LCOV - code coverage report
Current view: top level - include/linux - mmzone.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 12 21 57.1 %
Date: 2023-04-06 08:38:28 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MMZONE_H
       3             : #define _LINUX_MMZONE_H
       4             : 
       5             : #ifndef __ASSEMBLY__
       6             : #ifndef __GENERATING_BOUNDS_H
       7             : 
       8             : #include <linux/spinlock.h>
       9             : #include <linux/list.h>
      10             : #include <linux/list_nulls.h>
      11             : #include <linux/wait.h>
      12             : #include <linux/bitops.h>
      13             : #include <linux/cache.h>
      14             : #include <linux/threads.h>
      15             : #include <linux/numa.h>
      16             : #include <linux/init.h>
      17             : #include <linux/seqlock.h>
      18             : #include <linux/nodemask.h>
      19             : #include <linux/pageblock-flags.h>
      20             : #include <linux/page-flags-layout.h>
      21             : #include <linux/atomic.h>
      22             : #include <linux/mm_types.h>
      23             : #include <linux/page-flags.h>
      24             : #include <linux/local_lock.h>
      25             : #include <asm/page.h>
      26             : 
      27             : /* Free memory management - zoned buddy allocator.  */
      28             : #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
      29             : #define MAX_ORDER 11
      30             : #else
      31             : #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
      32             : #endif
      33             : #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
      34             : 
      35             : /*
      36             :  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
      37             :  * costly to service.  That is between allocation orders which should
      38             :  * coalesce naturally under reasonable reclaim pressure and those which
      39             :  * will not.
      40             :  */
      41             : #define PAGE_ALLOC_COSTLY_ORDER 3
      42             : 
      43             : enum migratetype {
      44             :         MIGRATE_UNMOVABLE,
      45             :         MIGRATE_MOVABLE,
      46             :         MIGRATE_RECLAIMABLE,
      47             :         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
      48             :         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
      49             : #ifdef CONFIG_CMA
      50             :         /*
      51             :          * MIGRATE_CMA migration type is designed to mimic the way
      52             :          * ZONE_MOVABLE works.  Only movable pages can be allocated
      53             :          * from MIGRATE_CMA pageblocks and page allocator never
      54             :          * implicitly change migration type of MIGRATE_CMA pageblock.
      55             :          *
      56             :          * The way to use it is to change migratetype of a range of
      57             :          * pageblocks to MIGRATE_CMA which can be done by
      58             :          * __free_pageblock_cma() function.
      59             :          */
      60             :         MIGRATE_CMA,
      61             : #endif
      62             : #ifdef CONFIG_MEMORY_ISOLATION
      63             :         MIGRATE_ISOLATE,        /* can't allocate from here */
      64             : #endif
      65             :         MIGRATE_TYPES
      66             : };
      67             : 
      68             : /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
      69             : extern const char * const migratetype_names[MIGRATE_TYPES];
      70             : 
      71             : #ifdef CONFIG_CMA
      72             : #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
      73             : #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
      74             : #else
      75             : #  define is_migrate_cma(migratetype) false
      76             : #  define is_migrate_cma_page(_page) false
      77             : #endif
      78             : 
      79             : static inline bool is_migrate_movable(int mt)
      80             : {
      81           0 :         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
      82             : }
      83             : 
      84             : /*
      85             :  * Check whether a migratetype can be merged with another migratetype.
      86             :  *
      87             :  * It is only mergeable when it can fall back to other migratetypes for
      88             :  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
      89             :  */
      90             : static inline bool migratetype_is_mergeable(int mt)
      91             : {
      92             :         return mt < MIGRATE_PCPTYPES;
      93             : }
      94             : 
      95             : #define for_each_migratetype_order(order, type) \
      96             :         for (order = 0; order < MAX_ORDER; order++) \
      97             :                 for (type = 0; type < MIGRATE_TYPES; type++)
      98             : 
      99             : extern int page_group_by_mobility_disabled;
     100             : 
     101             : #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
     102             : 
     103             : #define get_pageblock_migratetype(page)                                 \
     104             :         get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
     105             : 
     106             : struct free_area {
     107             :         struct list_head        free_list[MIGRATE_TYPES];
     108             :         unsigned long           nr_free;
     109             : };
     110             : 
     111             : static inline struct page *get_page_from_free_area(struct free_area *area,
     112             :                                             int migratetype)
     113             : {
     114       12451 :         return list_first_entry_or_null(&area->free_list[migratetype],
     115             :                                         struct page, lru);
     116             : }
     117             : 
     118             : static inline bool free_area_empty(struct free_area *area, int migratetype)
     119             : {
     120         356 :         return list_empty(&area->free_list[migratetype]);
     121             : }
     122             : 
     123             : struct pglist_data;
     124             : 
     125             : #ifdef CONFIG_NUMA
     126             : enum numa_stat_item {
     127             :         NUMA_HIT,               /* allocated in intended node */
     128             :         NUMA_MISS,              /* allocated in non intended node */
     129             :         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
     130             :         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
     131             :         NUMA_LOCAL,             /* allocation from local node */
     132             :         NUMA_OTHER,             /* allocation from other node */
     133             :         NR_VM_NUMA_EVENT_ITEMS
     134             : };
     135             : #else
     136             : #define NR_VM_NUMA_EVENT_ITEMS 0
     137             : #endif
     138             : 
     139             : enum zone_stat_item {
     140             :         /* First 128 byte cacheline (assuming 64 bit words) */
     141             :         NR_FREE_PAGES,
     142             :         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
     143             :         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
     144             :         NR_ZONE_ACTIVE_ANON,
     145             :         NR_ZONE_INACTIVE_FILE,
     146             :         NR_ZONE_ACTIVE_FILE,
     147             :         NR_ZONE_UNEVICTABLE,
     148             :         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
     149             :         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
     150             :         /* Second 128 byte cacheline */
     151             :         NR_BOUNCE,
     152             : #if IS_ENABLED(CONFIG_ZSMALLOC)
     153             :         NR_ZSPAGES,             /* allocated in zsmalloc */
     154             : #endif
     155             :         NR_FREE_CMA_PAGES,
     156             :         NR_VM_ZONE_STAT_ITEMS };
     157             : 
     158             : enum node_stat_item {
     159             :         NR_LRU_BASE,
     160             :         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
     161             :         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
     162             :         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
     163             :         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
     164             :         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
     165             :         NR_SLAB_RECLAIMABLE_B,
     166             :         NR_SLAB_UNRECLAIMABLE_B,
     167             :         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
     168             :         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
     169             :         WORKINGSET_NODES,
     170             :         WORKINGSET_REFAULT_BASE,
     171             :         WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
     172             :         WORKINGSET_REFAULT_FILE,
     173             :         WORKINGSET_ACTIVATE_BASE,
     174             :         WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
     175             :         WORKINGSET_ACTIVATE_FILE,
     176             :         WORKINGSET_RESTORE_BASE,
     177             :         WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
     178             :         WORKINGSET_RESTORE_FILE,
     179             :         WORKINGSET_NODERECLAIM,
     180             :         NR_ANON_MAPPED, /* Mapped anonymous pages */
     181             :         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
     182             :                            only modified from process context */
     183             :         NR_FILE_PAGES,
     184             :         NR_FILE_DIRTY,
     185             :         NR_WRITEBACK,
     186             :         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
     187             :         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
     188             :         NR_SHMEM_THPS,
     189             :         NR_SHMEM_PMDMAPPED,
     190             :         NR_FILE_THPS,
     191             :         NR_FILE_PMDMAPPED,
     192             :         NR_ANON_THPS,
     193             :         NR_VMSCAN_WRITE,
     194             :         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
     195             :         NR_DIRTIED,             /* page dirtyings since bootup */
     196             :         NR_WRITTEN,             /* page writings since bootup */
     197             :         NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
     198             :         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
     199             :         NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
     200             :         NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
     201             :         NR_KERNEL_STACK_KB,     /* measured in KiB */
     202             : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
     203             :         NR_KERNEL_SCS_KB,       /* measured in KiB */
     204             : #endif
     205             :         NR_PAGETABLE,           /* used for pagetables */
     206             :         NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
     207             : #ifdef CONFIG_SWAP
     208             :         NR_SWAPCACHE,
     209             : #endif
     210             : #ifdef CONFIG_NUMA_BALANCING
     211             :         PGPROMOTE_SUCCESS,      /* promote successfully */
     212             :         PGPROMOTE_CANDIDATE,    /* candidate pages to promote */
     213             : #endif
     214             :         NR_VM_NODE_STAT_ITEMS
     215             : };
     216             : 
     217             : /*
     218             :  * Returns true if the item should be printed in THPs (/proc/vmstat
     219             :  * currently prints number of anon, file and shmem THPs. But the item
     220             :  * is charged in pages).
     221             :  */
     222             : static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
     223             : {
     224             :         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
     225             :                 return false;
     226             : 
     227             :         return item == NR_ANON_THPS ||
     228             :                item == NR_FILE_THPS ||
     229             :                item == NR_SHMEM_THPS ||
     230             :                item == NR_SHMEM_PMDMAPPED ||
     231             :                item == NR_FILE_PMDMAPPED;
     232             : }
     233             : 
     234             : /*
     235             :  * Returns true if the value is measured in bytes (most vmstat values are
     236             :  * measured in pages). This defines the API part, the internal representation
     237             :  * might be different.
     238             :  */
     239             : static __always_inline bool vmstat_item_in_bytes(int idx)
     240             : {
     241             :         /*
     242             :          * Global and per-node slab counters track slab pages.
     243             :          * It's expected that changes are multiples of PAGE_SIZE.
     244             :          * Internally values are stored in pages.
     245             :          *
     246             :          * Per-memcg and per-lruvec counters track memory, consumed
     247             :          * by individual slab objects. These counters are actually
     248             :          * byte-precise.
