Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_SCHED_H
3 : #define _LINUX_SCHED_H
4 :
5 : /*
6 : * Define 'struct task_struct' and provide the main scheduler
7 : * APIs (schedule(), wakeup variants, etc.)
8 : */
9 :
10 : #include <uapi/linux/sched.h>
11 :
12 : #include <asm/current.h>
13 :
14 : #include <linux/pid.h>
15 : #include <linux/sem.h>
16 : #include <linux/shm.h>
17 : #include <linux/kmsan_types.h>
18 : #include <linux/mutex.h>
19 : #include <linux/plist.h>
20 : #include <linux/hrtimer.h>
21 : #include <linux/irqflags.h>
22 : #include <linux/seccomp.h>
23 : #include <linux/nodemask.h>
24 : #include <linux/rcupdate.h>
25 : #include <linux/refcount.h>
26 : #include <linux/resource.h>
27 : #include <linux/latencytop.h>
28 : #include <linux/sched/prio.h>
29 : #include <linux/sched/types.h>
30 : #include <linux/signal_types.h>
31 : #include <linux/syscall_user_dispatch.h>
32 : #include <linux/mm_types_task.h>
33 : #include <linux/task_io_accounting.h>
34 : #include <linux/posix-timers.h>
35 : #include <linux/rseq.h>
36 : #include <linux/seqlock.h>
37 : #include <linux/kcsan.h>
38 : #include <linux/rv.h>
39 : #include <asm/kmap_size.h>
40 :
41 : /* task_struct member predeclarations (sorted alphabetically): */
42 : struct audit_context;
43 : struct backing_dev_info;
44 : struct bio_list;
45 : struct blk_plug;
46 : struct bpf_local_storage;
47 : struct bpf_run_ctx;
48 : struct capture_control;
49 : struct cfs_rq;
50 : struct fs_struct;
51 : struct futex_pi_state;
52 : struct io_context;
53 : struct io_uring_task;
54 : struct mempolicy;
55 : struct nameidata;
56 : struct nsproxy;
57 : struct perf_event_context;
58 : struct pid_namespace;
59 : struct pipe_inode_info;
60 : struct rcu_node;
61 : struct reclaim_state;
62 : struct robust_list_head;
63 : struct root_domain;
64 : struct rq;
65 : struct sched_attr;
66 : struct sched_param;
67 : struct seq_file;
68 : struct sighand_struct;
69 : struct signal_struct;
70 : struct task_delay_info;
71 : struct task_group;
72 :
73 : /*
74 : * Task state bitmask. NOTE! These bits are also
75 : * encoded in fs/proc/array.c: get_task_state().
76 : *
77 : * We have two separate sets of flags: task->state
78 : * is about runnability, while task->exit_state are
79 : * about the task exiting. Confusing, but this way
80 : * modifying one set can't modify the other one by
81 : * mistake.
82 : */
83 :
84 : /* Used in tsk->state: */
85 : #define TASK_RUNNING 0x00000000
86 : #define TASK_INTERRUPTIBLE 0x00000001
87 : #define TASK_UNINTERRUPTIBLE 0x00000002
88 : #define __TASK_STOPPED 0x00000004
89 : #define __TASK_TRACED 0x00000008
90 : /* Used in tsk->exit_state: */
91 : #define EXIT_DEAD 0x00000010
92 : #define EXIT_ZOMBIE 0x00000020
93 : #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
94 : /* Used in tsk->state again: */
95 : #define TASK_PARKED 0x00000040
96 : #define TASK_DEAD 0x00000080
97 : #define TASK_WAKEKILL 0x00000100
98 : #define TASK_WAKING 0x00000200
99 : #define TASK_NOLOAD 0x00000400
100 : #define TASK_NEW 0x00000800
101 : #define TASK_RTLOCK_WAIT 0x00001000
102 : #define TASK_FREEZABLE 0x00002000
103 : #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 : #define TASK_FROZEN 0x00008000
105 : #define TASK_STATE_MAX 0x00010000
106 :
107 : #define TASK_ANY (TASK_STATE_MAX-1)
108 :
109 : /*
110 : * DO NOT ADD ANY NEW USERS !
111 : */
112 : #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113 :
114 : /* Convenience macros for the sake of set_current_state: */
115 : #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 : #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
117 : #define TASK_TRACED __TASK_TRACED
118 :
119 : #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120 :
121 : /* Convenience macros for the sake of wake_up(): */
122 : #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123 :
124 : /* get_task_state(): */
125 : #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 : TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 : __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 : TASK_PARKED)
129 :
130 : #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
131 :
132 : #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 : #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 : #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135 :
136 : /*
137 : * Special states are those that do not use the normal wait-loop pattern. See
138 : * the comment with set_special_state().
139 : */
140 : #define is_special_task_state(state) \
141 : ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142 :
143 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 : # define debug_normal_state_change(state_value) \
145 : do { \
146 : WARN_ON_ONCE(is_special_task_state(state_value)); \
147 : current->task_state_change = _THIS_IP_; \
148 : } while (0)
149 :
150 : # define debug_special_state_change(state_value) \
151 : do { \
152 : WARN_ON_ONCE(!is_special_task_state(state_value)); \
153 : current->task_state_change = _THIS_IP_; \
154 : } while (0)
155 :
156 : # define debug_rtlock_wait_set_state() \
157 : do { \
158 : current->saved_state_change = current->task_state_change;\
159 : current->task_state_change = _THIS_IP_; \
160 : } while (0)
161 :
162 : # define debug_rtlock_wait_restore_state() \
163 : do { \
164 : current->task_state_change = current->saved_state_change;\
165 : } while (0)
166 :
167 : #else
168 : # define debug_normal_state_change(cond) do { } while (0)
169 : # define debug_special_state_change(cond) do { } while (0)
170 : # define debug_rtlock_wait_set_state() do { } while (0)
171 : # define debug_rtlock_wait_restore_state() do { } while (0)
172 : #endif
173 :
174 : /*
175 : * set_current_state() includes a barrier so that the write of current->state
176 : * is correctly serialised wrt the caller's subsequent test of whether to
177 : * actually sleep:
178 : *
179 : * for (;;) {
180 : * set_current_state(TASK_UNINTERRUPTIBLE);
181 : * if (CONDITION)
182 : * break;
183 : *
184 : * schedule();
185 : * }
186 : * __set_current_state(TASK_RUNNING);
187 : *
188 : * If the caller does not need such serialisation (because, for instance, the
189 : * CONDITION test and condition change and wakeup are under the same lock) then
190 : * use __set_current_state().
191 : *
192 : * The above is typically ordered against the wakeup, which does:
193 : *
194 : * CONDITION = 1;
195 : * wake_up_state(p, TASK_UNINTERRUPTIBLE);
196 : *
197 : * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198 : * accessing p->state.
199 : *
200 : * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201 : * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 : * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203 : *
204 : * However, with slightly different timing the wakeup TASK_RUNNING store can
205 : * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206 : * a problem either because that will result in one extra go around the loop
207 : * and our @cond test will save the day.
208 : *
209 : * Also see the comments of try_to_wake_up().
210 : */
211 : #define __set_current_state(state_value) \
212 : do { \
213 : debug_normal_state_change((state_value)); \
214 : WRITE_ONCE(current->__state, (state_value)); \
215 : } while (0)
216 :
217 : #define set_current_state(state_value) \
218 : do { \
219 : debug_normal_state_change((state_value)); \
220 : smp_store_mb(current->__state, (state_value)); \
221 : } while (0)
222 :
223 : /*
224 : * set_special_state() should be used for those states when the blocking task
225 : * can not use the regular condition based wait-loop. In that case we must
226 : * serialize against wakeups such that any possible in-flight TASK_RUNNING
227 : * stores will not collide with our state change.
228 : */
229 : #define set_special_state(state_value) \
230 : do { \
231 : unsigned long flags; /* may shadow */ \
232 : \
233 : raw_spin_lock_irqsave(¤t->pi_lock, flags); \
234 : debug_special_state_change((state_value)); \
235 : WRITE_ONCE(current->__state, (state_value)); \
236 : raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
237 : } while (0)
238 :
239 : /*
240 : * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241 : *
242 : * RT's spin/rwlock substitutions are state preserving. The state of the
243 : * task when blocking on the lock is saved in task_struct::saved_state and
244 : * restored after the lock has been acquired. These operations are
245 : * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246 : * lock related wakeups while the task is blocked on the lock are
247 : * redirected to operate on task_struct::saved_state to ensure that these
248 : * are not dropped. On restore task_struct::saved_state is set to
249 : * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250 : *
251 : * The lock operation looks like this:
252 : *
253 : * current_save_and_set_rtlock_wait_state();
254 : * for (;;) {
255 : * if (try_lock())
256 : * break;
257 : * raw_spin_unlock_irq(&lock->wait_lock);
258 : * schedule_rtlock();
259 : * raw_spin_lock_irq(&lock->wait_lock);
260 : * set_current_state(TASK_RTLOCK_WAIT);
261 : * }
262 : * current_restore_rtlock_saved_state();
263 : */
264 : #define current_save_and_set_rtlock_wait_state() \
265 : do { \
266 : lockdep_assert_irqs_disabled(); \
267 : raw_spin_lock(¤t->pi_lock); \
268 : current->saved_state = current->__state; \
269 : debug_rtlock_wait_set_state(); \
270 : WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
271 : raw_spin_unlock(¤t->pi_lock); \
272 : } while (0);
273 :
274 : #define current_restore_rtlock_saved_state() \
275 : do { \
276 : lockdep_assert_irqs_disabled(); \
277 : raw_spin_lock(¤t->pi_lock); \
278 : debug_rtlock_wait_restore_state(); \
279 : WRITE_ONCE(current->__state, current->saved_state); \
280 : current->saved_state = TASK_RUNNING; \
281 : raw_spin_unlock(¤t->pi_lock); \
282 : } while (0);
283 :
284 : #define get_current_state() READ_ONCE(current->__state)
285 :
286 : /*
287 : * Define the task command name length as enum, then it can be visible to
288 : * BPF programs.
