LCOV - code coverage report
Current view: top level - kernel - smpboot.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 47 118 39.8 %
Date: 2023-04-06 08:38:28 Functions: 3 11 27.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * Common SMP CPU bringup/teardown functions
       4             :  */
       5             : #include <linux/cpu.h>
       6             : #include <linux/err.h>
       7             : #include <linux/smp.h>
       8             : #include <linux/delay.h>
       9             : #include <linux/init.h>
      10             : #include <linux/list.h>
      11             : #include <linux/slab.h>
      12             : #include <linux/sched.h>
      13             : #include <linux/sched/task.h>
      14             : #include <linux/export.h>
      15             : #include <linux/percpu.h>
      16             : #include <linux/kthread.h>
      17             : #include <linux/smpboot.h>
      18             : 
      19             : #include "smpboot.h"
      20             : 
      21             : #ifdef CONFIG_SMP
      22             : 
      23             : #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
      24             : /*
      25             :  * For the hotplug case we keep the task structs around and reuse
      26             :  * them.
      27             :  */
      28             : static DEFINE_PER_CPU(struct task_struct *, idle_threads);
      29             : 
      30             : struct task_struct *idle_thread_get(unsigned int cpu)
      31             : {
      32             :         struct task_struct *tsk = per_cpu(idle_threads, cpu);
      33             : 
      34             :         if (!tsk)
      35             :                 return ERR_PTR(-ENOMEM);
      36             :         return tsk;
      37             : }
      38             : 
      39             : void __init idle_thread_set_boot_cpu(void)
      40             : {
      41             :         per_cpu(idle_threads, smp_processor_id()) = current;
      42             : }
      43             : 
      44             : /**
      45             :  * idle_init - Initialize the idle thread for a cpu
      46             :  * @cpu:        The cpu for which the idle thread should be initialized
      47             :  *
      48             :  * Creates the thread if it does not exist.
      49             :  */
      50             : static __always_inline void idle_init(unsigned int cpu)
      51             : {
      52             :         struct task_struct *tsk = per_cpu(idle_threads, cpu);
      53             : 
      54             :         if (!tsk) {
      55             :                 tsk = fork_idle(cpu);
      56             :                 if (IS_ERR(tsk))
      57             :                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
      58             :                 else
      59             :                         per_cpu(idle_threads, cpu) = tsk;
      60             :         }
      61             : }
      62             : 
      63             : /**
      64             :  * idle_threads_init - Initialize idle threads for all cpus
      65             :  */
      66             : void __init idle_threads_init(void)
      67             : {
      68             :         unsigned int cpu, boot_cpu;
      69             : 
      70             :         boot_cpu = smp_processor_id();
      71             : 
      72             :         for_each_possible_cpu(cpu) {
      73             :                 if (cpu != boot_cpu)
      74             :                         idle_init(cpu);
      75             :         }
      76             : }
      77             : #endif
      78             : 
      79             : #endif /* #ifdef CONFIG_SMP */
      80             : 
      81             : static LIST_HEAD(hotplug_threads);
      82             : static DEFINE_MUTEX(smpboot_threads_lock);
      83             : 
      84             : struct smpboot_thread_data {
      85             :         unsigned int                    cpu;
      86             :         unsigned int                    status;
      87             :         struct smp_hotplug_thread       *ht;
      88             : };
      89             : 
      90             : enum {
      91             :         HP_THREAD_NONE = 0,
      92             :         HP_THREAD_ACTIVE,
      93             :         HP_THREAD_PARKED,
      94             : };
      95             : 
      96             : /**
      97             :  * smpboot_thread_fn - percpu hotplug thread loop function
      98             :  * @data:       thread data pointer
      99             :  *
     100             :  * Checks for thread stop and park conditions. Calls the necessary
     101             :  * setup, cleanup, park and unpark functions for the registered
     102             :  * thread.
     103             :  *
     104             :  * Returns 1 when the thread should exit, 0 otherwise.