     249             :          */
     250       16760 :         return (idx == NR_SLAB_RECLAIMABLE_B ||
     251             :                 idx == NR_SLAB_UNRECLAIMABLE_B);
     252             : }
     253             : 
     254             : /*
     255             :  * We do arithmetic on the LRU lists in various places in the code,
     256             :  * so it is important to keep the active lists LRU_ACTIVE higher in
     257             :  * the array than the corresponding inactive lists, and to keep
     258             :  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
     259             :  *
     260             :  * This has to be kept in sync with the statistics in zone_stat_item
     261             :  * above and the descriptions in vmstat_text in mm/vmstat.c
     262             :  */
     263             : #define LRU_BASE 0
     264             : #define LRU_ACTIVE 1
     265             : #define LRU_FILE 2
     266             : 
     267             : enum lru_list {
     268             :         LRU_INACTIVE_ANON = LRU_BASE,
     269             :         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
     270             :         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
     271             :         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
     272             :         LRU_UNEVICTABLE,
     273             :         NR_LRU_LISTS
     274             : };
     275             : 
     276             : enum vmscan_throttle_state {
     277             :         VMSCAN_THROTTLE_WRITEBACK,
     278             :         VMSCAN_THROTTLE_ISOLATED,
     279             :         VMSCAN_THROTTLE_NOPROGRESS,
     280             :         VMSCAN_THROTTLE_CONGESTED,
     281             :         NR_VMSCAN_THROTTLE,
     282             : };
     283             : 
     284             : #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
     285             : 
     286             : #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
     287             : 
     288             : static inline bool is_file_lru(enum lru_list lru)
     289             : {
     290           0 :         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
     291             : }
     292             : 
     293             : static inline bool is_active_lru(enum lru_list lru)
     294             : {
     295           0 :         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
     296             : }
     297             : 
     298             : #define WORKINGSET_ANON 0
     299             : #define WORKINGSET_FILE 1
     300             : #define ANON_AND_FILE 2
     301             : 
     302             : enum lruvec_flags {
     303             :         LRUVEC_CONGESTED,               /* lruvec has many dirty pages
     304             :                                          * backed by a congested BDI
     305             :                                          */
     306             : };
     307             : 
     308             : #endif /* !__GENERATING_BOUNDS_H */
     309             : 
     310             : /*
     311             :  * Evictable pages are divided into multiple generations. The youngest and the
     312             :  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
     313             :  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
     314             :  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
     315             :  * corresponding generation. The gen counter in folio->flags stores gen+1 while
     316             :  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
     317             :  *
     318             :  * A page is added to the youngest generation on faulting. The aging needs to
     319             :  * check the accessed bit at least twice before handing this page over to the
     320             :  * eviction. The first check takes care of the accessed bit set on the initial
     321             :  * fault; the second check makes sure this page hasn't been used since then.
     322             :  * This process, AKA second chance, requires a minimum of two generations,
     323             :  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
     324             :  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
     325             :  * rest of generations, if they exist, are considered inactive. See
     326             :  * lru_gen_is_active().
     327             :  *
     328             :  * PG_active is always cleared while a page is on one of lrugen->folios[] so
     329             :  * that the aging needs not to worry about it. And it's set again when a page
     330             :  * considered active is isolated for non-reclaiming purposes, e.g., migration.
     331             :  * See lru_gen_add_folio() and lru_gen_del_folio().
     332             :  *
     333             :  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
     334             :  * number of categories of the active/inactive LRU when keeping track of
     335             :  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
     336             :  * in folio->flags.
     337             :  */
     338             : #define MIN_NR_GENS             2U
     339             : #define MAX_NR_GENS             4U
     340             : 
     341             : /*
     342             :  * Each generation is divided into multiple tiers. A page accessed N times
     343             :  * through file descriptors is in tier order_base_2(N). A page in the first tier
     344             :  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
     345             :  * tables or read ahead. A page in any other tier (N>1) is marked by
     346             :  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
     347             :  * supported without using additional bits in folio->flags.
     348             :  *
     349             :  * In contrast to moving across generations which requires the LRU lock, moving
     350             :  * across tiers only involves atomic operations on folio->flags and therefore
     351             :  * has a negligible cost in the buffered access path. In the eviction path,
     352             :  * comparisons of refaulted/(evicted+protected) from the first tier and the
     353             :  * rest infer whether pages accessed multiple times through file descriptors
     354             :  * are statistically hot and thus worth protecting.
     355             :  *
     356             :  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
     357             :  * number of categories of the active/inactive LRU when keeping track of
     358             :  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
     359             :  * folio->flags.
     360             :  */
     361             : #define MAX_NR_TIERS            4U
     362             : 
     363             : #ifndef __GENERATING_BOUNDS_H
     364             : 
     365             : struct lruvec;
     366             : struct page_vma_mapped_walk;
     367             : 
     368             : #define LRU_GEN_MASK            ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
     369             : #define LRU_REFS_MASK           ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
     370             : 
     371             : #ifdef CONFIG_LRU_GEN
     372             : 
     373             : enum {
     374             :         LRU_GEN_ANON,
     375             :         LRU_GEN_FILE,
     376             : };
     377             : 
     378             : enum {
     379             :         LRU_GEN_CORE,
     380             :         LRU_GEN_MM_WALK,
     381             :         LRU_GEN_NONLEAF_YOUNG,
     382             :         NR_LRU_GEN_CAPS
     383             : };
     384             : 
     385             : #define MIN_LRU_BATCH           BITS_PER_LONG
     386             : #define MAX_LRU_BATCH           (MIN_LRU_BATCH * 64)
     387             : 
     388             : /* whether to keep historical stats from evicted generations */
     389             : #ifdef CONFIG_LRU_GEN_STATS
     390             : #define NR_HIST_GENS            MAX_NR_GENS
     391             : #else
     392             : #define NR_HIST_GENS            1U
     393             : #endif
     394             : 
     395             : /*
     396             :  * The youngest generation number is stored in max_seq for both anon and file
     397             :  * types as they are aged on an equal footing. The oldest generation numbers are
     398             :  * stored in min_seq[] separately for anon and file types as clean file pages
     399             :  * can be evicted regardless of swap constraints.
     400             :  *
     401             :  * Normally anon and file min_seq are in sync. But if swapping is constrained,
     402             :  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
     403             :  * min_seq behind.
     404             :  *
     405             :  * The number of pages in each generation is eventually consistent and therefore
     406             :  * can be transiently negative when reset_batch_size() is pending.
     407             :  */
     408             : struct lru_gen_folio {
     409             :         /* the aging increments the youngest generation number */
     410             :         unsigned long max_seq;
     411             :         /* the eviction increments the oldest generation numbers */
     412             :         unsigned long min_seq[ANON_AND_FILE];
     413             :         /* the birth time of each generation in jiffies */
     414             :         unsigned long timestamps[MAX_NR_GENS];
     415             :         /* the multi-gen LRU lists, lazily sorted on eviction */
     416             :         struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     417             :         /* the multi-gen LRU sizes, eventually consistent */
     418             :         long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     419             :         /* the exponential moving average of refaulted */
     420             :         unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
     421             :         /* the exponential moving average of evicted+protected */
     422             :         unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
     423             :         /* the first tier doesn't need protection, hence the minus one */
     424             :         unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
     425             :         /* can be modified without holding the LRU lock */
     426             :         atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
     427             :         atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
     428             :         /* whether the multi-gen LRU is enabled */
     429             :         bool enabled;
     430             : #ifdef CONFIG_MEMCG
     431             :         /* the memcg generation this lru_gen_folio belongs to */
     432             :         u8 gen;
     433             :         /* the list segment this lru_gen_folio belongs to */
     434             :         u8 seg;
     435             :         /* per-node lru_gen_folio list for global reclaim */
     436             :         struct hlist_nulls_node list;
     437             : #endif
     438             : };
     439             : 
     440             : enum {
     441             :         MM_LEAF_TOTAL,          /* total leaf entries */
     442             :         MM_LEAF_OLD,            /* old leaf entries */
     443             :         MM_LEAF_YOUNG,          /* young leaf entries */
     444             :         MM_NONLEAF_TOTAL,       /* total non-leaf entries */
     445             :         MM_NONLEAF_FOUND,       /* non-leaf entries found in Bloom filters */
     446             :         MM_NONLEAF_ADDED,       /* non-leaf entries added to Bloom filters */
     447             :         NR_MM_STATS
     448             : };
     449             : 
     450             : /* double-buffering Bloom filters */
     451             : #define NR_BLOOM_FILTERS        2
     452             : 
     453             : struct lru_gen_mm_state {
     454             :         /* set to max_seq after each iteration */
     455             :         unsigned long seq;
     456             :         /* where the current iteration continues (inclusive) */
     457             :         struct list_head *head;
     458             :         /* where the last iteration ended (exclusive) */
     459             :         struct list_head *tail;
     460             :         /* to wait for the last page table walker to finish */
     461             :         struct wait_queue_head wait;
     462             :         /* Bloom filters flip after each iteration */
     463             :         unsigned long *filters[NR_BLOOM_FILTERS];
     464             :         /* the mm stats for debugging */
     465             :         unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
     466             :         /* the number of concurrent page table walkers */
     467             :         int nr_walkers;
     468             : };
     469             : 
     470             : struct lru_gen_mm_walk {
     471             :         /* the lruvec under reclaim */
     472             :         struct lruvec *lruvec;
     473             :         /* unstable max_seq from lru_gen_folio */
     474             :         unsigned long max_seq;
     475             :         /* the next address within an mm to scan */
     476             :         unsigned long next_addr;
     477             :         /* to batch promoted pages */
     478             :         int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     479             :         /* to batch the mm stats */
     480             :         int mm_stats[NR_MM_STATS];
     481             :         /* total batched items */
     482             :         int batched;
     483             :         bool can_swap;
     484             :         bool force_scan;
     485             : };
     486             : 
     487             : void lru_gen_init_lruvec(struct lruvec *lruvec);
     488             : void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
     489             : 
     490             : #ifdef CONFIG_MEMCG
     491             : 
     492             : /*
     493             :  * For each node, memcgs are divided into two generations: the old and the
     494             :  * young. For each generation, memcgs are randomly sharded into multiple bins
     495             :  * to improve scalability. For each bin, the hlist_nulls is virtually divided
     496             :  * into three segments: the head, the tail and the default.
