LCOV - code coverage report
Current view: top level - kernel/dma - direct.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 133 0.0 %
Date: 2023-04-06 08:38:28 Functions: 0 19 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2018-2020 Christoph Hellwig.
       4             :  *
       5             :  * DMA operations that map physical memory directly without using an IOMMU.
       6             :  */
       7             : #include <linux/memblock.h> /* for max_pfn */
       8             : #include <linux/export.h>
       9             : #include <linux/mm.h>
      10             : #include <linux/dma-map-ops.h>
      11             : #include <linux/scatterlist.h>
      12             : #include <linux/pfn.h>
      13             : #include <linux/vmalloc.h>
      14             : #include <linux/set_memory.h>
      15             : #include <linux/slab.h>
      16             : #include "direct.h"
      17             : 
      18             : /*
      19             :  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
      20             :  * it for entirely different regions. In that case the arch code needs to
      21             :  * override the variable below for dma-direct to work properly.
      22             :  */
      23             : unsigned int zone_dma_bits __ro_after_init = 24;
      24             : 
      25             : static inline dma_addr_t phys_to_dma_direct(struct device *dev,
      26             :                 phys_addr_t phys)
      27             : {
      28           0 :         if (force_dma_unencrypted(dev))
      29             :                 return phys_to_dma_unencrypted(dev, phys);
      30           0 :         return phys_to_dma(dev, phys);
      31             : }
      32             : 
      33           0 : static inline struct page *dma_direct_to_page(struct device *dev,
      34             :                 dma_addr_t dma_addr)
      35             : {
      36           0 :         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
      37             : }
      38             : 
      39           0 : u64 dma_direct_get_required_mask(struct device *dev)
      40             : {
      41           0 :         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
      42           0 :         u64 max_dma = phys_to_dma_direct(dev, phys);
      43             : 
      44           0 :         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
      45             : }
      46             : 
      47           0 : static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
      48             :                                   u64 *phys_limit)
      49             : {
      50           0 :         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
      51             : 
      52             :         /*
      53             :          * Optimistically try the zone that the physical address mask falls
      54             :          * into first.  If that returns memory that isn't actually addressable
      55             :          * we will fallback to the next lower zone and try again.
      56             :          *
      57             :          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
      58             :          * zones.
      59             :          */
      60           0 :         *phys_limit = dma_to_phys(dev, dma_limit);
      61           0 :         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
      62             :                 return GFP_DMA;
      63           0 :         if (*phys_limit <= DMA_BIT_MASK(32))
      64             :                 return GFP_DMA32;
      65           0 :         return 0;
      66             : }
      67             : 
      68           0 : static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
      69             : {
      70           0 :         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
      71             : 
      72           0 :         if (dma_addr == DMA_MAPPING_ERROR)
      73             :                 return false;
      74           0 :         return dma_addr + size - 1 <=
      75           0 :                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
      76             : }
      77             : 
      78             : static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
      79             : {
      80           0 :         if (!force_dma_unencrypted(dev))
      81             :                 return 0;
      82             :         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
      83             : }
      84             : 
      85             : static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
      86             : {
      87             :         int ret;
      88             : 
      89           0 :         if (!force_dma_unencrypted(dev))
      90             :                 return 0;
      91             :         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
      92             :         if (ret)
      93             :                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
      94             :         return ret;
      95             : }
      96             : 
      97             : static void __dma_direct_free_pages(struct device *dev, struct page *page,
      98             :                                     size_t size)
      99             : {
     100           0 :         if (swiotlb_free(dev, page, size))
     101             :                 return;
     102           0 :         dma_free_contiguous(dev, page, size);
     103             : }
     104             : 
     105             : static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
     106             : {
     107             :         struct page *page = swiotlb_alloc(dev, size);
     108             : 
     109             :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
     110             :                 swiotlb_free(dev, page, size);
     111             :                 return NULL;
     112             :         }
     113             : 
     114             :         return page;
     115             : }
     116             : 
     117           0 : static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
     118             :                 gfp_t gfp, bool allow_highmem)
     119             : {
     120           0 :         int node = dev_to_node(dev);
     121           0 :         struct page *page = NULL;
     122             :         u64 phys_limit;
     123             : 
     124           0 :         WARN_ON_ONCE(!PAGE_ALIGNED(size));
     125             : 
     126           0 :         if (is_swiotlb_for_alloc(dev))
     127             :                 return dma_direct_alloc_swiotlb(dev, size);
     128             : 
     129           0 :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
     130             :                                            &phys_limit);
     131           0 :         page = dma_alloc_contiguous(dev, size, gfp);
     132             :         if (page) {
     133             :                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
     134             :                     (!allow_highmem && PageHighMem(page))) {
     135             :                         dma_free_contiguous(dev, page, size);
     136             :                         page = NULL;
     137             :                 }
     138             :         }
     139             : again:
     140             :         if (!page)
     141           0 :                 page = alloc_pages_node(node, gfp, get_order(size));
     142           0 :         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
     143           0 :                 dma_free_contiguous(dev, page, size);
     144           0 :                 page = NULL;
     145             : 
     146             :                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
     147             :                     phys_limit < DMA_BIT_MASK(64) &&
     148             :                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
     149             :                         gfp |= GFP_DMA32;
     150             :                         goto again;
     151             :                 }
     152             : 
     153             :                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
     154             :                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
     155             :                         goto again;
     156             :                 }
     157             :         }
     158             : 
     159             :         return page;
     160             : }
     161             : 
     162             : /*
     163             :  * Check if a potentially blocking operations needs to dip into the atomic
     164             :  * pools for the given device/gfp.
