and passed to the vma's
     485             :  * ->fault function. The vma's ->fault is responsible for returning a bitmask
     486             :  * of VM_FAULT_xxx flags that give details about how the fault was handled.
     487             :  *
     488             :  * MM layer fills up gfp_mask for page allocations but fault handler might
     489             :  * alter it if its implementation requires a different allocation context.
     490             :  *
     491             :  * pgoff should be used in favour of virtual_address, if possible.
     492             :  */
     493             : struct vm_fault {
     494             :         const struct {
     495             :                 struct vm_area_struct *vma;     /* Target VMA */
     496             :                 gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
     497             :                 pgoff_t pgoff;                  /* Logical page offset based on vma */
     498             :                 unsigned long address;          /* Faulting virtual address - masked */
     499             :                 unsigned long real_address;     /* Faulting virtual address - unmasked */
     500             :         };
     501             :         enum fault_flag flags;          /* FAULT_FLAG_xxx flags
     502             :                                          * XXX: should really be 'const' */
     503             :         pmd_t *pmd;                     /* Pointer to pmd entry matching
     504             :                                          * the 'address' */
     505             :         pud_t *pud;                     /* Pointer to pud entry matching
     506             :                                          * the 'address'
     507             :                                          */
     508             :         union {
     509             :                 pte_t orig_pte;         /* Value of PTE at the time of fault */
     510             :                 pmd_t orig_pmd;         /* Value of PMD at the time of fault,
     511             :                                          * used by PMD fault only.
     512             :                                          */
     513             :         };
     514             : 
     515             :         struct page *cow_page;          /* Page handler may use for COW fault */
     516             :         struct page *page;              /* ->fault handlers should return a
     517             :                                          * page here, unless VM_FAULT_NOPAGE
     518             :                                          * is set (which is also implied by
     519             :                                          * VM_FAULT_ERROR).
     520             :                                          */
     521             :         /* These three entries are valid only while holding ptl lock */
     522             :         pte_t *pte;                     /* Pointer to pte entry matching
     523             :                                          * the 'address'. NULL if the page
     524             :                                          * table hasn't been allocated.
     525             :                                          */
     526             :         spinlock_t *ptl;                /* Page table lock.
     527             :                                          * Protects pte page table if 'pte'
     528             :                                          * is not NULL, otherwise pmd.
     529             :                                          */
     530             :         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
     531             :                                          * vm_ops->map_pages() sets up a page
     532             :                                          * table from atomic context.
     533             :                                          * do_fault_around() pre-allocates
     534             :                                          * page table to avoid allocation from
     535             :                                          * atomic context.
     536             :                                          */
     537             : };
     538             : 
     539             : /* page entry size for vm->huge_fault() */
     540             : enum page_entry_size {
     541             :         PE_SIZE_PTE = 0,
     542             :         PE_SIZE_PMD,
     543             :         PE_SIZE_PUD,
     544             : };
     545             : 
     546             : /*
     547             :  * These are the virtual MM functions - opening of an area, closing and
     548             :  * unmapping it (needed to keep files on disk up-to-date etc), pointer
     549             :  * to the functions called when a no-page or a wp-page exception occurs.
     550             :  */
     551             : struct vm_operations_struct {
     552             :         void (*open)(struct vm_area_struct * area);
     553             :         /**
     554             :          * @close: Called when the VMA is being removed from the MM.
     555             :          * Context: User context.  May sleep.  Caller holds mmap_lock.
     556             :          */
     557             :         void (*close)(struct vm_area_struct * area);
     558             :         /* Called any time before splitting to check if it's allowed */
     559             :         int (*may_split)(struct vm_area_struct *area, unsigned long addr);
     560             :         int (*mremap)(struct vm_area_struct *area);
     561             :         /*
     562             :          * Called by mprotect() to make driver-specific permission
     563             :          * checks before mprotect() is finalised.   The VMA must not
     564             :          * be modified.  Returns 0 if mprotect() can proceed.
     565             :          */
     566             :         int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
     567             :                         unsigned long end, unsigned long newflags);
     568             :         vm_fault_t (*fault)(struct vm_fault *vmf);
     569             :         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
     570             :                         enum page_entry_size pe_size);
     571             :         vm_fault_t (*map_pages)(struct vm_fault *vmf,
     572             :                         pgoff_t start_pgoff, pgoff_t end_pgoff);
     573             :         unsigned long (*pagesize)(struct vm_area_struct * area);
     574             : 
     575             :         /* notification that a previously read-only page is about to become
     576             :          * writable, if an error is returned it will cause a SIGBUS */
     577             :         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
     578             : 
     579             :         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
     580             :         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
     581             : 
     582             :         /* called by access_process_vm when get_user_pages() fails, typically
     583             :          * for use by special VMAs. See also generic_access_phys() for a generic
     584             :          * implementation useful for any iomem mapping.
     585             :          */
     586             :         int (*access)(struct vm_area_struct *vma, unsigned long addr,
     587             :                       void *buf, int len, int write);
     588             : 
     589             :         /* Called by the /proc/PID/maps code to ask the vma whether it
     590             :          * has a special name.  Returning non-NULL will also cause this
     591             :          * vma to be dumped unconditionally. */
     592             :         const char *(*name)(struct vm_area_struct *vma);
     593             : 
     594             : #ifdef CONFIG_NUMA
     595             :         /*
     596             :          * set_policy() op must add a reference to any non-NULL @new mempolicy
     597             :          * to hold the policy upon return.  Caller should pass NULL @new to
     598             :          * remove a policy and fall back to surrounding context--i.e. do not
     599             :          * install a MPOL_DEFAULT policy, nor the task or system default
     600             :          * mempolicy.
     601             :          */
     602             :         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
     603             : 
     604             :         /*
     605             :          * get_policy() op must add reference [mpol_get()] to any policy at
     606             :          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
     607             :          * in mm/mempolicy.c will do this automatically.
     608             :          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
     609             :          * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
     610             :          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
     611             :          * must return NULL--i.e., do not "fallback" to task or system default
     612             :          * policy.
     613             :          */
     614             :         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
     615             :                                         unsigned long addr);
     616             : #endif
     617             :         /*
     618             :          * Called by vm_normal_page() for special PTEs to find the
     619             :          * page for @addr.  This is useful if the default behavior
     620             :          * (using pte_page()) would not find the correct page.
     621             :          */
     622             :         struct page *(*find_special_page)(struct vm_area_struct *vma,
     623             :                                           unsigned long addr);
     624             : };
     625             : 
     626             : static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
     627             : {
     628             :         static const struct vm_operations_struct dummy_vm_ops = {};
     629             : 
     630           0 :         memset(vma, 0, sizeof(*vma));
     631           0 :         vma->vm_mm = mm;
     632           0 :         vma->vm_ops = &dummy_vm_ops;
     633           0 :         INIT_LIST_HEAD(&vma->anon_vma_chain);
     634             : }
     635             : 
     636             : /* Use when VMA is not part of the VMA tree and needs no locking */
     637             : static inline void vm_flags_init(struct vm_area_struct *vma,
     638             :                                  vm_flags_t flags)
     639             : {
     640           0 :         ACCESS_PRIVATE(vma, __vm_flags) = flags;
     641             : }
     642             : 
     643             : /* Use when VMA is part of the VMA tree and modifications need coordination */
     644             : static inline void vm_flags_reset(struct vm_area_struct *vma,
     645             :                                   vm_flags_t flags)
     646             : {
     647           0 :         mmap_assert_write_locked(vma->vm_mm);
     648           0 :         vm_flags_init(vma, flags);
     649             : }
     650             : 
     651             : static inline void vm_flags_reset_once(struct vm_area_struct *vma,
     652             :                                        vm_flags_t flags)
     653             : {
     654           0 :         mmap_assert_write_locked(vma->vm_mm);
     655           0 :         WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
     656             : }
     657             : 
     658             : static inline void vm_flags_set(struct vm_area_struct *vma,
     659             :                                 vm_flags_t flags)
     660             : {
     661           0 :         mmap_assert_write_locked(vma->vm_mm);
     662           0 :         ACCESS_PRIVATE(vma, __vm_flags) |= flags;
     663             : }
     664             : 
     665             : static inline void vm_flags_clear(struct vm_area_struct *vma,
     666             :                                   vm_flags_t flags)
     667             : {
     668           0 :         mmap_assert_write_locked(vma->vm_mm);
     669           0 :         ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
     670             : }
     671             : 
     672             : /*
     673             :  * Use only if VMA is not part of the VMA tree or has no other users and
     674             :  * therefore needs no locking.
     675             :  */
     676             : static inline void __vm_flags_mod(struct vm_area_struct *vma,
     677             :                                   vm_flags_t set, vm_flags_t clear)
     678             : {
     679             :         vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
     680             : }
     681             : 
     682             : /*
     683             :  * Use only when the order of set/clear operations is unimportant, otherwise
     684             :  * use vm_flags_{set|clear} explicitly.
     685             :  */
     686             : static inline void vm_flags_mod(struct vm_area_struct *vma,
     687             :                                 vm_flags_t set, vm_flags_t clear)
     688             : {
     689             :         mmap_assert_write_locked(vma->vm_mm);
     690             :         __vm_flags_mod(vma, set, clear);
     691             : }
     692             : 
     693             : static inline void vma_set_anonymous(struct vm_area_struct *vma)
     694             : {
     695           0 :         vma->vm_ops = NULL;
     696             : }
     697             : 
     698             : static inline bool vma_is_anonymous(struct vm_area_struct *vma)
     699             : {
     700           0 :         return !vma->vm_ops;
     701             : }
     702             : 
     703             : static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
     704             : {
     705           0 :         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
     706             : 
     707           0 :         if (!maybe_stack)
     708             :                 return false;
     709             : 
     710           0 :         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
     711             :                                                 VM_STACK_INCOMPLETE_SETUP)
     712             :                 return true;
     713             : 
     714             :         return false;
     715             : }
     716             : 
     717             : static inline bool vma_is_foreign(struct vm_area_struct *vma)
     718             : {
     719             :         if (!current->mm)
     720             :                 return true;
     721             : 
     722             :         if (current->mm != vma->vm_mm)
     723             :                 return true;
     724             : 
     725             :         return false;
     726             : }
     727             : 
     728             : static inline bool vma_is_accessible(struct vm_area_struct *vma)
     729             : {
     730           0 :         return vma->vm_flags & VM_ACCESS_FLAGS;
     731             : }
     732             : 
     733             : static inline
     734             : struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
     735             : {
     736           0 :         return mas_find(&vmi->mas, max - 1);
     737             : }
     738             : 
     739             : static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
     740             : {
     741             :         /*
     742             :          * Uses mas_find() to get the first VMA when the iterator starts.
     743             :          * Calling mas_next() could skip the first entry.
     744             :          */
     745           0 :         return mas_find(&vmi->mas, ULONG_MAX);
     746             : }
     747             : 
     748             : static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
     749             : {
     750           0 :         return mas_prev(&vmi->mas, 0);
     751             : }
     752             : 
     753             : static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
     754             : {
     755             :         return vmi->mas.index;
     756             : }
     757             : 
     758             : static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
     759             : {
     760           0 :         return vmi->mas.last + 1;
     761             : }
     762             : static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
     763             :                                       unsigned long count)
     764             : {
     765           0 :         return mas_expected_entries(&vmi->mas, count);
     766             : }
     767             : 
     768             : /* Free any unused preallocations */
     769             : static inline void vma_iter_free(struct vma_iterator *vmi)
     770             : {
     771           0 :         mas_destroy(&vmi->mas);
     772             : }
     773             : 
     774           0 : static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
     775             :                                       struct vm_area_struct *vma)
     776             : {
     777           0 :         vmi->mas.index = vma->vm_start;
     778           0 :         vmi->mas.last = vma->vm_end - 1;
     779           0 :         mas_store(&vmi->mas, vma);
     780           0 :         if (unlikely(mas_is_err(&vmi->mas)))
     781             :                 return -ENOMEM;
     782             : 
     783           0 :         return 0;
     784             : }
     785             : 
     786             : static inline void vma_iter_invalidate(struct vma_iterator *vmi)
     787             : {
     788           0 :         mas_pause(&vmi->mas);
     789             : }
     790             : 
     791             : static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
     792             : {
     793           0 :         mas_set(&vmi->mas, addr);
     794             : }
     795             : 
     796             : #define for_each_vma(__vmi, __vma)                                      \
     797             :         while (((__vma) = vma_next(&(__vmi))) != NULL)
     798             : 
     799             : /* The MM code likes to work with exclusive end addresses */
     800             : #define for_each_vma_range(__vmi, __vma, __end)                         \
     801             :         while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
     802             : 
     803             : #ifdef CONFIG_SHMEM
     804             : /*
     805             :  * The vma_is_shmem is not inline because it is used only by slow
     806             :  * paths in userfault.
     807             :  */
     808             : bool vma_is_shmem(struct vm_area_struct *vma);
     809             : bool vma_is_anon_shmem(struct vm_area_struct *vma);
     810             : #else
     811             : static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
     812             : static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
     813             : #endif
     814             : 
     815             : int vma_is_stack_for_current(struct vm_area_struct *vma);
     816             : 
     817             : /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
     818             : #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
     819             : 
     820             : struct mmu_gather;
     821             : struct inode;
     822             : 
     823             : /*
     824             :  * compound_order() can be called without holding a reference, which means
     825             :  * that niceties like page_folio() don't work.  These callers should be
     826             :  * prepared to handle wild return values.  For example, PG_head may be
     827             :  * set before _folio_order is initialised, or this may be a tail page.
     828             :  * See compaction.c for some good examples.
     829             :  */
     830             : static inline unsigned int compound_order(struct page *page)
     831             : {
     832           0 :         struct folio *folio = (struct folio *)page;
     833             : 
     834           0 :         if (!test_bit(PG_head, &folio->flags))
     835             :                 return 0;
     836           0 :         return folio->_folio_order;
     837             : }
     838             : 
     839             : /**
     840             :  * folio_order - The allocation order of a folio.
     841             :  * @folio: The folio.
     842             :  *
     843             :  * A folio is composed of 2^order pages.  See get_order() for the definition
     844             :  * of order.
     845             :  *
     846             :  * Return: The order of the folio.
     847             :  */
     848             : static inline unsigned int folio_order(struct folio *folio)
     849             : {
     850        8166 :         if (!folio_test_large(folio))
     851             :                 return 0;
     852           6 :         return folio->_folio_order;
     853             : }
     854             : 
     855             : #include <linux/huge_mm.h>
     856             : 
     857             : /*
     858             :  * Methods to modify the page usage count.
     859             :  *
     860             :  * What counts for a page usage:
     861             :  * - cache mapping   (page->mapping)
     862             :  * - private data    (page->private)
     863             :  * - page mapped in a task's page tables, each mapping
     864             :  *   is counted separately
     865             :  *
     866             :  * Also, many kernel routines increase the page count before a critical
     867             :  * routine so they can be sure the page doesn't go away from under them.
     868             :  */
     869             : 
     870             : /*
     871             :  * Drop a ref, return true if the refcount fell to zero (the page has no users)
     872             :  */
     873             : static inline int put_page_testzero(struct page *page)
     874             : {
     875             :         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
     876       50643 :         return page_ref_dec_and_test(page);
     877             : }
     878             : 
     879             : static inline int folio_put_testzero(struct folio *folio)
     880             : {
     881           0 :         return put_page_testzero(&folio->page);
     882             : }
     883             : 
     884             : /*
     885             :  * Try to grab a ref unless the page has a refcount of zero, return false if
     886             :  * that is the case.