     497             :  *
     498             :  * An onlining memcg is added to the tail of a random bin in the old generation.
     499             :  * The eviction starts at the head of a random bin in the old generation. The
     500             :  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
     501             :  * the old generation, is incremented when all its bins become empty.
     502             :  *
     503             :  * There are four operations:
     504             :  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
     505             :  *    current generation (old or young) and updates its "seg" to "head";
     506             :  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
     507             :  *    current generation (old or young) and updates its "seg" to "tail";
     508             :  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
     509             :  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
     510             :  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
     511             :  *    young generation, updates its "gen" to "young" and resets its "seg" to
     512             :  *    "default".
     513             :  *
     514             :  * The events that trigger the above operations are:
     515             :  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
     516             :  * 2. The first attempt to reclaim an memcg below low, which triggers
     517             :  *    MEMCG_LRU_TAIL;
     518             :  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
     519             :  *    which triggers MEMCG_LRU_TAIL;
     520             :  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
     521             :  *    which triggers MEMCG_LRU_YOUNG;
     522             :  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
     523             :  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
     524             :  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
     525             :  *
     526             :  * Note that memcg LRU only applies to global reclaim, and the round-robin
     527             :  * incrementing of their max_seq counters ensures the eventual fairness to all
     528             :  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
     529             :  */
     530             : #define MEMCG_NR_GENS   2
     531             : #define MEMCG_NR_BINS   8
     532             : 
     533             : struct lru_gen_memcg {
     534             :         /* the per-node memcg generation counter */
     535             :         unsigned long seq;
     536             :         /* each memcg has one lru_gen_folio per node */
     537             :         unsigned long nr_memcgs[MEMCG_NR_GENS];
     538             :         /* per-node lru_gen_folio list for global reclaim */
     539             :         struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
     540             :         /* protects the above */
     541             :         spinlock_t lock;
     542             : };
     543             : 
     544             : void lru_gen_init_pgdat(struct pglist_data *pgdat);
     545             : 
     546             : void lru_gen_init_memcg(struct mem_cgroup *memcg);
     547             : void lru_gen_exit_memcg(struct mem_cgroup *memcg);
     548             : void lru_gen_online_memcg(struct mem_cgroup *memcg);
     549             : void lru_gen_offline_memcg(struct mem_cgroup *memcg);
     550             : void lru_gen_release_memcg(struct mem_cgroup *memcg);
     551             : void lru_gen_soft_reclaim(struct lruvec *lruvec);
     552             : 
     553             : #else /* !CONFIG_MEMCG */
     554             : 
     555             : #define MEMCG_NR_GENS   1
     556             : 
     557             : struct lru_gen_memcg {
     558             : };
     559             : 
     560             : static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
     561             : {
     562             : }
     563             : 
     564             : #endif /* CONFIG_MEMCG */
     565             : 
     566             : #else /* !CONFIG_LRU_GEN */
     567             : 
     568             : static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
     569             : {
     570             : }
     571             : 
     572             : static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
     573             : {
     574             : }
     575             : 
     576             : static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
     577             : {
     578             : }
     579             : 
     580             : #ifdef CONFIG_MEMCG
     581             : 
     582             : static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
     583             : {
     584             : }
     585             : 
     586             : static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
     587             : {
     588             : }
     589             : 
     590             : static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
     591             : {
     592             : }
     593             : 
     594             : static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
     595             : {
     596             : }
     597             : 
     598             : static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
     599             : {
     600             : }
     601             : 
     602             : static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
     603             : {
     604             : }
     605             : 
     606             : #endif /* CONFIG_MEMCG */
     607             : 
     608             : #endif /* CONFIG_LRU_GEN */
     609             : 
     610             : struct lruvec {
     611             :         struct list_head                lists[NR_LRU_LISTS];
     612             :         /* per lruvec lru_lock for memcg */
     613             :         spinlock_t                      lru_lock;
     614             :         /*
     615             :          * These track the cost of reclaiming one LRU - file or anon -
     616             :          * over the other. As the observed cost of reclaiming one LRU
     617             :          * increases, the reclaim scan balance tips toward the other.
     618             :          */
     619             :         unsigned long                   anon_cost;
     620             :         unsigned long                   file_cost;
     621             :         /* Non-resident age, driven by LRU movement */
     622             :         atomic_long_t                   nonresident_age;
     623             :         /* Refaults at the time of last reclaim cycle */
     624             :         unsigned long                   refaults[ANON_AND_FILE];
     625             :         /* Various lruvec state flags (enum lruvec_flags) */
     626             :         unsigned long                   flags;
     627             : #ifdef CONFIG_LRU_GEN
     628             :         /* evictable pages divided into generations */
     629             :         struct lru_gen_folio            lrugen;
     630             :         /* to concurrently iterate lru_gen_mm_list */
     631             :         struct lru_gen_mm_state         mm_state;
     632             : #endif
     633             : #ifdef CONFIG_MEMCG
     634             :         struct pglist_data *pgdat;
     635             : #endif
     636             : };
     637             : 
     638             : /* Isolate unmapped pages */
     639             : #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
     640             : /* Isolate for asynchronous migration */
     641             : #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
     642             : /* Isolate unevictable pages */
     643             : #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
     644             : 
     645             : /* LRU Isolation modes. */
     646             : typedef unsigned __bitwise isolate_mode_t;
     647             : 
     648             : enum zone_watermarks {
     649             :         WMARK_MIN,
     650             :         WMARK_LOW,
     651             :         WMARK_HIGH,
     652             :         WMARK_PROMO,
     653             :         NR_WMARK
     654             : };
     655             : 
     656             : /*
     657             :  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
     658             :  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
     659             :  * it should not contribute to serious fragmentation causing THP allocation
     660             :  * failures.
     661             :  */
     662             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     663             : #define NR_PCP_THP 1
     664             : #else
     665             : #define NR_PCP_THP 0
     666             : #endif
     667             : #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
     668             : #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
     669             : 
     670             : #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
     671             : #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
     672             : #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
     673             : #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
     674             : 
     675             : /* Fields and list protected by pagesets local_lock in page_alloc.c */
     676             : struct per_cpu_pages {
     677             :         spinlock_t lock;        /* Protects lists field */
     678             :         int count;              /* number of pages in the list */
     679             :         int high;               /* high watermark, emptying needed */
     680             :         int batch;              /* chunk size for buddy add/remove */
     681             :         short free_factor;      /* batch scaling factor during free */
     682             : #ifdef CONFIG_NUMA
     683             :         short expire;           /* When 0, remote pagesets are drained */
     684             : #endif
     685             : 
     686             :         /* Lists of pages, one per migrate type stored on the pcp-lists */
     687             :         struct list_head lists[NR_PCP_LISTS];
     688             : } ____cacheline_aligned_in_smp;
     689             : 
     690             : struct per_cpu_zonestat {
     691             : #ifdef CONFIG_SMP
     692             :         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
     693             :         s8 stat_threshold;
     694             : #endif
     695             : #ifdef CONFIG_NUMA
     696             :         /*
     697             :          * Low priority inaccurate counters that are only folded
     698             :          * on demand. Use a large type to avoid the overhead of
     699             :          * folding during refresh_cpu_vm_stats.
     700             :          */
     701             :         unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     702             : #endif
     703             : };
     704             : 
     705             : struct per_cpu_nodestat {
     706             :         s8 stat_threshold;
     707             :         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
     708             : };
     709             : 
     710             : #endif /* !__GENERATING_BOUNDS.H */
     711             : 
     712             : enum zone_type {
     713             :         /*
     714             :          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
     715             :          * to DMA to all of the addressable memory (ZONE_NORMAL).
     716             :          * On architectures where this area covers the whole 32 bit address
     717             :          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
     718             :          * DMA addressing constraints. This distinction is important as a 32bit
     719             :          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
     720             :          * platforms may need both zones as they support peripherals with
     721             :          * different DMA addressing limitations.
     722             :          */
     723             : #ifdef CONFIG_ZONE_DMA
     724             :         ZONE_DMA,
     725             : #endif
     726             : #ifdef CONFIG_ZONE_DMA32
     727             :         ZONE_DMA32,
     728             : #endif
     729             :         /*
     730             :          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
     731             :          * performed on pages in ZONE_NORMAL if the DMA devices support
     732             :          * transfers to all addressable memory.
     733             :          */
     734             :         ZONE_NORMAL,
     735             : #ifdef CONFIG_HIGHMEM
     736             :         /*
     737             :          * A memory area that is only addressable by the kernel through
     738             :          * mapping portions into its own address space. This is for example
     739             :          * used by i386 to allow the kernel to address the memory beyond
     740             :          * 900MB. The kernel will set up special mappings (page
     741             :          * table entries on i386) for each page that the kernel needs to
     742             :          * access.
     743             :          */
     744             :         ZONE_HIGHMEM,
     745             : #endif
     746             :         /*
     747             :          * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
     748             :          * movable pages with few exceptional cases described below. Main use
     749             :          * cases for ZONE_MOVABLE are to make memory offlining/unplug more
     750             :          * likely to succeed, and to locally limit unmovable allocations - e.g.,
     751             :          * to increase the number of THP/huge pages. Notable special cases are:
     752             :          *
     753             :          * 1. Pinned pages: (long-term) pinning of movable pages might
     754             :          *    essentially turn such pages unmovable. Therefore, we do not allow
     755             :          *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
     756             :          *    faulted, they come from the right zone right away. However, it is
     757             :          *    still possible that address space already has pages in
     758             :          *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
     759             :          *    touches that memory before pinning). In such case we migrate them
     760             :          *    to a different zone. When migration fails - pinning fails.
     761             :          * 2. memblock allocations: kernelcore/movablecore setups might create
     762             :          *    situations where ZONE_MOVABLE contains unmovable allocations
     763             :          *    after boot. Memory offlining and allocations fail early.
     764             :          * 3. Memory holes: kernelcore/movablecore setups might create very rare
     765             :          *    situations where ZONE_MOVABLE contains memory holes after boot,
     766             :          *    for example, if we have sections that are only partially
     767             :          *    populated. Memory offlining and allocations fail early.