289 : */
290 : enum {
291 : TASK_COMM_LEN = 16,
292 : };
293 :
294 : extern void scheduler_tick(void);
295 :
296 : #define MAX_SCHEDULE_TIMEOUT LONG_MAX
297 :
298 : extern long schedule_timeout(long timeout);
299 : extern long schedule_timeout_interruptible(long timeout);
300 : extern long schedule_timeout_killable(long timeout);
301 : extern long schedule_timeout_uninterruptible(long timeout);
302 : extern long schedule_timeout_idle(long timeout);
303 : asmlinkage void schedule(void);
304 : extern void schedule_preempt_disabled(void);
305 : asmlinkage void preempt_schedule_irq(void);
306 : #ifdef CONFIG_PREEMPT_RT
307 : extern void schedule_rtlock(void);
308 : #endif
309 :
310 : extern int __must_check io_schedule_prepare(void);
311 : extern void io_schedule_finish(int token);
312 : extern long io_schedule_timeout(long timeout);
313 : extern void io_schedule(void);
314 :
315 : /**
316 : * struct prev_cputime - snapshot of system and user cputime
317 : * @utime: time spent in user mode
318 : * @stime: time spent in system mode
319 : * @lock: protects the above two fields
320 : *
321 : * Stores previous user/system time values such that we can guarantee
322 : * monotonicity.
323 : */
324 : struct prev_cputime {
325 : #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326 : u64 utime;
327 : u64 stime;
328 : raw_spinlock_t lock;
329 : #endif
330 : };
331 :
332 : enum vtime_state {
333 : /* Task is sleeping or running in a CPU with VTIME inactive: */
334 : VTIME_INACTIVE = 0,
335 : /* Task is idle */
336 : VTIME_IDLE,
337 : /* Task runs in kernelspace in a CPU with VTIME active: */
338 : VTIME_SYS,
339 : /* Task runs in userspace in a CPU with VTIME active: */
340 : VTIME_USER,
341 : /* Task runs as guests in a CPU with VTIME active: */
342 : VTIME_GUEST,
343 : };
344 :
345 : struct vtime {
346 : seqcount_t seqcount;
347 : unsigned long long starttime;
348 : enum vtime_state state;
349 : unsigned int cpu;
350 : u64 utime;
351 : u64 stime;
352 : u64 gtime;
353 : };
354 :
355 : /*
356 : * Utilization clamp constraints.
357 : * @UCLAMP_MIN: Minimum utilization
358 : * @UCLAMP_MAX: Maximum utilization
359 : * @UCLAMP_CNT: Utilization clamp constraints count
360 : */
361 : enum uclamp_id {
362 : UCLAMP_MIN = 0,
363 : UCLAMP_MAX,
364 : UCLAMP_CNT
365 : };
366 :
367 : #ifdef CONFIG_SMP
368 : extern struct root_domain def_root_domain;
369 : extern struct mutex sched_domains_mutex;
370 : #endif
371 :
372 : struct sched_info {
373 : #ifdef CONFIG_SCHED_INFO
374 : /* Cumulative counters: */
375 :
376 : /* # of times we have run on this CPU: */
377 : unsigned long pcount;
378 :
379 : /* Time spent waiting on a runqueue: */
380 : unsigned long long run_delay;
381 :
382 : /* Timestamps: */
383 :
384 : /* When did we last run on a CPU? */
385 : unsigned long long last_arrival;
386 :
387 : /* When were we last queued to run? */
388 : unsigned long long last_queued;
389 :
390 : #endif /* CONFIG_SCHED_INFO */
391 : };
392 :
393 : /*
394 : * Integer metrics need fixed point arithmetic, e.g., sched/fair
395 : * has a few: load, load_avg, util_avg, freq, and capacity.
396 : *
397 : * We define a basic fixed point arithmetic range, and then formalize
398 : * all these metrics based on that basic range.
399 : */
400 : # define SCHED_FIXEDPOINT_SHIFT 10
401 : # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
402 :
403 : /* Increase resolution of cpu_capacity calculations */
404 : # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
405 : # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
406 :
407 : struct load_weight {
408 : unsigned long weight;
409 : u32 inv_weight;
410 : };
411 :
412 : /**
413 : * struct util_est - Estimation utilization of FAIR tasks
414 : * @enqueued: instantaneous estimated utilization of a task/cpu
415 : * @ewma: the Exponential Weighted Moving Average (EWMA)
416 : * utilization of a task
417 : *
418 : * Support data structure to track an Exponential Weighted Moving Average
419 : * (EWMA) of a FAIR task's utilization. New samples are added to the moving
420 : * average each time a task completes an activation. Sample's weight is chosen
421 : * so that the EWMA will be relatively insensitive to transient changes to the
422 : * task's workload.
423 : *
424 : * The enqueued attribute has a slightly different meaning for tasks and cpus:
425 : * - task: the task's util_avg at last task dequeue time
426 : * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
427 : * Thus, the util_est.enqueued of a task represents the contribution on the
428 : * estimated utilization of the CPU where that task is currently enqueued.
429 : *
430 : * Only for tasks we track a moving average of the past instantaneous
431 : * estimated utilization. This allows to absorb sporadic drops in utilization
432 : * of an otherwise almost periodic task.
433 : *
434 : * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
435 : * updates. When a task is dequeued, its util_est should not be updated if its
436 : * util_avg has not been updated in the meantime.
437 : * This information is mapped into the MSB bit of util_est.enqueued at dequeue
438 : * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
439 : * for a task) it is safe to use MSB.
440 : */
441 : struct util_est {
442 : unsigned int enqueued;
443 : unsigned int ewma;
444 : #define UTIL_EST_WEIGHT_SHIFT 2
445 : #define UTIL_AVG_UNCHANGED 0x80000000
446 : } __attribute__((__aligned__(sizeof(u64))));
447 :
448 : /*
449 : * The load/runnable/util_avg accumulates an infinite geometric series
450 : * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
451 : *
452 : * [load_avg definition]
453 : *
454 : * load_avg = runnable% * scale_load_down(load)
455 : *
456 : * [runnable_avg definition]
457 : *
458 : * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
459 : *
460 : * [util_avg definition]
461 : *
462 : * util_avg = running% * SCHED_CAPACITY_SCALE
463 : *
464 : * where runnable% is the time ratio that a sched_entity is runnable and
465 : * running% the time ratio that a sched_entity is running.
466 : *
467 : * For cfs_rq, they are the aggregated values of all runnable and blocked
468 : * sched_entities.
469 : *
470 : * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
471 : * capacity scaling. The scaling is done through the rq_clock_pelt that is used
472 : * for computing those signals (see update_rq_clock_pelt())
473 : *
474 : * N.B., the above ratios (runnable% and running%) themselves are in the
475 : * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
476 : * to as large a range as necessary. This is for example reflected by
477 : * util_avg's SCHED_CAPACITY_SCALE.
478 : *
479 : * [Overflow issue]
480 : *
481 : * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
482 : * with the highest load (=88761), always runnable on a single cfs_rq,
483 : * and should not overflow as the number already hits PID_MAX_LIMIT.
484 : *
485 : * For all other cases (including 32-bit kernels), struct load_weight's
486 : * weight will overflow first before we do, because:
487 : *
488 : * Max(load_avg) <= Max(load.weight)
489 : *
490 : * Then it is the load_weight's responsibility to consider overflow
491 : * issues.
492 : */
493 : struct sched_avg {
494 : u64 last_update_time;
495 : u64 load_sum;
496 : u64 runnable_sum;
497 : u32 util_sum;
498 : u32 period_contrib;
499 : unsigned long load_avg;
500 : unsigned long runnable_avg;
501 : unsigned long util_avg;
502 : struct util_est util_est;
503 : } ____cacheline_aligned;
504 :
505 : struct sched_statistics {
506 : #ifdef CONFIG_SCHEDSTATS
507 : u64 wait_start;
508 : u64 wait_max;
509 : u64 wait_count;
510 : u64 wait_sum;
511 : u64 iowait_count;
512 : u64 iowait_sum;
513 :
514 : u64 sleep_start;
515 : u64 sleep_max;
516 : s64 sum_sleep_runtime;
517 :
518 : u64 block_start;
519 : u64 block_max;
520 : s64 sum_block_runtime;
521 :
522 : u64 exec_max;
523 : u64 slice_max;
524 :
525 : u64 nr_migrations_cold;
526 : u64 nr_failed_migrations_affine;
527 : u64 nr_failed_migrations_running;
528 : u64 nr_failed_migrations_hot;
529 : u64 nr_forced_migrations;
530 :
531 : u64 nr_wakeups;
532 : u64 nr_wakeups_sync;
533 : u64 nr_wakeups_migrate;
534 : u64 nr_wakeups_local;
535 : u64 nr_wakeups_remote;
536 : u64 nr_wakeups_affine;
537 : u64 nr_wakeups_affine_attempts;
538 : u64 nr_wakeups_passive;
539 : u64 nr_wakeups_idle;
540 :
541 : #ifdef CONFIG_SCHED_CORE
542 : u64 core_forceidle_sum;
543 : #endif
544 : #endif /* CONFIG_SCHEDSTATS */
545 : } ____cacheline_aligned;
546 :
547 : struct sched_entity {
548 : /* For load-balancing: */
549 : struct load_weight load;
550 : struct rb_node run_node;
551 : struct list_head group_node;
552 : unsigned int on_rq;
553 :
554 : u64 exec_start;
555 : u64 sum_exec_runtime;
556 : u64 vruntime;
557 : u64 prev_sum_exec_runtime;
558 :
559 : u64 nr_migrations;
560 :
561 : #ifdef CONFIG_FAIR_GROUP_SCHED
562 : int depth;
563 : struct sched_entity *parent;
564 : /* rq on which this entity is (to be) queued: */
565 : struct cfs_rq *cfs_rq;
566 : /* rq "owned" by this entity/group: */
567 : struct cfs_rq *my_q;
568 : /* cached value of my_q->h_nr_running */
569 : unsigned long runnable_weight;
570 : #endif
571 :
572 : #ifdef CONFIG_SMP
573 : /*
574 : * Per entity load average tracking.
575 : *
576 : * Put into separate cache line so it does not
577 : * collide with read-mostly values above.