     887             :  * This can be called when MMU is off so it must not access
     888             :  * any of the virtual mappings.
     889             :  */
     890             : static inline bool get_page_unless_zero(struct page *page)
     891             : {
     892           0 :         return page_ref_add_unless(page, 1, 0);
     893             : }
     894             : 
     895             : static inline struct folio *folio_get_nontail_page(struct page *page)
     896             : {
     897           0 :         if (unlikely(!get_page_unless_zero(page)))
     898             :                 return NULL;
     899             :         return (struct folio *)page;
     900             : }
     901             : 
     902             : extern int page_is_ram(unsigned long pfn);
     903             : 
     904             : enum {
     905             :         REGION_INTERSECTS,
     906             :         REGION_DISJOINT,
     907             :         REGION_MIXED,
     908             : };
     909             : 
     910             : int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
     911             :                       unsigned long desc);
     912             : 
     913             : /* Support for virtually mapped pages */
     914             : struct page *vmalloc_to_page(const void *addr);
     915             : unsigned long vmalloc_to_pfn(const void *addr);
     916             : 
     917             : /*
     918             :  * Determine if an address is within the vmalloc range
     919             :  *
     920             :  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
     921             :  * is no special casing required.
     922             :  */
     923             : 
     924             : #ifndef is_ioremap_addr
     925             : #define is_ioremap_addr(x) is_vmalloc_addr(x)
     926             : #endif
     927             : 
     928             : #ifdef CONFIG_MMU
     929             : extern bool is_vmalloc_addr(const void *x);
     930             : extern int is_vmalloc_or_module_addr(const void *x);
     931             : #else
     932             : static inline bool is_vmalloc_addr(const void *x)
     933             : {
     934             :         return false;
     935             : }
     936             : static inline int is_vmalloc_or_module_addr(const void *x)
     937             : {
     938             :         return 0;
     939             : }
     940             : #endif
     941             : 
     942             : /*
     943             :  * How many times the entire folio is mapped as a single unit (eg by a
     944             :  * PMD or PUD entry).  This is probably not what you want, except for
     945             :  * debugging purposes - it does not include PTE-mapped sub-pages; look
     946             :  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
     947             :  */
     948             : static inline int folio_entire_mapcount(struct folio *folio)
     949             : {
     950             :         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
     951           0 :         return atomic_read(&folio->_entire_mapcount) + 1;
     952             : }
     953             : 
     954             : /*
     955             :  * The atomic page->_mapcount, starts from -1: so that transitions
     956             :  * both from it and to it can be tracked, using atomic_inc_and_test
     957             :  * and atomic_add_negative(-1).
     958             :  */
     959             : static inline void page_mapcount_reset(struct page *page)
     960             : {
     961      525340 :         atomic_set(&(page)->_mapcount, -1);
     962             : }
     963             : 
     964             : /**
     965             :  * page_mapcount() - Number of times this precise page is mapped.
     966             :  * @page: The page.
     967             :  *
     968             :  * The number of times this page is mapped.  If this page is part of
     969             :  * a large folio, it includes the number of times this page is mapped
     970             :  * as part of that folio.
     971             :  *
     972             :  * The result is undefined for pages which cannot be mapped into userspace.
     973             :  * For example SLAB or special types of pages. See function page_has_type().
     974             :  * They use this field in struct page differently.
     975             :  */
     976           0 : static inline int page_mapcount(struct page *page)
     977             : {
     978           0 :         int mapcount = atomic_read(&page->_mapcount) + 1;
     979             : 
     980           0 :         if (unlikely(PageCompound(page)))
     981           0 :                 mapcount += folio_entire_mapcount(page_folio(page));
     982             : 
     983           0 :         return mapcount;
     984             : }
     985             : 
     986             : int folio_total_mapcount(struct folio *folio);
     987             : 
     988             : /**
     989             :  * folio_mapcount() - Calculate the number of mappings of this folio.
     990             :  * @folio: The folio.
     991             :  *
     992             :  * A large folio tracks both how many times the entire folio is mapped,
     993             :  * and how many times each individual page in the folio is mapped.
     994             :  * This function calculates the total number of times the folio is
     995             :  * mapped.
     996             :  *
     997             :  * Return: The number of times this folio is mapped.
     998             :  */
     999             : static inline int folio_mapcount(struct folio *folio)
    1000             : {
    1001           0 :         if (likely(!folio_test_large(folio)))
    1002           0 :                 return atomic_read(&folio->_mapcount) + 1;
    1003           0 :         return folio_total_mapcount(folio);
    1004             : }
    1005             : 
    1006           0 : static inline int total_mapcount(struct page *page)
    1007             : {
    1008           0 :         if (likely(!PageCompound(page)))
    1009           0 :                 return atomic_read(&page->_mapcount) + 1;
    1010           0 :         return folio_total_mapcount(page_folio(page));
    1011             : }
    1012             : 
    1013             : static inline bool folio_large_is_mapped(struct folio *folio)
    1014             : {
    1015             :         /*
    1016             :          * Reading _entire_mapcount below could be omitted if hugetlb
    1017             :          * participated in incrementing nr_pages_mapped when compound mapped.
    1018             :          */
    1019           0 :         return atomic_read(&folio->_nr_pages_mapped) > 0 ||
    1020           0 :                 atomic_read(&folio->_entire_mapcount) >= 0;
    1021             : }
    1022             : 
    1023             : /**
    1024             :  * folio_mapped - Is this folio mapped into userspace?
    1025             :  * @folio: The folio.
    1026             :  *
    1027             :  * Return: True if any page in this folio is referenced by user page tables.
    1028             :  */
    1029             : static inline bool folio_mapped(struct folio *folio)
    1030             : {
    1031           0 :         if (likely(!folio_test_large(folio)))
    1032           0 :                 return atomic_read(&folio->_mapcount) >= 0;
    1033           0 :         return folio_large_is_mapped(folio);
    1034             : }
    1035             : 
    1036             : /*
    1037             :  * Return true if this page is mapped into pagetables.
    1038             :  * For compound page it returns true if any sub-page of compound page is mapped,
    1039             :  * even if this particular sub-page is not itself mapped by any PTE or PMD.
    1040             :  */
    1041           0 : static inline bool page_mapped(struct page *page)
    1042             : {
    1043           0 :         if (likely(!PageCompound(page)))
    1044           0 :                 return atomic_read(&page->_mapcount) >= 0;
    1045           0 :         return folio_large_is_mapped(page_folio(page));
    1046             : }
    1047             : 
    1048             : static inline struct page *virt_to_head_page(const void *x)
    1049             : {
    1050           0 :         struct page *page = virt_to_page(x);
    1051             : 
    1052           0 :         return compound_head(page);
    1053             : }
    1054             : 
    1055             : static inline struct folio *virt_to_folio(const void *x)
    1056             : {
    1057      902618 :         struct page *page = virt_to_page(x);
    1058             : 
    1059      451309 :         return page_folio(page);
    1060             : }
    1061             : 
    1062             : void __folio_put(struct folio *folio);
    1063             : 
    1064             : void put_pages_list(struct list_head *pages);
    1065             : 
    1066             : void split_page(struct page *page, unsigned int order);
    1067             : void folio_copy(struct folio *dst, struct folio *src);
    1068             : 
    1069             : unsigned long nr_free_buffer_pages(void);
    1070             : 
    1071             : /*
    1072             :  * Compound pages have a destructor function.  Provide a
    1073             :  * prototype for that function and accessor functions.
    1074             :  * These are _only_ valid on the head of a compound page.
    1075             :  */
    1076             : typedef void compound_page_dtor(struct page *);
    1077             : 
    1078             : /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
    1079             : enum compound_dtor_id {
    1080             :         NULL_COMPOUND_DTOR,
    1081             :         COMPOUND_PAGE_DTOR,
    1082             : #ifdef CONFIG_HUGETLB_PAGE
    1083             :         HUGETLB_PAGE_DTOR,
    1084             : #endif
    1085             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1086             :         TRANSHUGE_PAGE_DTOR,
    1087             : #endif
    1088             :         NR_COMPOUND_DTORS,
    1089             : };
    1090             : extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
    1091             : 
    1092             : static inline void set_compound_page_dtor(struct page *page,
    1093             :                 enum compound_dtor_id compound_dtor)
    1094             : {
    1095         102 :         struct folio *folio = (struct folio *)page;
    1096             : 
    1097             :         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
    1098             :         VM_BUG_ON_PAGE(!PageHead(page), page);
    1099         102 :         folio->_folio_dtor = compound_dtor;
    1100             : }
    1101             : 
    1102             : static inline void folio_set_compound_dtor(struct folio *folio,
    1103             :                 enum compound_dtor_id compound_dtor)
    1104             : {
    1105             :         VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
    1106             :         folio->_folio_dtor = compound_dtor;
    1107             : }
    1108             : 
    1109             : void destroy_large_folio(struct folio *folio);
    1110             : 
    1111             : static inline void set_compound_order(struct page *page, unsigned int order)
    1112             : {
    1113         102 :         struct folio *folio = (struct folio *)page;
    1114             : 
    1115         102 :         folio->_folio_order = order;
    1116             : #ifdef CONFIG_64BIT
    1117         102 :         folio->_folio_nr_pages = 1U << order;
    1118             : #endif
    1119             : }
    1120             : 
    1121             : /* Returns the number of bytes in this potentially compound page. */
    1122             : static inline unsigned long page_size(struct page *page)
    1123             : {
    1124           0 :         return PAGE_SIZE << compound_order(page);
    1125             : }
    1126             : 
    1127             : /* Returns the number of bits needed for the number of bytes in a page */
    1128             : static inline unsigned int page_shift(struct page *page)
    1129             : {
    1130             :         return PAGE_SHIFT + compound_order(page);
    1131             : }
    1132             : 
    1133             : /**
    1134             :  * thp_order - Order of a transparent huge page.
    1135             :  * @page: Head page of a transparent huge page.
    1136             :  */
    1137             : static inline unsigned int thp_order(struct page *page)
    1138             : {
    1139             :         VM_BUG_ON_PGFLAGS(PageTail(page), page);
    1140           0 :         return compound_order(page);
    1141             : }
    1142             : 
    1143             : /**
    1144             :  * thp_size - Size of a transparent huge page.
    1145             :  * @page: Head page of a transparent huge page.
    1146             :  *
    1147             :  * Return: Number of bytes in this page.
    1148             :  */
    1149             : static inline unsigned long thp_size(struct page *page)
    1150             : {
    1151           0 :         return PAGE_SIZE << thp_order(page);
    1152             : }
    1153             : 
    1154             : void free_compound_page(struct page *page);
    1155             : 
    1156             : #ifdef CONFIG_MMU
    1157             : /*
    1158             :  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
    1159             :  * servicing faults for write access.  In the normal case, do always want
    1160             :  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
    1161             :  * that do not have writing enabled, when used by access_process_vm.
    1162             :  */
    1163             : static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
    1164             : {
    1165           0 :         if (likely(vma->vm_flags & VM_WRITE))
    1166             :                 pte = pte_mkwrite(pte);
    1167             :         return pte;
    1168             : }
    1169             : 
    1170             : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
    1171             : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
    1172             : 
    1173             : vm_fault_t finish_fault(struct vm_fault *vmf);
    1174             : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
    1175             : #endif
    1176             : 
    1177             : /*
    1178             :  * Multiple processes may "see" the same page. E.g. for untouched
    1179             :  * mappings of /dev/null, all processes see the same page full of
    1180             :  * zeroes, and text pages of executables and shared libraries have
    1181             :  * only one copy in memory, at most, normally.
    1182             :  *
    1183             :  * For the non-reserved pages, page_count(page) denotes a reference count.
    1184             :  *   page_count() == 0 means the page is free. page->lru is then used for
    1185             :  *   freelist management in the buddy allocator.
    1186             :  *   page_count() > 0  means the page has been allocated.
    1187             :  *
    1188             :  * Pages are allocated by the slab allocator in order to provide memory
    1189             :  * to kmalloc and kmem_cache_alloc. In this case, the management of the
    1190             :  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
    1191             :  * unless a particular usage is carefully commented. (the responsibility of
    1192             :  * freeing the kmalloc memory is the caller's, of course).
    1193             :  *
    1194             :  * A page may be used by anyone else who does a __get_free_page().
    1195             :  * In this case, page_count still tracks the references, and should only
    1196             :  * be used through the normal accessor functions. The top bits of page->flags
    1197             :  * and page->virtual store page management information, but all other fields
    1198             :  * are unused and could be used privately, carefully. The management of this
    1199             :  * page is the responsibility of the one who allocated it, and those who have
    1200             :  * subsequently been given references to it.
    1201             :  *
    1202             :  * The other pages (we may call them "pagecache pages") are completely
    1203             :  * managed by the Linux memory manager: I/O, buffers, swapping etc.
    1204             :  * The following discussion applies only to them.
    1205             :  *
    1206             :  * A pagecache page contains an opaque `private' member, which belongs to the
    1207             :  * page's address_space. Usually, this is the address of a circular list of
    1208             :  * the page's disk buffers. PG_private must be set to tell the VM to call
    1209             :  * into the filesystem to release these pages.
    1210             :  *
    1211             :  * A page may belong to an inode's memory mapping. In this case, page->mapping
    1212             :  * is the pointer to the inode, and page->index is the file offset of the page,
    1213             :  * in units of PAGE_SIZE.
    1214             :  *
    1215             :  * If pagecache pages are not associated with an inode, they are said to be
    1216             :  * anonymous pages. These may become associated with the swapcache, and in that
    1217             :  * case PG_swapcache is set, and page->private is an offset into the swapcache.
    1218             :  *
    1219             :  * In either case (swapcache or inode backed), the pagecache itself holds one
    1220             :  * reference to the page. Setting PG_private should also increment the
    1221             :  * refcount. The each user mapping also has a reference to the page.
    1222             :  *
    1223             :  * The pagecache pages are stored in a per-mapping radix tree, which is
    1224             :  * rooted at mapping->i_pages, and indexed by offset.
    1225             :  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
    1226             :  * lists, we instead now tag pages as dirty/writeback in the radix tree.
    1227             :  *
    1228             :  * All pagecache pages may be subject to I/O:
    1229             :  * - inode pages may need to be read from disk,
    1230             :  * - inode pages which have been modified and are MAP_SHARED may need
    1231             :  *   to be written back to the inode on disk,
    1232             :  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
    1233             :  *   modified may need to be swapped out to swap space and (later) to be read
    1234             :  *   back into memory.
    1235             :  */
    1236             : 
    1237             : #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
    1238             : DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
    1239             : 
    1240             : bool __put_devmap_managed_page_refs(struct page *page, int refs);
    1241             : static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
    1242             : {
    1243             :         if (!static_branch_unlikely(&devmap_managed_key))
    1244             :                 return false;
    1245             :         if (!is_zone_device_page(page))
    1246             :                 return false;
    1247             :         return __put_devmap_managed_page_refs(page, refs);
    1248             : }
    1249             : #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
    1250             : static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
    1251             : {
    1252             :         return false;
    1253             : }
    1254             : #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
    1255             : 
    1256             : static inline bool put_devmap_managed_page(struct page *page)
    1257             : {
    1258           0 :         return put_devmap_managed_page_refs(page, 1);
    1259             : }
    1260             : 
    1261             : /* 127: arbitrary random number, small enough to assemble well */
    1262             : #define folio_ref_zero_or_close_to_overflow(folio) \
    1263             :         ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
    1264             : 
    1265             : /**
    1266             :  * folio_get - Increment the reference count on a folio.
    1267             :  * @folio: The folio.