     105             :  */
     106           1 : static int smpboot_thread_fn(void *data)
     107             : {
     108           1 :         struct smpboot_thread_data *td = data;
     109           1 :         struct smp_hotplug_thread *ht = td->ht;
     110             : 
     111             :         while (1) {
     112         702 :                 set_current_state(TASK_INTERRUPTIBLE);
     113         702 :                 preempt_disable();
     114         702 :                 if (kthread_should_stop()) {
     115           0 :                         __set_current_state(TASK_RUNNING);
     116           0 :                         preempt_enable();
     117             :                         /* cleanup must mirror setup */
     118           0 :                         if (ht->cleanup && td->status != HP_THREAD_NONE)
     119           0 :                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
     120           0 :                         kfree(td);
     121           0 :                         return 0;
     122             :                 }
     123             : 
     124         702 :                 if (kthread_should_park()) {
     125           0 :                         __set_current_state(TASK_RUNNING);
     126           0 :                         preempt_enable();
     127           0 :                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
     128           0 :                                 BUG_ON(td->cpu != smp_processor_id());
     129           0 :                                 ht->park(td->cpu);
     130           0 :                                 td->status = HP_THREAD_PARKED;
     131             :                         }
     132           0 :                         kthread_parkme();
     133             :                         /* We might have been woken for stop */
     134           0 :                         continue;
     135             :                 }
     136             : 
     137         702 :                 BUG_ON(td->cpu != smp_processor_id());
     138             : 
     139             :                 /* Check for state change setup */
     140         702 :                 switch (td->status) {
     141             :                 case HP_THREAD_NONE:
     142           1 :                         __set_current_state(TASK_RUNNING);
     143           1 :                         preempt_enable();
     144           1 :                         if (ht->setup)
     145           0 :                                 ht->setup(td->cpu);
     146           1 :                         td->status = HP_THREAD_ACTIVE;
     147           1 :                         continue;
     148             : 
     149             :                 case HP_THREAD_PARKED:
     150           0 :                         __set_current_state(TASK_RUNNING);
     151           0 :                         preempt_enable();
     152           0 :                         if (ht->unpark)
     153           0 :                                 ht->unpark(td->cpu);
     154           0 :                         td->status = HP_THREAD_ACTIVE;
     155           0 :                         continue;
     156             :                 }
     157             : 
     158         701 :                 if (!ht->thread_should_run(td->cpu)) {
     159         351 :                         preempt_enable_no_resched();
     160         351 :                         schedule();
     161             :                 } else {
     162         350 :                         __set_current_state(TASK_RUNNING);
     163         350 :                         preempt_enable();
     164         350 :                         ht->thread_fn(td->cpu);
     165             :                 }
     166             :         }
     167             : }
     168             : 
     169             : static int
     170           1 : __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     171             : {
     172           1 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     173             :         struct smpboot_thread_data *td;
     174             : 
     175           1 :         if (tsk)
     176             :                 return 0;
     177             : 
     178           1 :         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
     179           1 :         if (!td)
     180             :                 return -ENOMEM;
     181           1 :         td->cpu = cpu;
     182           1 :         td->ht = ht;
     183             : 
     184           1 :         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
     185             :                                     ht->thread_comm);
     186           1 :         if (IS_ERR(tsk)) {
     187           0 :                 kfree(td);
     188           0 :                 return PTR_ERR(tsk);
     189             :         }
     190           1 :         kthread_set_per_cpu(tsk, cpu);
     191             :         /*
     192             :          * Park the thread so that it could start right on the CPU
     193             :          * when it is available.
     194             :          */
     195           1 :         kthread_park(tsk);
     196           1 :         get_task_struct(tsk);
     197           1 :         *per_cpu_ptr(ht->store, cpu) = tsk;
     198           1 :         if (ht->create) {
     199             :                 /*
     200             :                  * Make sure that the task has actually scheduled out
     201             :                  * into park position, before calling the create
     202             :                  * callback. At least the migration thread callback
     203             :                  * requires that the task is off the runqueue.