     768             :          * 4. PG_hwpoison pages: while poisoned pages can be skipped during
     769             :          *    memory offlining, such pages cannot be allocated.
     770             :          * 5. Unmovable PG_offline pages: in paravirtualized environments,
     771             :          *    hotplugged memory blocks might only partially be managed by the
     772             :          *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
     773             :          *    parts not manged by the buddy are unmovable PG_offline pages. In
     774             :          *    some cases (virtio-mem), such pages can be skipped during
     775             :          *    memory offlining, however, cannot be moved/allocated. These
     776             :          *    techniques might use alloc_contig_range() to hide previously
     777             :          *    exposed pages from the buddy again (e.g., to implement some sort
     778             :          *    of memory unplug in virtio-mem).
     779             :          * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
     780             :          *    situations where ZERO_PAGE(0) which is allocated differently
     781             :          *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
     782             :          *    cannot be migrated.
     783             :          * 7. Memory-hotplug: when using memmap_on_memory and onlining the
     784             :          *    memory to the MOVABLE zone, the vmemmap pages are also placed in
     785             :          *    such zone. Such pages cannot be really moved around as they are
     786             :          *    self-stored in the range, but they are treated as movable when
     787             :          *    the range they describe is about to be offlined.
     788             :          *
     789             :          * In general, no unmovable allocations that degrade memory offlining
     790             :          * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
     791             :          * have to expect that migrating pages in ZONE_MOVABLE can fail (even
     792             :          * if has_unmovable_pages() states that there are no unmovable pages,
     793             :          * there can be false negatives).
     794             :          */
     795             :         ZONE_MOVABLE,
     796             : #ifdef CONFIG_ZONE_DEVICE
     797             :         ZONE_DEVICE,
     798             : #endif
     799             :         __MAX_NR_ZONES
     800             : 
     801             : };
     802             : 
     803             : #ifndef __GENERATING_BOUNDS_H
     804             : 
     805             : #define ASYNC_AND_SYNC 2
     806             : 
     807             : struct zone {
     808             :         /* Read-mostly fields */
     809             : 
     810             :         /* zone watermarks, access with *_wmark_pages(zone) macros */
     811             :         unsigned long _watermark[NR_WMARK];
     812             :         unsigned long watermark_boost;
     813             : 
     814             :         unsigned long nr_reserved_highatomic;
     815             : 
     816             :         /*
     817             :          * We don't know if the memory that we're going to allocate will be
     818             :          * freeable or/and it will be released eventually, so to avoid totally
     819             :          * wasting several GB of ram we must reserve some of the lower zone
     820             :          * memory (otherwise we risk to run OOM on the lower zones despite
     821             :          * there being tons of freeable ram on the higher zones).  This array is
     822             :          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
     823             :          * changes.
     824             :          */
     825             :         long lowmem_reserve[MAX_NR_ZONES];
     826             : 
     827             : #ifdef CONFIG_NUMA
     828             :         int node;
     829             : #endif
     830             :         struct pglist_data      *zone_pgdat;
     831             :         struct per_cpu_pages    __percpu *per_cpu_pageset;
     832             :         struct per_cpu_zonestat __percpu *per_cpu_zonestats;
     833             :         /*
     834             :          * the high and batch values are copied to individual pagesets for
     835             :          * faster access
     836             :          */
     837             :         int pageset_high;
     838             :         int pageset_batch;
     839             : 
     840             : #ifndef CONFIG_SPARSEMEM
     841             :         /*
     842             :          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
     843             :          * In SPARSEMEM, this map is stored in struct mem_section
     844             :          */
     845             :         unsigned long           *pageblock_flags;
     846             : #endif /* CONFIG_SPARSEMEM */
     847             : 
     848             :         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
     849             :         unsigned long           zone_start_pfn;
     850             : 
     851             :         /*
     852             :          * spanned_pages is the total pages spanned by the zone, including
     853             :          * holes, which is calculated as:
     854             :          *      spanned_pages = zone_end_pfn - zone_start_pfn;
     855             :          *
     856             :          * present_pages is physical pages existing within the zone, which
     857             :          * is calculated as:
     858             :          *      present_pages = spanned_pages - absent_pages(pages in holes);
     859             :          *
     860             :          * present_early_pages is present pages existing within the zone
     861             :          * located on memory available since early boot, excluding hotplugged
     862             :          * memory.
     863             :          *
     864             :          * managed_pages is present pages managed by the buddy system, which
     865             :          * is calculated as (reserved_pages includes pages allocated by the
     866             :          * bootmem allocator):
     867             :          *      managed_pages = present_pages - reserved_pages;
     868             :          *
     869             :          * cma pages is present pages that are assigned for CMA use
     870             :          * (MIGRATE_CMA).
     871             :          *
     872             :          * So present_pages may be used by memory hotplug or memory power
     873             :          * management logic to figure out unmanaged pages by checking
     874             :          * (present_pages - managed_pages). And managed_pages should be used
     875             :          * by page allocator and vm scanner to calculate all kinds of watermarks
     876             :          * and thresholds.
     877             :          *
     878             :          * Locking rules:
     879             :          *
     880             :          * zone_start_pfn and spanned_pages are protected by span_seqlock.
     881             :          * It is a seqlock because it has to be read outside of zone->lock,
     882             :          * and it is done in the main allocator path.  But, it is written
     883             :          * quite infrequently.
     884             :          *
     885             :          * The span_seq lock is declared along with zone->lock because it is
     886             :          * frequently read in proximity to zone->lock.  It's good to
     887             :          * give them a chance of being in the same cacheline.
     888             :          *
     889             :          * Write access to present_pages at runtime should be protected by
     890             :          * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
     891             :          * present_pages should use get_online_mems() to get a stable value.
     892             :          */
     893             :         atomic_long_t           managed_pages;
     894             :         unsigned long           spanned_pages;
     895             :         unsigned long           present_pages;
     896             : #if defined(CONFIG_MEMORY_HOTPLUG)
     897             :         unsigned long           present_early_pages;
     898             : #endif
     899             : #ifdef CONFIG_CMA
     900             :         unsigned long           cma_pages;
     901             : #endif
     902             : 
     903             :         const char              *name;
     904             : 
     905             : #ifdef CONFIG_MEMORY_ISOLATION
     906             :         /*
     907             :          * Number of isolated pageblock. It is used to solve incorrect
     908             :          * freepage counting problem due to racy retrieving migratetype
     909             :          * of pageblock. Protected by zone->lock.
     910             :          */
     911             :         unsigned long           nr_isolate_pageblock;
     912             : #endif
     913             : 
     914             : #ifdef CONFIG_MEMORY_HOTPLUG
     915             :         /* see spanned/present_pages for more description */
     916             :         seqlock_t               span_seqlock;
     917             : #endif
     918             : 
     919             :         int initialized;
     920             : 
     921             :         /* Write-intensive fields used from the page allocator */
     922             :         CACHELINE_PADDING(_pad1_);
     923             : 
     924             :         /* free areas of different sizes */
     925             :         struct free_area        free_area[MAX_ORDER];
     926             : 
     927             :         /* zone flags, see below */
     928             :         unsigned long           flags;
     929             : 
     930             :         /* Primarily protects free_area */
     931             :         spinlock_t              lock;
     932             : 
     933             :         /* Write-intensive fields used by compaction and vmstats. */
     934             :         CACHELINE_PADDING(_pad2_);
     935             : 
     936             :         /*
     937             :          * When free pages are below this point, additional steps are taken
     938             :          * when reading the number of free pages to avoid per-cpu counter
     939             :          * drift allowing watermarks to be breached
     940             :          */
     941             :         unsigned long percpu_drift_mark;
     942             : 
     943             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     944             :         /* pfn where compaction free scanner should start */
     945             :         unsigned long           compact_cached_free_pfn;
     946             :         /* pfn where compaction migration scanner should start */
     947             :         unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
     948             :         unsigned long           compact_init_migrate_pfn;
     949             :         unsigned long           compact_init_free_pfn;
     950             : #endif
     951             : 
     952             : #ifdef CONFIG_COMPACTION
     953             :         /*
     954             :          * On compaction failure, 1<<compact_defer_shift compactions
     955             :          * are skipped before trying again. The number attempted since
     956             :          * last failure is tracked with compact_considered.
     957             :          * compact_order_failed is the minimum compaction failed order.
     958             :          */
     959             :         unsigned int            compact_considered;
     960             :         unsigned int            compact_defer_shift;
     961             :         int                     compact_order_failed;
     962             : #endif
     963             : 
     964             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     965             :         /* Set to true when the PG_migrate_skip bits should be cleared */
     966             :         bool                    compact_blockskip_flush;
     967             : #endif
     968             : 
     969             :         bool                    contiguous;
     970             : 
     971             :         CACHELINE_PADDING(_pad3_);
     972             :         /* Zone statistics */
     973             :         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
     974             :         atomic_long_t           vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     975             : } ____cacheline_internodealigned_in_smp;
     976             : 
     977             : enum pgdat_flags {
     978             :         PGDAT_DIRTY,                    /* reclaim scanning has recently found
     979             :                                          * many dirty file pages at the tail
     980             :                                          * of the LRU.
     981             :                                          */
     982             :         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
     983             :                                          * many pages under writeback
     984             :                                          */
     985             :         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
     986             : };
     987             : 
     988             : enum zone_flags {
     989             :         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
     990             :                                          * Cleared when kswapd is woken.