    1268             :  *
    1269             :  * Context: May be called in any context, as long as you know that
    1270             :  * you have a refcount on the folio.  If you do not already have one,
    1271             :  * folio_try_get() may be the right interface for you to use.
    1272             :  */
    1273             : static inline void folio_get(struct folio *folio)
    1274             : {
    1275             :         VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
    1276           0 :         folio_ref_inc(folio);
    1277             : }
    1278             : 
    1279             : static inline void get_page(struct page *page)
    1280             : {
    1281           0 :         folio_get(page_folio(page));
    1282             : }
    1283             : 
    1284           0 : static inline __must_check bool try_get_page(struct page *page)
    1285             : {
    1286           0 :         page = compound_head(page);
    1287           0 :         if (WARN_ON_ONCE(page_ref_count(page) <= 0))
    1288             :                 return false;
    1289           0 :         page_ref_inc(page);
    1290           0 :         return true;
    1291             : }
    1292             : 
    1293             : /**
    1294             :  * folio_put - Decrement the reference count on a folio.
    1295             :  * @folio: The folio.
    1296             :  *
    1297             :  * If the folio's reference count reaches zero, the memory will be
    1298             :  * released back to the page allocator and may be used by another
    1299             :  * allocation immediately.  Do not access the memory or the struct folio
    1300             :  * after calling folio_put() unless you can be sure that it wasn't the
    1301             :  * last reference.
    1302             :  *
    1303             :  * Context: May be called in process or interrupt context, but not in NMI
    1304             :  * context.  May be called while holding a spinlock.
    1305             :  */
    1306             : static inline void folio_put(struct folio *folio)
    1307             : {
    1308           0 :         if (folio_put_testzero(folio))
    1309           0 :                 __folio_put(folio);
    1310             : }
    1311             : 
    1312             : /**
    1313             :  * folio_put_refs - Reduce the reference count on a folio.
    1314             :  * @folio: The folio.
    1315             :  * @refs: The amount to subtract from the folio's reference count.
    1316             :  *
    1317             :  * If the folio's reference count reaches zero, the memory will be
    1318             :  * released back to the page allocator and may be used by another
    1319             :  * allocation immediately.  Do not access the memory or the struct folio
    1320             :  * after calling folio_put_refs() unless you can be sure that these weren't
    1321             :  * the last references.
    1322             :  *
    1323             :  * Context: May be called in process or interrupt context, but not in NMI
    1324             :  * context.  May be called while holding a spinlock.
    1325             :  */
    1326             : static inline void folio_put_refs(struct folio *folio, int refs)
    1327             : {
    1328           0 :         if (folio_ref_sub_and_test(folio, refs))
    1329           0 :                 __folio_put(folio);
    1330             : }
    1331             : 
    1332             : /*
    1333             :  * union release_pages_arg - an array of pages or folios
    1334             :  *
    1335             :  * release_pages() releases a simple array of multiple pages, and
    1336             :  * accepts various different forms of said page array: either
    1337             :  * a regular old boring array of pages, an array of folios, or
    1338             :  * an array of encoded page pointers.
    1339             :  *
    1340             :  * The transparent union syntax for this kind of "any of these
    1341             :  * argument types" is all kinds of ugly, so look away.
    1342             :  */
    1343             : typedef union {
    1344             :         struct page **pages;
    1345             :         struct folio **folios;
    1346             :         struct encoded_page **encoded_pages;
    1347             : } release_pages_arg __attribute__ ((__transparent_union__));
    1348             : 
    1349             : void release_pages(release_pages_arg, int nr);
    1350             : 
    1351             : /**
    1352             :  * folios_put - Decrement the reference count on an array of folios.
    1353             :  * @folios: The folios.
    1354             :  * @nr: How many folios there are.
    1355             :  *
    1356             :  * Like folio_put(), but for an array of folios.  This is more efficient
    1357             :  * than writing the loop yourself as it will optimise the locks which
    1358             :  * need to be taken if the folios are freed.
    1359             :  *
    1360             :  * Context: May be called in process or interrupt context, but not in NMI
    1361             :  * context.  May be called while holding a spinlock.
    1362             :  */
    1363             : static inline void folios_put(struct folio **folios, unsigned int nr)
    1364             : {
    1365           0 :         release_pages(folios, nr);
    1366             : }
    1367             : 
    1368           0 : static inline void put_page(struct page *page)
    1369             : {
    1370           0 :         struct folio *folio = page_folio(page);
    1371             : 
    1372             :         /*
    1373             :          * For some devmap managed pages we need to catch refcount transition
    1374             :          * from 2 to 1:
    1375             :          */
    1376           0 :         if (put_devmap_managed_page(&folio->page))
    1377             :                 return;
    1378             :         folio_put(folio);
    1379             : }
    1380             : 
    1381             : /*
    1382             :  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
    1383             :  * the page's refcount so that two separate items are tracked: the original page
    1384             :  * reference count, and also a new count of how many pin_user_pages() calls were
    1385             :  * made against the page. ("gup-pinned" is another term for the latter).
    1386             :  *
    1387             :  * With this scheme, pin_user_pages() becomes special: such pages are marked as
    1388             :  * distinct from normal pages. As such, the unpin_user_page() call (and its
    1389             :  * variants) must be used in order to release gup-pinned pages.
    1390             :  *
    1391             :  * Choice of value:
    1392             :  *
    1393             :  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
    1394             :  * counts with respect to pin_user_pages() and unpin_user_page() becomes
    1395             :  * simpler, due to the fact that adding an even power of two to the page
    1396             :  * refcount has the effect of using only the upper N bits, for the code that
    1397             :  * counts up using the bias value. This means that the lower bits are left for
    1398             :  * the exclusive use of the original code that increments and decrements by one
    1399             :  * (or at least, by much smaller values than the bias value).
    1400             :  *
    1401             :  * Of course, once the lower bits overflow into the upper bits (and this is
    1402             :  * OK, because subtraction recovers the original values), then visual inspection
    1403             :  * no longer suffices to directly view the separate counts. However, for normal
    1404             :  * applications that don't have huge page reference counts, this won't be an
    1405             :  * issue.
    1406             :  *
    1407             :  * Locking: the lockless algorithm described in folio_try_get_rcu()
    1408             :  * provides safe operation for get_user_pages(), page_mkclean() and
    1409             :  * other calls that race to set up page table entries.
    1410             :  */
    1411             : #define GUP_PIN_COUNTING_BIAS (1U << 10)
    1412             : 
    1413             : void unpin_user_page(struct page *page);
    1414             : void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
    1415             :                                  bool make_dirty);
    1416             : void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
    1417             :                                       bool make_dirty);
    1418             : void unpin_user_pages(struct page **pages, unsigned long npages);
    1419             : 
    1420             : static inline bool is_cow_mapping(vm_flags_t flags)
    1421             : {
    1422           0 :         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
    1423             : }
    1424             : 
    1425             : #ifndef CONFIG_MMU
    1426             : static inline bool is_nommu_shared_mapping(vm_flags_t flags)
    1427             : {
    1428             :         /*
    1429             :          * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
    1430             :          * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
    1431             :          * a file mapping. R/O MAP_PRIVATE mappings might still modify
    1432             :          * underlying memory if ptrace is active, so this is only possible if
    1433             :          * ptrace does not apply. Note that there is no mprotect() to upgrade
    1434             :          * write permissions later.
    1435             :          */
    1436             :         return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
    1437             : }
    1438             : #endif
    1439             : 
    1440             : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
    1441             : #define SECTION_IN_PAGE_FLAGS
    1442             : #endif
    1443             : 
    1444             : /*
    1445             :  * The identification function is mainly used by the buddy allocator for
    1446             :  * determining if two pages could be buddies. We are not really identifying
    1447             :  * the zone since we could be using the section number id if we do not have
    1448             :  * node id available in page flags.
    1449             :  * We only guarantee that it will return the same value for two combinable
    1450             :  * pages in a zone.
    1451             :  */
    1452             : static inline int page_zone_id(struct page *page)
    1453             : {
    1454       12418 :         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
    1455             : }
    1456             : 
    1457             : #ifdef NODE_NOT_IN_PAGE_FLAGS
    1458             : extern int page_to_nid(const struct page *page);
    1459             : #else
    1460             : static inline int page_to_nid(const struct page *page)
    1461             : {
    1462      206506 :         struct page *p = (struct page *)page;
    1463             : 
    1464             :         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
    1465             : }
    1466             : #endif
    1467             : 
    1468             : static inline int folio_nid(const struct folio *folio)
    1469             : {
    1470       33257 :         return page_to_nid(&folio->page);
    1471             : }
    1472             : 
    1473             : #ifdef CONFIG_NUMA_BALANCING
    1474             : /* page access time bits needs to hold at least 4 seconds */
    1475             : #define PAGE_ACCESS_TIME_MIN_BITS       12
    1476             : #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
    1477             : #define PAGE_ACCESS_TIME_BUCKETS                                \
    1478             :         (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
    1479             : #else
    1480             : #define PAGE_ACCESS_TIME_BUCKETS        0
    1481             : #endif
    1482             : 
    1483             : #define PAGE_ACCESS_TIME_MASK                           \
    1484             :         (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
    1485             : 
    1486             : static inline int cpu_pid_to_cpupid(int cpu, int pid)
    1487             : {
    1488             :         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
    1489             : }
    1490             : 
    1491             : static inline int cpupid_to_pid(int cpupid)
    1492             : {
    1493             :         return cpupid & LAST__PID_MASK;
    1494             : }
    1495             : 
    1496             : static inline int cpupid_to_cpu(int cpupid)
    1497             : {
    1498             :         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
    1499             : }
    1500             : 
    1501             : static inline int cpupid_to_nid(int cpupid)
    1502             : {
    1503             :         return cpu_to_node(cpupid_to_cpu(cpupid));
    1504             : }
    1505             : 
    1506             : static inline bool cpupid_pid_unset(int cpupid)
    1507             : {
    1508             :         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
    1509             : }
    1510             : 
    1511             : static inline bool cpupid_cpu_unset(int cpupid)
    1512             : {
    1513             :         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
    1514             : }
    1515             : 
    1516             : static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
    1517             : {
    1518             :         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
    1519             : }
    1520             : 
    1521             : #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
    1522             : #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
    1523             : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    1524             : {
    1525             :         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
    1526             : }
    1527             : 
    1528             : static inline int page_cpupid_last(struct page *page)
    1529             : {
    1530             :         return page->_last_cpupid;
    1531             : }
    1532             : static inline void page_cpupid_reset_last(struct page *page)
    1533             : {
    1534             :         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
    1535             : }
    1536             : #else
    1537             : static inline int page_cpupid_last(struct page *page)
    1538             : {
    1539             :         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
    1540             : }
    1541             : 
    1542             : extern int page_cpupid_xchg_last(struct page *page, int cpupid);
    1543             : 
    1544             : static inline void page_cpupid_reset_last(struct page *page)
    1545             : {
    1546             :         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
    1547             : }
    1548             : #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
    1549             : 
    1550             : static inline int xchg_page_access_time(struct page *page, int time)
    1551             : {
    1552             :         int last_time;
    1553             : 
    1554             :         last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
    1555             :         return last_time << PAGE_ACCESS_TIME_BUCKETS;
    1556             : }
    1557             : #else /* !CONFIG_NUMA_BALANCING */
    1558             : static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    1559             : {
    1560           0 :         return page_to_nid(page); /* XXX */
    1561             : }
    1562             : 
    1563             : static inline int xchg_page_access_time(struct page *page, int time)
    1564             : {
    1565             :         return 0;
    1566             : }
    1567             : 
    1568             : static inline int page_cpupid_last(struct page *page)
    1569             : {
    1570             :         return page_to_nid(page); /* XXX */
    1571             : }
    1572             : 
    1573             : static inline int cpupid_to_nid(int cpupid)
    1574             : {
    1575             :         return -1;
    1576             : }
    1577             : 
    1578             : static inline int cpupid_to_pid(int cpupid)
    1579             : {
    1580             :         return -1;
    1581             : }
    1582             : 
    1583             : static inline int cpupid_to_cpu(int cpupid)
    1584             : {
    1585             :         return -1;
    1586             : }
    1587             : 
    1588             : static inline int cpu_pid_to_cpupid(int nid, int pid)
    1589             : {
    1590             :         return -1;
    1591             : }
    1592             : 
    1593             : static inline bool cpupid_pid_unset(int cpupid)
    1594             : {
    1595             :         return true;
    1596             : }
    1597             : 
    1598             : static inline void page_cpupid_reset_last(struct page *page)
    1599             : {
    1600             : }
    1601             : 
    1602             : static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
    1603             : {
    1604             :         return false;
    1605             : }
    1606             : #endif /* CONFIG_NUMA_BALANCING */
    1607             : 
    1608             : #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
    1609             : 
    1610             : /*
    1611             :  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
    1612             :  * setting tags for all pages to native kernel tag value 0xff, as the default
    1613             :  * value 0x00 maps to 0xff.
    1614             :  */
    1615             : 
    1616             : static inline u8 page_kasan_tag(const struct page *page)
    1617             : {
    1618             :         u8 tag = 0xff;
    1619             : 
    1620             :         if (kasan_enabled()) {
    1621             :                 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
    1622             :                 tag ^= 0xff;
    1623             :         }
    1624             : 
    1625             :         return tag;
    1626             : }
    1627             : 
    1628             : static inline void page_kasan_tag_set(struct page *page, u8 tag)
    1629             : {
    1630             :         unsigned long old_flags, flags;
    1631             : 
    1632             :         if (!kasan_enabled())
    1633             :                 return;
    1634             : 
    1635             :         tag ^= 0xff;
    1636             :         old_flags = READ_ONCE(page->flags);
    1637             :         do {
    1638             :                 flags = old_flags;
    1639             :                 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
    1640             :                 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
    1641             :         } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
    1642             : }
    1643             : 
    1644             : static inline void page_kasan_tag_reset(struct page *page)
    1645             : {
    1646             :         if (kasan_enabled())
    1647             :                 page_kasan_tag_set(page, 0xff);
    1648             : }
    1649             : 
    1650             : #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
    1651             : 
    1652             : static inline u8 page_kasan_tag(const struct page *page)
    1653             : {
    1654             :         return 0xff;
    1655             : }
    1656             : 
    1657             : static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
    1658             : static inline void page_kasan_tag_reset(struct page *page) { }
    1659             : 
    1660             : #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
    1661             : 
    1662             : static inline struct zone *page_zone(const struct page *page)
    1663             : {
    1664      358662 :         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
    1665             : }
    1666             : 
    1667             : static inline pg_data_t *page_pgdat(const struct page *page)
    1668             : {
    1669       19497 :         return NODE_DATA(page_to_nid(page));
    1670             : }
    1671             : 
    1672             : static inline struct zone *folio_zone(const struct folio *folio)
    1673             : {
    1674           0 :         return page_zone(&folio->page);
    1675             : }
    1676             : 
    1677             : static inline pg_data_t *folio_pgdat(const struct folio *folio)
    1678             : {
    1679       16760 :         return page_pgdat(&folio->page);
    1680             : }
    1681             : 
    1682             : #ifdef SECTION_IN_PAGE_FLAGS
    1683             : static inline void set_page_section(struct page *page, unsigned long section)
    1684             : {
    1685             :         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
    1686             :         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
    1687             : }
    1688             : 
    1689             : static inline unsigned long page_to_section(const struct page *page)
    1690             : {
    1691             :         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
    1692             : }
    1693             : #endif
    1694             : 
    1695             : /**
    1696             :  * folio_pfn - Return the Page Frame Number of a folio.
    1697             :  * @folio: The folio.