     204             :                  */
     205           0 :                 if (!wait_task_inactive(tsk, TASK_PARKED))
     206             :                         WARN_ON(1);
     207             :                 else
     208           0 :                         ht->create(cpu);
     209             :         }
     210             :         return 0;
     211             : }
     212             : 
     213           0 : int smpboot_create_threads(unsigned int cpu)
     214             : {
     215             :         struct smp_hotplug_thread *cur;
     216           0 :         int ret = 0;
     217             : 
     218           0 :         mutex_lock(&smpboot_threads_lock);
     219           0 :         list_for_each_entry(cur, &hotplug_threads, list) {
     220           0 :                 ret = __smpboot_create_thread(cur, cpu);
     221           0 :                 if (ret)
     222             :                         break;
     223             :         }
     224           0 :         mutex_unlock(&smpboot_threads_lock);
     225           0 :         return ret;
     226             : }
     227             : 
     228             : static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     229             : {
     230           1 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     231             : 
     232           1 :         if (!ht->selfparking)
     233           1 :                 kthread_unpark(tsk);
     234             : }
     235             : 
     236           0 : int smpboot_unpark_threads(unsigned int cpu)
     237             : {
     238             :         struct smp_hotplug_thread *cur;
     239             : 
     240           0 :         mutex_lock(&smpboot_threads_lock);
     241           0 :         list_for_each_entry(cur, &hotplug_threads, list)
     242           0 :                 smpboot_unpark_thread(cur, cpu);
     243           0 :         mutex_unlock(&smpboot_threads_lock);
     244           0 :         return 0;
     245             : }
     246             : 
     247             : static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
     248             : {
     249           0 :         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     250             : 
     251           0 :         if (tsk && !ht->selfparking)
     252           0 :                 kthread_park(tsk);
     253             : }
     254             : 
     255           0 : int smpboot_park_threads(unsigned int cpu)
     256             : {
     257             :         struct smp_hotplug_thread *cur;
     258             : 
     259           0 :         mutex_lock(&smpboot_threads_lock);
     260           0 :         list_for_each_entry_reverse(cur, &hotplug_threads, list)
     261           0 :                 smpboot_park_thread(cur, cpu);
     262           0 :         mutex_unlock(&smpboot_threads_lock);
     263           0 :         return 0;
     264             : }
     265             : 
     266           0 : static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
     267             : {
     268             :         unsigned int cpu;
     269             : 
     270             :         /* We need to destroy also the parked threads of offline cpus */
     271           0 :         for_each_possible_cpu(cpu) {
     272           0 :                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
     273             : 
     274           0 :                 if (tsk) {
     275           0 :                         kthread_stop(tsk);
     276           0 :                         put_task_struct(tsk);
     277           0 :                         *per_cpu_ptr(ht->store, cpu) = NULL;
     278             :                 }
     279             :         }
     280           0 : }
     281             : 
     282             : /**
     283             :  * smpboot_register_percpu_thread - Register a per_cpu thread related
     284             :  *                                          to hotplug
     285             :  * @plug_thread:        Hotplug thread descriptor
     286             :  *
     287             :  * Creates and starts the threads on all online cpus.
     288             :  */
     289           1 : int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
     290             : {
     291             :         unsigned int cpu;
     292           1 :         int ret = 0;
     293             : 
     294             :         cpus_read_lock();
     295           1 :         mutex_lock(&smpboot_threads_lock);
     296           2 :         for_each_online_cpu(cpu) {
     297           1 :                 ret = __smpboot_create_thread(plug_thread, cpu);
     298           1 :                 if (ret) {
     299           0 :                         smpboot_destroy_threads(plug_thread);
     300           0 :                         goto out;
     301             :                 }
     302           2 :                 smpboot_unpark_thread(plug_thread, cpu);
     303             :         }
     304           1 :         list_add(&plug_thread->list, &hotplug_threads);
     305             : out:
     306           1 :         mutex_unlock(&smpboot_threads_lock);
     307             :         cpus_read_unlock();
     308           1 :         return ret;
     309             : }
     310             : EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
     311             : 
     312             : /**
     313             :  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
     314             :  * @plug_thread:        Hotplug thread descriptor
     315             :  *
     316             :  * Stops all threads on all possible cpus.
     317             :  */
     318           0 : void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
     319             : {
     320             :         cpus_read_lock();
     321           0 :         mutex_lock(&smpboot_threads_lock);
     322           0 :         list_del(&plug_thread->list);
     323           0 :         smpboot_destroy_threads(plug_thread);
     324           0 :         mutex_unlock(&smpboot_threads_lock);
     325             :         cpus_read_unlock();
     326           0 : }
     327             : EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
     328             : 
     329             : static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
     330             : 
     331             : /*
     332             :  * Called to poll specified CPU's state, for example, when waiting for
     333             :  * a CPU to come online.
     334             :  */
     335           0 : int cpu_report_state(int cpu)
     336             : {
     337           0 :         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     338             : }
     339             : 
     340             : /*
     341             :  * If CPU has died properly, set its state to CPU_UP_PREPARE and
     342             :  * return success.  Otherwise, return -EBUSY if the CPU died after
     343             :  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
     344             :  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
     345             :  * to dying.  In the latter two cases, the CPU might not be set up
     346             :  * properly, but it is up to the arch-specific code to decide.
     347             :  * Finally, -EIO indicates an unanticipated problem.
     348             :  *
     349             :  * Note that it is permissible to omit this call entirely, as is
     350             :  * done in architectures that do no CPU-hotplug error checking.
     351             :  */
     352           0 : int cpu_check_up_prepare(int cpu)
     353             : {
     354             :         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
     355           0 :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
     356             :                 return 0;
     357             :         }
     358             : 
     359             :         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
     360             : 
     361             :         case CPU_POST_DEAD:
     362             : 
     363             :                 /* The CPU died properly, so just start it up again. */
     364             :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
     365             :                 return 0;
     366             : 
     367             :         case CPU_DEAD_FROZEN:
     368             : 
     369             :                 /*
     370             :                  * Timeout during CPU death, so let caller know.