578 : */
579 : struct sched_avg avg;
580 : #endif
581 : };
582 :
583 : struct sched_rt_entity {
584 : struct list_head run_list;
585 : unsigned long timeout;
586 : unsigned long watchdog_stamp;
587 : unsigned int time_slice;
588 : unsigned short on_rq;
589 : unsigned short on_list;
590 :
591 : struct sched_rt_entity *back;
592 : #ifdef CONFIG_RT_GROUP_SCHED
593 : struct sched_rt_entity *parent;
594 : /* rq on which this entity is (to be) queued: */
595 : struct rt_rq *rt_rq;
596 : /* rq "owned" by this entity/group: */
597 : struct rt_rq *my_q;
598 : #endif
599 : } __randomize_layout;
600 :
601 : struct sched_dl_entity {
602 : struct rb_node rb_node;
603 :
604 : /*
605 : * Original scheduling parameters. Copied here from sched_attr
606 : * during sched_setattr(), they will remain the same until
607 : * the next sched_setattr().
608 : */
609 : u64 dl_runtime; /* Maximum runtime for each instance */
610 : u64 dl_deadline; /* Relative deadline of each instance */
611 : u64 dl_period; /* Separation of two instances (period) */
612 : u64 dl_bw; /* dl_runtime / dl_period */
613 : u64 dl_density; /* dl_runtime / dl_deadline */
614 :
615 : /*
616 : * Actual scheduling parameters. Initialized with the values above,
617 : * they are continuously updated during task execution. Note that
618 : * the remaining runtime could be < 0 in case we are in overrun.
619 : */
620 : s64 runtime; /* Remaining runtime for this instance */
621 : u64 deadline; /* Absolute deadline for this instance */
622 : unsigned int flags; /* Specifying the scheduler behaviour */
623 :
624 : /*
625 : * Some bool flags:
626 : *
627 : * @dl_throttled tells if we exhausted the runtime. If so, the
628 : * task has to wait for a replenishment to be performed at the
629 : * next firing of dl_timer.
630 : *
631 : * @dl_yielded tells if task gave up the CPU before consuming
632 : * all its available runtime during the last job.
633 : *
634 : * @dl_non_contending tells if the task is inactive while still
635 : * contributing to the active utilization. In other words, it
636 : * indicates if the inactive timer has been armed and its handler
637 : * has not been executed yet. This flag is useful to avoid race
638 : * conditions between the inactive timer handler and the wakeup
639 : * code.
640 : *
641 : * @dl_overrun tells if the task asked to be informed about runtime
642 : * overruns.
643 : */
644 : unsigned int dl_throttled : 1;
645 : unsigned int dl_yielded : 1;
646 : unsigned int dl_non_contending : 1;
647 : unsigned int dl_overrun : 1;
648 :
649 : /*
650 : * Bandwidth enforcement timer. Each -deadline task has its
651 : * own bandwidth to be enforced, thus we need one timer per task.
652 : */
653 : struct hrtimer dl_timer;
654 :
655 : /*
656 : * Inactive timer, responsible for decreasing the active utilization
657 : * at the "0-lag time". When a -deadline task blocks, it contributes
658 : * to GRUB's active utilization until the "0-lag time", hence a
659 : * timer is needed to decrease the active utilization at the correct
660 : * time.
661 : */
662 : struct hrtimer inactive_timer;
663 :
664 : #ifdef CONFIG_RT_MUTEXES
665 : /*
666 : * Priority Inheritance. When a DEADLINE scheduling entity is boosted
667 : * pi_se points to the donor, otherwise points to the dl_se it belongs
668 : * to (the original one/itself).
669 : */
670 : struct sched_dl_entity *pi_se;
671 : #endif
672 : };
673 :
674 : #ifdef CONFIG_UCLAMP_TASK
675 : /* Number of utilization clamp buckets (shorter alias) */
676 : #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
677 :
678 : /*
679 : * Utilization clamp for a scheduling entity
680 : * @value: clamp value "assigned" to a se
681 : * @bucket_id: bucket index corresponding to the "assigned" value
682 : * @active: the se is currently refcounted in a rq's bucket
683 : * @user_defined: the requested clamp value comes from user-space
684 : *
685 : * The bucket_id is the index of the clamp bucket matching the clamp value
686 : * which is pre-computed and stored to avoid expensive integer divisions from
687 : * the fast path.
688 : *
689 : * The active bit is set whenever a task has got an "effective" value assigned,
690 : * which can be different from the clamp value "requested" from user-space.
691 : * This allows to know a task is refcounted in the rq's bucket corresponding
692 : * to the "effective" bucket_id.
693 : *
694 : * The user_defined bit is set whenever a task has got a task-specific clamp
695 : * value requested from userspace, i.e. the system defaults apply to this task
696 : * just as a restriction. This allows to relax default clamps when a less
697 : * restrictive task-specific value has been requested, thus allowing to
698 : * implement a "nice" semantic. For example, a task running with a 20%
699 : * default boost can still drop its own boosting to 0%.
700 : */
701 : struct uclamp_se {
702 : unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
703 : unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
704 : unsigned int active : 1;
705 : unsigned int user_defined : 1;
706 : };
707 : #endif /* CONFIG_UCLAMP_TASK */
708 :
709 : union rcu_special {
710 : struct {
711 : u8 blocked;
712 : u8 need_qs;
713 : u8 exp_hint; /* Hint for performance. */
714 : u8 need_mb; /* Readers need smp_mb(). */
715 : } b; /* Bits. */
716 : u32 s; /* Set of bits. */
717 : };
718 :
719 : enum perf_event_task_context {
720 : perf_invalid_context = -1,
721 : perf_hw_context = 0,
722 : perf_sw_context,
723 : perf_nr_task_contexts,
724 : };
725 :
726 : struct wake_q_node {
727 : struct wake_q_node *next;
728 : };
729 :
730 : struct kmap_ctrl {
731 : #ifdef CONFIG_KMAP_LOCAL
732 : int idx;
733 : pte_t pteval[KM_MAX_IDX];
734 : #endif
735 : };
736 :
737 : struct task_struct {
738 : #ifdef CONFIG_THREAD_INFO_IN_TASK
739 : /*
740 : * For reasons of header soup (see current_thread_info()), this
741 : * must be the first element of task_struct.
742 : */
743 : struct thread_info thread_info;
744 : #endif
745 : unsigned int __state;
746 :
747 : #ifdef CONFIG_PREEMPT_RT
748 : /* saved state for "spinlock sleepers" */
749 : unsigned int saved_state;
750 : #endif
751 :
752 : /*
753 : * This begins the randomizable portion of task_struct. Only
754 : * scheduling-critical items should be added above here.
755 : */
756 : randomized_struct_fields_start
757 :
758 : void *stack;
759 : refcount_t usage;
760 : /* Per task flags (PF_*), defined further below: */
761 : unsigned int flags;
762 : unsigned int ptrace;
763 :
764 : #ifdef CONFIG_SMP
765 : int on_cpu;
766 : struct __call_single_node wake_entry;
767 : unsigned int wakee_flips;
768 : unsigned long wakee_flip_decay_ts;
769 : struct task_struct *last_wakee;
770 :
771 : /*
772 : * recent_used_cpu is initially set as the last CPU used by a task
773 : * that wakes affine another task. Waker/wakee relationships can
774 : * push tasks around a CPU where each wakeup moves to the next one.
775 : * Tracking a recently used CPU allows a quick search for a recently
776 : * used CPU that may be idle.
777 : */
778 : int recent_used_cpu;
779 : int wake_cpu;
780 : #endif
781 : int on_rq;
782 :
783 : int prio;
784 : int static_prio;
785 : int normal_prio;
786 : unsigned int rt_priority;
787 :
788 : struct sched_entity se;
789 : struct sched_rt_entity rt;
790 : struct sched_dl_entity dl;
791 : const struct sched_class *sched_class;
792 :
793 : #ifdef CONFIG_SCHED_CORE
794 : struct rb_node core_node;
795 : unsigned long core_cookie;
796 : unsigned int core_occupation;
797 : #endif
798 :
799 : #ifdef CONFIG_CGROUP_SCHED
800 : struct task_group *sched_task_group;
801 : #endif
802 :
803 : #ifdef CONFIG_UCLAMP_TASK
804 : /*
805 : * Clamp values requested for a scheduling entity.
806 : * Must be updated with task_rq_lock() held.
807 : */
808 : struct uclamp_se uclamp_req[UCLAMP_CNT];
809 : /*
810 : * Effective clamp values used for a scheduling entity.
811 : * Must be updated with task_rq_lock() held.
812 : */
813 : struct uclamp_se uclamp[UCLAMP_CNT];
814 : #endif
815 :
816 : struct sched_statistics stats;
817 :
818 : #ifdef CONFIG_PREEMPT_NOTIFIERS
819 : /* List of struct preempt_notifier: */
820 : struct hlist_head preempt_notifiers;
821 : #endif
822 :
823 : #ifdef CONFIG_BLK_DEV_IO_TRACE
824 : unsigned int btrace_seq;
825 : #endif
826 :
827 : unsigned int policy;
828 : int nr_cpus_allowed;
829 : const cpumask_t *cpus_ptr;
830 : cpumask_t *user_cpus_ptr;
831 : cpumask_t cpus_mask;
832 : void *migration_pending;
833 : #ifdef CONFIG_SMP
834 : unsigned short migration_disabled;
835 : #endif
836 : unsigned short migration_flags;
837 :
838 : #ifdef CONFIG_PREEMPT_RCU
839 : int rcu_read_lock_nesting;
840 : union rcu_special rcu_read_unlock_special;
841 : struct list_head rcu_node_entry;
842 : struct rcu_node *rcu_blocked_node;
843 : #endif /* #ifdef CONFIG_PREEMPT_RCU */
844 :
845 : #ifdef CONFIG_TASKS_RCU
846 : unsigned long rcu_tasks_nvcsw;
847 : u8 rcu_tasks_holdout;
848 : u8 rcu_tasks_idx;
849 : int rcu_tasks_idle_cpu;
850 : struct list_head rcu_tasks_holdout_list;
851 : #endif /* #ifdef CONFIG_TASKS_RCU */
852 :
853 : #ifdef CONFIG_TASKS_TRACE_RCU
854 : int trc_reader_nesting;
855 : int trc_ipi_to_cpu;
856 : union rcu_special trc_reader_special;
857 : struct list_head trc_holdout_list;
858 : struct list_head trc_blkd_node;
859 : int trc_blkd_cpu;
860 : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
861 :
862 : struct sched_info sched_info;
863 :
864 : struct list_head tasks;
865 : #ifdef CONFIG_SMP
866 : struct plist_node pushable_tasks;
867 : struct rb_node pushable_dl_tasks;
868 : #endif
869 :
870 : struct mm_struct *mm;
871 : struct mm_struct *active_mm;
872 :
873 : int exit_state;
874 : int exit_code;
875 : int exit_signal;
876 : /* The signal sent when the parent dies: */
877 : int pdeath_signal;
878 : /* JOBCTL_*, siglock protected: */
879 : unsigned long jobctl;
880 :
881 : /* Used for emulating ABI behavior of previous Linux versions: */
882 : unsigned int personality;
883 :
884 : /* Scheduler bits, serialized by scheduler locks: */
885 : unsigned sched_reset_on_fork:1;
886 : unsigned sched_contributes_to_load:1;
887 : unsigned sched_migrated:1;
888 :
889 : /* Force alignment to the next boundary: */
890 : unsigned :0;
891 :
892 : /* Unserialized, strictly 'current' */
893 :
894 : /*
895 : * This field must not be in the scheduler word above due to wakelist
896 : * queueing no longer being serialized by p->on_cpu. However:
897 : *
898 : * p->XXX = X; ttwu()
899 : * schedule() if (p->on_rq && ..) // false
900 : * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
901 : * deactivate_task() ttwu_queue_wakelist())
902 : * p->on_rq = 0; p->sched_remote_wakeup = Y;
903 : *
904 : * guarantees all stores of 'current' are visible before
905 : * ->sched_remote_wakeup gets used, so it can be in this word.