    1698             :  *
    1699             :  * A folio may contain multiple pages.  The pages have consecutive
    1700             :  * Page Frame Numbers.
    1701             :  *
    1702             :  * Return: The Page Frame Number of the first page in the folio.
    1703             :  */
    1704             : static inline unsigned long folio_pfn(struct folio *folio)
    1705             : {
    1706           0 :         return page_to_pfn(&folio->page);
    1707             : }
    1708             : 
    1709             : static inline struct folio *pfn_folio(unsigned long pfn)
    1710             : {
    1711             :         return page_folio(pfn_to_page(pfn));
    1712             : }
    1713             : 
    1714             : /**
    1715             :  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
    1716             :  * @folio: The folio.
    1717             :  *
    1718             :  * This function checks if a folio has been pinned via a call to
    1719             :  * a function in the pin_user_pages() family.
    1720             :  *
    1721             :  * For small folios, the return value is partially fuzzy: false is not fuzzy,
    1722             :  * because it means "definitely not pinned for DMA", but true means "probably
    1723             :  * pinned for DMA, but possibly a false positive due to having at least
    1724             :  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
    1725             :  *
    1726             :  * False positives are OK, because: a) it's unlikely for a folio to
    1727             :  * get that many refcounts, and b) all the callers of this routine are
    1728             :  * expected to be able to deal gracefully with a false positive.
    1729             :  *
    1730             :  * For large folios, the result will be exactly correct. That's because
    1731             :  * we have more tracking data available: the _pincount field is used
    1732             :  * instead of the GUP_PIN_COUNTING_BIAS scheme.
    1733             :  *
    1734             :  * For more information, please see Documentation/core-api/pin_user_pages.rst.
    1735             :  *
    1736             :  * Return: True, if it is likely that the page has been "dma-pinned".
    1737             :  * False, if the page is definitely not dma-pinned.
    1738             :  */
    1739             : static inline bool folio_maybe_dma_pinned(struct folio *folio)
    1740             : {
    1741           0 :         if (folio_test_large(folio))
    1742           0 :                 return atomic_read(&folio->_pincount) > 0;
    1743             : 
    1744             :         /*
    1745             :          * folio_ref_count() is signed. If that refcount overflows, then
    1746             :          * folio_ref_count() returns a negative value, and callers will avoid
    1747             :          * further incrementing the refcount.
    1748             :          *
    1749             :          * Here, for that overflow case, use the sign bit to count a little
    1750             :          * bit higher via unsigned math, and thus still get an accurate result.
    1751             :          */
    1752           0 :         return ((unsigned int)folio_ref_count(folio)) >=
    1753             :                 GUP_PIN_COUNTING_BIAS;
    1754             : }
    1755             : 
    1756             : static inline bool page_maybe_dma_pinned(struct page *page)
    1757             : {
    1758           0 :         return folio_maybe_dma_pinned(page_folio(page));
    1759             : }
    1760             : 
    1761             : /*
    1762             :  * This should most likely only be called during fork() to see whether we
    1763             :  * should break the cow immediately for an anon page on the src mm.
    1764             :  *
    1765             :  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
    1766             :  */
    1767           0 : static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
    1768             :                                           struct page *page)
    1769             : {
    1770             :         VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
    1771             : 
    1772           0 :         if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
    1773             :                 return false;
    1774             : 
    1775             :         return page_maybe_dma_pinned(page);
    1776             : }
    1777             : 
    1778             : /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
    1779             : #ifdef CONFIG_MIGRATION
    1780             : static inline bool is_longterm_pinnable_page(struct page *page)
    1781             : {
    1782             : #ifdef CONFIG_CMA
    1783             :         int mt = get_pageblock_migratetype(page);
    1784             : 
    1785             :         if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
    1786             :                 return false;
    1787             : #endif
    1788             :         /* The zero page may always be pinned */
    1789           0 :         if (is_zero_pfn(page_to_pfn(page)))
    1790             :                 return true;
    1791             : 
    1792             :         /* Coherent device memory must always allow eviction. */
    1793           0 :         if (is_device_coherent_page(page))
    1794             :                 return false;
    1795             : 
    1796             :         /* Otherwise, non-movable zone pages can be pinned. */
    1797           0 :         return !is_zone_movable_page(page);
    1798             : }
    1799             : #else
    1800             : static inline bool is_longterm_pinnable_page(struct page *page)
    1801             : {
    1802             :         return true;
    1803             : }
    1804             : #endif
    1805             : 
    1806             : static inline bool folio_is_longterm_pinnable(struct folio *folio)
    1807             : {
    1808           0 :         return is_longterm_pinnable_page(&folio->page);
    1809             : }
    1810             : 
    1811             : static inline void set_page_zone(struct page *page, enum zone_type zone)
    1812             : {
    1813             :         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
    1814      262670 :         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
    1815             : }
    1816             : 
    1817             : static inline void set_page_node(struct page *page, unsigned long node)
    1818             : {
    1819             :         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
    1820             :         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
    1821             : }
    1822             : 
    1823             : static inline void set_page_links(struct page *page, enum zone_type zone,
    1824             :         unsigned long node, unsigned long pfn)
    1825             : {
    1826      525340 :         set_page_zone(page, zone);
    1827      262670 :         set_page_node(page, node);
    1828             : #ifdef SECTION_IN_PAGE_FLAGS
    1829             :         set_page_section(page, pfn_to_section_nr(pfn));
    1830             : #endif
    1831             : }
    1832             : 
    1833             : /**
    1834             :  * folio_nr_pages - The number of pages in the folio.
    1835             :  * @folio: The folio.
    1836             :  *
    1837             :  * Return: A positive power of two.
    1838             :  */
    1839             : static inline long folio_nr_pages(struct folio *folio)
    1840             : {
    1841           0 :         if (!folio_test_large(folio))
    1842             :                 return 1;
    1843             : #ifdef CONFIG_64BIT
    1844           0 :         return folio->_folio_nr_pages;
    1845             : #else
    1846             :         return 1L << folio->_folio_order;
    1847             : #endif
    1848             : }
    1849             : 
    1850             : /*
    1851             :  * compound_nr() returns the number of pages in this potentially compound
    1852             :  * page.  compound_nr() can be called on a tail page, and is defined to
    1853             :  * return 1 in that case.
    1854             :  */
    1855             : static inline unsigned long compound_nr(struct page *page)
    1856             : {
    1857           0 :         struct folio *folio = (struct folio *)page;
    1858             : 
    1859           0 :         if (!test_bit(PG_head, &folio->flags))
    1860             :                 return 1;
    1861             : #ifdef CONFIG_64BIT
    1862           0 :         return folio->_folio_nr_pages;
    1863             : #else
    1864             :         return 1L << folio->_folio_order;
    1865             : #endif
    1866             : }
    1867             : 
    1868             : /**
    1869             :  * thp_nr_pages - The number of regular pages in this huge page.
    1870             :  * @page: The head page of a huge page.
    1871             :  */
    1872             : static inline int thp_nr_pages(struct page *page)
    1873             : {
    1874           0 :         return folio_nr_pages((struct folio *)page);
    1875             : }
    1876             : 
    1877             : /**
    1878             :  * folio_next - Move to the next physical folio.
    1879             :  * @folio: The folio we're currently operating on.
    1880             :  *
    1881             :  * If you have physically contiguous memory which may span more than
    1882             :  * one folio (eg a &struct bio_vec), use this function to move from one
    1883             :  * folio to the next.  Do not use it if the memory is only virtually
    1884             :  * contiguous as the folios are almost certainly not adjacent to each
    1885             :  * other.  This is the folio equivalent to writing ``page++``.
    1886             :  *
    1887             :  * Context: We assume that the folios are refcounted and/or locked at a
    1888             :  * higher level and do not adjust the reference counts.
    1889             :  * Return: The next struct folio.
    1890             :  */
    1891             : static inline struct folio *folio_next(struct folio *folio)
    1892             : {
    1893             :         return (struct folio *)folio_page(folio, folio_nr_pages(folio));
    1894             : }
    1895             : 
    1896             : /**
    1897             :  * folio_shift - The size of the memory described by this folio.
    1898             :  * @folio: The folio.
    1899             :  *
    1900             :  * A folio represents a number of bytes which is a power-of-two in size.
    1901             :  * This function tells you which power-of-two the folio is.  See also
    1902             :  * folio_size() and folio_order().
    1903             :  *
    1904             :  * Context: The caller should have a reference on the folio to prevent
    1905             :  * it from being split.  It is not necessary for the folio to be locked.
    1906             :  * Return: The base-2 logarithm of the size of this folio.
    1907             :  */
    1908             : static inline unsigned int folio_shift(struct folio *folio)
    1909             : {
    1910           0 :         return PAGE_SHIFT + folio_order(folio);
    1911             : }
    1912             : 
    1913             : /**
    1914             :  * folio_size - The number of bytes in a folio.
    1915             :  * @folio: The folio.
    1916             :  *
    1917             :  * Context: The caller should have a reference on the folio to prevent
    1918             :  * it from being split.  It is not necessary for the folio to be locked.
    1919             :  * Return: The number of bytes in this folio.
    1920             :  */
    1921             : static inline size_t folio_size(struct folio *folio)
    1922             : {
    1923           0 :         return PAGE_SIZE << folio_order(folio);
    1924             : }
    1925             : 
    1926             : /**
    1927             :  * folio_estimated_sharers - Estimate the number of sharers of a folio.
    1928             :  * @folio: The folio.
    1929             :  *
    1930             :  * folio_estimated_sharers() aims to serve as a function to efficiently
    1931             :  * estimate the number of processes sharing a folio. This is done by
    1932             :  * looking at the precise mapcount of the first subpage in the folio, and
    1933             :  * assuming the other subpages are the same. This may not be true for large
    1934             :  * folios. If you want exact mapcounts for exact calculations, look at
    1935             :  * page_mapcount() or folio_total_mapcount().
    1936             :  *
    1937             :  * Return: The estimated number of processes sharing a folio.
    1938             :  */
    1939             : static inline int folio_estimated_sharers(struct folio *folio)
    1940             : {
    1941             :         return page_mapcount(folio_page(folio, 0));
    1942             : }
    1943             : 
    1944             : #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
    1945             : static inline int arch_make_page_accessible(struct page *page)
    1946             : {
    1947             :         return 0;
    1948             : }
    1949             : #endif
    1950             : 
    1951             : #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
    1952             : static inline int arch_make_folio_accessible(struct folio *folio)
    1953             : {
    1954             :         int ret;
    1955           0 :         long i, nr = folio_nr_pages(folio);
    1956             : 
    1957           0 :         for (i = 0; i < nr; i++) {
    1958             :                 ret = arch_make_page_accessible(folio_page(folio, i));
    1959             :                 if (ret)
    1960             :                         break;
    1961             :         }
    1962             : 
    1963             :         return ret;
    1964             : }
    1965             : #endif
    1966             : 
    1967             : /*
    1968             :  * Some inline functions in vmstat.h depend on page_zone()
    1969             :  */
    1970             : #include <linux/vmstat.h>
    1971             : 
    1972             : static __always_inline void *lowmem_page_address(const struct page *page)
    1973             : {
    1974       93822 :         return page_to_virt(page);
    1975             : }
    1976             : 
    1977             : #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
    1978             : #define HASHED_PAGE_VIRTUAL
    1979             : #endif
    1980             : 
    1981             : #if defined(WANT_PAGE_VIRTUAL)
    1982             : static inline void *page_address(const struct page *page)
    1983             : {
    1984             :         return page->virtual;
    1985             : }
    1986             : static inline void set_page_address(struct page *page, void *address)
    1987             : {
    1988             :         page->virtual = address;
    1989             : }
    1990             : #define page_address_init()  do { } while(0)
    1991             : #endif
    1992             : 
    1993             : #if defined(HASHED_PAGE_VIRTUAL)
    1994             : void *page_address(const struct page *page);
    1995             : void set_page_address(struct page *page, void *virtual);
    1996             : void page_address_init(void);
    1997             : #endif
    1998             : 
    1999             : #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
    2000             : #define page_address(page) lowmem_page_address(page)
    2001             : #define set_page_address(page, address)  do { } while(0)
    2002             : #define page_address_init()  do { } while(0)
    2003             : #endif
    2004             : 
    2005             : static inline void *folio_address(const struct folio *folio)
    2006             : {
    2007       17200 :         return page_address(&folio->page);
    2008             : }
    2009             : 
    2010             : extern void *page_rmapping(struct page *page);
    2011             : extern pgoff_t __page_file_index(struct page *page);
    2012             : 
    2013             : /*
    2014             :  * Return the pagecache index of the passed page.  Regular pagecache pages
    2015             :  * use ->index whereas swapcache pages use swp_offset(->private)
    2016             :  */
    2017           0 : static inline pgoff_t page_index(struct page *page)
    2018             : {
    2019           0 :         if (unlikely(PageSwapCache(page)))
    2020           0 :                 return __page_file_index(page);
    2021           0 :         return page->index;
    2022             : }
    2023             : 
    2024             : /*
    2025             :  * Return true only if the page has been allocated with
    2026             :  * ALLOC_NO_WATERMARKS and the low watermark was not
    2027             :  * met implying that the system is under some pressure.
    2028             :  */
    2029             : static inline bool page_is_pfmemalloc(const struct page *page)
    2030             : {
    2031             :         /*
    2032             :          * lru.next has bit 1 set if the page is allocated from the
    2033             :          * pfmemalloc reserves.  Callers may simply overwrite it if
    2034             :          * they do not need to preserve that information.
    2035             :          */
    2036           0 :         return (uintptr_t)page->lru.next & BIT(1);
    2037             : }
    2038             : 
    2039             : /*
    2040             :  * Return true only if the folio has been allocated with
    2041             :  * ALLOC_NO_WATERMARKS and the low watermark was not
    2042             :  * met implying that the system is under some pressure.
    2043             :  */
    2044             : static inline bool folio_is_pfmemalloc(const struct folio *folio)
    2045             : {
    2046             :         /*
    2047             :          * lru.next has bit 1 set if the page is allocated from the
    2048             :          * pfmemalloc reserves.  Callers may simply overwrite it if
    2049             :          * they do not need to preserve that information.
    2050             :          */
    2051        8600 :         return (uintptr_t)folio->lru.next & BIT(1);
    2052             : }
    2053             : 
    2054             : /*
    2055             :  * Only to be called by the page allocator on a freshly allocated
    2056             :  * page.
    2057             :  */
    2058             : static inline void set_page_pfmemalloc(struct page *page)
    2059             : {
    2060           0 :         page->lru.next = (void *)BIT(1);
    2061             : }
    2062             : 
    2063             : static inline void clear_page_pfmemalloc(struct page *page)
    2064             : {
    2065       51169 :         page->lru.next = NULL;
    2066             : }
    2067             : 
    2068             : /*
    2069             :  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
    2070             :  */
    2071             : extern void pagefault_out_of_memory(void);
    2072             : 
    2073             : #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
    2074             : #define offset_in_thp(page, p)  ((unsigned long)(p) & (thp_size(page) - 1))
    2075             : #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
    2076             : 
    2077             : /*
    2078             :  * Flags passed to show_mem() and show_free_areas() to suppress output in
    2079             :  * various contexts.
    2080             :  */
    2081             : #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
    2082             : 
    2083             : extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
    2084             : static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
    2085             : {
    2086             :         __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
    2087             : }
    2088             : 
    2089             : /*
    2090             :  * Parameter block passed down to zap_pte_range in exceptional cases.