     991             :                                          */
     992             :         ZONE_RECLAIM_ACTIVE,            /* kswapd may be scanning the zone. */
     993             : };
     994             : 
     995             : static inline unsigned long zone_managed_pages(struct zone *zone)
     996             : {
     997          44 :         return (unsigned long)atomic_long_read(&zone->managed_pages);
     998             : }
     999             : 
    1000             : static inline unsigned long zone_cma_pages(struct zone *zone)
    1001             : {
    1002             : #ifdef CONFIG_CMA
    1003             :         return zone->cma_pages;
    1004             : #else
    1005             :         return 0;
    1006             : #endif
    1007             : }
    1008             : 
    1009             : static inline unsigned long zone_end_pfn(const struct zone *zone)
    1010             : {
    1011         258 :         return zone->zone_start_pfn + zone->spanned_pages;
    1012             : }
    1013             : 
    1014             : static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
    1015             : {
    1016           0 :         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
    1017             : }
    1018             : 
    1019             : static inline bool zone_is_initialized(struct zone *zone)
    1020             : {
    1021             :         return zone->initialized;
    1022             : }
    1023             : 
    1024             : static inline bool zone_is_empty(struct zone *zone)
    1025             : {
    1026             :         return zone->spanned_pages == 0;
    1027             : }
    1028             : 
    1029             : #ifndef BUILD_VDSO32_64
    1030             : /*
    1031             :  * The zone field is never updated after free_area_init_core()
    1032             :  * sets it, so none of the operations on it need to be atomic.
    1033             :  */
    1034             : 
    1035             : /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
    1036             : #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
    1037             : #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
    1038             : #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
    1039             : #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
    1040             : #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
    1041             : #define LRU_GEN_PGOFF           (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
    1042             : #define LRU_REFS_PGOFF          (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
    1043             : 
    1044             : /*
    1045             :  * Define the bit shifts to access each section.  For non-existent
    1046             :  * sections we define the shift as 0; that plus a 0 mask ensures
    1047             :  * the compiler will optimise away reference to them.
    1048             :  */
    1049             : #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
    1050             : #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
    1051             : #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
    1052             : #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
    1053             : #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
    1054             : 
    1055             : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
    1056             : #ifdef NODE_NOT_IN_PAGE_FLAGS
    1057             : #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
    1058             : #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
    1059             :                                                 SECTIONS_PGOFF : ZONES_PGOFF)
    1060             : #else
    1061             : #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
    1062             : #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF) ? \
    1063             :                                                 NODES_PGOFF : ZONES_PGOFF)
    1064             : #endif
    1065             : 
    1066             : #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
    1067             : 
    1068             : #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
    1069             : #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
    1070             : #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
    1071             : #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
    1072             : #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
    1073             : #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
    1074             : 
    1075             : static inline enum zone_type page_zonenum(const struct page *page)
    1076             : {
    1077      162380 :         ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
    1078      111212 :         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
    1079             : }
    1080             : 
    1081             : static inline enum zone_type folio_zonenum(const struct folio *folio)
    1082             : {
    1083           0 :         return page_zonenum(&folio->page);
    1084             : }
    1085             : 
    1086             : #ifdef CONFIG_ZONE_DEVICE
    1087             : static inline bool is_zone_device_page(const struct page *page)
    1088             : {
    1089             :         return page_zonenum(page) == ZONE_DEVICE;
    1090             : }
    1091             : 
    1092             : /*
    1093             :  * Consecutive zone device pages should not be merged into the same sgl
    1094             :  * or bvec segment with other types of pages or if they belong to different
    1095             :  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
    1096             :  * without scanning the entire segment. This helper returns true either if
    1097             :  * both pages are not zone device pages or both pages are zone device pages
    1098             :  * with the same pgmap.
    1099             :  */
    1100             : static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
    1101             :                                                      const struct page *b)
    1102             : {
    1103             :         if (is_zone_device_page(a) != is_zone_device_page(b))
    1104             :                 return false;
    1105             :         if (!is_zone_device_page(a))
    1106             :                 return true;
    1107             :         return a->pgmap == b->pgmap;
    1108             : }
    1109             : 
    1110             : extern void memmap_init_zone_device(struct zone *, unsigned long,
    1111             :                                     unsigned long, struct dev_pagemap *);
    1112             : #else
    1113             : static inline bool is_zone_device_page(const struct page *page)
    1114             : {
    1115             :         return false;
    1116             : }
    1117             : static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
    1118             :                                                      const struct page *b)
    1119             : {
    1120             :         return true;
    1121             : }
    1122             : #endif
    1123             : 
    1124             : static inline bool folio_is_zone_device(const struct folio *folio)
    1125             : {
    1126           0 :         return is_zone_device_page(&folio->page);
    1127             : }
    1128             : 
    1129             : static inline bool is_zone_movable_page(const struct page *page)
    1130             : {
    1131           0 :         return page_zonenum(page) == ZONE_MOVABLE;
    1132             : }
    1133             : #endif
    1134             : 
    1135             : /*
    1136             :  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
    1137             :  * intersection with the given zone
    1138             :  */
    1139             : static inline bool zone_intersects(struct zone *zone,
    1140             :                 unsigned long start_pfn, unsigned long nr_pages)
    1141             : {
    1142             :         if (zone_is_empty(zone))
    1143             :                 return false;
    1144             :         if (start_pfn >= zone_end_pfn(zone) ||
    1145             :             start_pfn + nr_pages <= zone->zone_start_pfn)
    1146             :                 return false;
    1147             : 
    1148             :         return true;
    1149             : }
    1150             : 
    1151             : /*
    1152             :  * The "priority" of VM scanning is how much of the queues we will scan in one
    1153             :  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
    1154             :  * queues ("queue_length >> 12") during an aging round.
    1155             :  */
    1156             : #define DEF_PRIORITY 12
    1157             : 
    1158             : /* Maximum number of zones on a zonelist */
    1159             : #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
    1160             : 
    1161             : enum {
    1162             :         ZONELIST_FALLBACK,      /* zonelist with fallback */
    1163             : #ifdef CONFIG_NUMA
    1164             :         /*
    1165             :          * The NUMA zonelists are doubled because we need zonelists that
    1166             :          * restrict the allocations to a single node for __GFP_THISNODE.
    1167             :          */
    1168             :         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
    1169             : #endif
    1170             :         MAX_ZONELISTS
    1171             : };
    1172             : 
    1173             : /*
    1174             :  * This struct contains information about a zone in a zonelist. It is stored
    1175             :  * here to avoid dereferences into large structures and lookups of tables
    1176             :  */
    1177             : struct zoneref {
    1178             :         struct zone *zone;      /* Pointer to actual zone */
    1179             :         int zone_idx;           /* zone_idx(zoneref->zone) */
    1180             : };
    1181             : 
    1182             : /*
    1183             :  * One allocation request operates on a zonelist. A zonelist
    1184             :  * is a list of zones, the first one is the 'goal' of the
    1185             :  * allocation, the other zones are fallback zones, in decreasing
    1186             :  * priority.
    1187             :  *
    1188             :  * To speed the reading of the zonelist, the zonerefs contain the zone index
    1189             :  * of the entry being read. Helper functions to access information given
    1190             :  * a struct zoneref are
    1191             :  *
    1192             :  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
    1193             :  * zonelist_zone_idx()  - Return the index of the zone for an entry
    1194             :  * zonelist_node_idx()  - Return the index of the node for an entry
    1195             :  */
    1196             : struct zonelist {
    1197             :         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
    1198             : };
    1199             : 
    1200             : /*
    1201             :  * The array of struct pages for flatmem.
    1202             :  * It must be declared for SPARSEMEM as well because there are configurations
    1203             :  * that rely on that.
    1204             :  */
    1205             : extern struct page *mem_map;
    1206             : 
    1207             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1208             : struct deferred_split {
    1209             :         spinlock_t split_queue_lock;
    1210             :         struct list_head split_queue;
    1211             :         unsigned long split_queue_len;
    1212             : };
    1213             : #endif
    1214             : 
    1215             : #ifdef CONFIG_MEMORY_FAILURE
    1216             : /*
    1217             :  * Per NUMA node memory failure handling statistics.
    1218             :  */
    1219             : struct memory_failure_stats {
    1220             :         /*
    1221             :          * Number of raw pages poisoned.
    1222             :          * Cases not accounted: memory outside kernel control, offline page,
    1223             :          * arch-specific memory_failure (SGX), hwpoison_filter() filtered
    1224             :          * error events, and unpoison actions from hwpoison_unpoison.
    1225             :          */
    1226             :         unsigned long total;
    1227             :         /*
    1228             :          * Recovery results of poisoned raw pages handled by memory_failure,
    1229             :          * in sync with mf_result.
    1230             :          * total = ignored + failed + delayed + recovered.
    1231             :          * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
    1232             :          */
    1233             :         unsigned long ignored;
    1234             :         unsigned long failed;
    1235             :         unsigned long delayed;
    1236             :         unsigned long recovered;
    1237             : };
    1238             : #endif
    1239             : 
    1240             : /*
    1241             :  * On NUMA machines, each NUMA node would have a pg_data_t to describe
    1242             :  * it's memory layout. On UMA machines there is a single pglist_data which
    1243             :  * describes the whole memory.
    1244             :  *
    1245             :  * Memory statistics and page replacement data structures are maintained on a
    1246             :  * per-zone basis.
    1247             :  */
    1248             : typedef struct pglist_data {
    1249             :         /*
    1250             :          * node_zones contains just the zones for THIS node. Not all of the
    1251             :          * zones may be populated, but it is the full list. It is referenced by
    1252             :          * this node's node_zonelists as well as other node's node_zonelists.
    1253             :          */
    1254             :         struct zone node_zones[MAX_NR_ZONES];
    1255             : 
    1256             :         /*
    1257             :          * node_zonelists contains references to all zones in all nodes.
    1258             :          * Generally the first zones will be references to this node's
    1259             :          * node_zones.
    1260             :          */
    1261             :         struct zonelist node_zonelists[MAX_ZONELISTS];
    1262             : 
    1263             :         int nr_zones; /* number of populated zones in this node */
    1264             : #ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
    1265             :         struct page *node_mem_map;
    1266             : #ifdef CONFIG_PAGE_EXTENSION
    1267             :         struct page_ext *node_page_ext;
    1268             : #endif
    1269             : #endif
    1270             : #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
    1271             :         /*
    1272             :          * Must be held any time you expect node_start_pfn,
    1273             :          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
    1274             :          * Also synchronizes pgdat->first_deferred_pfn during deferred page
    1275             :          * init.
