LCOV - code coverage report
Current view: top level - include/linux - refcount.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 28 37 75.7 %
Date: 2023-04-06 08:38:28 Functions: 3 3 100.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : /*
       3             :  * Variant of atomic_t specialized for reference counts.
       4             :  *
       5             :  * The interface matches the atomic_t interface (to aid in porting) but only
       6             :  * provides the few functions one should use for reference counting.
       7             :  *
       8             :  * Saturation semantics
       9             :  * ====================
      10             :  *
      11             :  * refcount_t differs from atomic_t in that the counter saturates at
      12             :  * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
      13             :  * counter and causing 'spurious' use-after-free issues. In order to avoid the
      14             :  * cost associated with introducing cmpxchg() loops into all of the saturating
      15             :  * operations, we temporarily allow the counter to take on an unchecked value
      16             :  * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
      17             :  * or overflow has occurred. Although this is racy when multiple threads
      18             :  * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
      19             :  * equidistant from 0 and INT_MAX we minimise the scope for error:
      20             :  *
      21             :  *                                 INT_MAX     REFCOUNT_SATURATED   UINT_MAX
      22             :  *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
      23             :  *   +--------------------------------+----------------+----------------+
      24             :  *                                     <---------- bad value! ---------->
      25             :  *
      26             :  * (in a signed view of the world, the "bad value" range corresponds to
      27             :  * a negative counter value).
      28             :  *
      29             :  * As an example, consider a refcount_inc() operation that causes the counter
      30             :  * to overflow:
      31             :  *
      32             :  *      int old = atomic_fetch_add_relaxed(r);
      33             :  *      // old is INT_MAX, refcount now INT_MIN (0x8000_0000)
      34             :  *      if (old < 0)
      35             :  *              atomic_set(r, REFCOUNT_SATURATED);
      36             :  *
      37             :  * If another thread also performs a refcount_inc() operation between the two
      38             :  * atomic operations, then the count will continue to edge closer to 0. If it
      39             :  * reaches a value of 1 before /any/ of the threads reset it to the saturated
      40             :  * value, then a concurrent refcount_dec_and_test() may erroneously free the
      41             :  * underlying object.
      42             :  * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
      43             :  * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
      44             :  * With the current PID limit, if no batched refcounting operations are used and
      45             :  * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
      46             :  * operations, this makes it impossible for a saturated refcount to leave the
      47             :  * saturation range, even if it is possible for multiple uses of the same
      48             :  * refcount to nest in the context of a single task:
      49             :  *
      50             :  *     (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
      51             :  *     0x40000000 / 0x400000 = 0x100 = 256
      52             :  *
      53             :  * If hundreds of references are added/removed with a single refcounting
      54             :  * operation, it may potentially be possible to leave the saturation range; but
      55             :  * given the precise timing details involved with the round-robin scheduling of
      56             :  * each thread manipulating the refcount and the need to hit the race multiple
      57             :  * times in succession, there doesn't appear to be a practical avenue of attack
      58             :  * even if using refcount_add() operations with larger increments.
      59             :  *
      60             :  * Memory ordering
      61             :  * ===============
      62             :  *
      63             :  * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
      64             :  * and provide only what is strictly required for refcounts.
      65             :  *
      66             :  * The increments are fully relaxed; these will not provide ordering. The
      67             :  * rationale is that whatever is used to obtain the object we're increasing the
      68             :  * reference count on will provide the ordering. For locked data structures,
      69             :  * its the lock acquire, for RCU/lockless data structures its the dependent
      70             :  * load.
      71             :  *
      72             :  * Do note that inc_not_zero() provides a control dependency which will order
      73             :  * future stores against the inc, this ensures we'll never modify the object
      74             :  * if we did not in fact acquire a reference.
      75             :  *
      76             :  * The decrements will provide release order, such that all the prior loads and
      77             :  * stores will be issued before, it also provides a control dependency, which
      78             :  * will order us against the subsequent free().
      79             :  *
      80             :  * The control dependency is against the load of the cmpxchg (ll/sc) that
      81             :  * succeeded. This means the stores aren't fully ordered, but this is fine
      82             :  * because the 1->0 transition indicates no concurrency.
      83             :  *
      84             :  * Note that the allocator is responsible for ordering things between free()
      85             :  * and alloc().
      86             :  *
      87             :  * The decrements dec_and_test() and sub_and_test() also provide acquire
      88             :  * ordering on success.
      89             :  *
      90             :  */
      91             : 
      92             : #ifndef _LINUX_REFCOUNT_H
      93             : #define _LINUX_REFCOUNT_H
      94             : 
      95             : #include <linux/atomic.h>
      96             : #include <linux/bug.h>
      97             : #include <linux/compiler.h>
      98             : #include <linux/limits.h>
      99             : #include <linux/spinlock_types.h>
     100             : 
     101             : struct mutex;
     102             : 
     103             : /**
     104             :  * typedef refcount_t - variant of atomic_t specialized for reference counts
     105             :  * @refs: atomic_t counter field
     106             :  *
     107             :  * The counter saturates at REFCOUNT_SATURATED and will not move once
     108             :  * there. This avoids wrapping the counter and causing 'spurious'
     109             :  * use-after-free bugs.