    2091             :  */
    2092             : struct zap_details {
    2093             :         struct folio *single_folio;     /* Locked folio to be unmapped */
    2094             :         bool even_cows;                 /* Zap COWed private pages too? */
    2095             :         zap_flags_t zap_flags;          /* Extra flags for zapping */
    2096             : };
    2097             : 
    2098             : /*
    2099             :  * Whether to drop the pte markers, for example, the uffd-wp information for
    2100             :  * file-backed memory.  This should only be specified when we will completely
    2101             :  * drop the page in the mm, either by truncation or unmapping of the vma.  By
    2102             :  * default, the flag is not set.
    2103             :  */
    2104             : #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
    2105             : /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
    2106             : #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
    2107             : 
    2108             : #ifdef CONFIG_SCHED_MM_CID
    2109             : void sched_mm_cid_before_execve(struct task_struct *t);
    2110             : void sched_mm_cid_after_execve(struct task_struct *t);
    2111             : void sched_mm_cid_fork(struct task_struct *t);
    2112             : void sched_mm_cid_exit_signals(struct task_struct *t);
    2113             : static inline int task_mm_cid(struct task_struct *t)
    2114             : {
    2115             :         return t->mm_cid;
    2116             : }
    2117             : #else
    2118             : static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
    2119             : static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
    2120             : static inline void sched_mm_cid_fork(struct task_struct *t) { }
    2121             : static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
    2122             : static inline int task_mm_cid(struct task_struct *t)
    2123             : {
    2124             :         /*
    2125             :          * Use the processor id as a fall-back when the mm cid feature is
    2126             :          * disabled. This provides functional per-cpu data structure accesses
    2127             :          * in user-space, althrough it won't provide the memory usage benefits.
    2128             :          */
    2129             :         return raw_smp_processor_id();
    2130             : }
    2131             : #endif
    2132             : 
    2133             : #ifdef CONFIG_MMU
    2134             : extern bool can_do_mlock(void);
    2135             : #else
    2136             : static inline bool can_do_mlock(void) { return false; }
    2137             : #endif
    2138             : extern int user_shm_lock(size_t, struct ucounts *);
    2139             : extern void user_shm_unlock(size_t, struct ucounts *);
    2140             : 
    2141             : struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
    2142             :                              pte_t pte);
    2143             : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
    2144             :                              pte_t pte);
    2145             : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
    2146             :                                 pmd_t pmd);
    2147             : 
    2148             : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    2149             :                   unsigned long size);
    2150             : void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
    2151             :                            unsigned long size, struct zap_details *details);
    2152             : static inline void zap_vma_pages(struct vm_area_struct *vma)
    2153             : {
    2154             :         zap_page_range_single(vma, vma->vm_start,
    2155             :                               vma->vm_end - vma->vm_start, NULL);
    2156             : }
    2157             : void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
    2158             :                 struct vm_area_struct *start_vma, unsigned long start,
    2159             :                 unsigned long end, bool mm_wr_locked);
    2160             : 
    2161             : struct mmu_notifier_range;
    2162             : 
    2163             : void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
    2164             :                 unsigned long end, unsigned long floor, unsigned long ceiling);
    2165             : int
    2166             : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
    2167             : int follow_pte(struct mm_struct *mm, unsigned long address,
    2168             :                pte_t **ptepp, spinlock_t **ptlp);
    2169             : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    2170             :         unsigned long *pfn);
    2171             : int follow_phys(struct vm_area_struct *vma, unsigned long address,
    2172             :                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
    2173             : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    2174             :                         void *buf, int len, int write);
    2175             : 
    2176             : extern void truncate_pagecache(struct inode *inode, loff_t new);
    2177             : extern void truncate_setsize(struct inode *inode, loff_t newsize);
    2178             : void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
    2179             : void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
    2180             : int generic_error_remove_page(struct address_space *mapping, struct page *page);
    2181             : 
    2182             : #ifdef CONFIG_MMU
    2183             : extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
    2184             :                                   unsigned long address, unsigned int flags,
    2185             :                                   struct pt_regs *regs);
    2186             : extern int fixup_user_fault(struct mm_struct *mm,
    2187             :                             unsigned long address, unsigned int fault_flags,
    2188             :                             bool *unlocked);
    2189             : void unmap_mapping_pages(struct address_space *mapping,
    2190             :                 pgoff_t start, pgoff_t nr, bool even_cows);
    2191             : void unmap_mapping_range(struct address_space *mapping,
    2192             :                 loff_t const holebegin, loff_t const holelen, int even_cows);
    2193             : #else
    2194             : static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
    2195             :                                          unsigned long address, unsigned int flags,
    2196             :                                          struct pt_regs *regs)
    2197             : {
    2198             :         /* should never happen if there's no MMU */
    2199             :         BUG();
    2200             :         return VM_FAULT_SIGBUS;
    2201             : }
    2202             : static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
    2203             :                 unsigned int fault_flags, bool *unlocked)
    2204             : {
    2205             :         /* should never happen if there's no MMU */
    2206             :         BUG();
    2207             :         return -EFAULT;
    2208             : }
    2209             : static inline void unmap_mapping_pages(struct address_space *mapping,
    2210             :                 pgoff_t start, pgoff_t nr, bool even_cows) { }
    2211             : static inline void unmap_mapping_range(struct address_space *mapping,
    2212             :                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
    2213             : #endif
    2214             : 
    2215             : static inline void unmap_shared_mapping_range(struct address_space *mapping,
    2216             :                 loff_t const holebegin, loff_t const holelen)
    2217             : {
    2218             :         unmap_mapping_range(mapping, holebegin, holelen, 0);
    2219             : }
    2220             : 
    2221             : extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
    2222             :                 void *buf, int len, unsigned int gup_flags);
    2223             : extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    2224             :                 void *buf, int len, unsigned int gup_flags);
    2225             : extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
    2226             :                               void *buf, int len, unsigned int gup_flags);
    2227             : 
    2228             : long get_user_pages_remote(struct mm_struct *mm,
    2229             :                             unsigned long start, unsigned long nr_pages,
    2230             :                             unsigned int gup_flags, struct page **pages,
    2231             :                             struct vm_area_struct **vmas, int *locked);
    2232             : long pin_user_pages_remote(struct mm_struct *mm,
    2233             :                            unsigned long start, unsigned long nr_pages,
    2234             :                            unsigned int gup_flags, struct page **pages,
    2235             :                            struct vm_area_struct **vmas, int *locked);
    2236             : long get_user_pages(unsigned long start, unsigned long nr_pages,
    2237             :                             unsigned int gup_flags, struct page **pages,
    2238             :                             struct vm_area_struct **vmas);
    2239             : long pin_user_pages(unsigned long start, unsigned long nr_pages,
    2240             :                     unsigned int gup_flags, struct page **pages,
    2241             :                     struct vm_area_struct **vmas);
    2242             : long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    2243             :                     struct page **pages, unsigned int gup_flags);
    2244             : long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    2245             :                     struct page **pages, unsigned int gup_flags);
    2246             : 
    2247             : int get_user_pages_fast(unsigned long start, int nr_pages,
    2248             :                         unsigned int gup_flags, struct page **pages);
    2249             : int pin_user_pages_fast(unsigned long start, int nr_pages,
    2250             :                         unsigned int gup_flags, struct page **pages);
    2251             : 
    2252             : int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
    2253             : int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
    2254             :                         struct task_struct *task, bool bypass_rlim);
    2255             : 
    2256             : struct kvec;
    2257             : struct page *get_dump_page(unsigned long addr);
    2258             : 
    2259             : bool folio_mark_dirty(struct folio *folio);
    2260             : bool set_page_dirty(struct page *page);
    2261             : int set_page_dirty_lock(struct page *page);
    2262             : 
    2263             : int get_cmdline(struct task_struct *task, char *buffer, int buflen);
    2264             : 
    2265             : extern unsigned long move_page_tables(struct vm_area_struct *vma,
    2266             :                 unsigned long old_addr, struct vm_area_struct *new_vma,
    2267             :                 unsigned long new_addr, unsigned long len,
    2268             :                 bool need_rmap_locks);
    2269             : 
    2270             : /*
    2271             :  * Flags used by change_protection().  For now we make it a bitmap so
    2272             :  * that we can pass in multiple flags just like parameters.  However
    2273             :  * for now all the callers are only use one of the flags at the same
    2274             :  * time.
    2275             :  */
    2276             : /*
    2277             :  * Whether we should manually check if we can map individual PTEs writable,
    2278             :  * because something (e.g., COW, uffd-wp) blocks that from happening for all
    2279             :  * PTEs automatically in a writable mapping.
    2280             :  */
    2281             : #define  MM_CP_TRY_CHANGE_WRITABLE         (1UL << 0)
    2282             : /* Whether this protection change is for NUMA hints */
    2283             : #define  MM_CP_PROT_NUMA                   (1UL << 1)
    2284             : /* Whether this change is for write protecting */
    2285             : #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
    2286             : #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
    2287             : #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
    2288             :                                             MM_CP_UFFD_WP_RESOLVE)
    2289             : 
    2290             : int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
    2291           0 : static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
    2292             : {
    2293             :         /*
    2294             :          * We want to check manually if we can change individual PTEs writable
    2295             :          * if we can't do that automatically for all PTEs in a mapping. For
    2296             :          * private mappings, that's always the case when we have write
    2297             :          * permissions as we properly have to handle COW.
    2298             :          */
    2299           0 :         if (vma->vm_flags & VM_SHARED)
    2300           0 :                 return vma_wants_writenotify(vma, vma->vm_page_prot);
    2301           0 :         return !!(vma->vm_flags & VM_WRITE);
    2302             : 
    2303             : }
    2304             : bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
    2305             :                              pte_t pte);
    2306             : extern long change_protection(struct mmu_gather *tlb,
    2307             :                               struct vm_area_struct *vma, unsigned long start,
    2308             :                               unsigned long end, unsigned long cp_flags);
    2309             : extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
    2310             :           struct vm_area_struct *vma, struct vm_area_struct **pprev,
    2311             :           unsigned long start, unsigned long end, unsigned long newflags);
    2312             : 
    2313             : /*
    2314             :  * doesn't attempt to fault and will return short.
    2315             :  */
    2316             : int get_user_pages_fast_only(unsigned long start, int nr_pages,
    2317             :                              unsigned int gup_flags, struct page **pages);
    2318             : 
    2319             : static inline bool get_user_page_fast_only(unsigned long addr,
    2320             :                         unsigned int gup_flags, struct page **pagep)
    2321             : {
    2322             :         return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
    2323             : }
    2324             : /*
    2325             :  * per-process(per-mm_struct) statistics.
    2326             :  */
    2327             : static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
    2328             : {
    2329           0 :         return percpu_counter_read_positive(&mm->rss_stat[member]);
    2330             : }
    2331             : 
    2332             : void mm_trace_rss_stat(struct mm_struct *mm, int member);
    2333             : 
    2334           0 : static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
    2335             : {
    2336           0 :         percpu_counter_add(&mm->rss_stat[member], value);
    2337             : 
    2338           0 :         mm_trace_rss_stat(mm, member);
    2339           0 : }
    2340             : 
    2341             : static inline void inc_mm_counter(struct mm_struct *mm, int member)
    2342             : {
    2343           0 :         percpu_counter_inc(&mm->rss_stat[member]);
    2344             : 
    2345           0 :         mm_trace_rss_stat(mm, member);
    2346             : }
    2347             : 
    2348             : static inline void dec_mm_counter(struct mm_struct *mm, int member)
    2349             : {
    2350           0 :         percpu_counter_dec(&mm->rss_stat[member]);
    2351             : 
    2352           0 :         mm_trace_rss_stat(mm, member);
    2353             : }
    2354             : 
    2355             : /* Optimized variant when page is already known not to be PageAnon */
    2356             : static inline int mm_counter_file(struct page *page)
    2357             : {
    2358           0 :         if (PageSwapBacked(page))
    2359             :                 return MM_SHMEMPAGES;
    2360             :         return MM_FILEPAGES;
    2361             : }
    2362             : 
    2363           0 : static inline int mm_counter(struct page *page)
    2364             : {
    2365           0 :         if (PageAnon(page))
    2366             :                 return MM_ANONPAGES;
    2367             :         return mm_counter_file(page);
    2368             : }
    2369             : 
    2370             : static inline unsigned long get_mm_rss(struct mm_struct *mm)
    2371             : {
    2372           0 :         return get_mm_counter(mm, MM_FILEPAGES) +
    2373           0 :                 get_mm_counter(mm, MM_ANONPAGES) +
    2374           0 :                 get_mm_counter(mm, MM_SHMEMPAGES);
    2375             : }
    2376             : 
    2377             : static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
    2378             : {
    2379           0 :         return max(mm->hiwater_rss, get_mm_rss(mm));
    2380             : }
    2381             : 
    2382             : static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
    2383             : {
    2384             :         return max(mm->hiwater_vm, mm->total_vm);
    2385             : }
    2386             : 
    2387             : static inline void update_hiwater_rss(struct mm_struct *mm)
    2388             : {
    2389           0 :         unsigned long _rss = get_mm_rss(mm);
    2390             : 
    2391           0 :         if ((mm)->hiwater_rss < _rss)
    2392           0 :                 (mm)->hiwater_rss = _rss;
    2393             : }
    2394             : 
    2395             : static inline void update_hiwater_vm(struct mm_struct *mm)
    2396             : {
    2397           0 :         if (mm->hiwater_vm < mm->total_vm)
    2398           0 :                 mm->hiwater_vm = mm->total_vm;
    2399             : }
    2400             : 
    2401             : static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
    2402             : {
    2403           0 :         mm->hiwater_rss = get_mm_rss(mm);
    2404             : }
    2405             : 
    2406             : static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
    2407             :                                          struct mm_struct *mm)
    2408             : {
    2409           0 :         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
    2410             : 
    2411           0 :         if (*maxrss < hiwater_rss)
    2412           0 :                 *maxrss = hiwater_rss;
    2413             : }
    2414             : 
    2415             : #if defined(SPLIT_RSS_COUNTING)
    2416             : void sync_mm_rss(struct mm_struct *mm);
    2417             : #else
    2418             : static inline void sync_mm_rss(struct mm_struct *mm)
    2419             : {
    2420             : }
    2421             : #endif
    2422             : 
    2423             : #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
    2424             : static inline int pte_special(pte_t pte)
    2425             : {
    2426             :         return 0;
    2427             : }
    2428             : 
    2429             : static inline pte_t pte_mkspecial(pte_t pte)
    2430             : {
    2431             :         return pte;
    2432             : }
    2433             : #endif
    2434             : 
    2435             : #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
    2436             : static inline int pte_devmap(pte_t pte)
    2437             : {
    2438             :         return 0;
    2439             : }
    2440             : #endif
    2441             : 
    2442             : extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    2443             :                                spinlock_t **ptl);
    2444             : static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
    2445             :                                     spinlock_t **ptl)
    2446             : {
    2447             :         pte_t *ptep;
    2448           0 :         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
    2449             :         return ptep;
    2450             : }
    2451             : 
    2452             : #ifdef __PAGETABLE_P4D_FOLDED
    2453             : static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
    2454             :                                                 unsigned long address)
    2455             : {
    2456             :         return 0;
    2457             : }
    2458             : #else
    2459             : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
    2460             : #endif
    2461             : 
    2462             : #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
    2463             : static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
    2464             :                                                 unsigned long address)
    2465             : {
    2466             :         return 0;
    2467             : }
    2468             : static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
    2469             : static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
    2470             : 
    2471             : #else
    2472             : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
    2473             : 
    2474             : static inline void mm_inc_nr_puds(struct mm_struct *mm)
    2475             : {
    2476             :         if (mm_pud_folded(mm))
    2477             :                 return;
    2478             :         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
    2479             : }
    2480             : 
    2481             : static inline void mm_dec_nr_puds(struct mm_struct *mm)
    2482             : {
    2483             :         if (mm_pud_folded(mm))
    2484             :                 return;
    2485             :         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
    2486             : }
    2487             : #endif
    2488             : 
    2489             : #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
    2490             : static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
    2491             :                                                 unsigned long address)
    2492             : {
    2493             :         return 0;
    2494             : }
    2495             : 
    2496             : static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
    2497             : static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
    2498             : 
    2499             : #else
    2500             : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
    2501             : 
    2502             : static inline void mm_inc_nr_pmds(struct mm_struct *mm)
    2503             : {
    2504             :         if (mm_pmd_folded(mm))
    2505             :                 return;
    2506           2 :         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
    2507             : }
    2508             : 
    2509             : static inline void mm_dec_nr_pmds(struct mm_struct *mm)
    2510             : {
    2511             :         if (mm_pmd_folded(mm))
    2512             :                 return;
    2513           0 :         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
    2514             : }
    2515             : #endif
    2516             : 
    2517             : #ifdef CONFIG_MMU
    2518             : static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
    2519             : {
    2520           0 :         atomic_long_set(&mm->pgtables_bytes, 0);
    2521             : }
    2522             : 
    2523             : static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
    2524             : {
    2525           0 :         return atomic_long_read(&mm->pgtables_bytes);
    2526             : }
    2527             : 
    2528             : static inline void mm_inc_nr_ptes(struct mm_struct *mm)
    2529             : {
    2530           0 :         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
    2531             : }
    2532             : 
    2533             : static inline void mm_dec_nr_ptes(struct mm_struct *mm)
    2534             : {
    2535           0 :         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
    2536             : }
    2537             : #else
    2538             : 
    2539             : static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
    2540             : static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
    2541             : {
    2542             :         return 0;
    2543             : }
    2544             : 
    2545             : static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
    2546             : static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
    2547             : #endif
    2548             : 
    2549             : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
    2550             : int __pte_alloc_kernel(pmd_t *pmd);
    2551             : 
    2552             : #if defined(CONFIG_MMU)
    2553             : 
    2554             : static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
    2555             :                 unsigned long address)
    2556             : {
    2557           0 :         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
    2558           0 :                 NULL : p4d_offset(pgd, address);
    2559             : }
    2560             : 
    2561             : static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
    2562             :                 unsigned long address)
    2563             : {
    2564           0 :         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
    2565           0 :                 NULL : pud_offset(p4d, address);
    2566             : }
    2567             : 
    2568           0 : static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    2569             : {
    2570           0 :         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
    2571           0 :                 NULL: pmd_offset(pud, address);
    2572             : }
    2573             : #endif /* CONFIG_MMU */
    2574             : 
    2575             : #if USE_SPLIT_PTE_PTLOCKS
    2576             : #if ALLOC_SPLIT_PTLOCKS
    2577             : void __init ptlock_cache_init(void);
    2578             : extern bool ptlock_alloc(struct page *page);
    2579             : extern void ptlock_free(struct page *page);
    2580             : 
    2581             : static inline spinlock_t *ptlock_ptr(struct page *page)
    2582             : {
    2583             :         return page->ptl;
    2584             : }
    2585             : #else /* ALLOC_SPLIT_PTLOCKS */
    2586             : static inline void ptlock_cache_init(void)
    2587             : {
    2588             : }
    2589             : 
    2590             : static inline bool ptlock_alloc(struct page *page)
    2591             : {
    2592             :         return true;
    2593             : }
    2594             : 
    2595             : static inline void ptlock_free(struct page *page)
    2596             : {
    2597             : }
    2598             : 
    2599             : static inline spinlock_t *ptlock_ptr(struct page *page)
    2600             : {
    2601             :         return &page->ptl;
    2602             : }
    2603             : #endif /* ALLOC_SPLIT_PTLOCKS */
    2604             : 
    2605             : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2606             : {
    2607             :         return ptlock_ptr(pmd_page(*pmd));
    2608             : }
    2609             : 
    2610             : static inline bool ptlock_init(struct page *page)
    2611             : {
    2612             :         /*
    2613             :          * prep_new_page() initialize page->private (and therefore page->ptl)
    2614             :          * with 0. Make sure nobody took it in use in between.