906 : */
907 : unsigned sched_remote_wakeup:1;
908 :
909 : /* Bit to tell LSMs we're in execve(): */
910 : unsigned in_execve:1;
911 : unsigned in_iowait:1;
912 : #ifndef TIF_RESTORE_SIGMASK
913 : unsigned restore_sigmask:1;
914 : #endif
915 : #ifdef CONFIG_MEMCG
916 : unsigned in_user_fault:1;
917 : #endif
918 : #ifdef CONFIG_LRU_GEN
919 : /* whether the LRU algorithm may apply to this access */
920 : unsigned in_lru_fault:1;
921 : #endif
922 : #ifdef CONFIG_COMPAT_BRK
923 : unsigned brk_randomized:1;
924 : #endif
925 : #ifdef CONFIG_CGROUPS
926 : /* disallow userland-initiated cgroup migration */
927 : unsigned no_cgroup_migration:1;
928 : /* task is frozen/stopped (used by the cgroup freezer) */
929 : unsigned frozen:1;
930 : #endif
931 : #ifdef CONFIG_BLK_CGROUP
932 : unsigned use_memdelay:1;
933 : #endif
934 : #ifdef CONFIG_PSI
935 : /* Stalled due to lack of memory */
936 : unsigned in_memstall:1;
937 : #endif
938 : #ifdef CONFIG_PAGE_OWNER
939 : /* Used by page_owner=on to detect recursion in page tracking. */
940 : unsigned in_page_owner:1;
941 : #endif
942 : #ifdef CONFIG_EVENTFD
943 : /* Recursion prevention for eventfd_signal() */
944 : unsigned in_eventfd:1;
945 : #endif
946 : #ifdef CONFIG_IOMMU_SVA
947 : unsigned pasid_activated:1;
948 : #endif
949 : #ifdef CONFIG_CPU_SUP_INTEL
950 : unsigned reported_split_lock:1;
951 : #endif
952 : #ifdef CONFIG_TASK_DELAY_ACCT
953 : /* delay due to memory thrashing */
954 : unsigned in_thrashing:1;
955 : #endif
956 :
957 : unsigned long atomic_flags; /* Flags requiring atomic access. */
958 :
959 : struct restart_block restart_block;
960 :
961 : pid_t pid;
962 : pid_t tgid;
963 :
964 : #ifdef CONFIG_STACKPROTECTOR
965 : /* Canary value for the -fstack-protector GCC feature: */
966 : unsigned long stack_canary;
967 : #endif
968 : /*
969 : * Pointers to the (original) parent process, youngest child, younger sibling,
970 : * older sibling, respectively. (p->father can be replaced with
971 : * p->real_parent->pid)
972 : */
973 :
974 : /* Real parent process: */
975 : struct task_struct __rcu *real_parent;
976 :
977 : /* Recipient of SIGCHLD, wait4() reports: */
978 : struct task_struct __rcu *parent;
979 :
980 : /*
981 : * Children/sibling form the list of natural children:
982 : */
983 : struct list_head children;
984 : struct list_head sibling;
985 : struct task_struct *group_leader;
986 :
987 : /*
988 : * 'ptraced' is the list of tasks this task is using ptrace() on.
989 : *
990 : * This includes both natural children and PTRACE_ATTACH targets.
991 : * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
992 : */
993 : struct list_head ptraced;
994 : struct list_head ptrace_entry;
995 :
996 : /* PID/PID hash table linkage. */
997 : struct pid *thread_pid;
998 : struct hlist_node pid_links[PIDTYPE_MAX];
999 : struct list_head thread_group;
1000 : struct list_head thread_node;
1001 :
1002 : struct completion *vfork_done;
1003 :
1004 : /* CLONE_CHILD_SETTID: */
1005 : int __user *set_child_tid;
1006 :
1007 : /* CLONE_CHILD_CLEARTID: */
1008 : int __user *clear_child_tid;
1009 :
1010 : /* PF_KTHREAD | PF_IO_WORKER */
1011 : void *worker_private;
1012 :
1013 : u64 utime;
1014 : u64 stime;
1015 : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1016 : u64 utimescaled;
1017 : u64 stimescaled;
1018 : #endif
1019 : u64 gtime;
1020 : struct prev_cputime prev_cputime;
1021 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1022 : struct vtime vtime;
1023 : #endif
1024 :
1025 : #ifdef CONFIG_NO_HZ_FULL
1026 : atomic_t tick_dep_mask;
1027 : #endif
1028 : /* Context switch counts: */
1029 : unsigned long nvcsw;
1030 : unsigned long nivcsw;
1031 :
1032 : /* Monotonic time in nsecs: */
1033 : u64 start_time;
1034 :
1035 : /* Boot based time in nsecs: */
1036 : u64 start_boottime;
1037 :
1038 : /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1039 : unsigned long min_flt;
1040 : unsigned long maj_flt;
1041 :
1042 : /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1043 : struct posix_cputimers posix_cputimers;
1044 :
1045 : #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1046 : struct posix_cputimers_work posix_cputimers_work;
1047 : #endif
1048 :
1049 : /* Process credentials: */
1050 :
1051 : /* Tracer's credentials at attach: */
1052 : const struct cred __rcu *ptracer_cred;
1053 :
1054 : /* Objective and real subjective task credentials (COW): */
1055 : const struct cred __rcu *real_cred;
1056 :
1057 : /* Effective (overridable) subjective task credentials (COW): */
1058 : const struct cred __rcu *cred;
1059 :
1060 : #ifdef CONFIG_KEYS
1061 : /* Cached requested key. */
1062 : struct key *cached_requested_key;
1063 : #endif
1064 :
1065 : /*
1066 : * executable name, excluding path.