     110             :  */
     111             : typedef struct refcount_struct {
     112             :         atomic_t refs;
     113             : } refcount_t;
     114             : 
     115             : #define REFCOUNT_INIT(n)        { .refs = ATOMIC_INIT(n), }
     116             : #define REFCOUNT_MAX            INT_MAX
     117             : #define REFCOUNT_SATURATED      (INT_MIN / 2)
     118             : 
     119             : enum refcount_saturation_type {
     120             :         REFCOUNT_ADD_NOT_ZERO_OVF,
     121             :         REFCOUNT_ADD_OVF,
     122             :         REFCOUNT_ADD_UAF,
     123             :         REFCOUNT_SUB_UAF,
     124             :         REFCOUNT_DEC_LEAK,
     125             : };
     126             : 
     127             : void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
     128             : 
     129             : /**
     130             :  * refcount_set - set a refcount's value
     131             :  * @r: the refcount
     132             :  * @n: value to which the refcount will be set
     133             :  */
     134             : static inline void refcount_set(refcount_t *r, int n)
     135             : {
     136        7332 :         atomic_set(&r->refs, n);
     137             : }
     138             : 
     139             : /**
     140             :  * refcount_read - get a refcount's value
     141             :  * @r: the refcount
     142             :  *
     143             :  * Return: the refcount's value
     144             :  */
     145             : static inline unsigned int refcount_read(const refcount_t *r)
     146             : {
     147         724 :         return atomic_read(&r->refs);
     148             : }
     149             : 
     150          28 : static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp)
     151             : {
     152          28 :         int old = refcount_read(r);
     153             : 
     154             :         do {
     155          28 :                 if (!old)
     156             :                         break;
     157          56 :         } while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
     158             : 
     159          28 :         if (oldp)
     160           0 :                 *oldp = old;
     161             : 
     162          28 :         if (unlikely(old < 0 || old + i < 0))
     163           0 :                 refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
     164             : 
     165          28 :         return old;
     166             : }
     167             : 
     168             : /**
     169             :  * refcount_add_not_zero - add a value to a refcount unless it is 0
     170             :  * @i: the value to add to the refcount
     171             :  * @r: the refcount
     172             :  *
     173             :  * Will saturate at REFCOUNT_SATURATED and WARN.
     174             :  *
     175             :  * Provides no memory ordering, it is assumed the caller has guaranteed the
     176             :  * object memory to be stable (RCU, etc.). It does provide a control dependency
     177             :  * and thereby orders future stores. See the comment on top.
     178             :  *
     179             :  * Use of this function is not recommended for the normal reference counting
     180             :  * use case in which references are taken and released one at a time.  In these
     181             :  * cases, refcount_inc(), or one of its variants, should instead be used to
     182             :  * increment a reference count.
     183             :  *
     184             :  * Return: false if the passed refcount is 0, true otherwise
     185             :  */
     186             : static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
     187             : {
     188             :         return __refcount_add_not_zero(i, r, NULL);
     189             : }
     190             : 
     191        5222 : static inline void __refcount_add(int i, refcount_t *r, int *oldp)
     192             : {
     193       10444 :         int old = atomic_fetch_add_relaxed(i, &r->refs);
     194             : 
     195        5222 :         if (oldp)
     196           0 :                 *oldp = old;
     197             : 
     198        5222 :         if (unlikely(!old))
     199           0 :                 refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
     200        5222 :         else if (unlikely(old < 0 || old + i < 0))
     201           0 :                 refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
     202        5222 : }
     203             : 
     204             : /**
     205             :  * refcount_add - add a value to a refcount
     206             :  * @i: the value to add to the refcount
     207             :  * @r: the refcount
     208             :  *
     209             :  * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
     210             :  *
     211             :  * Provides no memory ordering, it is assumed the caller has guaranteed the
     212             :  * object memory to be stable (RCU, etc.). It does provide a control dependency
     213             :  * and thereby orders future stores. See the comment on top.
     214             :  *
     215             :  * Use of this function is not recommended for the normal reference counting
     216             :  * use case in which references are taken and released one at a time.  In these
     217             :  * cases, refcount_inc(), or one of its variants, should instead be used to
     218             :  * increment a reference count.
     219             :  */
     220             : static inline void refcount_add(int i, refcount_t *r)
     221             : {
     222           0 :         __refcount_add(i, r, NULL);
     223             : }
     224             : 
     225             : static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp)
     226             : {
     227          28 :         return __refcount_add_not_zero(1, r, oldp);
     228             : }
     229             : 
     230             : /**
     231             :  * refcount_inc_not_zero - increment a refcount unless it is 0
     232             :  * @r: the refcount to increment
     233             :  *
     234             :  * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
     235             :  * and WARN.