    2615             :          *
    2616             :          * It can happen if arch try to use slab for page table allocation:
    2617             :          * slab code uses page->slab_cache, which share storage with page->ptl.
    2618             :          */
    2619             :         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
    2620             :         if (!ptlock_alloc(page))
    2621             :                 return false;
    2622             :         spin_lock_init(ptlock_ptr(page));
    2623             :         return true;
    2624             : }
    2625             : 
    2626             : #else   /* !USE_SPLIT_PTE_PTLOCKS */
    2627             : /*
    2628             :  * We use mm->page_table_lock to guard all pagetable pages of the mm.
    2629             :  */
    2630             : static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2631             : {
    2632           0 :         return &mm->page_table_lock;
    2633             : }
    2634             : static inline void ptlock_cache_init(void) {}
    2635             : static inline bool ptlock_init(struct page *page) { return true; }
    2636             : static inline void ptlock_free(struct page *page) {}
    2637             : #endif /* USE_SPLIT_PTE_PTLOCKS */
    2638             : 
    2639             : static inline void pgtable_init(void)
    2640             : {
    2641             :         ptlock_cache_init();
    2642           1 :         pgtable_cache_init();
    2643             : }
    2644             : 
    2645             : static inline bool pgtable_pte_page_ctor(struct page *page)
    2646             : {
    2647           0 :         if (!ptlock_init(page))
    2648             :                 return false;
    2649           0 :         __SetPageTable(page);
    2650           0 :         inc_lruvec_page_state(page, NR_PAGETABLE);
    2651             :         return true;
    2652             : }
    2653             : 
    2654             : static inline void pgtable_pte_page_dtor(struct page *page)
    2655             : {
    2656           0 :         ptlock_free(page);
    2657           0 :         __ClearPageTable(page);
    2658           0 :         dec_lruvec_page_state(page, NR_PAGETABLE);
    2659             : }
    2660             : 
    2661             : #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
    2662             : ({                                                      \
    2663             :         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
    2664             :         pte_t *__pte = pte_offset_map(pmd, address);    \
    2665             :         *(ptlp) = __ptl;                                \
    2666             :         spin_lock(__ptl);                               \
    2667             :         __pte;                                          \
    2668             : })
    2669             : 
    2670             : #define pte_unmap_unlock(pte, ptl)      do {            \
    2671             :         spin_unlock(ptl);                               \
    2672             :         pte_unmap(pte);                                 \
    2673             : } while (0)
    2674             : 
    2675             : #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
    2676             : 
    2677             : #define pte_alloc_map(mm, pmd, address)                 \
    2678             :         (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
    2679             : 
    2680             : #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
    2681             :         (pte_alloc(mm, pmd) ?                   \
    2682             :                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
    2683             : 
    2684             : #define pte_alloc_kernel(pmd, address)                  \
    2685             :         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
    2686             :                 NULL: pte_offset_kernel(pmd, address))
    2687             : 
    2688             : #if USE_SPLIT_PMD_PTLOCKS
    2689             : 
    2690             : static inline struct page *pmd_pgtable_page(pmd_t *pmd)
    2691             : {
    2692             :         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
    2693             :         return virt_to_page((void *)((unsigned long) pmd & mask));
    2694             : }
    2695             : 
    2696             : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2697             : {
    2698             :         return ptlock_ptr(pmd_pgtable_page(pmd));
    2699             : }
    2700             : 
    2701             : static inline bool pmd_ptlock_init(struct page *page)
    2702             : {
    2703             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    2704             :         page->pmd_huge_pte = NULL;
    2705             : #endif
    2706             :         return ptlock_init(page);
    2707             : }
    2708             : 
    2709             : static inline void pmd_ptlock_free(struct page *page)
    2710             : {
    2711             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    2712             :         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
    2713             : #endif
    2714             :         ptlock_free(page);
    2715             : }
    2716             : 
    2717             : #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
    2718             : 
    2719             : #else
    2720             : 
    2721             : static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    2722             : {
    2723             :         return &mm->page_table_lock;
    2724             : }
    2725             : 
    2726             : static inline bool pmd_ptlock_init(struct page *page) { return true; }
    2727             : static inline void pmd_ptlock_free(struct page *page) {}
    2728             : 
    2729             : #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
    2730             : 
    2731             : #endif
    2732             : 
    2733             : static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
    2734             : {
    2735           0 :         spinlock_t *ptl = pmd_lockptr(mm, pmd);
    2736           0 :         spin_lock(ptl);
    2737             :         return ptl;
    2738             : }
    2739             : 
    2740             : static inline bool pgtable_pmd_page_ctor(struct page *page)
    2741             : {
    2742           1 :         if (!pmd_ptlock_init(page))
    2743             :                 return false;
    2744           1 :         __SetPageTable(page);
    2745           2 :         inc_lruvec_page_state(page, NR_PAGETABLE);
    2746             :         return true;
    2747             : }
    2748             : 
    2749             : static inline void pgtable_pmd_page_dtor(struct page *page)
    2750             : {
    2751           0 :         pmd_ptlock_free(page);
    2752           0 :         __ClearPageTable(page);
    2753           0 :         dec_lruvec_page_state(page, NR_PAGETABLE);
    2754             : }
    2755             : 
    2756             : /*
    2757             :  * No scalability reason to split PUD locks yet, but follow the same pattern
    2758             :  * as the PMD locks to make it easier if we decide to.  The VM should not be
    2759             :  * considered ready to switch to split PUD locks yet; there may be places
    2760             :  * which need to be converted from page_table_lock.
    2761             :  */
    2762             : static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
    2763             : {
    2764             :         return &mm->page_table_lock;
    2765             : }
    2766             : 
    2767             : static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
    2768             : {
    2769           1 :         spinlock_t *ptl = pud_lockptr(mm, pud);
    2770             : 
    2771           1 :         spin_lock(ptl);
    2772             :         return ptl;
    2773             : }
    2774             : 
    2775             : extern void __init pagecache_init(void);
    2776             : extern void free_initmem(void);
    2777             : 
    2778             : /*
    2779             :  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
    2780             :  * into the buddy system. The freed pages will be poisoned with pattern
    2781             :  * "poison" if it's within range [0, UCHAR_MAX].
    2782             :  * Return pages freed into the buddy system.
    2783             :  */
    2784             : extern unsigned long free_reserved_area(void *start, void *end,
    2785             :                                         int poison, const char *s);
    2786             : 
    2787             : extern void adjust_managed_page_count(struct page *page, long count);
    2788             : extern void mem_init_print_info(void);
    2789             : 
    2790             : extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
    2791             : 
    2792             : /* Free the reserved page into the buddy system, so it gets managed. */
    2793             : static inline void free_reserved_page(struct page *page)
    2794             : {
    2795           0 :         ClearPageReserved(page);
    2796           0 :         init_page_count(page);
    2797           0 :         __free_page(page);
    2798           0 :         adjust_managed_page_count(page, 1);
    2799             : }
    2800             : #define free_highmem_page(page) free_reserved_page(page)
    2801             : 
    2802             : static inline void mark_page_reserved(struct page *page)
    2803             : {
    2804             :         SetPageReserved(page);
    2805             :         adjust_managed_page_count(page, -1);
    2806             : }
    2807             : 
    2808             : /*
    2809             :  * Default method to free all the __init memory into the buddy system.
    2810             :  * The freed pages will be poisoned with pattern "poison" if it's within
    2811             :  * range [0, UCHAR_MAX].
    2812             :  * Return pages freed into the buddy system.
    2813             :  */
    2814             : static inline unsigned long free_initmem_default(int poison)
    2815             : {
    2816             :         extern char __init_begin[], __init_end[];
    2817             : 
    2818           0 :         return free_reserved_area(&__init_begin, &__init_end,
    2819             :                                   poison, "unused kernel image (initmem)");
    2820             : }
    2821             : 
    2822             : static inline unsigned long get_num_physpages(void)
    2823             : {
    2824             :         int nid;
    2825           1 :         unsigned long phys_pages = 0;
    2826             : 
    2827           2 :         for_each_online_node(nid)
    2828           1 :                 phys_pages += node_present_pages(nid);
    2829             : 
    2830             :         return phys_pages;
    2831             : }
    2832             : 
    2833             : /*
    2834             :  * Using memblock node mappings, an architecture may initialise its
    2835             :  * zones, allocate the backing mem_map and account for memory holes in an
    2836             :  * architecture independent manner.