1067 : *
1068 : * - normally initialized setup_new_exec()
1069 : * - access it with [gs]et_task_comm()
1070 : * - lock it with task_lock()
1071 : */
1072 : char comm[TASK_COMM_LEN];
1073 :
1074 : struct nameidata *nameidata;
1075 :
1076 : #ifdef CONFIG_SYSVIPC
1077 : struct sysv_sem sysvsem;
1078 : struct sysv_shm sysvshm;
1079 : #endif
1080 : #ifdef CONFIG_DETECT_HUNG_TASK
1081 : unsigned long last_switch_count;
1082 : unsigned long last_switch_time;
1083 : #endif
1084 : /* Filesystem information: */
1085 : struct fs_struct *fs;
1086 :
1087 : /* Open file information: */
1088 : struct files_struct *files;
1089 :
1090 : #ifdef CONFIG_IO_URING
1091 : struct io_uring_task *io_uring;
1092 : #endif
1093 :
1094 : /* Namespaces: */
1095 : struct nsproxy *nsproxy;
1096 :
1097 : /* Signal handlers: */
1098 : struct signal_struct *signal;
1099 : struct sighand_struct __rcu *sighand;
1100 : sigset_t blocked;
1101 : sigset_t real_blocked;
1102 : /* Restored if set_restore_sigmask() was used: */
1103 : sigset_t saved_sigmask;
1104 : struct sigpending pending;
1105 : unsigned long sas_ss_sp;
1106 : size_t sas_ss_size;
1107 : unsigned int sas_ss_flags;
1108 :
1109 : struct callback_head *task_works;
1110 :
1111 : #ifdef CONFIG_AUDIT
1112 : #ifdef CONFIG_AUDITSYSCALL
1113 : struct audit_context *audit_context;
1114 : #endif
1115 : kuid_t loginuid;
1116 : unsigned int sessionid;
1117 : #endif
1118 : struct seccomp seccomp;
1119 : struct syscall_user_dispatch syscall_dispatch;
1120 :
1121 : /* Thread group tracking: */
1122 : u64 parent_exec_id;
1123 : u64 self_exec_id;
1124 :
1125 : /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1126 : spinlock_t alloc_lock;
1127 :
1128 : /* Protection of the PI data structures: */
1129 : raw_spinlock_t pi_lock;
1130 :
1131 : struct wake_q_node wake_q;
1132 :
1133 : #ifdef CONFIG_RT_MUTEXES
1134 : /* PI waiters blocked on a rt_mutex held by this task: */
1135 : struct rb_root_cached pi_waiters;
1136 : /* Updated under owner's pi_lock and rq lock */
1137 : struct task_struct *pi_top_task;
1138 : /* Deadlock detection and priority inheritance handling: */
1139 : struct rt_mutex_waiter *pi_blocked_on;
1140 : #endif
1141 :
1142 : #ifdef CONFIG_DEBUG_MUTEXES
1143 : /* Mutex deadlock detection: */
1144 : struct mutex_waiter *blocked_on;
1145 : #endif
1146 :
1147 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1148 : int non_block_count;
1149 : #endif
1150 :
1151 : #ifdef CONFIG_TRACE_IRQFLAGS
1152 : struct irqtrace_events irqtrace;
1153 : unsigned int hardirq_threaded;
1154 : u64 hardirq_chain_key;
1155 : int softirqs_enabled;
1156 : int softirq_context;
1157 : int irq_config;
1158 : #endif
1159 : #ifdef CONFIG_PREEMPT_RT
1160 : int softirq_disable_cnt;
1161 : #endif
1162 :
1163 : #ifdef CONFIG_LOCKDEP
1164 : # define MAX_LOCK_DEPTH 48UL
1165 : u64 curr_chain_key;
1166 : int lockdep_depth;
1167 : unsigned int lockdep_recursion;
1168 : struct held_lock held_locks[MAX_LOCK_DEPTH];
1169 : #endif
1170 :
1171 : #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1172 : unsigned int in_ubsan;
1173 : #endif
1174 :
1175 : /* Journalling filesystem info: */
1176 : void *journal_info;
1177 :
1178 : /* Stacked block device info: */
1179 : struct bio_list *bio_list;
1180 :
1181 : /* Stack plugging: */
1182 : struct blk_plug *plug;
1183 :
1184 : /* VM state: */
1185 : struct reclaim_state *reclaim_state;
1186 :
1187 : struct backing_dev_info *backing_dev_info;
1188 :
1189 : struct io_context *io_context;
1190 :
1191 : #ifdef CONFIG_COMPACTION
1192 : struct capture_control *capture_control;
1193 : #endif
1194 : /* Ptrace state: */
1195 : unsigned long ptrace_message;
1196 : kernel_siginfo_t *last_siginfo;
1197 :
1198 : struct task_io_accounting ioac;
1199 : #ifdef CONFIG_PSI
1200 : /* Pressure stall state */
1201 : unsigned int psi_flags;
1202 : #endif
1203 : #ifdef CONFIG_TASK_XACCT
1204 : /* Accumulated RSS usage: */
1205 : u64 acct_rss_mem1;
1206 : /* Accumulated virtual memory usage: */
1207 : u64 acct_vm_mem1;
1208 : /* stime + utime since last update: */
1209 : u64 acct_timexpd;
1210 : #endif
1211 : #ifdef CONFIG_CPUSETS
1212 : /* Protected by ->alloc_lock: */
1213 : nodemask_t mems_allowed;
1214 : /* Sequence number to catch updates: */
1215 : seqcount_spinlock_t mems_allowed_seq;
1216 : int cpuset_mem_spread_rotor;
1217 : int cpuset_slab_spread_rotor;
1218 : #endif
1219 : #ifdef CONFIG_CGROUPS
1220 : /* Control Group info protected by css_set_lock: */
1221 : struct css_set __rcu *cgroups;
1222 : /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1223 : struct list_head cg_list;
1224 : #endif
1225 : #ifdef CONFIG_X86_CPU_RESCTRL
1226 : u32 closid;
1227 : u32 rmid;
1228 : #endif
1229 : #ifdef CONFIG_FUTEX
1230 : struct robust_list_head __user *robust_list;
1231 : #ifdef CONFIG_COMPAT
1232 : struct compat_robust_list_head __user *compat_robust_list;
1233 : #endif
1234 : struct list_head pi_state_list;
1235 : struct futex_pi_state *pi_state_cache;
1236 : struct mutex futex_exit_mutex;
1237 : unsigned int futex_state;
1238 : #endif
1239 : #ifdef CONFIG_PERF_EVENTS
1240 : struct perf_event_context *perf_event_ctxp;
1241 : struct mutex perf_event_mutex;
1242 : struct list_head perf_event_list;
1243 : #endif
1244 : #ifdef CONFIG_DEBUG_PREEMPT
1245 : unsigned long preempt_disable_ip;
1246 : #endif
1247 : #ifdef CONFIG_NUMA
1248 : /* Protected by alloc_lock: */
1249 : struct mempolicy *mempolicy;
1250 : short il_prev;
1251 : short pref_node_fork;
1252 : #endif
1253 : #ifdef CONFIG_NUMA_BALANCING
1254 : int numa_scan_seq;
1255 : unsigned int numa_scan_period;
1256 : unsigned int numa_scan_period_max;
1257 : int numa_preferred_nid;
1258 : unsigned long numa_migrate_retry;
1259 : /* Migration stamp: */
1260 : u64 node_stamp;
1261 : u64 last_task_numa_placement;
1262 : u64 last_sum_exec_runtime;
1263 : struct callback_head numa_work;
1264 :
1265 : /*
1266 : * This pointer is only modified for current in syscall and
1267 : * pagefault context (and for tasks being destroyed), so it can be read
1268 : * from any of the following contexts:
1269 : * - RCU read-side critical section
1270 : * - current->numa_group from everywhere
1271 : * - task's runqueue locked, task not running
1272 : */
1273 : struct numa_group __rcu *numa_group;
1274 :
1275 : /*
1276 : * numa_faults is an array split into four regions:
1277 : * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1278 : * in this precise order.
1279 : *
1280 : * faults_memory: Exponential decaying average of faults on a per-node
1281 : * basis. Scheduling placement decisions are made based on these
1282 : * counts. The values remain static for the duration of a PTE scan.
1283 : * faults_cpu: Track the nodes the process was running on when a NUMA
1284 : * hinting fault was incurred.
1285 : * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1286 : * during the current scan window. When the scan completes, the counts
1287 : * in faults_memory and faults_cpu decay and these values are copied.
1288 : */
1289 : unsigned long *numa_faults;
1290 : unsigned long total_numa_faults;
1291 :
1292 : /*
1293 : * numa_faults_locality tracks if faults recorded during the last
1294 : * scan window were remote/local or failed to migrate. The task scan
1295 : * period is adapted based on the locality of the faults with different
1296 : * weights depending on whether they were shared or private faults
1297 : */
1298 : unsigned long numa_faults_locality[3];
1299 :
1300 : unsigned long numa_pages_migrated;
1301 : #endif /* CONFIG_NUMA_BALANCING */
1302 :
1303 : #ifdef CONFIG_RSEQ
1304 : struct rseq __user *rseq;
1305 : u32 rseq_len;
1306 : u32 rseq_sig;
1307 : /*
1308 : * RmW on rseq_event_mask must be performed atomically
1309 : * with respect to preemption.
1310 : */
1311 : unsigned long rseq_event_mask;
1312 : #endif
1313 :
1314 : #ifdef CONFIG_SCHED_MM_CID
1315 : int mm_cid; /* Current cid in mm */
1316 : int mm_cid_active; /* Whether cid bitmap is active */
1317 : #endif
1318 :
1319 : struct tlbflush_unmap_batch tlb_ubc;
1320 :
1321 : union {
1322 : refcount_t rcu_users;
1323 : struct rcu_head rcu;
1324 : };
1325 :
1326 : /* Cache last used pipe for splice(): */
1327 : struct pipe_inode_info *splice_pipe;
1328 :
1329 : struct page_frag task_frag;
1330 :
1331 : #ifdef CONFIG_TASK_DELAY_ACCT
1332 : struct task_delay_info *delays;
1333 : #endif
1334 :
1335 : #ifdef CONFIG_FAULT_INJECTION
1336 : int make_it_fail;
1337 : unsigned int fail_nth;
1338 : #endif
1339 : /*
1340 : * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1341 : * balance_dirty_pages() for a dirty throttling pause:
1342 : */
1343 : int nr_dirtied;
1344 : int nr_dirtied_pause;
1345 : /* Start of a write-and-pause period: */
1346 : unsigned long dirty_paused_when;
1347 :
1348 : #ifdef CONFIG_LATENCYTOP
1349 : int latency_record_count;
1350 : struct latency_record latency_record[LT_SAVECOUNT];
1351 : #endif
1352 : /*
1353 : * Time slack values; these are used to round up poll() and
1354 : * select() etc timeout values. These are in nanoseconds.