    1276             :          *
    1277             :          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
    1278             :          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
    1279             :          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
    1280             :          *
    1281             :          * Nests above zone->lock and zone->span_seqlock
    1282             :          */
    1283             :         spinlock_t node_size_lock;
    1284             : #endif
    1285             :         unsigned long node_start_pfn;
    1286             :         unsigned long node_present_pages; /* total number of physical pages */
    1287             :         unsigned long node_spanned_pages; /* total size of physical page
    1288             :                                              range, including holes */
    1289             :         int node_id;
    1290             :         wait_queue_head_t kswapd_wait;
    1291             :         wait_queue_head_t pfmemalloc_wait;
    1292             : 
    1293             :         /* workqueues for throttling reclaim for different reasons. */
    1294             :         wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
    1295             : 
    1296             :         atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
    1297             :         unsigned long nr_reclaim_start; /* nr pages written while throttled
    1298             :                                          * when throttling started. */
    1299             : #ifdef CONFIG_MEMORY_HOTPLUG
    1300             :         struct mutex kswapd_lock;
    1301             : #endif
    1302             :         struct task_struct *kswapd;     /* Protected by kswapd_lock */
    1303             :         int kswapd_order;
    1304             :         enum zone_type kswapd_highest_zoneidx;
    1305             : 
    1306             :         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
    1307             : 
    1308             : #ifdef CONFIG_COMPACTION
    1309             :         int kcompactd_max_order;
    1310             :         enum zone_type kcompactd_highest_zoneidx;
    1311             :         wait_queue_head_t kcompactd_wait;
    1312             :         struct task_struct *kcompactd;
    1313             :         bool proactive_compact_trigger;
    1314             : #endif
    1315             :         /*
    1316             :          * This is a per-node reserve of pages that are not available
    1317             :          * to userspace allocations.
    1318             :          */
    1319             :         unsigned long           totalreserve_pages;
    1320             : 
    1321             : #ifdef CONFIG_NUMA
    1322             :         /*
    1323             :          * node reclaim becomes active if more unmapped pages exist.
    1324             :          */
    1325             :         unsigned long           min_unmapped_pages;
    1326             :         unsigned long           min_slab_pages;
    1327             : #endif /* CONFIG_NUMA */
    1328             : 
    1329             :         /* Write-intensive fields used by page reclaim */
    1330             :         CACHELINE_PADDING(_pad1_);
    1331             : 
    1332             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1333             :         /*
    1334             :          * If memory initialisation on large machines is deferred then this
    1335             :          * is the first PFN that needs to be initialised.
    1336             :          */
    1337             :         unsigned long first_deferred_pfn;
    1338             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    1339             : 
    1340             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1341             :         struct deferred_split deferred_split_queue;
    1342             : #endif
    1343             : 
    1344             : #ifdef CONFIG_NUMA_BALANCING
    1345             :         /* start time in ms of current promote rate limit period */
    1346             :         unsigned int nbp_rl_start;
    1347             :         /* number of promote candidate pages at start time of current rate limit period */
    1348             :         unsigned long nbp_rl_nr_cand;
    1349             :         /* promote threshold in ms */
    1350             :         unsigned int nbp_threshold;
    1351             :         /* start time in ms of current promote threshold adjustment period */
    1352             :         unsigned int nbp_th_start;
    1353             :         /*
    1354             :          * number of promote candidate pages at start time of current promote
    1355             :          * threshold adjustment period
    1356             :          */
    1357             :         unsigned long nbp_th_nr_cand;
    1358             : #endif
    1359             :         /* Fields commonly accessed by the page reclaim scanner */
    1360             : 
    1361             :         /*
    1362             :          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
    1363             :          *
    1364             :          * Use mem_cgroup_lruvec() to look up lruvecs.
    1365             :          */
    1366             :         struct lruvec           __lruvec;
    1367             : 
    1368             :         unsigned long           flags;
    1369             : 
    1370             : #ifdef CONFIG_LRU_GEN
    1371             :         /* kswap mm walk data */
    1372             :         struct lru_gen_mm_walk  mm_walk;
    1373             :         /* lru_gen_folio list */
    1374             :         struct lru_gen_memcg memcg_lru;
    1375             : #endif
    1376             : 
    1377             :         CACHELINE_PADDING(_pad2_);
    1378             : 
    1379             :         /* Per-node vmstats */
    1380             :         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
    1381             :         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
    1382             : #ifdef CONFIG_NUMA
    1383             :         struct memory_tier __rcu *memtier;
    1384             : #endif
    1385             : #ifdef CONFIG_MEMORY_FAILURE
    1386             :         struct memory_failure_stats mf_stats;
    1387             : #endif
    1388             : } pg_data_t;
    1389             : 
    1390             : #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
    1391             : #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
    1392             : 
    1393             : #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
    1394             : #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
    1395             : 
    1396             : static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
    1397             : {
    1398           1 :         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
    1399             : }
    1400             : 
    1401             : #include <linux/memory_hotplug.h>
    1402             : 
    1403             : void build_all_zonelists(pg_data_t *pgdat);
    1404             : void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
    1405             :                    enum zone_type highest_zoneidx);
    1406             : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
    1407             :                          int highest_zoneidx, unsigned int alloc_flags,
    1408             :                          long free_pages);
    1409             : bool zone_watermark_ok(struct zone *z, unsigned int order,
    1410             :                 unsigned long mark, int highest_zoneidx,
    1411             :                 unsigned int alloc_flags);
    1412             : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
    1413             :                 unsigned long mark, int highest_zoneidx);
    1414             : /*
    1415             :  * Memory initialization context, use to differentiate memory added by
    1416             :  * the platform statically or via memory hotplug interface.
    1417             :  */
    1418             : enum meminit_context {
    1419             :         MEMINIT_EARLY,
    1420             :         MEMINIT_HOTPLUG,
    1421             : };
    1422             : 
    1423             : extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
    1424             :                                      unsigned long size);
    1425             : 
    1426             : extern void lruvec_init(struct lruvec *lruvec);
    1427             : 
    1428             : static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
    1429             : {
    1430             : #ifdef CONFIG_MEMCG
    1431             :         return lruvec->pgdat;
    1432             : #else
    1433           0 :         return container_of(lruvec, struct pglist_data, __lruvec);
    1434             : #endif
    1435             : }
    1436             : 
    1437             : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
    1438             : int local_memory_node(int node_id);
    1439             : #else
    1440             : static inline int local_memory_node(int node_id) { return node_id; };
    1441             : #endif
    1442             : 
    1443             : /*
    1444             :  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
    1445             :  */
    1446             : #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
    1447             : 
    1448             : #ifdef CONFIG_ZONE_DEVICE
    1449             : static inline bool zone_is_zone_device(struct zone *zone)
    1450             : {
    1451             :         return zone_idx(zone) == ZONE_DEVICE;
    1452             : }
    1453             : #else
    1454             : static inline bool zone_is_zone_device(struct zone *zone)
    1455             : {
    1456             :         return false;
    1457             : }
    1458             : #endif
    1459             : 
    1460             : /*
    1461             :  * Returns true if a zone has pages managed by the buddy allocator.
    1462             :  * All the reclaim decisions have to use this function rather than
    1463             :  * populated_zone(). If the whole zone is reserved then we can easily
    1464             :  * end up with populated_zone() && !managed_zone().
    1465             :  */
    1466             : static inline bool managed_zone(struct zone *zone)
    1467             : {
    1468           2 :         return zone_managed_pages(zone);
    1469             : }
    1470             : 
    1471             : /* Returns true if a zone has memory */
    1472             : static inline bool populated_zone(struct zone *zone)
    1473             : {
    1474             :         return zone->present_pages;
    1475             : }
    1476             : 
    1477             : #ifdef CONFIG_NUMA
    1478             : static inline int zone_to_nid(struct zone *zone)
    1479             : {
    1480             :         return zone->node;
    1481             : }
    1482             : 
    1483             : static inline void zone_set_nid(struct zone *zone, int nid)
    1484             : {
    1485             :         zone->node = nid;
    1486             : }
    1487             : #else
    1488             : static inline int zone_to_nid(struct zone *zone)
    1489             : {
    1490             :         return 0;
    1491             : }
    1492             : 
    1493             : static inline void zone_set_nid(struct zone *zone, int nid) {}
    1494             : #endif
    1495             : 
    1496             : extern int movable_zone;
    1497             : 
    1498             : static inline int is_highmem_idx(enum zone_type idx)
    1499             : {
    1500             : #ifdef CONFIG_HIGHMEM
    1501             :         return (idx == ZONE_HIGHMEM ||
    1502             :                 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
    1503             : #else
    1504             :         return 0;
    1505             : #endif
    1506             : }
    1507             : 
    1508             : /**
    1509             :  * is_highmem - helper function to quickly check if a struct zone is a
    1510             :  *              highmem zone or not.  This is an attempt to keep references
    1511             :  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
    1512             :  * @zone: pointer to struct zone variable
    1513             :  * Return: 1 for a highmem zone, 0 otherwise
    1514             :  */
    1515             : static inline int is_highmem(struct zone *zone)
    1516             : {
    1517           4 :         return is_highmem_idx(zone_idx(zone));
    1518             : }
    1519             : 
    1520             : #ifdef CONFIG_ZONE_DMA
    1521             : bool has_managed_dma(void);
    1522             : #else
    1523             : static inline bool has_managed_dma(void)
    1524             : {
    1525             :         return false;
    1526             : }
    1527             : #endif
    1528             : 
    1529             : /* These two functions are used to setup the per zone pages min values */
    1530             : struct ctl_table;
    1531             : 
    1532             : int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
    1533             :                 loff_t *);
    1534             : int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
    1535             :                 size_t *, loff_t *);
    1536             : extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
    1537             : int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
    1538             :                 size_t *, loff_t *);
    1539             : int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
    1540             :                 void *, size_t *, loff_t *);
    1541             : int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
    1542             :                 void *, size_t *, loff_t *);
    1543             : int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
    1544             :                 void *, size_t *, loff_t *);
    1545             : int numa_zonelist_order_handler(struct ctl_table *, int,
    1546             :                 void *, size_t *, loff_t *);
    1547             : extern int percpu_pagelist_high_fraction;
    1548             : extern char numa_zonelist_order[];
    1549             : #define NUMA_ZONELIST_ORDER_LEN 16
    1550             : 
    1551             : #ifndef CONFIG_NUMA
    1552             : 
    1553             : extern struct pglist_data contig_page_data;
    1554             : static inline struct pglist_data *NODE_DATA(int nid)
    1555             : {
    1556             :         return &contig_page_data;
    1557             : }
    1558             : 
    1559             : #else /* CONFIG_NUMA */
    1560             : 
    1561             : #include <asm/mmzone.h>
    1562             : 
    1563             : #endif /* !CONFIG_NUMA */
    1564             : 
    1565             : extern struct pglist_data *first_online_pgdat(void);
    1566             : extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
    1567             : extern struct zone *next_zone(struct zone *zone);
    1568             : 
    1569             : /**
    1570             :  * for_each_online_pgdat - helper macro to iterate over all online nodes
    1571             :  * @pgdat: pointer to a pg_data_t variable
    1572             :  */
    1573             : #define for_each_online_pgdat(pgdat)                    \
    1574             :         for (pgdat = first_online_pgdat();              \
    1575             :              pgdat;                                     \
    1576             :              pgdat = next_online_pgdat(pgdat))
    1577             : /**
    1578             :  * for_each_zone - helper macro to iterate over all memory zones
    1579             :  * @zone: pointer to struct zone variable
    1580             :  *
    1581             :  * The user only needs to declare the zone variable, for_each_zone
    1582             :  * fills it in.