     371             :                  * The outgoing CPU completed its processing, but after
     372             :                  * cpu_wait_death() timed out and reported the error. The
     373             :                  * caller is free to proceed, in which case the state
     374             :                  * will be reset properly by cpu_set_state_online().
     375             :                  * Proceeding despite this -EBUSY return makes sense
     376             :                  * for systems where the outgoing CPUs take themselves
     377             :                  * offline, with no post-death manipulation required from
     378             :                  * a surviving CPU.
     379             :                  */
     380             :                 return -EBUSY;
     381             : 
     382             :         case CPU_BROKEN:
     383             : 
     384             :                 /*
     385             :                  * The most likely reason we got here is that there was
     386             :                  * a timeout during CPU death, and the outgoing CPU never
     387             :                  * did complete its processing.  This could happen on
     388             :                  * a virtualized system if the outgoing VCPU gets preempted
     389             :                  * for more than five seconds, and the user attempts to
     390             :                  * immediately online that same CPU.  Trying again later
     391             :                  * might return -EBUSY above, hence -EAGAIN.
     392             :                  */
     393             :                 return -EAGAIN;
     394             : 
     395             :         case CPU_UP_PREPARE:
     396             :                 /*
     397             :                  * Timeout while waiting for the CPU to show up. Allow to try
     398             :                  * again later.
     399             :                  */
     400             :                 return 0;
     401             : 
     402             :         default:
     403             : 
     404             :                 /* Should not happen.  Famous last words. */
     405             :                 return -EIO;
     406             :         }
     407             : }
     408             : 
     409             : /*
     410             :  * Mark the specified CPU online.
     411             :  *
     412             :  * Note that it is permissible to omit this call entirely, as is
     413             :  * done in architectures that do no CPU-hotplug error checking.
     414             :  */
     415           0 : void cpu_set_state_online(int cpu)
     416             : {
     417           0 :         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
     418           0 : }
     419             : 
     420             : #ifdef CONFIG_HOTPLUG_CPU
     421             : 
     422             : /*
     423             :  * Wait for the specified CPU to exit the idle loop and die.
     424             :  */
     425             : bool cpu_wait_death(unsigned int cpu, int seconds)
     426             : {
     427             :         int jf_left = seconds * HZ;
     428             :         int oldstate;
     429             :         bool ret = true;
     430             :         int sleep_jf = 1;
     431             : 
     432             :         might_sleep();
     433             : 
     434             :         /* The outgoing CPU will normally get done quite quickly. */
     435             :         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
     436             :                 goto update_state_early;
     437             :         udelay(5);
     438             : 
     439             :         /* But if the outgoing CPU dawdles, wait increasingly long times. */
     440             :         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
     441             :                 schedule_timeout_uninterruptible(sleep_jf);
     442             :                 jf_left -= sleep_jf;
     443             :                 if (jf_left <= 0)
     444             :                         break;
     445             :                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
     446             :         }
     447             : update_state_early:
     448             :         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     449             : update_state:
     450             :         if (oldstate == CPU_DEAD) {
     451             :                 /* Outgoing CPU died normally, update state. */
     452             :                 smp_mb(); /* atomic_read() before update. */
     453             :                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
     454             :         } else {
     455             :                 /* Outgoing CPU still hasn't died, set state accordingly. */
     456             :                 if (!atomic_try_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
     457             :                                         &oldstate, CPU_BROKEN))
     458             :                         goto update_state;
     459             :                 ret = false;
     460             :         }
     461             :         return ret;
     462             : }
     463             : 
     464             : /*
     465             :  * Called by the outgoing CPU to report its successful death.  Return
     466             :  * false if this report follows the surviving CPU's timing out.
     467             :  *
     468             :  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
     469             :  * timed out.  This approach allows architectures to omit calls to
     470             :  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
     471             :  * the next cpu_wait_death()'s polling loop.
     472             :  */
     473             : bool cpu_report_death(void)
     474             : {
     475             :         int oldstate;
     476             :         int newstate;
     477             :         int cpu = smp_processor_id();
     478             : 
     479             :         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
     480             :         do {
     481             :                 if (oldstate != CPU_BROKEN)
     482             :                         newstate = CPU_DEAD;
     483             :                 else
     484             :                         newstate = CPU_DEAD_FROZEN;
     485             :         } while (!atomic_try_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
     486             :                                      &oldstate, newstate));
     487             :         return newstate == CPU_DEAD;
     488             : }
     489             : 
     490             : #endif /* #ifdef CONFIG_HOTPLUG_CPU */

Generated by: LCOV version 1.14