     165             :  */
     166             : static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
     167             : {
     168             :         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
     169             : }
     170             : 
     171             : static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
     172             :                 dma_addr_t *dma_handle, gfp_t gfp)
     173             : {
     174             :         struct page *page;
     175             :         u64 phys_mask;
     176             :         void *ret;
     177             : 
     178             :         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
     179             :                 return NULL;
     180             : 
     181             :         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
     182             :                                            &phys_mask);
     183             :         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
     184             :         if (!page)
     185             :                 return NULL;
     186             :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     187             :         return ret;
     188             : }
     189             : 
     190           0 : static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
     191             :                 dma_addr_t *dma_handle, gfp_t gfp)
     192             : {
     193             :         struct page *page;
     194             : 
     195           0 :         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
     196           0 :         if (!page)
     197             :                 return NULL;
     198             : 
     199             :         /* remove any dirty cache lines on the kernel alias */
     200           0 :         if (!PageHighMem(page))
     201             :                 arch_dma_prep_coherent(page, size);
     202             : 
     203             :         /* return the page pointer as the opaque cookie */
     204           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     205           0 :         return page;
     206             : }
     207             : 
     208           0 : void *dma_direct_alloc(struct device *dev, size_t size,
     209             :                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
     210             : {
     211           0 :         bool remap = false, set_uncached = false;
     212             :         struct page *page;
     213             :         void *ret;
     214             : 
     215           0 :         size = PAGE_ALIGN(size);
     216           0 :         if (attrs & DMA_ATTR_NO_WARN)
     217           0 :                 gfp |= __GFP_NOWARN;
     218             : 
     219           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     220           0 :             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
     221           0 :                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
     222             : 
     223           0 :         if (!dev_is_dma_coherent(dev)) {
     224             :                 /*
     225             :                  * Fallback to the arch handler if it exists.  This should
     226             :                  * eventually go away.
     227             :                  */
     228             :                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     229             :                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     230             :                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     231             :                     !is_swiotlb_for_alloc(dev))
     232             :                         return arch_dma_alloc(dev, size, dma_handle, gfp,
     233             :                                               attrs);
     234             : 
     235             :                 /*
     236             :                  * If there is a global pool, always allocate from it for
     237             :                  * non-coherent devices.
     238             :                  */
     239             :                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
     240             :                         return dma_alloc_from_global_coherent(dev, size,
     241             :                                         dma_handle);
     242             : 
     243             :                 /*
     244             :                  * Otherwise remap if the architecture is asking for it.  But
     245             :                  * given that remapping memory is a blocking operation we'll
     246             :                  * instead have to dip into the atomic pools.
     247             :                  */
     248             :                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
     249             :                 if (remap) {
     250             :                         if (dma_direct_use_pool(dev, gfp))
     251             :                                 return dma_direct_alloc_from_pool(dev, size,
     252             :                                                 dma_handle, gfp);
     253             :                 } else {
     254             :                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
     255             :                                 return NULL;
     256             :                         set_uncached = true;
     257             :                 }
     258             :         }
     259             : 
     260             :         /*
     261             :          * Decrypting memory may block, so allocate the memory from the atomic
     262             :          * pools if we can't block.