1355 : */
1356 : u64 timer_slack_ns;
1357 : u64 default_timer_slack_ns;
1358 :
1359 : #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1360 : unsigned int kasan_depth;
1361 : #endif
1362 :
1363 : #ifdef CONFIG_KCSAN
1364 : struct kcsan_ctx kcsan_ctx;
1365 : #ifdef CONFIG_TRACE_IRQFLAGS
1366 : struct irqtrace_events kcsan_save_irqtrace;
1367 : #endif
1368 : #ifdef CONFIG_KCSAN_WEAK_MEMORY
1369 : int kcsan_stack_depth;
1370 : #endif
1371 : #endif
1372 :
1373 : #ifdef CONFIG_KMSAN
1374 : struct kmsan_ctx kmsan_ctx;
1375 : #endif
1376 :
1377 : #if IS_ENABLED(CONFIG_KUNIT)
1378 : struct kunit *kunit_test;
1379 : #endif
1380 :
1381 : #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1382 : /* Index of current stored address in ret_stack: */
1383 : int curr_ret_stack;
1384 : int curr_ret_depth;
1385 :
1386 : /* Stack of return addresses for return function tracing: */
1387 : struct ftrace_ret_stack *ret_stack;
1388 :
1389 : /* Timestamp for last schedule: */
1390 : unsigned long long ftrace_timestamp;
1391 :
1392 : /*
1393 : * Number of functions that haven't been traced
1394 : * because of depth overrun:
1395 : */
1396 : atomic_t trace_overrun;
1397 :
1398 : /* Pause tracing: */
1399 : atomic_t tracing_graph_pause;
1400 : #endif
1401 :
1402 : #ifdef CONFIG_TRACING
1403 : /* Bitmask and counter of trace recursion: */
1404 : unsigned long trace_recursion;
1405 : #endif /* CONFIG_TRACING */
1406 :
1407 : #ifdef CONFIG_KCOV
1408 : /* See kernel/kcov.c for more details. */
1409 :
1410 : /* Coverage collection mode enabled for this task (0 if disabled): */
1411 : unsigned int kcov_mode;
1412 :
1413 : /* Size of the kcov_area: */
1414 : unsigned int kcov_size;
1415 :
1416 : /* Buffer for coverage collection: */
1417 : void *kcov_area;
1418 :
1419 : /* KCOV descriptor wired with this task or NULL: */
1420 : struct kcov *kcov;
1421 :
1422 : /* KCOV common handle for remote coverage collection: */
1423 : u64 kcov_handle;
1424 :
1425 : /* KCOV sequence number: */
1426 : int kcov_sequence;
1427 :
1428 : /* Collect coverage from softirq context: */
1429 : unsigned int kcov_softirq;
1430 : #endif
1431 :
1432 : #ifdef CONFIG_MEMCG
1433 : struct mem_cgroup *memcg_in_oom;
1434 : gfp_t memcg_oom_gfp_mask;
1435 : int memcg_oom_order;
1436 :
1437 : /* Number of pages to reclaim on returning to userland: */
1438 : unsigned int memcg_nr_pages_over_high;
1439 :
1440 : /* Used by memcontrol for targeted memcg charge: */
1441 : struct mem_cgroup *active_memcg;
1442 : #endif
1443 :
1444 : #ifdef CONFIG_BLK_CGROUP
1445 : struct gendisk *throttle_disk;
1446 : #endif
1447 :
1448 : #ifdef CONFIG_UPROBES
1449 : struct uprobe_task *utask;
1450 : #endif
1451 : #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1452 : unsigned int sequential_io;
1453 : unsigned int sequential_io_avg;
1454 : #endif
1455 : struct kmap_ctrl kmap_ctrl;
1456 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1457 : unsigned long task_state_change;
1458 : # ifdef CONFIG_PREEMPT_RT
1459 : unsigned long saved_state_change;
1460 : # endif
1461 : #endif
1462 : int pagefault_disabled;
1463 : #ifdef CONFIG_MMU
1464 : struct task_struct *oom_reaper_list;
1465 : struct timer_list oom_reaper_timer;
1466 : #endif
1467 : #ifdef CONFIG_VMAP_STACK
1468 : struct vm_struct *stack_vm_area;
1469 : #endif
1470 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1471 : /* A live task holds one reference: */
1472 : refcount_t stack_refcount;
1473 : #endif
1474 : #ifdef CONFIG_LIVEPATCH
1475 : int patch_state;
1476 : #endif
1477 : #ifdef CONFIG_SECURITY
1478 : /* Used by LSM modules for access restriction: */
1479 : void *security;
1480 : #endif
1481 : #ifdef CONFIG_BPF_SYSCALL
1482 : /* Used by BPF task local storage */
1483 : struct bpf_local_storage __rcu *bpf_storage;
1484 : /* Used for BPF run context */
1485 : struct bpf_run_ctx *bpf_ctx;
1486 : #endif
1487 :
1488 : #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1489 : unsigned long lowest_stack;
1490 : unsigned long prev_lowest_stack;
1491 : #endif
1492 :
1493 : #ifdef CONFIG_X86_MCE
1494 : void __user *mce_vaddr;
1495 : __u64 mce_kflags;
1496 : u64 mce_addr;
1497 : __u64 mce_ripv : 1,
1498 : mce_whole_page : 1,
1499 : __mce_reserved : 62;
1500 : struct callback_head mce_kill_me;
1501 : int mce_count;
1502 : #endif
1503 :
1504 : #ifdef CONFIG_KRETPROBES
1505 : struct llist_head kretprobe_instances;
1506 : #endif
1507 : #ifdef CONFIG_RETHOOK
1508 : struct llist_head rethooks;
1509 : #endif
1510 :
1511 : #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1512 : /*
1513 : * If L1D flush is supported on mm context switch
1514 : * then we use this callback head to queue kill work
1515 : * to kill tasks that are not running on SMT disabled
1516 : * cores
1517 : */
1518 : struct callback_head l1d_flush_kill;
1519 : #endif
1520 :
1521 : #ifdef CONFIG_RV
1522 : /*
1523 : * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1524 : * If we find justification for more monitors, we can think
1525 : * about adding more or developing a dynamic method. So far,
1526 : * none of these are justified.
1527 : */
1528 : union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1529 : #endif
1530 :
1531 : /*
1532 : * New fields for task_struct should be added above here, so that
1533 : * they are included in the randomized portion of task_struct.
1534 : */
1535 : randomized_struct_fields_end
1536 :
1537 : /* CPU-specific state of this task: */
1538 : struct thread_struct thread;
1539 :
1540 : /*
1541 : * WARNING: on x86, 'thread_struct' contains a variable-sized
1542 : * structure. It *MUST* be at the end of 'task_struct'.
1543 : *
1544 : * Do not put anything below here!
1545 : */
1546 : };
1547 :
1548 : static inline struct pid *task_pid(struct task_struct *task)
1549 : {
1550 : return task->thread_pid;
1551 : }
1552 :
1553 : /*
1554 : * the helpers to get the task's different pids as they are seen
1555 : * from various namespaces
1556 : *
1557 : * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1558 : * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1559 : * current.
1560 : * task_xid_nr_ns() : id seen from the ns specified;
1561 : *
1562 : * see also pid_nr() etc in include/linux/pid.h
1563 : */
1564 : pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1565 :
1566 : static inline pid_t task_pid_nr(struct task_struct *tsk)
1567 : {
1568 : return tsk->pid;
1569 : }
1570 :
1571 : static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1572 : {
1573 333 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1574 : }
1575 :
1576 : static inline pid_t task_pid_vnr(struct task_struct *tsk)
1577 : {
1578 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1579 : }
1580 :
1581 :
1582 : static inline pid_t task_tgid_nr(struct task_struct *tsk)
1583 : {
1584 : return tsk->tgid;
1585 : }
1586 :
1587 : /**
1588 : * pid_alive - check that a task structure is not stale
1589 : * @p: Task structure to be checked.
1590 : *
1591 : * Test if a process is not yet dead (at most zombie state)
1592 : * If pid_alive fails, then pointers within the task structure
1593 : * can be stale and must not be dereferenced.
1594 : *
1595 : * Return: 1 if the process is alive. 0 otherwise.
1596 : */
1597 : static inline int pid_alive(const struct task_struct *p)
1598 : {
1599 : return p->thread_pid != NULL;
1600 : }
1601 :
1602 : static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1603 : {
1604 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1605 : }
1606 :
1607 : static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1608 : {
1609 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1610 : }
1611 :
1612 :
1613 : static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1614 : {
1615 0 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1616 : }
1617 :
1618 : static inline pid_t task_session_vnr(struct task_struct *tsk)
1619 : {
1620 0 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1621 : }
1622 :
1623 : static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1624 : {
1625 0 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1626 : }
1627 :
1628 : static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1629 : {
1630 0 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1631 : }
1632 :
1633 : static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1634 : {
1635 : pid_t pid = 0;
1636 :
1637 : rcu_read_lock();
1638 : if (pid_alive(tsk))
1639 : pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1640 : rcu_read_unlock();
1641 :
1642 : return pid;
1643 : }
1644 :
1645 : static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1646 : {
1647 : return task_ppid_nr_ns(tsk, &init_pid_ns);
1648 : }
1649 :
1650 : /* Obsolete, do not use: */
1651 : static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1652 : {
1653 : return task_pgrp_nr_ns(tsk, &init_pid_ns);
1654 : }
1655 :
1656 : #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1657 : #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1658 :
1659 : static inline unsigned int __task_state_index(unsigned int tsk_state,
1660 : unsigned int tsk_exit_state)
1661 : {
1662 0 : unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1663 :
1664 : BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1665 :
1666 0 : if (tsk_state == TASK_IDLE)
1667 0 : state = TASK_REPORT_IDLE;
1668 :
1669 : /*
1670 : * We're lying here, but rather than expose a completely new task state
1671 : * to userspace, we can make this appear as if the task has gone through
1672 : * a regular rt_mutex_lock() call.
1673 : */
1674 0 : if (tsk_state == TASK_RTLOCK_WAIT)
1675 0 : state = TASK_UNINTERRUPTIBLE;
1676 :
1677 0 : return fls(state);
1678 : }
1679 :
1680 : static inline unsigned int task_state_index(struct task_struct *tsk)
1681 : {
1682 0 : return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1683 : }
1684 :
1685 : static inline char task_index_to_char(unsigned int state)
1686 : {
1687 : static const char state_char[] = "RSDTtXZPI";
1688 :
1689 : BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1690 :
1691 0 : return state_char[state];
1692 : }
1693 :
1694 : static inline char task_state_to_char(struct task_struct *tsk)
1695 : {
1696 0 : return task_index_to_char(task_state_index(tsk));
1697 : }
1698 :
1699 : /**
1700 : * is_global_init - check if a task structure is init. Since init
1701 : * is free to have sub-threads we need to check tgid.
1702 : * @tsk: Task structure to be checked.
1703 : *
1704 : * Check if a task structure is the first user space task the kernel created.
1705 : *
1706 : * Return: 1 if the task structure is init. 0 otherwise.
1707 : */
1708 : static inline int is_global_init(struct task_struct *tsk)
1709 : {
1710 333 : return task_tgid_nr(tsk) == 1;
1711 : }
1712 :
1713 : extern struct pid *cad_pid;
1714 :
1715 : /*
1716 : * Per process flags
1717 : */
1718 : #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1719 : #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1720 : #define PF_EXITING 0x00000004 /* Getting shut down */
1721 : #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1722 : #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1723 : #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1724 : #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1725 : #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1726 : #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1727 : #define PF_DUMPCORE 0x00000200 /* Dumped core */
1728 : #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1729 : #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1730 : #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1731 : #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1732 : #define PF__HOLE__00004000 0x00004000
1733 : #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1734 : #define PF__HOLE__00010000 0x00010000
1735 : #define PF_KSWAPD 0x00020000 /* I am kswapd */
1736 : #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1737 : #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1738 : #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1739 : * I am cleaning dirty pages from some other bdi. */
1740 : #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1741 : #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1742 : #define PF__HOLE__00800000 0x00800000
1743 : #define PF__HOLE__01000000 0x01000000
1744 : #define PF__HOLE__02000000 0x02000000
1745 : #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1746 : #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1747 : #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1748 : #define PF__HOLE__20000000 0x20000000
1749 : #define PF__HOLE__40000000 0x40000000
1750 : #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1751 :
1752 : /*
1753 : * Only the _current_ task can read/write to tsk->flags, but other
1754 : * tasks can access tsk->flags in readonly mode for example
1755 : * with tsk_used_math (like during threaded core dumping).