    1583             :  */
    1584             : #define for_each_zone(zone)                             \
    1585             :         for (zone = (first_online_pgdat())->node_zones; \
    1586             :              zone;                                      \
    1587             :              zone = next_zone(zone))
    1588             : 
    1589             : #define for_each_populated_zone(zone)                   \
    1590             :         for (zone = (first_online_pgdat())->node_zones; \
    1591             :              zone;                                      \
    1592             :              zone = next_zone(zone))                    \
    1593             :                 if (!populated_zone(zone))              \
    1594             :                         ; /* do nothing */              \
    1595             :                 else
    1596             : 
    1597             : static inline struct zone *zonelist_zone(struct zoneref *zoneref)
    1598             : {
    1599             :         return zoneref->zone;
    1600             : }
    1601             : 
    1602             : static inline int zonelist_zone_idx(struct zoneref *zoneref)
    1603             : {
    1604             :         return zoneref->zone_idx;
    1605             : }
    1606             : 
    1607             : static inline int zonelist_node_idx(struct zoneref *zoneref)
    1608             : {
    1609             :         return zone_to_nid(zoneref->zone);
    1610             : }
    1611             : 
    1612             : struct zoneref *__next_zones_zonelist(struct zoneref *z,
    1613             :                                         enum zone_type highest_zoneidx,
    1614             :                                         nodemask_t *nodes);
    1615             : 
    1616             : /**
    1617             :  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
    1618             :  * @z: The cursor used as a starting point for the search
    1619             :  * @highest_zoneidx: The zone index of the highest zone to return
    1620             :  * @nodes: An optional nodemask to filter the zonelist with
    1621             :  *
    1622             :  * This function returns the next zone at or below a given zone index that is
    1623             :  * within the allowed nodemask using a cursor as the starting point for the
    1624             :  * search. The zoneref returned is a cursor that represents the current zone
    1625             :  * being examined. It should be advanced by one before calling
    1626             :  * next_zones_zonelist again.
    1627             :  *
    1628             :  * Return: the next zone at or below highest_zoneidx within the allowed
    1629             :  * nodemask using a cursor within a zonelist as a starting point
    1630             :  */
    1631             : static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
    1632             :                                         enum zone_type highest_zoneidx,
    1633             :                                         nodemask_t *nodes)
    1634             : {
    1635        9826 :         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
    1636             :                 return z;
    1637           0 :         return __next_zones_zonelist(z, highest_zoneidx, nodes);
    1638             : }
    1639             : 
    1640             : /**
    1641             :  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
    1642             :  * @zonelist: The zonelist to search for a suitable zone
    1643             :  * @highest_zoneidx: The zone index of the highest zone to return
    1644             :  * @nodes: An optional nodemask to filter the zonelist with
    1645             :  *
    1646             :  * This function returns the first zone at or below a given zone index that is
    1647             :  * within the allowed nodemask. The zoneref returned is a cursor that can be
    1648             :  * used to iterate the zonelist with next_zones_zonelist by advancing it by
    1649             :  * one before calling.
    1650             :  *
    1651             :  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
    1652             :  * never NULL). This may happen either genuinely, or due to concurrent nodemask
    1653             :  * update due to cpuset modification.
    1654             :  *
    1655             :  * Return: Zoneref pointer for the first suitable zone found
    1656             :  */
    1657             : static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
    1658             :                                         enum zone_type highest_zoneidx,
    1659             :                                         nodemask_t *nodes)
    1660             : {
    1661       19646 :         return next_zones_zonelist(zonelist->_zonerefs,
    1662             :                                                         highest_zoneidx, nodes);
    1663             : }
    1664             : 
    1665             : /**
    1666             :  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
    1667             :  * @zone: The current zone in the iterator
    1668             :  * @z: The current pointer within zonelist->_zonerefs being iterated
    1669             :  * @zlist: The zonelist being iterated
    1670             :  * @highidx: The zone index of the highest zone to return
    1671             :  * @nodemask: Nodemask allowed by the allocator
    1672             :  *
    1673             :  * This iterator iterates though all zones at or below a given zone index and
    1674             :  * within a given nodemask
    1675             :  */
    1676             : #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
    1677             :         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
    1678             :                 zone;                                                   \
    1679             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1680             :                         zone = zonelist_zone(z))
    1681             : 
    1682             : #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
    1683             :         for (zone = z->zone; \
    1684             :                 zone;                                                   \
    1685             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1686             :                         zone = zonelist_zone(z))
    1687             : 
    1688             : 
    1689             : /**
    1690             :  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
    1691             :  * @zone: The current zone in the iterator
    1692             :  * @z: The current pointer within zonelist->zones being iterated
    1693             :  * @zlist: The zonelist being iterated
    1694             :  * @highidx: The zone index of the highest zone to return
    1695             :  *
    1696             :  * This iterator iterates though all zones at or below a given zone index.
    1697             :  */
    1698             : #define for_each_zone_zonelist(zone, z, zlist, highidx) \
    1699             :         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
    1700             : 
    1701             : /* Whether the 'nodes' are all movable nodes */
    1702             : static inline bool movable_only_nodes(nodemask_t *nodes)
    1703             : {
    1704             :         struct zonelist *zonelist;
    1705             :         struct zoneref *z;
    1706             :         int nid;
    1707             : 
    1708             :         if (nodes_empty(*nodes))
    1709             :                 return false;
    1710             : 
    1711             :         /*
    1712             :          * We can chose arbitrary node from the nodemask to get a
    1713             :          * zonelist as they are interlinked. We just need to find
    1714             :          * at least one zone that can satisfy kernel allocations.
    1715             :          */
    1716             :         nid = first_node(*nodes);
    1717             :         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
    1718             :         z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
    1719             :         return (!z->zone) ? true : false;
    1720             : }
    1721             : 
    1722             : 
    1723             : #ifdef CONFIG_SPARSEMEM
    1724             : #include <asm/sparsemem.h>
    1725             : #endif
    1726             : 
    1727             : #ifdef CONFIG_FLATMEM
    1728             : #define pfn_to_nid(pfn)         (0)
    1729             : #endif
    1730             : 
    1731             : #ifdef CONFIG_SPARSEMEM
    1732             : 
    1733             : /*
    1734             :  * PA_SECTION_SHIFT             physical address to/from section number
    1735             :  * PFN_SECTION_SHIFT            pfn to/from section number
    1736             :  */
    1737             : #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
    1738             : #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
    1739             : 
    1740             : #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
    1741             : 
    1742             : #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
    1743             : #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
    1744             : 
    1745             : #define SECTION_BLOCKFLAGS_BITS \
    1746             :         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
    1747             : 
    1748             : #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
    1749             : #error Allocator MAX_ORDER exceeds SECTION_SIZE
    1750             : #endif
    1751             : 
    1752             : static inline unsigned long pfn_to_section_nr(unsigned long pfn)
    1753             : {
    1754             :         return pfn >> PFN_SECTION_SHIFT;
    1755             : }
    1756             : static inline unsigned long section_nr_to_pfn(unsigned long sec)
    1757             : {
    1758             :         return sec << PFN_SECTION_SHIFT;
    1759             : }
    1760             : 
    1761             : #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
    1762             : #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
    1763             : 
    1764             : #define SUBSECTION_SHIFT 21
    1765             : #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
    1766             : 
    1767             : #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
    1768             : #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
    1769             : #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
    1770             : 
    1771             : #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
    1772             : #error Subsection size exceeds section size
    1773             : #else
    1774             : #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
    1775             : #endif
    1776             : 
    1777             : #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
    1778             : #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
    1779             : 
    1780             : struct mem_section_usage {
    1781             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1782             :         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
    1783             : #endif
    1784             :         /* See declaration of similar field in struct zone */
    1785             :         unsigned long pageblock_flags[0];
    1786             : };
    1787             : 
    1788             : void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
    1789             : 
    1790             : struct page;
    1791             : struct page_ext;
    1792             : struct mem_section {
    1793             :         /*
    1794             :          * This is, logically, a pointer to an array of struct
    1795             :          * pages.  However, it is stored with some other magic.
    1796             :          * (see sparse.c::sparse_init_one_section())
    1797             :          *
    1798             :          * Additionally during early boot we encode node id of
    1799             :          * the location of the section here to guide allocation.
    1800             :          * (see sparse.c::memory_present())
    1801             :          *
    1802             :          * Making it a UL at least makes someone do a cast
    1803             :          * before using it wrong.