    2837             :  *
    2838             :  * An architecture is expected to register range of page frames backed by
    2839             :  * physical memory with memblock_add[_node]() before calling
    2840             :  * free_area_init() passing in the PFN each zone ends at. At a basic
    2841             :  * usage, an architecture is expected to do something like
    2842             :  *
    2843             :  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
    2844             :  *                                                       max_highmem_pfn};
    2845             :  * for_each_valid_physical_page_range()
    2846             :  *      memblock_add_node(base, size, nid, MEMBLOCK_NONE)
    2847             :  * free_area_init(max_zone_pfns);
    2848             :  */
    2849             : void free_area_init(unsigned long *max_zone_pfn);
    2850             : unsigned long node_map_pfn_alignment(void);
    2851             : unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
    2852             :                                                 unsigned long end_pfn);
    2853             : extern unsigned long absent_pages_in_range(unsigned long start_pfn,
    2854             :                                                 unsigned long end_pfn);
    2855             : extern void get_pfn_range_for_nid(unsigned int nid,
    2856             :                         unsigned long *start_pfn, unsigned long *end_pfn);
    2857             : 
    2858             : #ifndef CONFIG_NUMA
    2859             : static inline int early_pfn_to_nid(unsigned long pfn)
    2860             : {
    2861             :         return 0;
    2862             : }
    2863             : #else
    2864             : /* please see mm/page_alloc.c */
    2865             : extern int __meminit early_pfn_to_nid(unsigned long pfn);
    2866             : #endif
    2867             : 
    2868             : extern void set_dma_reserve(unsigned long new_dma_reserve);
    2869             : extern void memmap_init_range(unsigned long, int, unsigned long,
    2870             :                 unsigned long, unsigned long, enum meminit_context,
    2871             :                 struct vmem_altmap *, int migratetype);
    2872             : extern void setup_per_zone_wmarks(void);
    2873             : extern void calculate_min_free_kbytes(void);
    2874             : extern int __meminit init_per_zone_wmark_min(void);
    2875             : extern void mem_init(void);
    2876             : extern void __init mmap_init(void);
    2877             : 
    2878             : extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
    2879             : static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
    2880             : {
    2881           0 :         __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
    2882             : }
    2883             : extern long si_mem_available(void);
    2884             : extern void si_meminfo(struct sysinfo * val);
    2885             : extern void si_meminfo_node(struct sysinfo *val, int nid);
    2886             : #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
    2887             : extern unsigned long arch_reserved_kernel_pages(void);
    2888             : #endif
    2889             : 
    2890             : extern __printf(3, 4)
    2891             : void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
    2892             : 
    2893             : extern void setup_per_cpu_pageset(void);
    2894             : 
    2895             : /* page_alloc.c */
    2896             : extern int min_free_kbytes;
    2897             : extern int watermark_boost_factor;
    2898             : extern int watermark_scale_factor;
    2899             : extern bool arch_has_descending_max_zone_pfns(void);
    2900             : 
    2901             : /* nommu.c */
    2902             : extern atomic_long_t mmap_pages_allocated;
    2903             : extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
    2904             : 
    2905             : /* interval_tree.c */
    2906             : void vma_interval_tree_insert(struct vm_area_struct *node,
    2907             :                               struct rb_root_cached *root);
    2908             : void vma_interval_tree_insert_after(struct vm_area_struct *node,
    2909             :                                     struct vm_area_struct *prev,
    2910             :                                     struct rb_root_cached *root);
    2911             : void vma_interval_tree_remove(struct vm_area_struct *node,
    2912             :                               struct rb_root_cached *root);
    2913             : struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
    2914             :                                 unsigned long start, unsigned long last);
    2915             : struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
    2916             :                                 unsigned long start, unsigned long last);
    2917             : 
    2918             : #define vma_interval_tree_foreach(vma, root, start, last)               \
    2919             :         for (vma = vma_interval_tree_iter_first(root, start, last);     \
    2920             :              vma; vma = vma_interval_tree_iter_next(vma, start, last))
    2921             : 
    2922             : void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
    2923             :                                    struct rb_root_cached *root);
    2924             : void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
    2925             :                                    struct rb_root_cached *root);
    2926             : struct anon_vma_chain *
    2927             : anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
    2928             :                                   unsigned long start, unsigned long last);
    2929             : struct anon_vma_chain *anon_vma_interval_tree_iter_next(
    2930             :         struct anon_vma_chain *node, unsigned long start, unsigned long last);
    2931             : #ifdef CONFIG_DEBUG_VM_RB
    2932             : void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
    2933             : #endif
    2934             : 
    2935             : #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
    2936             :         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
    2937             :              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
    2938             : 
    2939             : /* mmap.c */
    2940             : extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
    2941             : extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
    2942             :                       unsigned long start, unsigned long end, pgoff_t pgoff,
    2943             :                       struct vm_area_struct *next);
    2944             : extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
    2945             :                        unsigned long start, unsigned long end, pgoff_t pgoff);
    2946             : extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
    2947             :         struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
    2948             :         unsigned long end, unsigned long vm_flags, struct anon_vma *,
    2949             :         struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
    2950             :         struct anon_vma_name *);
    2951             : extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
    2952             : extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
    2953             :                        unsigned long addr, int new_below);
    2954             : extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
    2955             :                          unsigned long addr, int new_below);
    2956             : extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
    2957             : extern void unlink_file_vma(struct vm_area_struct *);
    2958             : extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
    2959             :         unsigned long addr, unsigned long len, pgoff_t pgoff,
    2960             :         bool *need_rmap_locks);
    2961             : extern void exit_mmap(struct mm_struct *);
    2962             : 
    2963             : static inline int check_data_rlimit(unsigned long rlim,
    2964             :                                     unsigned long new,
    2965             :                                     unsigned long start,
    2966             :                                     unsigned long end_data,
    2967             :                                     unsigned long start_data)
    2968             : {
    2969           0 :         if (rlim < RLIM_INFINITY) {
    2970           0 :                 if (((new - start) + (end_data - start_data)) > rlim)
    2971             :                         return -ENOSPC;
    2972             :         }
    2973             : 
    2974             :         return 0;
    2975             : }
    2976             : 
    2977             : extern int mm_take_all_locks(struct mm_struct *mm);
    2978             : extern void mm_drop_all_locks(struct mm_struct *mm);
    2979             : 
    2980             : extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
    2981             : extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
    2982             : extern struct file *get_mm_exe_file(struct mm_struct *mm);
    2983             : extern struct file *get_task_exe_file(struct task_struct *task);
    2984             : 
    2985             : extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
    2986             : extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
    2987             : 
    2988             : extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
    2989             :                                    const struct vm_special_mapping *sm);
    2990             : extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
    2991             :                                    unsigned long addr, unsigned long len,
    2992             :                                    unsigned long flags,
    2993             :                                    const struct vm_special_mapping *spec);
    2994             : /* This is an obsolete alternative to _install_special_mapping. */
    2995             : extern int install_special_mapping(struct mm_struct *mm,
    2996             :                                    unsigned long addr, unsigned long len,
    2997             :                                    unsigned long flags, struct page **pages);
    2998             : 
    2999             : unsigned long randomize_stack_top(unsigned long stack_top);
    3000             : unsigned long randomize_page(unsigned long start, unsigned long range);
    3001             : 
    3002             : extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
    3003             : 
    3004             : extern unsigned long mmap_region(struct file *file, unsigned long addr,
    3005             :         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
    3006             :         struct list_head *uf);
    3007             : extern unsigned long do_mmap(struct file *file, unsigned long addr,
    3008             :         unsigned long len, unsigned long prot, unsigned long flags,
    3009             :         unsigned long pgoff, unsigned long *populate, struct list_head *uf);
    3010             : extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
    3011             :                          unsigned long start, size_t len, struct list_head *uf,
    3012             :                          bool downgrade);
    3013             : extern int do_munmap(struct mm_struct *, unsigned long, size_t,
    3014             :                      struct list_head *uf);
    3015             : extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
    3016             : 
    3017             : #ifdef CONFIG_MMU
    3018             : extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
    3019             :                          unsigned long start, unsigned long end,
    3020             :                          struct list_head *uf, bool downgrade);
    3021             : extern int __mm_populate(unsigned long addr, unsigned long len,
    3022             :                          int ignore_errors);
    3023             : static inline void mm_populate(unsigned long addr, unsigned long len)
    3024             : {
    3025             :         /* Ignore errors */
    3026           0 :         (void) __mm_populate(addr, len, 1);
    3027             : }
    3028             : #else
    3029             : static inline void mm_populate(unsigned long addr, unsigned long len) {}
    3030             : #endif
    3031             : 
    3032             : /* These take the mm semaphore themselves */
    3033             : extern int __must_check vm_brk(unsigned long, unsigned long);
    3034             : extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
    3035             : extern int vm_munmap(unsigned long, size_t);
    3036             : extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
    3037             :         unsigned long, unsigned long,
    3038             :         unsigned long, unsigned long);
    3039             : 
    3040             : struct vm_unmapped_area_info {
    3041             : #define VM_UNMAPPED_AREA_TOPDOWN 1
    3042             :         unsigned long flags;
    3043             :         unsigned long length;
    3044             :         unsigned long low_limit;
    3045             :         unsigned long high_limit;
    3046             :         unsigned long align_mask;
    3047             :         unsigned long align_offset;
    3048             : };
    3049             : 
    3050             : extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
    3051             : 
    3052             : /* truncate.c */
    3053             : extern void truncate_inode_pages(struct address_space *, loff_t);
    3054             : extern void truncate_inode_pages_range(struct address_space *,
    3055             :                                        loff_t lstart, loff_t lend);
    3056             : extern void truncate_inode_pages_final(struct address_space *);
    3057             : 
    3058             : /* generic vm_area_ops exported for stackable file systems */
    3059             : extern vm_fault_t filemap_fault(struct vm_fault *vmf);
    3060             : extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
    3061             :                 pgoff_t start_pgoff, pgoff_t end_pgoff);
    3062             : extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
    3063             : 
    3064             : extern unsigned long stack_guard_gap;
    3065             : /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
    3066             : extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
    3067             : 
    3068             : /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
    3069             : extern int expand_downwards(struct vm_area_struct *vma,
    3070             :                 unsigned long address);
    3071             : #if VM_GROWSUP
    3072             : extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
    3073             : #else
    3074             :   #define expand_upwards(vma, address) (0)
    3075             : #endif
    3076             : 
    3077             : /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
    3078             : extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
    3079             : extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
    3080             :                                              struct vm_area_struct **pprev);
    3081             : 
    3082             : /*
    3083             :  * Look up the first VMA which intersects the interval [start_addr, end_addr)
    3084             :  * NULL if none.  Assume start_addr < end_addr.
    3085             :  */
    3086             : struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
    3087             :                         unsigned long start_addr, unsigned long end_addr);
    3088             : 
    3089             : /**
    3090             :  * vma_lookup() - Find a VMA at a specific address
    3091             :  * @mm: The process address space.
    3092             :  * @addr: The user address.
    3093             :  *
    3094             :  * Return: The vm_area_struct at the given address, %NULL otherwise.
    3095             :  */
    3096             : static inline
    3097             : struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
    3098             : {
    3099           0 :         return mtree_load(&mm->mm_mt, addr);
    3100             : }
    3101             : 
    3102             : static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
    3103             : {
    3104           0 :         unsigned long vm_start = vma->vm_start;
    3105             : 
    3106           0 :         if (vma->vm_flags & VM_GROWSDOWN) {
    3107           0 :                 vm_start -= stack_guard_gap;
    3108           0 :                 if (vm_start > vma->vm_start)
    3109           0 :                         vm_start = 0;
    3110             :         }
    3111             :         return vm_start;
    3112             : }
    3113             : 
    3114             : static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
    3115             : {
    3116           0 :         unsigned long vm_end = vma->vm_end;
    3117             : 
    3118             :         if (vma->vm_flags & VM_GROWSUP) {
    3119             :                 vm_end += stack_guard_gap;
    3120             :                 if (vm_end < vma->vm_end)
    3121             :                         vm_end = -PAGE_SIZE;
    3122             :         }
    3123             :         return vm_end;
    3124             : }
    3125             : 
    3126             : static inline unsigned long vma_pages(struct vm_area_struct *vma)
    3127             : {
    3128           0 :         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
    3129             : }
    3130             : 
    3131             : /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
    3132             : static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
    3133             :                                 unsigned long vm_start, unsigned long vm_end)
    3134             : {
    3135           0 :         struct vm_area_struct *vma = vma_lookup(mm, vm_start);
    3136             : 
    3137           0 :         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
    3138           0 :                 vma = NULL;
    3139             : 
    3140             :         return vma;
    3141             : }
    3142             : 
    3143             : static inline bool range_in_vma(struct vm_area_struct *vma,
    3144             :                                 unsigned long start, unsigned long end)
    3145             : {
    3146           0 :         return (vma && vma->vm_start <= start && end <= vma->vm_end);
    3147             : }
    3148             : 
    3149             : #ifdef CONFIG_MMU
    3150             : pgprot_t vm_get_page_prot(unsigned long vm_flags);
    3151             : void vma_set_page_prot(struct vm_area_struct *vma);
    3152             : #else
    3153             : static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
    3154             : {
    3155             :         return __pgprot(0);
    3156             : }
    3157             : static inline void vma_set_page_prot(struct vm_area_struct *vma)
    3158             : {
    3159             :         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
    3160             : }
    3161             : #endif
    3162             : 
    3163             : void vma_set_file(struct vm_area_struct *vma, struct file *file);
    3164             : 
    3165             : #ifdef CONFIG_NUMA_BALANCING
    3166             : unsigned long change_prot_numa(struct vm_area_struct *vma,
    3167             :                         unsigned long start, unsigned long end);
    3168             : #endif
    3169             : 
    3170             : struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
    3171             : int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
    3172             :                         unsigned long pfn, unsigned long size, pgprot_t);
    3173             : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
    3174             :                 unsigned long pfn, unsigned long size, pgprot_t prot);
    3175             : int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
    3176             : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
    3177             :                         struct page **pages, unsigned long *num);
    3178             : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    3179             :                                 unsigned long num);
    3180             : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    3181             :                                 unsigned long num);
    3182             : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    3183             :                         unsigned long pfn);
    3184             : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
    3185             :                         unsigned long pfn, pgprot_t pgprot);
    3186             : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    3187             :                         pfn_t pfn);
    3188             : vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
    3189             :                         pfn_t pfn, pgprot_t pgprot);
    3190             : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
    3191             :                 unsigned long addr, pfn_t pfn);
    3192             : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
    3193             : 
    3194             : static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
    3195             :                                 unsigned long addr, struct page *page)
    3196             : {
    3197             :         int err = vm_insert_page(vma, addr, page);
    3198             : 
    3199             :         if (err == -ENOMEM)
    3200             :                 return VM_FAULT_OOM;
    3201             :         if (err < 0 && err != -EBUSY)
    3202             :                 return VM_FAULT_SIGBUS;
    3203             : 
    3204             :         return VM_FAULT_NOPAGE;
    3205             : }
    3206             : 
    3207             : #ifndef io_remap_pfn_range
    3208             : static inline int io_remap_pfn_range(struct vm_area_struct *vma,
    3209             :                                      unsigned long addr, unsigned long pfn,
    3210             :                                      unsigned long size, pgprot_t prot)
    3211             : {
    3212           0 :         return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
    3213             : }
    3214             : #endif
    3215             : 
    3216             : static inline vm_fault_t vmf_error(int err)
    3217             : {
    3218           0 :         if (err == -ENOMEM)
    3219             :                 return VM_FAULT_OOM;
    3220             :         return VM_FAULT_SIGBUS;
    3221             : }
    3222             : 
    3223             : struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
    3224             :                          unsigned int foll_flags);
    3225             : 
    3226             : static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
    3227             : {
    3228           0 :         if (vm_fault & VM_FAULT_OOM)
    3229             :                 return -ENOMEM;
    3230           0 :         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
    3231           0 :                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
    3232           0 :         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
    3233             :                 return -EFAULT;
    3234             :         return 0;
    3235             : }
    3236             : 
    3237             : /*
    3238             :  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
    3239             :  * a (NUMA hinting) fault is required.
    3240             :  */
    3241             : static inline bool gup_can_follow_protnone(unsigned int flags)
    3242             : {
    3243             :         /*
    3244             :          * FOLL_FORCE has to be able to make progress even if the VMA is
    3245             :          * inaccessible. Further, FOLL_FORCE access usually does not represent
    3246             :          * application behaviour and we should avoid triggering NUMA hinting
    3247             :          * faults.
    3248             :          */
    3249             :         return flags & FOLL_FORCE;
    3250             : }
    3251             : 
    3252             : typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
    3253             : extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
    3254             :                                unsigned long size, pte_fn_t fn, void *data);
    3255             : extern int apply_to_existing_page_range(struct mm_struct *mm,
    3256             :                                    unsigned long address, unsigned long size,
    3257             :                                    pte_fn_t fn, void *data);
    3258             : 
    3259             : extern void __init init_mem_debugging_and_hardening(void);
    3260             : #ifdef CONFIG_PAGE_POISONING
    3261             : extern void __kernel_poison_pages(struct page *page, int numpages);
    3262             : extern void __kernel_unpoison_pages(struct page *page, int numpages);
    3263             : extern bool _page_poisoning_enabled_early;
    3264             : DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
    3265             : static inline bool page_poisoning_enabled(void)
    3266             : {
    3267             :         return _page_poisoning_enabled_early;
    3268             : }
    3269             : /*
    3270             :  * For use in fast paths after init_mem_debugging() has run, or when a
    3271             :  * false negative result is not harmful when called too early.