1756 : * There is however an exception to this rule during ptrace
1757 : * or during fork: the ptracer task is allowed to write to the
1758 : * child->flags of its traced child (same goes for fork, the parent
1759 : * can write to the child->flags), because we're guaranteed the
1760 : * child is not running and in turn not changing child->flags
1761 : * at the same time the parent does it.
1762 : */
1763 : #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1764 : #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1765 : #define clear_used_math() clear_stopped_child_used_math(current)
1766 : #define set_used_math() set_stopped_child_used_math(current)
1767 :
1768 : #define conditional_stopped_child_used_math(condition, child) \
1769 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1770 :
1771 : #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1772 :
1773 : #define copy_to_stopped_child_used_math(child) \
1774 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1775 :
1776 : /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1777 : #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1778 : #define used_math() tsk_used_math(current)
1779 :
1780 : static __always_inline bool is_percpu_thread(void)
1781 : {
1782 : #ifdef CONFIG_SMP
1783 : return (current->flags & PF_NO_SETAFFINITY) &&
1784 : (current->nr_cpus_allowed == 1);
1785 : #else
1786 : return true;
1787 : #endif
1788 : }
1789 :
1790 : /* Per-process atomic flags. */
1791 : #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1792 : #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1793 : #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1794 : #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1795 : #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1796 : #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1797 : #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1798 : #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1799 :
1800 : #define TASK_PFA_TEST(name, func) \
1801 : static inline bool task_##func(struct task_struct *p) \
1802 : { return test_bit(PFA_##name, &p->atomic_flags); }
1803 :
1804 : #define TASK_PFA_SET(name, func) \
1805 : static inline void task_set_##func(struct task_struct *p) \
1806 : { set_bit(PFA_##name, &p->atomic_flags); }
1807 :
1808 : #define TASK_PFA_CLEAR(name, func) \
1809 : static inline void task_clear_##func(struct task_struct *p) \
1810 : { clear_bit(PFA_##name, &p->atomic_flags); }
1811 :
1812 696 : TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1813 0 : TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1814 :
1815 : TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1816 : TASK_PFA_SET(SPREAD_PAGE, spread_page)
1817 : TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1818 :
1819 : TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1820 : TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1821 : TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1822 :
1823 : TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 : TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 : TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1826 :
1827 : TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 : TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 : TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1830 :
1831 : TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 : TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1833 :
1834 : TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1835 : TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1836 : TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1837 :
1838 : TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 : TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1840 :
1841 : static inline void
1842 : current_restore_flags(unsigned long orig_flags, unsigned long flags)
1843 : {
1844 438 : current->flags &= ~flags;
1845 438 : current->flags |= orig_flags & flags;
1846 : }
1847 :
1848 : extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1849 : extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1850 : #ifdef CONFIG_SMP
1851 : extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1852 : extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1853 : extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1854 : extern void release_user_cpus_ptr(struct task_struct *p);
1855 : extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1856 : extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1857 : extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1858 : #else
1859 : static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1860 : {
1861 : }
1862 : static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1863 : {
1864 351 : if (!cpumask_test_cpu(0, new_mask))
1865 : return -EINVAL;
1866 : return 0;
1867 : }
1868 : static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1869 : {
1870 : if (src->user_cpus_ptr)
1871 : return -EINVAL;
1872 : return 0;
1873 : }
1874 : static inline void release_user_cpus_ptr(struct task_struct *p)
1875 : {
1876 332 : WARN_ON(p->user_cpus_ptr);
1877 : }
1878 :
1879 : static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1880 : {
1881 : return 0;
1882 : }
1883 : #endif
1884 :
1885 : extern int yield_to(struct task_struct *p, bool preempt);
1886 : extern void set_user_nice(struct task_struct *p, long nice);
1887 : extern int task_prio(const struct task_struct *p);
1888 :
1889 : /**
1890 : * task_nice - return the nice value of a given task.
1891 : * @p: the task in question.
1892 : *
1893 : * Return: The nice value [ -20 ... 0 ... 19 ].
1894 : */
1895 : static inline int task_nice(const struct task_struct *p)
1896 : {
1897 3103 : return PRIO_TO_NICE((p)->static_prio);
1898 : }
1899 :
1900 : extern int can_nice(const struct task_struct *p, const int nice);
1901 : extern int task_curr(const struct task_struct *p);
1902 : extern int idle_cpu(int cpu);
1903 : extern int available_idle_cpu(int cpu);
1904 : extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1905 : extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1906 : extern void sched_set_fifo(struct task_struct *p);
1907 : extern void sched_set_fifo_low(struct task_struct *p);
1908 : extern void sched_set_normal(struct task_struct *p, int nice);
1909 : extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1910 : extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1911 : extern struct task_struct *idle_task(int cpu);
1912 :
1913 : /**
1914 : * is_idle_task - is the specified task an idle task?
1915 : * @p: the task in question.
1916 : *
1917 : * Return: 1 if @p is an idle task. 0 otherwise.
1918 : */
1919 : static __always_inline bool is_idle_task(const struct task_struct *p)
1920 : {
1921 4464 : return !!(p->flags & PF_IDLE);
1922 : }
1923 :
1924 : extern struct task_struct *curr_task(int cpu);
1925 : extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1926 :
1927 : void yield(void);
1928 :
1929 : union thread_union {
1930 : #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1931 : struct task_struct task;
1932 : #endif
1933 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1934 : struct thread_info thread_info;
1935 : #endif
1936 : unsigned long stack[THREAD_SIZE/sizeof(long)];
1937 : };
1938 :
1939 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1940 : extern struct thread_info init_thread_info;
1941 : #endif
1942 :
1943 : extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1944 :
1945 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1946 : # define task_thread_info(task) (&(task)->thread_info)
1947 : #elif !defined(__HAVE_THREAD_FUNCTIONS)
1948 : # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1949 : #endif
1950 :
1951 : /*
1952 : * find a task by one of its numerical ids
1953 : *
1954 : * find_task_by_pid_ns():
1955 : * finds a task by its pid in the specified namespace
1956 : * find_task_by_vpid():
1957 : * finds a task by its virtual pid
1958 : *
1959 : * see also find_vpid() etc in include/linux/pid.h
1960 : */
1961 :
1962 : extern struct task_struct *find_task_by_vpid(pid_t nr);
1963 : extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1964 :
1965 : /*
1966 : * find a task by its virtual pid and get the task struct
1967 : */
1968 : extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1969 :
1970 : extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1971 : extern int wake_up_process(struct task_struct *tsk);
1972 : extern void wake_up_new_task(struct task_struct *tsk);
1973 :
1974 : #ifdef CONFIG_SMP
1975 : extern void kick_process(struct task_struct *tsk);
1976 : #else
1977 : static inline void kick_process(struct task_struct *tsk) { }
1978 : #endif
1979 :
1980 : extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1981 :
1982 : static inline void set_task_comm(struct task_struct *tsk, const char *from)
1983 : {
1984 347 : __set_task_comm(tsk, from, false);
1985 : }
1986 :
1987 : extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1988 : #define get_task_comm(buf, tsk) ({ \
1989 : BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1990 : __get_task_comm(buf, sizeof(buf), tsk); \
1991 : })
1992 :
1993 : #ifdef CONFIG_SMP
1994 : static __always_inline void scheduler_ipi(void)
1995 : {
1996 : /*
1997 : * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1998 : * TIF_NEED_RESCHED remotely (for the first time) will also send
1999 : * this IPI.
2000 : */
2001 : preempt_fold_need_resched();
2002 : }
2003 : extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2004 : #else
2005 : static inline void scheduler_ipi(void) { }
2006 : static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2007 : {
2008 : return 1;
2009 : }
2010 : #endif
2011 :
2012 : /*
2013 : * Set thread flags in other task's structures.
2014 : * See asm/thread_info.h for TIF_xxxx flags available:
2015 : */
2016 : static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2017 : {
2018 2236 : set_ti_thread_flag(task_thread_info(tsk), flag);
2019 : }
2020 :
2021 : static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 : {
2023 6588 : clear_ti_thread_flag(task_thread_info(tsk), flag);
2024 : }
2025 :
2026 : static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2027 : bool value)
2028 : {
2029 : update_ti_thread_flag(task_thread_info(tsk), flag, value);
2030 : }
2031 :
2032 : static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2033 : {
2034 0 : return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2035 : }
2036 :
2037 : static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2038 : {
2039 : return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2040 : }
2041 :
2042 : static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2043 : {
2044 368649 : return test_ti_thread_flag(task_thread_info(tsk), flag);
2045 : }
2046 :
2047 : static inline void set_tsk_need_resched(struct task_struct *tsk)
2048 : {
2049 1540 : set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2050 : }
2051 :
2052 : static inline void clear_tsk_need_resched(struct task_struct *tsk)
2053 : {
2054 5224 : clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2055 : }
2056 :
2057 : static inline int test_tsk_need_resched(struct task_struct *tsk)
2058 : {
2059 10514 : return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2060 : }
2061 :
2062 : /*
2063 : * cond_resched() and cond_resched_lock(): latency reduction via
2064 : * explicit rescheduling in places that are safe. The return
2065 : * value indicates whether a reschedule was done in fact.
2066 : * cond_resched_lock() will drop the spinlock before scheduling,
2067 : */
2068 : #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2069 : extern int __cond_resched(void);
2070 :
2071 : #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2072 :
2073 : DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2074 :
2075 : static __always_inline int _cond_resched(void)
2076 : {
2077 : return static_call_mod(cond_resched)();
2078 : }
2079 :
2080 : #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2081 : extern int dynamic_cond_resched(void);
2082 :
2083 : static __always_inline int _cond_resched(void)
2084 : {
2085 : return dynamic_cond_resched();
2086 : }
2087 :
2088 : #else
2089 :
2090 : static inline int _cond_resched(void)
2091 : {
2092 406935 : return __cond_resched();
2093 : }
2094 :
2095 : #endif /* CONFIG_PREEMPT_DYNAMIC */
2096 :
2097 : #else
2098 :
2099 : static inline int _cond_resched(void) { return 0; }
2100 :
2101 : #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2102 :
2103 : #define cond_resched() ({ \
2104 : __might_resched(__FILE__, __LINE__, 0); \
2105 : _cond_resched(); \
2106 : })
2107 :
2108 : extern int __cond_resched_lock(spinlock_t *lock);
2109 : extern int __cond_resched_rwlock_read(rwlock_t *lock);
2110 : extern int __cond_resched_rwlock_write(rwlock_t *lock);
2111 :
2112 : #define MIGHT_RESCHED_RCU_SHIFT 8
2113 : #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2114 :
2115 : #ifndef CONFIG_PREEMPT_RT
2116 : /*
2117 : * Non RT kernels have an elevated preempt count due to the held lock,
2118 : * but are not allowed to be inside a RCU read side critical section
2119 : */
2120 : # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2121 : #else
2122 : /*
2123 : * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2124 : * cond_resched*lock() has to take that into account because it checks for
2125 : * preempt_count() and rcu_preempt_depth().