     263             :          */
     264           0 :         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
     265             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     266             : 
     267             :         /* we always manually zero the memory once we are done */
     268           0 :         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
     269           0 :         if (!page)
     270             :                 return NULL;
     271             : 
     272             :         /*
     273             :          * dma_alloc_contiguous can return highmem pages depending on a
     274             :          * combination the cma= arguments and per-arch setup.  These need to be
     275             :          * remapped to return a kernel virtual address.
     276             :          */
     277           0 :         if (PageHighMem(page)) {
     278             :                 remap = true;
     279             :                 set_uncached = false;
     280             :         }
     281             : 
     282             :         if (remap) {
     283             :                 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
     284             : 
     285             :                 if (force_dma_unencrypted(dev))
     286             :                         prot = pgprot_decrypted(prot);
     287             : 
     288             :                 /* remove any dirty cache lines on the kernel alias */
     289             :                 arch_dma_prep_coherent(page, size);
     290             : 
     291             :                 /* create a coherent mapping */
     292             :                 ret = dma_common_contiguous_remap(page, size, prot,
     293             :                                 __builtin_return_address(0));
     294             :                 if (!ret)
     295             :                         goto out_free_pages;
     296             :         } else {
     297           0 :                 ret = page_address(page);
     298           0 :                 if (dma_set_decrypted(dev, ret, size))
     299             :                         goto out_free_pages;
     300             :         }
     301             : 
     302           0 :         memset(ret, 0, size);
     303             : 
     304             :         if (set_uncached) {
     305             :                 arch_dma_prep_coherent(page, size);
     306             :                 ret = arch_dma_set_uncached(ret, size);
     307             :                 if (IS_ERR(ret))
     308             :                         goto out_encrypt_pages;
     309             :         }
     310             : 
     311           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     312           0 :         return ret;
     313             : 
     314             : out_encrypt_pages:
     315             :         if (dma_set_encrypted(dev, page_address(page), size))
     316             :                 return NULL;
     317             : out_free_pages:
     318             :         __dma_direct_free_pages(dev, page, size);
     319             :         return NULL;
     320             : }
     321             : 
     322           0 : void dma_direct_free(struct device *dev, size_t size,
     323             :                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
     324             : {
     325           0 :         unsigned int page_order = get_order(size);
     326             : 
     327           0 :         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
     328           0 :             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
     329             :                 /* cpu_addr is a struct page cookie, not a kernel address */
     330           0 :                 dma_free_contiguous(dev, cpu_addr, size);
     331           0 :                 return;
     332             :         }
     333             : 
     334             :         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
     335             :             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
     336             :             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     337           0 :             !dev_is_dma_coherent(dev) &&
     338             :             !is_swiotlb_for_alloc(dev)) {
     339             :                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
     340             :                 return;
     341             :         }
     342             : 
     343             :         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
     344             :             !dev_is_dma_coherent(dev)) {
     345             :                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
     346             :                         WARN_ON_ONCE(1);
     347             :                 return;
     348             :         }
     349             : 
     350             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     351             :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     352             :             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
     353             :                 return;
     354             : 
     355           0 :         if (is_vmalloc_addr(cpu_addr)) {
     356           0 :                 vunmap(cpu_addr);
     357             :         } else {
     358             :                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
     359             :                         arch_dma_clear_uncached(cpu_addr, size);
     360             :                 if (dma_set_encrypted(dev, cpu_addr, size))
     361             :                         return;
     362             :         }
     363             : 
     364           0 :         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
     365             : }
     366             : 
     367           0 : struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
     368             :                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
     369             : {
     370             :         struct page *page;
     371             :         void *ret;
     372             : 
     373           0 :         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
     374             :                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
     375             : 
     376           0 :         page = __dma_direct_alloc_pages(dev, size, gfp, false);
     377           0 :         if (!page)
     378             :                 return NULL;
     379             : 
     380           0 :         ret = page_address(page);