    1804             :          */
    1805             :         unsigned long section_mem_map;
    1806             : 
    1807             :         struct mem_section_usage *usage;
    1808             : #ifdef CONFIG_PAGE_EXTENSION
    1809             :         /*
    1810             :          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
    1811             :          * section. (see page_ext.h about this.)
    1812             :          */
    1813             :         struct page_ext *page_ext;
    1814             :         unsigned long pad;
    1815             : #endif
    1816             :         /*
    1817             :          * WARNING: mem_section must be a power-of-2 in size for the
    1818             :          * calculation and use of SECTION_ROOT_MASK to make sense.
    1819             :          */
    1820             : };
    1821             : 
    1822             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1823             : #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
    1824             : #else
    1825             : #define SECTIONS_PER_ROOT       1
    1826             : #endif
    1827             : 
    1828             : #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
    1829             : #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
    1830             : #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
    1831             : 
    1832             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1833             : extern struct mem_section **mem_section;
    1834             : #else
    1835             : extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
    1836             : #endif
    1837             : 
    1838             : static inline unsigned long *section_to_usemap(struct mem_section *ms)
    1839             : {
    1840             :         return ms->usage->pageblock_flags;
    1841             : }
    1842             : 
    1843             : static inline struct mem_section *__nr_to_section(unsigned long nr)
    1844             : {
    1845             :         unsigned long root = SECTION_NR_TO_ROOT(nr);
    1846             : 
    1847             :         if (unlikely(root >= NR_SECTION_ROOTS))
    1848             :                 return NULL;
    1849             : 
    1850             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1851             :         if (!mem_section || !mem_section[root])
    1852             :                 return NULL;
    1853             : #endif
    1854             :         return &mem_section[root][nr & SECTION_ROOT_MASK];
    1855             : }
    1856             : extern size_t mem_section_usage_size(void);
    1857             : 
    1858             : /*
    1859             :  * We use the lower bits of the mem_map pointer to store
    1860             :  * a little bit of information.  The pointer is calculated
    1861             :  * as mem_map - section_nr_to_pfn(pnum).  The result is
    1862             :  * aligned to the minimum alignment of the two values:
    1863             :  *   1. All mem_map arrays are page-aligned.
    1864             :  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
    1865             :  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
    1866             :  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
    1867             :  *      worst combination is powerpc with 256k pages,
    1868             :  *      which results in PFN_SECTION_SHIFT equal 6.
    1869             :  * To sum it up, at least 6 bits are available on all architectures.
    1870             :  * However, we can exceed 6 bits on some other architectures except
    1871             :  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
    1872             :  * with the worst case of 64K pages on arm64) if we make sure the
    1873             :  * exceeded bit is not applicable to powerpc.
    1874             :  */
    1875             : enum {
    1876             :         SECTION_MARKED_PRESENT_BIT,
    1877             :         SECTION_HAS_MEM_MAP_BIT,
    1878             :         SECTION_IS_ONLINE_BIT,
    1879             :         SECTION_IS_EARLY_BIT,
    1880             : #ifdef CONFIG_ZONE_DEVICE
    1881             :         SECTION_TAINT_ZONE_DEVICE_BIT,
    1882             : #endif
    1883             :         SECTION_MAP_LAST_BIT,
    1884             : };
    1885             : 
    1886             : #define SECTION_MARKED_PRESENT          BIT(SECTION_MARKED_PRESENT_BIT)
    1887             : #define SECTION_HAS_MEM_MAP             BIT(SECTION_HAS_MEM_MAP_BIT)
    1888             : #define SECTION_IS_ONLINE               BIT(SECTION_IS_ONLINE_BIT)
    1889             : #define SECTION_IS_EARLY                BIT(SECTION_IS_EARLY_BIT)
    1890             : #ifdef CONFIG_ZONE_DEVICE
    1891             : #define SECTION_TAINT_ZONE_DEVICE       BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
    1892             : #endif
    1893             : #define SECTION_MAP_MASK                (~(BIT(SECTION_MAP_LAST_BIT) - 1))
    1894             : #define SECTION_NID_SHIFT               SECTION_MAP_LAST_BIT
    1895             : 
    1896             : static inline struct page *__section_mem_map_addr(struct mem_section *section)
    1897             : {
    1898             :         unsigned long map = section->section_mem_map;
    1899             :         map &= SECTION_MAP_MASK;
    1900             :         return (struct page *)map;
    1901             : }
    1902             : 
    1903             : static inline int present_section(struct mem_section *section)
    1904             : {
    1905             :         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
    1906             : }
    1907             : 
    1908             : static inline int present_section_nr(unsigned long nr)
    1909             : {
    1910             :         return present_section(__nr_to_section(nr));
    1911             : }
    1912             : 
    1913             : static inline int valid_section(struct mem_section *section)
    1914             : {
    1915             :         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
    1916             : }
    1917             : 
    1918             : static inline int early_section(struct mem_section *section)
    1919             : {
    1920             :         return (section && (section->section_mem_map & SECTION_IS_EARLY));
    1921             : }
    1922             : 
    1923             : static inline int valid_section_nr(unsigned long nr)
    1924             : {
    1925             :         return valid_section(__nr_to_section(nr));
    1926             : }
    1927             : 
    1928             : static inline int online_section(struct mem_section *section)
    1929             : {
    1930             :         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
    1931             : }
    1932             : 
    1933             : #ifdef CONFIG_ZONE_DEVICE
    1934             : static inline int online_device_section(struct mem_section *section)
    1935             : {
    1936             :         unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
    1937             : 
    1938             :         return section && ((section->section_mem_map & flags) == flags);
    1939             : }
    1940             : #else
    1941             : static inline int online_device_section(struct mem_section *section)
    1942             : {
    1943             :         return 0;
    1944             : }
    1945             : #endif
    1946             : 
    1947             : static inline int online_section_nr(unsigned long nr)
    1948             : {
    1949             :         return online_section(__nr_to_section(nr));
    1950             : }
    1951             : 
    1952             : #ifdef CONFIG_MEMORY_HOTPLUG
    1953             : void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1954             : void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1955             : #endif
    1956             : 
    1957             : static inline struct mem_section *__pfn_to_section(unsigned long pfn)
    1958             : {
    1959             :         return __nr_to_section(pfn_to_section_nr(pfn));
    1960             : }
    1961             : 
    1962             : extern unsigned long __highest_present_section_nr;
    1963             : 
    1964             : static inline int subsection_map_index(unsigned long pfn)
    1965             : {
    1966             :         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
    1967             : }
    1968             : 
    1969             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1970             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1971             : {
    1972             :         int idx = subsection_map_index(pfn);
    1973             : 
    1974             :         return test_bit(idx, ms->usage->subsection_map);
    1975             : }
    1976             : #else
    1977             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1978             : {
    1979             :         return 1;
    1980             : }
    1981             : #endif
    1982             : 
    1983             : #ifndef CONFIG_HAVE_ARCH_PFN_VALID
    1984             : /**
    1985             :  * pfn_valid - check if there is a valid memory map entry for a PFN
    1986             :  * @pfn: the page frame number to check
    1987             :  *
    1988             :  * Check if there is a valid memory map entry aka struct page for the @pfn.
    1989             :  * Note, that availability of the memory map entry does not imply that
    1990             :  * there is actual usable memory at that @pfn. The struct page may
    1991             :  * represent a hole or an unusable page frame.
    1992             :  *
    1993             :  * Return: 1 for PFNs that have memory map entries and 0 otherwise
    1994             :  */
    1995             : static inline int pfn_valid(unsigned long pfn)
    1996             : {
    1997             :         struct mem_section *ms;
    1998             : 
    1999             :         /*
    2000             :          * Ensure the upper PAGE_SHIFT bits are clear in the
    2001             :          * pfn. Else it might lead to false positives when
    2002             :          * some of the upper bits are set, but the lower bits
    2003             :          * match a valid pfn.
    2004             :          */
    2005             :         if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
    2006             :                 return 0;
    2007             : 
    2008             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    2009             :                 return 0;
    2010             :         ms = __pfn_to_section(pfn);
    2011             :         if (!valid_section(ms))
    2012             :                 return 0;
    2013             :         /*
    2014             :          * Traditionally early sections always returned pfn_valid() for
    2015             :          * the entire section-sized span.
    2016             :          */
    2017             :         return early_section(ms) || pfn_section_valid(ms, pfn);
    2018             : }
    2019             : #endif
    2020             : 
    2021             : static inline int pfn_in_present_section(unsigned long pfn)
    2022             : {
    2023             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    2024             :                 return 0;
    2025             :         return present_section(__pfn_to_section(pfn));
    2026             : }
    2027             : 
    2028             : static inline unsigned long next_present_section_nr(unsigned long section_nr)
    2029             : {
    2030             :         while (++section_nr <= __highest_present_section_nr) {
    2031             :                 if (present_section_nr(section_nr))
    2032             :                         return section_nr;
    2033             :         }
    2034             : 
    2035             :         return -1;
    2036             : }
    2037             : 
    2038             : /*
    2039             :  * These are _only_ used during initialisation, therefore they
    2040             :  * can use __initdata ...  They could have names to indicate
    2041             :  * this restriction.
    2042             :  */
    2043             : #ifdef CONFIG_NUMA
    2044             : #define pfn_to_nid(pfn)                                                 \
    2045             : ({                                                                      \
    2046             :         unsigned long __pfn_to_nid_pfn = (pfn);                         \
    2047             :         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
    2048             : })
    2049             : #else
    2050             : #define pfn_to_nid(pfn)         (0)
    2051             : #endif
    2052             : 
    2053             : void sparse_init(void);
    2054             : #else
    2055             : #define sparse_init()   do {} while (0)
    2056             : #define sparse_index_init(_sec, _nid)  do {} while (0)
    2057             : #define pfn_in_present_section pfn_valid
    2058             : #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
    2059             : #endif /* CONFIG_SPARSEMEM */
    2060             : 
    2061             : #endif /* !__GENERATING_BOUNDS.H */
    2062             : #endif /* !__ASSEMBLY__ */
    2063             : #endif /* _LINUX_MMZONE_H */

Generated by: LCOV version 1.14