    3272             :  */
    3273             : static inline bool page_poisoning_enabled_static(void)
    3274             : {
    3275             :         return static_branch_unlikely(&_page_poisoning_enabled);
    3276             : }
    3277             : static inline void kernel_poison_pages(struct page *page, int numpages)
    3278             : {
    3279             :         if (page_poisoning_enabled_static())
    3280             :                 __kernel_poison_pages(page, numpages);
    3281             : }
    3282             : static inline void kernel_unpoison_pages(struct page *page, int numpages)
    3283             : {
    3284             :         if (page_poisoning_enabled_static())
    3285             :                 __kernel_unpoison_pages(page, numpages);
    3286             : }
    3287             : #else
    3288             : static inline bool page_poisoning_enabled(void) { return false; }
    3289             : static inline bool page_poisoning_enabled_static(void) { return false; }
    3290             : static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
    3291             : static inline void kernel_poison_pages(struct page *page, int numpages) { }
    3292             : static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
    3293             : #endif
    3294             : 
    3295             : DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
    3296             : static inline bool want_init_on_alloc(gfp_t flags)
    3297             : {
    3298       51444 :         if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
    3299             :                                 &init_on_alloc))
    3300             :                 return true;
    3301       51169 :         return flags & __GFP_ZERO;
    3302             : }
    3303             : 
    3304             : DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
    3305       50643 : static inline bool want_init_on_free(void)
    3306             : {
    3307      102346 :         return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
    3308             :                                    &init_on_free);
    3309             : }
    3310             : 
    3311             : extern bool _debug_pagealloc_enabled_early;
    3312             : DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
    3313             : 
    3314             : static inline bool debug_pagealloc_enabled(void)
    3315             : {
    3316             :         return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
    3317             :                 _debug_pagealloc_enabled_early;
    3318             : }
    3319             : 
    3320             : /*
    3321             :  * For use in fast paths after init_debug_pagealloc() has run, or when a
    3322             :  * false negative result is not harmful when called too early.
    3323             :  */
    3324             : static inline bool debug_pagealloc_enabled_static(void)
    3325             : {
    3326             :         if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
    3327             :                 return false;
    3328             : 
    3329             :         return static_branch_unlikely(&_debug_pagealloc_enabled);
    3330             : }
    3331             : 
    3332             : #ifdef CONFIG_DEBUG_PAGEALLOC
    3333             : /*
    3334             :  * To support DEBUG_PAGEALLOC architecture must ensure that
    3335             :  * __kernel_map_pages() never fails
    3336             :  */
    3337             : extern void __kernel_map_pages(struct page *page, int numpages, int enable);
    3338             : 
    3339             : static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
    3340             : {
    3341             :         if (debug_pagealloc_enabled_static())
    3342             :                 __kernel_map_pages(page, numpages, 1);
    3343             : }
    3344             : 
    3345             : static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
    3346             : {
    3347             :         if (debug_pagealloc_enabled_static())
    3348             :                 __kernel_map_pages(page, numpages, 0);
    3349             : }
    3350             : #else   /* CONFIG_DEBUG_PAGEALLOC */
    3351             : static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
    3352             : static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
    3353             : #endif  /* CONFIG_DEBUG_PAGEALLOC */
    3354             : 
    3355             : #ifdef __HAVE_ARCH_GATE_AREA
    3356             : extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
    3357             : extern int in_gate_area_no_mm(unsigned long addr);
    3358             : extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
    3359             : #else
    3360             : static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
    3361             : {
    3362             :         return NULL;
    3363             : }
    3364             : static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
    3365             : static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
    3366             : {
    3367             :         return 0;
    3368             : }
    3369             : #endif  /* __HAVE_ARCH_GATE_AREA */
    3370             : 
    3371             : extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
    3372             : 
    3373             : #ifdef CONFIG_SYSCTL
    3374             : extern int sysctl_drop_caches;
    3375             : int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
    3376             :                 loff_t *);
    3377             : #endif
    3378             : 
    3379             : void drop_slab(void);
    3380             : 
    3381             : #ifndef CONFIG_MMU
    3382             : #define randomize_va_space 0
    3383             : #else
    3384             : extern int randomize_va_space;
    3385             : #endif
    3386             : 
    3387             : const char * arch_vma_name(struct vm_area_struct *vma);
    3388             : #ifdef CONFIG_MMU
    3389             : void print_vma_addr(char *prefix, unsigned long rip);
    3390             : #else
    3391             : static inline void print_vma_addr(char *prefix, unsigned long rip)
    3392             : {
    3393             : }
    3394             : #endif
    3395             : 
    3396             : void *sparse_buffer_alloc(unsigned long size);
    3397             : struct page * __populate_section_memmap(unsigned long pfn,
    3398             :                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
    3399             :                 struct dev_pagemap *pgmap);
    3400             : void pmd_init(void *addr);
    3401             : void pud_init(void *addr);
    3402             : pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
    3403             : p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
    3404             : pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
    3405             : pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
    3406             : pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
    3407             :                             struct vmem_altmap *altmap, struct page *reuse);
    3408             : void *vmemmap_alloc_block(unsigned long size, int node);
    3409             : struct vmem_altmap;
    3410             : void *vmemmap_alloc_block_buf(unsigned long size, int node,
    3411             :                               struct vmem_altmap *altmap);
    3412             : void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
    3413             : void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
    3414             :                      unsigned long addr, unsigned long next);
    3415             : int vmemmap_check_pmd(pmd_t *pmd, int node,
    3416             :                       unsigned long addr, unsigned long next);
    3417             : int vmemmap_populate_basepages(unsigned long start, unsigned long end,
    3418             :                                int node, struct vmem_altmap *altmap);
    3419             : int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
    3420             :                                int node, struct vmem_altmap *altmap);
    3421             : int vmemmap_populate(unsigned long start, unsigned long end, int node,
    3422             :                 struct vmem_altmap *altmap);
    3423             : void vmemmap_populate_print_last(void);
    3424             : #ifdef CONFIG_MEMORY_HOTPLUG
    3425             : void vmemmap_free(unsigned long start, unsigned long end,
    3426             :                 struct vmem_altmap *altmap);
    3427             : #endif
    3428             : void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
    3429             :                                   unsigned long nr_pages);
    3430             : 
    3431             : enum mf_flags {
    3432             :         MF_COUNT_INCREASED = 1 << 0,
    3433             :         MF_ACTION_REQUIRED = 1 << 1,
    3434             :         MF_MUST_KILL = 1 << 2,
    3435             :         MF_SOFT_OFFLINE = 1 << 3,
    3436             :         MF_UNPOISON = 1 << 4,
    3437             :         MF_SW_SIMULATED = 1 << 5,
    3438             :         MF_NO_RETRY = 1 << 6,
    3439             : };
    3440             : int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
    3441             :                       unsigned long count, int mf_flags);
    3442             : extern int memory_failure(unsigned long pfn, int flags);
    3443             : extern void memory_failure_queue_kick(int cpu);
    3444             : extern int unpoison_memory(unsigned long pfn);
    3445             : extern int sysctl_memory_failure_early_kill;
    3446             : extern int sysctl_memory_failure_recovery;
    3447             : extern void shake_page(struct page *p);
    3448             : extern atomic_long_t num_poisoned_pages __read_mostly;
    3449             : extern int soft_offline_page(unsigned long pfn, int flags);
    3450             : #ifdef CONFIG_MEMORY_FAILURE
    3451             : extern void memory_failure_queue(unsigned long pfn, int flags);
    3452             : extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
    3453             :                                         bool *migratable_cleared);
    3454             : void num_poisoned_pages_inc(unsigned long pfn);
    3455             : void num_poisoned_pages_sub(unsigned long pfn, long i);
    3456             : #else
    3457             : static inline void memory_failure_queue(unsigned long pfn, int flags)
    3458             : {
    3459             : }
    3460             : 
    3461             : static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
    3462             :                                         bool *migratable_cleared)
    3463             : {
    3464             :         return 0;
    3465             : }
    3466             : 
    3467             : static inline void num_poisoned_pages_inc(unsigned long pfn)
    3468             : {
    3469             : }
    3470             : 
    3471             : static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
    3472             : {
    3473             : }
    3474             : #endif
    3475             : 
    3476             : #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
    3477             : extern void memblk_nr_poison_inc(unsigned long pfn);
    3478             : extern void memblk_nr_poison_sub(unsigned long pfn, long i);
    3479             : #else
    3480             : static inline void memblk_nr_poison_inc(unsigned long pfn)
    3481             : {
    3482             : }
    3483             : 
    3484             : static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
    3485             : {
    3486             : }
    3487             : #endif
    3488             : 
    3489             : #ifndef arch_memory_failure
    3490             : static inline int arch_memory_failure(unsigned long pfn, int flags)
    3491             : {
    3492             :         return -ENXIO;
    3493             : }
    3494             : #endif
    3495             : 
    3496             : #ifndef arch_is_platform_page
    3497             : static inline bool arch_is_platform_page(u64 paddr)
    3498             : {
    3499             :         return false;
    3500             : }
    3501             : #endif
    3502             : 
    3503             : /*
    3504             :  * Error handlers for various types of pages.
    3505             :  */
    3506             : enum mf_result {
    3507             :         MF_IGNORED,     /* Error: cannot be handled */
    3508             :         MF_FAILED,      /* Error: handling failed */
    3509             :         MF_DELAYED,     /* Will be handled later */
    3510             :         MF_RECOVERED,   /* Successfully recovered */
    3511             : };
    3512             : 
    3513             : enum mf_action_page_type {
    3514             :         MF_MSG_KERNEL,
    3515             :         MF_MSG_KERNEL_HIGH_ORDER,
    3516             :         MF_MSG_SLAB,
    3517             :         MF_MSG_DIFFERENT_COMPOUND,
    3518             :         MF_MSG_HUGE,
    3519             :         MF_MSG_FREE_HUGE,
    3520             :         MF_MSG_UNMAP_FAILED,
    3521             :         MF_MSG_DIRTY_SWAPCACHE,
    3522             :         MF_MSG_CLEAN_SWAPCACHE,
    3523             :         MF_MSG_DIRTY_MLOCKED_LRU,
    3524             :         MF_MSG_CLEAN_MLOCKED_LRU,
    3525             :         MF_MSG_DIRTY_UNEVICTABLE_LRU,
    3526             :         MF_MSG_CLEAN_UNEVICTABLE_LRU,
    3527             :         MF_MSG_DIRTY_LRU,
    3528             :         MF_MSG_CLEAN_LRU,
    3529             :         MF_MSG_TRUNCATED_LRU,
    3530             :         MF_MSG_BUDDY,
    3531             :         MF_MSG_DAX,
    3532             :         MF_MSG_UNSPLIT_THP,
    3533             :         MF_MSG_UNKNOWN,
    3534             : };
    3535             : 
    3536             : /*
    3537             :  * Sysfs entries for memory failure handling statistics.
    3538             :  */
    3539             : extern const struct attribute_group memory_failure_attr_group;
    3540             : 
    3541             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    3542             : extern void clear_huge_page(struct page *page,
    3543             :                             unsigned long addr_hint,
    3544             :                             unsigned int pages_per_huge_page);
    3545             : extern void copy_user_huge_page(struct page *dst, struct page *src,
    3546             :                                 unsigned long addr_hint,
    3547             :                                 struct vm_area_struct *vma,
    3548             :                                 unsigned int pages_per_huge_page);
    3549             : extern long copy_huge_page_from_user(struct page *dst_page,
    3550             :                                 const void __user *usr_src,
    3551             :                                 unsigned int pages_per_huge_page,
    3552             :                                 bool allow_pagefault);
    3553             : 
    3554             : /**
    3555             :  * vma_is_special_huge - Are transhuge page-table entries considered special?
    3556             :  * @vma: Pointer to the struct vm_area_struct to consider
    3557             :  *
    3558             :  * Whether transhuge page-table entries are considered "special" following
    3559             :  * the definition in vm_normal_page().
    3560             :  *
    3561             :  * Return: true if transhuge page-table entries should be considered special,
    3562             :  * false otherwise.
    3563             :  */
    3564             : static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
    3565             : {
    3566             :         return vma_is_dax(vma) || (vma->vm_file &&
    3567             :                                    (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
    3568             : }
    3569             : 
    3570             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    3571             : 
    3572             : #ifdef CONFIG_DEBUG_PAGEALLOC
    3573             : extern unsigned int _debug_guardpage_minorder;
    3574             : DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
    3575             : 
    3576             : static inline unsigned int debug_guardpage_minorder(void)
    3577             : {
    3578             :         return _debug_guardpage_minorder;
    3579             : }
    3580             : 
    3581             : static inline bool debug_guardpage_enabled(void)
    3582             : {
    3583             :         return static_branch_unlikely(&_debug_guardpage_enabled);
    3584             : }
    3585             : 
    3586             : static inline bool page_is_guard(struct page *page)
    3587             : {
    3588             :         if (!debug_guardpage_enabled())
    3589             :                 return false;
    3590             : 
    3591             :         return PageGuard(page);
    3592             : }
    3593             : #else
    3594             : static inline unsigned int debug_guardpage_minorder(void) { return 0; }
    3595             : static inline bool debug_guardpage_enabled(void) { return false; }
    3596             : static inline bool page_is_guard(struct page *page) { return false; }
    3597             : #endif /* CONFIG_DEBUG_PAGEALLOC */
    3598             : 
    3599             : #if MAX_NUMNODES > 1
    3600             : void __init setup_nr_node_ids(void);
    3601             : #else
    3602             : static inline void setup_nr_node_ids(void) {}
    3603             : #endif
    3604             : 
    3605             : extern int memcmp_pages(struct page *page1, struct page *page2);
    3606             : 
    3607             : static inline int pages_identical(struct page *page1, struct page *page2)
    3608             : {
    3609             :         return !memcmp_pages(page1, page2);
    3610             : }
    3611             : 
    3612             : #ifdef CONFIG_MAPPING_DIRTY_HELPERS
    3613             : unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
    3614             :                                                 pgoff_t first_index, pgoff_t nr,
    3615             :                                                 pgoff_t bitmap_pgoff,
    3616             :                                                 unsigned long *bitmap,
    3617             :                                                 pgoff_t *start,
    3618             :                                                 pgoff_t *end);
    3619             : 
    3620             : unsigned long wp_shared_mapping_range(struct address_space *mapping,
    3621             :                                       pgoff_t first_index, pgoff_t nr);
    3622             : #endif
    3623             : 
    3624             : extern int sysctl_nr_trim_pages;
    3625             : 
    3626             : #ifdef CONFIG_PRINTK
    3627             : void mem_dump_obj(void *object);
    3628             : #else
    3629             : static inline void mem_dump_obj(void *object) {}
    3630             : #endif
    3631             : 
    3632             : /**
    3633             :  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
    3634             :  * @seals: the seals to check
    3635             :  * @vma: the vma to operate on
    3636             :  *
    3637             :  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
    3638             :  * the vma flags.  Return 0 if check pass, or <0 for errors.
    3639             :  */
    3640             : static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
    3641             : {
    3642           0 :         if (seals & F_SEAL_FUTURE_WRITE) {
    3643             :                 /*
    3644             :                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
    3645             :                  * "future write" seal active.
    3646             :                  */
    3647           0 :                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
    3648             :                         return -EPERM;
    3649             : 
    3650             :                 /*
    3651             :                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
    3652             :                  * MAP_SHARED and read-only, take care to not allow mprotect to
    3653             :                  * revert protections on such mappings. Do this only for shared
    3654             :                  * mappings. For private mappings, don't need to mask
    3655             :                  * VM_MAYWRITE as we still want them to be COW-writable.
    3656             :                  */
    3657           0 :                 if (vma->vm_flags & VM_SHARED)
    3658           0 :                         vm_flags_clear(vma, VM_MAYWRITE);
    3659             :         }
    3660             : 
    3661             :         return 0;
    3662             : }
    3663             : 
    3664             : #ifdef CONFIG_ANON_VMA_NAME
    3665             : int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
    3666             :                           unsigned long len_in,
    3667             :                           struct anon_vma_name *anon_name);
    3668             : #else
    3669             : static inline int
    3670             : madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
    3671             :                       unsigned long len_in, struct anon_vma_name *anon_name) {
    3672             :         return 0;
    3673             : }
    3674             : #endif
    3675             : 
    3676             : #endif /* _LINUX_MM_H */

Generated by: LCOV version 1.14