     236             :  *
     237             :  * Provides no memory ordering, it is assumed the caller has guaranteed the
     238             :  * object memory to be stable (RCU, etc.). It does provide a control dependency
     239             :  * and thereby orders future stores. See the comment on top.
     240             :  *
     241             :  * Return: true if the increment was successful, false otherwise
     242             :  */
     243             : static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
     244             : {
     245          28 :         return __refcount_inc_not_zero(r, NULL);
     246             : }
     247             : 
     248             : static inline void __refcount_inc(refcount_t *r, int *oldp)
     249             : {
     250        5222 :         __refcount_add(1, r, oldp);
     251             : }
     252             : 
     253             : /**
     254             :  * refcount_inc - increment a refcount
     255             :  * @r: the refcount to increment
     256             :  *
     257             :  * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
     258             :  *
     259             :  * Provides no memory ordering, it is assumed the caller already has a
     260             :  * reference on the object.
     261             :  *
     262             :  * Will WARN if the refcount is 0, as this represents a possible use-after-free
     263             :  * condition.
     264             :  */
     265             : static inline void refcount_inc(refcount_t *r)
     266             : {
     267        5222 :         __refcount_inc(r, NULL);
     268             : }
     269             : 
     270        4944 : static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp)
     271             : {
     272        9888 :         int old = atomic_fetch_sub_release(i, &r->refs);
     273             : 
     274        4944 :         if (oldp)
     275           0 :                 *oldp = old;
     276             : 
     277        4944 :         if (old == i) {
     278        2115 :                 smp_acquire__after_ctrl_dep();
     279        2115 :                 return true;
     280             :         }
     281             : 
     282        2829 :         if (unlikely(old < 0 || old - i < 0))
     283           0 :                 refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
     284             : 
     285             :         return false;
     286             : }
     287             : 
     288             : /**
     289             :  * refcount_sub_and_test - subtract from a refcount and test if it is 0
     290             :  * @i: amount to subtract from the refcount
     291             :  * @r: the refcount
     292             :  *
     293             :  * Similar to atomic_dec_and_test(), but it will WARN, return false and
     294             :  * ultimately leak on underflow and will fail to decrement when saturated
     295             :  * at REFCOUNT_SATURATED.
     296             :  *
     297             :  * Provides release memory ordering, such that prior loads and stores are done
     298             :  * before, and provides an acquire ordering on success such that free()
     299             :  * must come after.
     300             :  *
     301             :  * Use of this function is not recommended for the normal reference counting
     302             :  * use case in which references are taken and released one at a time.  In these
     303             :  * cases, refcount_dec(), or one of its variants, should instead be used to
     304             :  * decrement a reference count.
     305             :  *
     306             :  * Return: true if the resulting refcount is 0, false otherwise
     307             :  */
     308             : static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
     309             : {
     310           0 :         return __refcount_sub_and_test(i, r, NULL);
     311             : }
     312             : 
     313             : static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp)
     314             : {
     315        4944 :         return __refcount_sub_and_test(1, r, oldp);
     316             : }
     317             : 
     318             : /**
     319             :  * refcount_dec_and_test - decrement a refcount and test if it is 0
     320             :  * @r: the refcount
     321             :  *
     322             :  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
     323             :  * decrement when saturated at REFCOUNT_SATURATED.
     324             :  *
     325             :  * Provides release memory ordering, such that prior loads and stores are done
     326             :  * before, and provides an acquire ordering on success such that free()
     327             :  * must come after.
     328             :  *
     329             :  * Return: true if the resulting refcount is 0, false otherwise
     330             :  */
     331             : static inline __must_check bool refcount_dec_and_test(refcount_t *r)
     332             : {
     333        4944 :         return __refcount_dec_and_test(r, NULL);
     334             : }
     335             : 
     336             : static inline void __refcount_dec(refcount_t *r, int *oldp)
     337             : {
     338             :         int old = atomic_fetch_sub_release(1, &r->refs);
     339             : 
     340             :         if (oldp)
     341             :                 *oldp = old;
     342             : 
     343             :         if (unlikely(old <= 1))
     344             :                 refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
     345             : }
     346             : 
     347             : /**
     348             :  * refcount_dec - decrement a refcount
     349             :  * @r: the refcount
     350             :  *
     351             :  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
     352             :  * when saturated at REFCOUNT_SATURATED.
     353             :  *
     354             :  * Provides release memory ordering, such that prior loads and stores are done
     355             :  * before.
     356             :  */
     357             : static inline void refcount_dec(refcount_t *r)
     358             : {
     359             :         __refcount_dec(r, NULL);
     360             : }
     361             : 
     362             : extern __must_check bool refcount_dec_if_one(refcount_t *r);
     363             : extern __must_check bool refcount_dec_not_one(refcount_t *r);
     364             : extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) __cond_acquires(lock);
     365             : extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) __cond_acquires(lock);
     366             : extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
     367             :                                                        spinlock_t *lock,
     368             :                                                        unsigned long *flags) __cond_acquires(lock);
     369             : #endif /* _LINUX_REFCOUNT_H */

Generated by: LCOV version 1.14