     381           0 :         if (dma_set_decrypted(dev, ret, size))
     382             :                 goto out_free_pages;
     383           0 :         memset(ret, 0, size);
     384           0 :         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
     385           0 :         return page;
     386             : out_free_pages:
     387             :         __dma_direct_free_pages(dev, page, size);
     388             :         return NULL;
     389             : }
     390             : 
     391           0 : void dma_direct_free_pages(struct device *dev, size_t size,
     392             :                 struct page *page, dma_addr_t dma_addr,
     393             :                 enum dma_data_direction dir)
     394             : {
     395           0 :         void *vaddr = page_address(page);
     396             : 
     397             :         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
     398             :         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
     399             :             dma_free_from_pool(dev, vaddr, size))
     400             :                 return;
     401             : 
     402           0 :         if (dma_set_encrypted(dev, vaddr, size))
     403             :                 return;
     404           0 :         __dma_direct_free_pages(dev, page, size);
     405             : }
     406             : 
     407             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
     408             :     defined(CONFIG_SWIOTLB)
     409             : void dma_direct_sync_sg_for_device(struct device *dev,
     410             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     411             : {
     412             :         struct scatterlist *sg;
     413             :         int i;
     414             : 
     415             :         for_each_sg(sgl, sg, nents, i) {
     416             :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     417             : 
     418             :                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
     419             :                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
     420             :                                                        dir);
     421             : 
     422             :                 if (!dev_is_dma_coherent(dev))
     423             :                         arch_sync_dma_for_device(paddr, sg->length,
     424             :                                         dir);
     425             :         }
     426             : }
     427             : #endif
     428             : 
     429             : #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
     430             :     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
     431             :     defined(CONFIG_SWIOTLB)
     432             : void dma_direct_sync_sg_for_cpu(struct device *dev,
     433             :                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
     434             : {
     435             :         struct scatterlist *sg;
     436             :         int i;
     437             : 
     438             :         for_each_sg(sgl, sg, nents, i) {
     439             :                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
     440             : 
     441             :                 if (!dev_is_dma_coherent(dev))
     442             :                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
     443             : 
     444             :                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
     445             :                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
     446             :                                                     dir);
     447             : 
     448             :                 if (dir == DMA_FROM_DEVICE)
     449             :                         arch_dma_mark_clean(paddr, sg->length);
     450             :         }
     451             : 
     452             :         if (!dev_is_dma_coherent(dev))
     453             :                 arch_sync_dma_for_cpu_all();
     454             : }
     455             : 
     456             : /*
     457             :  * Unmaps segments, except for ones marked as pci_p2pdma which do not
     458             :  * require any further action as they contain a bus address.
     459             :  */
     460             : void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
     461             :                 int nents, enum dma_data_direction dir, unsigned long attrs)
     462             : {
     463             :         struct scatterlist *sg;
     464             :         int i;
     465             : 
     466             :         for_each_sg(sgl,  sg, nents, i) {
     467             :                 if (sg_is_dma_bus_address(sg))
     468             :                         sg_dma_unmark_bus_address(sg);
     469             :                 else
     470             :                         dma_direct_unmap_page(dev, sg->dma_address,
     471             :                                               sg_dma_len(sg), dir, attrs);
     472             :         }
     473             : }
     474             : #endif
     475             : 
     476           0 : int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
     477             :                 enum dma_data_direction dir, unsigned long attrs)
     478             : {
     479             :         struct pci_p2pdma_map_state p2pdma_state = {};
     480             :         enum pci_p2pdma_map_type map;
     481             :         struct scatterlist *sg;
     482             :         int i, ret;
     483             : 
     484           0 :         for_each_sg(sgl, sg, nents, i) {
     485           0 :                 if (is_pci_p2pdma_page(sg_page(sg))) {
     486             :                         map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
     487             :                         switch (map) {
     488             :                         case PCI_P2PDMA_MAP_BUS_ADDR:
     489             :                                 continue;
     490             :                         case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
     491             :                                 /*
     492             :                                  * Any P2P mapping that traverses the PCI
     493             :                                  * host bridge must be mapped with CPU physical
     494             :                                  * address and not PCI bus addresses. This is
     495             :                                  * done with dma_direct_map_page() below.