2126 : */
2127 : # define PREEMPT_LOCK_RESCHED_OFFSETS \
2128 : (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2129 : #endif
2130 :
2131 : #define cond_resched_lock(lock) ({ \
2132 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2133 : __cond_resched_lock(lock); \
2134 : })
2135 :
2136 : #define cond_resched_rwlock_read(lock) ({ \
2137 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2138 : __cond_resched_rwlock_read(lock); \
2139 : })
2140 :
2141 : #define cond_resched_rwlock_write(lock) ({ \
2142 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2143 : __cond_resched_rwlock_write(lock); \
2144 : })
2145 :
2146 : static inline void cond_resched_rcu(void)
2147 : {
2148 : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2149 : rcu_read_unlock();
2150 0 : cond_resched();
2151 : rcu_read_lock();
2152 : #endif
2153 : }
2154 :
2155 : #ifdef CONFIG_PREEMPT_DYNAMIC
2156 :
2157 : extern bool preempt_model_none(void);
2158 : extern bool preempt_model_voluntary(void);
2159 : extern bool preempt_model_full(void);
2160 :
2161 : #else
2162 :
2163 : static inline bool preempt_model_none(void)
2164 : {
2165 : return IS_ENABLED(CONFIG_PREEMPT_NONE);
2166 : }
2167 : static inline bool preempt_model_voluntary(void)
2168 : {
2169 : return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2170 : }
2171 : static inline bool preempt_model_full(void)
2172 : {
2173 : return IS_ENABLED(CONFIG_PREEMPT);
2174 : }
2175 :
2176 : #endif
2177 :
2178 : static inline bool preempt_model_rt(void)
2179 : {
2180 : return IS_ENABLED(CONFIG_PREEMPT_RT);
2181 : }
2182 :
2183 : /*
2184 : * Does the preemption model allow non-cooperative preemption?
2185 : *
2186 : * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2187 : * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2188 : * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2189 : * PREEMPT_NONE model.
2190 : */
2191 : static inline bool preempt_model_preemptible(void)
2192 : {
2193 : return preempt_model_full() || preempt_model_rt();
2194 : }
2195 :
2196 : /*
2197 : * Does a critical section need to be broken due to another
2198 : * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2199 : * but a general need for low latency)
2200 : */
2201 : static inline int spin_needbreak(spinlock_t *lock)
2202 : {
2203 : #ifdef CONFIG_PREEMPTION
2204 : return spin_is_contended(lock);
2205 : #else
2206 : return 0;
2207 : #endif
2208 : }
2209 :
2210 : /*
2211 : * Check if a rwlock is contended.
2212 : * Returns non-zero if there is another task waiting on the rwlock.
2213 : * Returns zero if the lock is not contended or the system / underlying
2214 : * rwlock implementation does not support contention detection.
2215 : * Technically does not depend on CONFIG_PREEMPTION, but a general need
2216 : * for low latency.
2217 : */
2218 : static inline int rwlock_needbreak(rwlock_t *lock)
2219 : {
2220 : #ifdef CONFIG_PREEMPTION
2221 : return rwlock_is_contended(lock);
2222 : #else
2223 : return 0;
2224 : #endif
2225 : }
2226 :
2227 : static __always_inline bool need_resched(void)
2228 : {
2229 2248 : return unlikely(tif_need_resched());
2230 : }
2231 :
2232 : /*
2233 : * Wrappers for p->thread_info->cpu access. No-op on UP.
2234 : */
2235 : #ifdef CONFIG_SMP
2236 :
2237 : static inline unsigned int task_cpu(const struct task_struct *p)
2238 : {
2239 : return READ_ONCE(task_thread_info(p)->cpu);
2240 : }
2241 :
2242 : extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2243 :
2244 : #else
2245 :
2246 : static inline unsigned int task_cpu(const struct task_struct *p)
2247 : {
2248 : return 0;
2249 : }
2250 :
2251 : static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2252 : {
2253 : }
2254 :
2255 : #endif /* CONFIG_SMP */
2256 :
2257 : extern bool sched_task_on_rq(struct task_struct *p);
2258 : extern unsigned long get_wchan(struct task_struct *p);
2259 : extern struct task_struct *cpu_curr_snapshot(int cpu);
2260 :
2261 : /*
2262 : * In order to reduce various lock holder preemption latencies provide an
2263 : * interface to see if a vCPU is currently running or not.
2264 : *
2265 : * This allows us to terminate optimistic spin loops and block, analogous to
2266 : * the native optimistic spin heuristic of testing if the lock owner task is
2267 : * running or not.
2268 : */
2269 : #ifndef vcpu_is_preempted
2270 : static inline bool vcpu_is_preempted(int cpu)
2271 : {
2272 : return false;
2273 : }
2274 : #endif
2275 :
2276 : extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2277 : extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2278 :
2279 : #ifndef TASK_SIZE_OF
2280 : #define TASK_SIZE_OF(tsk) TASK_SIZE
2281 : #endif
2282 :
2283 : #ifdef CONFIG_SMP
2284 : static inline bool owner_on_cpu(struct task_struct *owner)
2285 : {
2286 : /*
2287 : * As lock holder preemption issue, we both skip spinning if
2288 : * task is not on cpu or its cpu is preempted
2289 : */
2290 : return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2291 : }
2292 :
2293 : /* Returns effective CPU energy utilization, as seen by the scheduler */
2294 : unsigned long sched_cpu_util(int cpu);
2295 : #endif /* CONFIG_SMP */
2296 :
2297 : #ifdef CONFIG_RSEQ
2298 :
2299 : /*
2300 : * Map the event mask on the user-space ABI enum rseq_cs_flags
2301 : * for direct mask checks.
2302 : */
2303 : enum rseq_event_mask_bits {
2304 : RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2305 : RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2306 : RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2307 : };
2308 :
2309 : enum rseq_event_mask {
2310 : RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2311 : RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2312 : RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2313 : };
2314 :
2315 : static inline void rseq_set_notify_resume(struct task_struct *t)
2316 : {
2317 : if (t->rseq)
2318 : set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2319 : }
2320 :
2321 : void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2322 :
2323 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2324 : struct pt_regs *regs)
2325 : {
2326 : if (current->rseq)
2327 : __rseq_handle_notify_resume(ksig, regs);
2328 : }
2329 :
2330 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2331 : struct pt_regs *regs)
2332 : {
2333 : preempt_disable();
2334 : __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2335 : preempt_enable();
2336 : rseq_handle_notify_resume(ksig, regs);
2337 : }
2338 :
2339 : /* rseq_preempt() requires preemption to be disabled. */
2340 : static inline void rseq_preempt(struct task_struct *t)
2341 : {
2342 : __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2343 : rseq_set_notify_resume(t);
2344 : }
2345 :
2346 : /* rseq_migrate() requires preemption to be disabled. */
2347 : static inline void rseq_migrate(struct task_struct *t)
2348 : {
2349 : __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2350 : rseq_set_notify_resume(t);
2351 : }
2352 :
2353 : /*
2354 : * If parent process has a registered restartable sequences area, the
2355 : * child inherits. Unregister rseq for a clone with CLONE_VM set.
2356 : */
2357 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2358 : {
2359 : if (clone_flags & CLONE_VM) {
2360 : t->rseq = NULL;
2361 : t->rseq_len = 0;
2362 : t->rseq_sig = 0;
2363 : t->rseq_event_mask = 0;
2364 : } else {
2365 : t->rseq = current->rseq;
2366 : t->rseq_len = current->rseq_len;
2367 : t->rseq_sig = current->rseq_sig;
2368 : t->rseq_event_mask = current->rseq_event_mask;
2369 : }
2370 : }
2371 :
2372 : static inline void rseq_execve(struct task_struct *t)
2373 : {
2374 : t->rseq = NULL;
2375 : t->rseq_len = 0;
2376 : t->rseq_sig = 0;
2377 : t->rseq_event_mask = 0;
2378 : }
2379 :
2380 : #else
2381 :
2382 : static inline void rseq_set_notify_resume(struct task_struct *t)
2383 : {
2384 : }
2385 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2386 : struct pt_regs *regs)
2387 : {
2388 : }
2389 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2390 : struct pt_regs *regs)
2391 : {
2392 : }
2393 : static inline void rseq_preempt(struct task_struct *t)
2394 : {
2395 : }
2396 : static inline void rseq_migrate(struct task_struct *t)
2397 : {
2398 : }
2399 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2400 : {
2401 : }
2402 : static inline void rseq_execve(struct task_struct *t)
2403 : {
2404 : }
2405 :
2406 : #endif
2407 :
2408 : #ifdef CONFIG_DEBUG_RSEQ
2409 :
2410 : void rseq_syscall(struct pt_regs *regs);
2411 :
2412 : #else
2413 :
2414 : static inline void rseq_syscall(struct pt_regs *regs)
2415 : {
2416 : }
2417 :
2418 : #endif
2419 :
2420 : #ifdef CONFIG_SCHED_CORE
2421 : extern void sched_core_free(struct task_struct *tsk);
2422 : extern void sched_core_fork(struct task_struct *p);
2423 : extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2424 : unsigned long uaddr);
2425 : #else
2426 : static inline void sched_core_free(struct task_struct *tsk) { }
2427 : static inline void sched_core_fork(struct task_struct *p) { }
2428 : #endif
2429 :
2430 : extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2431 :
2432 : #endif
|