     496             :                                  */
     497             :                                 break;
     498             :                         default:
     499             :                                 ret = -EREMOTEIO;
     500             :                                 goto out_unmap;
     501             :                         }
     502             :                 }
     503             : 
     504           0 :                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
     505           0 :                                 sg->offset, sg->length, dir, attrs);
     506           0 :                 if (sg->dma_address == DMA_MAPPING_ERROR) {
     507             :                         ret = -EIO;
     508             :                         goto out_unmap;
     509             :                 }
     510             :                 sg_dma_len(sg) = sg->length;
     511             :         }
     512             : 
     513             :         return nents;
     514             : 
     515             : out_unmap:
     516             :         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
     517             :         return ret;
     518             : }
     519             : 
     520           0 : dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
     521             :                 size_t size, enum dma_data_direction dir, unsigned long attrs)
     522             : {
     523           0 :         dma_addr_t dma_addr = paddr;
     524             : 
     525           0 :         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
     526           0 :                 dev_err_once(dev,
     527             :                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
     528             :                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
     529           0 :                 WARN_ON_ONCE(1);
     530             :                 return DMA_MAPPING_ERROR;
     531             :         }
     532             : 
     533             :         return dma_addr;
     534             : }
     535             : 
     536           0 : int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
     537             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     538             :                 unsigned long attrs)
     539             : {
     540           0 :         struct page *page = dma_direct_to_page(dev, dma_addr);
     541             :         int ret;
     542             : 
     543           0 :         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
     544           0 :         if (!ret)
     545           0 :                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
     546           0 :         return ret;
     547             : }
     548             : 
     549           0 : bool dma_direct_can_mmap(struct device *dev)
     550             : {
     551           0 :         return dev_is_dma_coherent(dev) ||
     552             :                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
     553             : }
     554             : 
     555           0 : int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
     556             :                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
     557             :                 unsigned long attrs)
     558             : {
     559           0 :         unsigned long user_count = vma_pages(vma);
     560           0 :         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
     561           0 :         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
     562           0 :         int ret = -ENXIO;
     563             : 
     564           0 :         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
     565           0 :         if (force_dma_unencrypted(dev))
     566             :                 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
     567             : 
     568             :         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
     569             :                 return ret;
     570           0 :         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
     571             :                 return ret;
     572             : 
     573           0 :         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
     574             :                 return -ENXIO;
     575           0 :         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
     576             :                         user_count << PAGE_SHIFT, vma->vm_page_prot);
     577             : }
     578             : 
     579           0 : int dma_direct_supported(struct device *dev, u64 mask)
     580             : {
     581           0 :         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
     582             : 
     583             :         /*
     584             :          * Because 32-bit DMA masks are so common we expect every architecture
     585             :          * to be able to satisfy them - either by not supporting more physical
     586             :          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
     587             :          * architecture needs to use an IOMMU instead of the direct mapping.
     588             :          */
     589           0 :         if (mask >= DMA_BIT_MASK(32))
     590             :                 return 1;
     591             : 
     592             :         /*
     593             :          * This check needs to be against the actual bit mask value, so use
     594             :          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
     595             :          * part of the check.
     596             :          */
     597             :         if (IS_ENABLED(CONFIG_ZONE_DMA))
     598             :                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
     599           0 :         return mask >= phys_to_dma_unencrypted(dev, min_mask);
     600             : }
     601             : 
     602           0 : size_t dma_direct_max_mapping_size(struct device *dev)
     603             : {
     604             :         /* If SWIOTLB is active, use its maximum mapping size */
     605           0 :         if (is_swiotlb_active(dev) &&
     606             :             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
     607             :                 return swiotlb_max_mapping_size(dev);
     608             :         return SIZE_MAX;
     609             : }
     610             : 
     611           0 : bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
     612             : {
     613           0 :         return !dev_is_dma_coherent(dev) ||
     614           0 :                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
     615             : }
     616             : 
     617             : /**
     618             :  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
     619             :  * @dev:        device pointer; needed to "own" the alloced memory.
     620             :  * @cpu_start:  beginning of memory region covered by this offset.
     621             :  * @dma_start:  beginning of DMA/PCI region covered by this offset.
     622             :  * @size:       size of the region.
     623             :  *
     624             :  * This is for the simple case of a uniform offset which cannot
     625             :  * be discovered by "dma-ranges".
     626             :  *
     627             :  * It returns -ENOMEM if out of memory, -EINVAL if a map
     628             :  * already exists, 0 otherwise.
     629             :  *
     630             :  * Note: any call to this from a driver is a bug.  The mapping needs
     631             :  * to be described by the device tree or other firmware interfaces.
     632             :  */
     633           0 : int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
     634             :                          dma_addr_t dma_start, u64 size)
     635             : {
     636             :         struct bus_dma_region *map;
     637           0 :         u64 offset = (u64)cpu_start - (u64)dma_start;
     638             : 
     639           0 :         if (dev->dma_range_map) {
     640           0 :                 dev_err(dev, "attempt to add DMA range to existing map\n");
     641           0 :                 return -EINVAL;
     642             :         }
     643             : 
     644           0 :         if (!offset)
     645             :                 return 0;
     646             : 
     647           0 :         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
     648           0 :         if (!map)
     649             :                 return -ENOMEM;
     650           0 :         map[0].cpu_start = cpu_start;
     651           0 :         map[0].dma_start = dma_start;
     652           0 :         map[0].offset = offset;
     653           0 :         map[0].size = size;
     654           0 :         dev->dma_range_map = map;
     655           0 :         return 0;
     656             : }

Generated by: LCOV version 1.14